Clinical Trials Examining ctDNA-Guided Approaches to Treating Early Colon Cancer

Paolo Tarantino, MD, Spotlights Treatment Trends for Breast Cancer Awareness Month

Special Issue Feature: CIRCULATE-US Overview
Minimal Residual Disease–Directed Adjuvant Therapy for Patients With Early-Stage Colon Cancer: CIRCULATE-US

Special Issue Feature: ctDNA-Guided Therapy in Early Colon Cancer
Investigating the Use of Circulating Tumor DNA in Early-Stage Colon Cancer

Gynecologic Cancer: CME
Antibody-Drug Conjugates in Gynecological Cancer: Setting the Stage

PAOLA TARANTINO, MD
EXKIVITY® (mobocertinib)
The first and only oral therapy designed to target EGFR Exon20 insertion+ mNSCLC¹,²
FOR PATIENTS WITH EGFR EXON20 INSERTION+ mNSCLC
POST PLATINUM-BASED CHEMOTHERAPY¹

INDICATION
EXKIVITY is indicated for the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion mutations, as detected by an FDA-approved test, whose disease has progressed on or after platinum-based chemotherapy. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trial(s).

IMPORTANT SAFETY INFORMATION
WARNING: QTc PROLONGATION and TORSADES DE POINTES
See full prescribing information for complete boxed warning.
• EXKIVITY can cause life-threatening heart rate-corrected QT (QTc) prolongation, including Torsades de Pointes, which can be fatal, and requires monitoring of QTc and electrolytes at baseline and periodically during treatment. Increase monitoring frequency in patients with risk factors for QTc prolongation.
• Avoid use of concomitant drugs which are known to prolong the QTc interval and use of strong or moderate CYP3A inhibitors with EXKIVITY, which may further prolong the QTc.
• Withhold, reduce the dose, or permanently discontinue EXKIVITY based on the severity of QTc prolongation.

¹EGFR, epidermal growth factor receptor; FDA, Food and Drug Administration; mNSCLC, metastatic non-small cell lung cancer; NGS, next-generation sequencing; PCR, polymerase chain reaction.
²All trademarks are property of their respective owners. ©2022 Takeda Pharmaceuticals U.S.A., Inc. All rights reserved. 0822 USO-MOB-0072
EGFR Exon20 insertions are distinct targetable driver mutations—Use an FDA-approved NGS test to identify patients³⁻⁵

EGFR Exon20 insertions are the third most common type of *EGFR* driver mutation; different from exon 19 deletions and exon 21 L858R mutations, as well as from T790M point mutations⁶,⁷

- ~10% of all *EGFR* mutations are Exon20 insertions⁷
- About 2,000–4,000 new patients may present in the US every year⁹
- ~50% of patients can be missed by relying on PCR testing*⁵

*PCR can only detect ≤5 out of 60+ *EGFR* Exon20 insertion variants. The variants detected by PCR are the most common, representing ~50% of cases.*¹

Discover EXKIVITY to see what may be possible for your patients post platinum-based chemotherapy:

- **EXKIVITY** is the first and only oral therapy designed to target *EGFR* Exon20 insertion+ mNSCLC¹,²
- National Comprehensive Cancer Network® (NCCN®) recommends mobocertinib as a Category 2A second-line treatment option**⁹
- Use an FDA-approved NGS test to identify patients in your practice who may benefit from treatment with EXKIVITY⁶

*For eligible patients with mNSCLC.
†See the NCCN Guidelines for NSCLC for detailed recommendations, including other treatment options.⁹

WARNINGS AND PRECAUTIONS

QTc Prolongation and Torsades de Pointes

EXKIVITY can cause life-threatening heart rate-corrected QT (QTc) prolongation, including Torsades de Pointes, which can be fatal. In the 250 patient subset of the pooled EXKIVITY safety population who had scheduled and unscheduled electrocardiograms (ECGs), 1.2% of patients had a QTc interval >500 msec and 11% of patients had a change-from-baseline QTc interval >60 msec. Grade 4 Torsades de Pointes occurred in 1 patient (0.4%). Clinical trials of EXKIVITY did not enroll patients with baseline QTc greater than 470 msec.

Assess QTc and electrolytes at baseline and correct abnormalities in sodium, potassium, calcium, and magnesium prior to initiating EXKIVITY. Monitor QTc and electrolytes periodically during treatment. Increase monitoring frequency in patients with risk factors for QTc prolongation, such as patients with congenital long QT syndrome, heart disease, or electrolyte abnormalities. Avoid use of concomitant drugs which are known to prolong the QTc interval. Avoid concomitant use of strong or moderate CYP3A inhibitors with EXKIVITY, which may further prolong the QTc. Withhold, reduce the dose, or permanently discontinue EXKIVITY based on the severity of the QTc prolongation.

Please see Important Safety Information and Brief Summary of full Prescribing Information, including Boxed Warning, on the following pages.
IMPORTANT SAFETY INFORMATION

CONT'D

Interstitial Lung Disease (ILD)/Pneumonitis

EXKIVITY can cause ILD/pneumonitis, which can be fatal. In the pooled EXKIVITY safety population, ILD/pneumonitis occurred in 4.3% of patients including 0.8% Grade 3 events and 1.2% fatal events. Monitor patients for new or worsening pulmonary symptoms indicative of ILD/pneumonitis. Immediately withhold EXKIVITY in patients with suspected ILD/pneumonitis and permanently discontinue EXKIVITY if ILD/pneumonitis is confirmed.

Cardiac Toxicity

EXKIVITY can cause cardiac toxicity (including decreased ejection fraction, cardiomyopathy, and congestive heart failure) resulting in heart failure which can be fatal. In the pooled EXKIVITY safety population, heart failure occurred in 2.7% of patients including 1.2% Grade 3 reactions, 0.4% Grade 4 reactions, and one (0.4%) fatal case of heart failure. EXKIVITY can cause QTc prolongation resulting in Torsades de Pointes. Atrial fibrillation (1.6%), ventricular tachycardia (0.4%), first degree atrioventricular block (0.4%), second degree atrioventricular block (0.4%), left bundle branch block (0.4%), supraventricular extrasystoles (0.4%), and ventricular extrasystoles (0.4%) also occurred in patients receiving EXKIVITY. Monitor cardiac function, including assessment of left ventricular ejection fraction at baseline and during treatment. Withhold, reduce the dose, or permanently discontinue EXKIVITY based on the severity.

Diarrhea

EXKIVITY can cause diarrhea, which can be severe. In the pooled EXKIVITY safety population, diarrhea occurred in 93% of patients, including 20% Grade 3 and 0.4% Grade 4. The median time to first onset of diarrhea was 5 days, but diarrhea has occurred within 24 hours after administration of EXKIVITY. In the 48% of patients whose diarrhea resolved, the median time to resolution was 3 days. Diarrhea may lead to dehydration or electrolyte imbalance, with or without renal impairment. Treat diarrhea promptly.

Advise patients to start an antidiarrheal agent (e.g., loperamide) at first sign of diarrhea or increased bowel movement frequency and to increase fluid and electrolyte intake. Monitor electrolytes and withhold, reduce the dose or permanently discontinue EXKIVITY based on the severity.

Embryo-Fetal Toxicity

Based on findings from animal studies and its mechanism of action, EXKIVITY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective non-hormonal contraception during treatment with EXKIVITY and for 1 month after the last dose. Advise males with female partners of reproductive potential to use effective contraception during treatment with EXKIVITY and for 1 week after the last dose of EXKIVITY.

ADVERSE REACTIONS

The most common (>20%) adverse reactions are diarrhea (92%), rash (78%), stomatitis (46%), vomiting (40%), decreased appetite (39%), paronychia (39%), nausea (37%), musculoskeletal pain (34%), dry skin (32%), fatigue (29%), pruritus (24%), cough (24%) and decreased weight (21%). The most common (≥2%) Grade 3 or 4 laboratory abnormalities were decreased lymphocytes (15%), increased amylase (13%), increased lipase (10%), decreased potassium (5.3%), decreased red blood cells (3.5%), increased creatinine (2.7%), decreased magnesium (2.7%), and increased alanine aminotransferase (2.7%).

DRUG INTERACTIONS

CYP3A Inhibitors

Coadministration of EXKIVITY with strong or moderate CYP3A inhibitors increased mobocertinib plasma concentrations, which may increase the risk of adverse reactions, including QTc interval prolongation. Avoid concomitant use of strong or moderate CYP3A inhibitors with EXKIVITY. If concomitant use of moderate CYP3A inhibitors cannot be avoided, reduce the EXKIVITY dose and monitor the QTc interval more frequently with ECGs.
CYP3A Inducers
Coadministration of EXKIVITY with strong or moderate CYP3A inducers decreased mobocertinib plasma concentrations, which may reduce EXKIVITY anti-tumor activity. Avoid concomitant use of strong or moderate CYP3A inducers with EXKIVITY.

CYP3A Substrates
Coadministration of EXKIVITY with CYP3A substrates may decrease plasma concentrations of CYP3A substrates, which may reduce the efficacy of these substrates. Avoid concomitant use of hormonal contraceptives with EXKIVITY. Avoid concomitant use of EXKIVITY with other CYP3A substrates where minimal concentration changes may lead to serious therapeutic failures. If concomitant use is unavoidable, increase the CYP3A substrate dosage in accordance with the approved product Prescribing Information.

Prolonged QTc Interval
EXKIVITY can cause QTc interval prolongation. Coadministration of EXKIVITY with drugs known to prolong the QTc interval may increase the risk of QTc interval prolongation. Avoid concomitant use of other medications known to prolong the QTc interval with EXKIVITY. If concomitant use is unavoidable, monitor the QTc interval more frequently with ECGs.

USE IN SPECIFIC POPULATIONS
Pregnancy
Based on findings from animal studies and its mechanism of action, EXKIVITY can cause fetal harm when administered to a pregnant woman. There are no available data on EXKIVITY use in pregnant women. Advise pregnant women of the potential risk to a fetus.

Females and Males of Reproductive Potential
EXKIVITY can cause fetal harm when administered to pregnant women. Verify pregnancy status in females of reproductive potential prior to initiating EXKIVITY.

Advise females of reproductive potential to use effective non-hormonal contraception during treatment with EXKIVITY and for 1 month after the last dose. EXKIVITY may render hormonal contraceptives ineffective. Advise males with female partners of reproductive potential to use effective contraception during treatment with EXKIVITY and for 1 week after the last dose. Based on animal studies EXKIVITY may impair fertility in males and females of reproductive potential.

Lactation
There are no data on the presence of mobocertinib or its metabolites in human milk or their effects on the breastfed child or on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment with EXKIVITY and for 1 week after the last dose.

Geriatric
Of the 114 patients who received EXKIVITY in clinical studies, 37% were 65 years and over, and 7% were 75 years and over. No overall difference in effectiveness was observed between patients aged 65 and older and younger patients. Exploratory analysis suggests a higher incidence rate of Grade 3 and 4 adverse reactions (69% vs 47%) and serious adverse reactions (64% vs 35%) in patients 65 years and older as compared to those younger than 65 years.

To report SUSPECTED ADVERSE REACTIONS, contact Takeda Pharmaceuticals America, Inc. at 1-844-217-6468 or the FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

Please see Brief Summary of full Prescribing Information, including Boxed Warning, on the following pages.

BRIEF SUMMARY OF PRESCRIBING INFORMATION
EXKIVITY® (MOBOCERTINIB)

These highlights do not include all the information needed to use EXKIVITY safely and effectively. See full prescribing information at EXKIVITYhcp.com

WARNING: QTc PROLONGATION and TORSADES DE POINTES
- EXKIVITY can cause life-threatening heart rate-corrected QT (QTc) prolongation, including Torsades de Pointes, which can be fatal, and requires monitoring of QTc and electrolyte correction at baseline and periodically during treatment. Increase monitoring frequency in patients with risk factors for QTc prolongation [see Warnings and Precautions (5.1)].
- Avoid use of concomitant drugs which are known to prolong the QTc interval and use of strong or moderate CYP3A inhibitors with EXKIVITY, which may further prolong the QTc [see Warnings and Precautions (5.1), Drug Interactions (7.1, 7.3)].
- Withhold, reduce the dose, or permanently discontinue EXKIVITY based on the severity of QTc prolongation [see Dosage and Administration (2.3)].

1 INDICATIONS AND USAGE
EXKIVITY is indicated for the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion mutations [see Clinical Studies (14)]. Information on FDA-approved tests is available at: http://www.fda.gov/CompanionDiagnostics.

2 DOSAGE AND ADMINISTRATION
2.1 Patient Selection
Select patients with locally advanced or metastatic NSCLC for treatment with EXKIVITY based on the presence of EGFR exon 20 insertion mutations [see Clinical Studies (14)]. Information on FDA-approved tests is available at: http://www.fda.gov/CompanionDiagnostics.

2.2 Recommended Dosage
The recommended dosage of EXKIVITY is 160 mg orally once daily until disease progression or unacceptable toxicity.

Take EXKIVITY with or without food [see Clinical Pharmacology 12.3] at the same time each day. Swallow EXKIVITY capsules whole. Do not open, chew or dissolve the contents of the capsules.

If a dose is missed by more than 6 hours, skip the dose and take the next dose the following day at its regularly scheduled time. If a dose is vomited, do not take an additional dose. Take the next dose as prescribed the following day.

2.3 Dosage Modifications for Adverse Reactions
EXKIVITY dose reduction levels for adverse reactions are summarized in Table 1.

Table 1: Recommended EXKIVITY Dose Reductions

<table>
<thead>
<tr>
<th>Dose Reductions</th>
<th>Dose Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>First dose reduction</td>
<td>120 mg once daily</td>
</tr>
<tr>
<td>Second dose reduction</td>
<td>80 mg once daily</td>
</tr>
</tbody>
</table>

Recommended dosage modifications of EXKIVITY for adverse reactions are provided in Table 2.

Table 2: Recommended Dosage Modifications for EXKIVITY

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Severity*</th>
<th>EXKIVITY Dosage Modification</th>
</tr>
</thead>
</table>
| QTc Interval Prolongation and Torsades de Pointes (see Warnings and Precautions (5.1)) | Grade 2 (QTc interval 481-500 msec) | First Occurrence
- Withhold EXKIVITY until ≤ Grade 1 or baseline.
- Upon recovery, resume EXKIVITY at the same dose.
- Recurrence
- Withhold EXKIVITY until ≤ Grade 1 or baseline.
- Upon recovery, resume EXKIVITY at the next lower dose or permanently discontinue EXKIVITY. |
| QTc Interval Prolongation and Torsades de Pointes (see Warnings and Precautions (5.1)) | Grade 3 (QTc interval ≥501 msec or QTc interval increase of ≥60 msec from baseline) | First Occurrence
- Withhold EXKIVITY until ≤ Grade 1 or baseline.
- Upon recovery, resume EXKIVITY at the next lower dose or permanently discontinue EXKIVITY.
- Recurrence
- Permanently discontinue EXKIVITY. |
| Interstitial Lung Disease (ILD)/pneumonitis (see Warnings and Precautions (5.2)) | Any grade | Withhold EXKIVITY if ILD/pneumonitis is suspected.
- Permanently discontinue EXKIVITY if ILD/pneumonitis is confirmed. |
| Decreased Ejection Fraction or Heart Failure (see Warnings and Precautions (5.3)) | Grade 2 decreased ejection fraction | Withhold EXKIVITY until ≤ Grade 1 or baseline.
- If recovered to baseline within 2 weeks, resume EXKIVITY at the same dose or the next lower dose.
- If not recovered to baseline within 2 weeks, permanently discontinue EXKIVITY. |
| ≥ Grade 2 heart failure or Grade 3 or 4 decreased ejection fraction | Permanently discontinue EXKIVITY. |
| Diarrhea (see Warnings and Precautions (5.4)) | Intolerable or recurrent Grade 2 or Grade 3 | Withhold EXKIVITY until ≤ Grade 1.
- Resume EXKIVITY at the same dose or the next lower dose. |
| Grade 4 | First Occurrence
- Withhold EXKIVITY until ≤ Grade 1.
- Resume EXKIVITY at the next lower dose. |
- Permanently discontinue EXKIVITY. |
WARNING: QTc PROLONGATION and TORSADES DE POINTES

The adverse reaction requiring dose reduction in >5% of patients was diarrhea. Dose reductions of EXKIVITY due to an adverse reaction occurred in 25% of patients. Included diarrhea, nausea and vomiting.

In the 48% of patients whose diarrhea resolved, the median time to resolution was 2 weeks. For diarrhea requiring dose reduction, resume EXKIVITY at the next lower dose.

Monitor patients for new or worsening pulmonary symptoms indicative of ILD/pneumonitis. Immediately withhold EXKIVITY in patients with suspected ILD/pneumonitis and permanently discontinue EXKIVITY if ILD/pneumonitis is confirmed [see Dosage and Administration (2.3)].

5.4 Diarrhea
EXKIVITY can cause diarrhea, which can be severe. In the pooled EXKIVITY safety population [see Adverse Reactions (6.1)] diarrhea occurred in 93% of patients, including 20% Grade 3 and 0.4% Grade 4. The median time to first onset of diarrhea was 5 days but diarrhea has occurred within 24 hours after administration of EXKIVITY. In the 48% of patients whose diarrhea resolved, the median time to resolution was 3 days. Diarrhea may lead to dehydration or electrolyte imbalance, with or without renal impairment. Treat diarrhea promptly.

Advise patients to start an antidiarrheal agent (e.g., loperamide) at first sign of diarrhea or increased bowel movement frequency and to increase fluid and electrolyte intake. Monitor electrolytes and withhold, reduce the dose or permanently discontinue EXKIVITY based on the severity [see Dosage and Administration (2.3)].

5.5 Embryo-Fetal Toxicity
Based on findings from animal studies and its mechanism of action, EXKIVITY can cause fetal harm when administered to a pregnant woman. Oral administration of mocobencarb to pregnant rats during the period of organogenesis resulted in embryofoetality at maternal exposures 1.7 times the human exposure based on area under the curve (AUC) at the 100-mg once-daily clinical dose. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective non-hormonal contraception during treatment with EXKIVITY and for 1 week after the last dose of EXKIVITY [see Use in Specific Populations (8.1, 8.3)].

6 ADVERSE REACTIONS
6.1 Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

The pooled safety population described in WARNINGS AND PRECAUTIONS reflects exposure to EXKIVITY as a single agent at a dose of 160 mg orally once daily in 258 patients, including 114 patients with EGFR exon 20 insertion mutation-positive locally advanced or metastatic NSCLC from Study APZ2788-15-101, and patients with other solid tumors. Forty-eight percent (48%) were exposed for 6 months or longer and 12% were exposed for greater than one year. The most common (>2%) adverse reactions were diarrhea, rash, nausea, stomatitis, vomiting, decreased appetite, paronychia, fatigue, dry skin, and musclekeletal pain. The most common (≥2%) Grade 3 or 4 laboratory abnormalities were decreased lymphocytes, increased amylase, increased lipase, decreased potassium, decreased hemoglobin, increased creatinine, and decreased magnesium.

EGFR Exon 20 Insertion Mutation-Positive Locally Advanced or Metastatic NSCLC Previously Treated with Platinum-Based Chemotherapy
The safety of EXKIVITY was evaluated in a subset of patients in Study APZ2788-15-101 with EGFR exon 20 insertion mutation-positive locally advanced or metastatic NSCLC who received prior platinum-based chemotherapy [see Clinical Studies (14)]. Patients with a history of interstitial lung disease, drug-related pneumonitis, radiation pneumonitis that required steroid treatment; significant, uncontrolled, active cardiovascular disease; or prolonged QTc interval were excluded from enrollment in this trial. A total of 114 patients received EXKIVITY 160 mg once daily until disease progression or unacceptable toxicity; 80% were exposed for 6 months or longer and 14% were exposed for greater than 1 year.

Serious adverse reactions occurred in 46% of patients who received EXKIVITY. Serious adverse reactions in ≥2% of patients included diarrhea, dyspnea, vomiting, pyrexia, acute kidney injury, nausea, pleural effusion, and cardiac failure. Fatal adverse reactions occurred in 1.6% of patients who received EXKIVITY, including cardiac failure (0.9%), and pneumonitis (0.9%).

Permanent discontinuation occurred in 17% of patients who received EXKIVITY. Adverse reactions requiring permanent discontinuation of EXKIVITY in at least ≥2% were diarrhea and nausea.

Dose interruptions of EXKIVITY due to an adverse reaction occurred in 51% of patients. Adverse reactions which required dosage interruption in ≥5% of patients included diarrhea, nausea and vomiting.

Dose reductions of EXKIVITY due to an adverse reaction occurred in 25% of patients. The adverse reaction requiring dose reduction in ≥5% of patients was diarrhea.

Table 3 summarizes the adverse reactions in Study APZ2788-15-101.
Table 3: Adverse Reactions (≥10%) in Patients with EGFR Exon 20 Insertion Mutation-Positive NSCLC Whose Disease Has Progressed on or after Platinum-Based Chemotherapy in Study AP32788-15-101

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>EXKIVITY (N = 114)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>92</td>
</tr>
<tr>
<td>Stomatitis**</td>
<td>46</td>
</tr>
<tr>
<td>Vomiting</td>
<td>40</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>39</td>
</tr>
<tr>
<td>Nausea</td>
<td>37</td>
</tr>
<tr>
<td>Decreased weight</td>
<td>21</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>18</td>
</tr>
<tr>
<td>Gastroesophageal reflux disease</td>
<td>15</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>11</td>
</tr>
<tr>
<td>Skin and Subcutaneous Tissue Disorders</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>78</td>
</tr>
<tr>
<td>Paronychia*</td>
<td>39</td>
</tr>
<tr>
<td>Dry skin</td>
<td>32</td>
</tr>
<tr>
<td>Pruritus</td>
<td>24</td>
</tr>
<tr>
<td>Alopecia</td>
<td>19</td>
</tr>
<tr>
<td>Musculoskeletal and Connective Tissue Disorders</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal pain†</td>
<td>34</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td></td>
</tr>
<tr>
<td>Fatigue†</td>
<td>29</td>
</tr>
<tr>
<td>Respiratory, Thoracic and Mediastinal Disorders</td>
<td></td>
</tr>
<tr>
<td>Cough†</td>
<td>24</td>
</tr>
<tr>
<td>Upper respiratory tract infection†</td>
<td>18</td>
</tr>
<tr>
<td>Dyspnea†</td>
<td>15</td>
</tr>
<tr>
<td>Rhinorrhea</td>
<td>13</td>
</tr>
<tr>
<td>Eye Disorders</td>
<td></td>
</tr>
<tr>
<td>Ocular Toxicity†</td>
<td>11</td>
</tr>
<tr>
<td>Cardiac Disorders</td>
<td></td>
</tr>
<tr>
<td>QTc interval prolongation†</td>
<td>10</td>
</tr>
<tr>
<td>Hypertension†</td>
<td>10</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>10</td>
</tr>
</tbody>
</table>

* Graded according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE 5).
** Events of Grade 3 only (no Grade 4 occurred).
† Stomatitis includes angular cheilitis, aphthous ulcer, cheilitis, mouth ulceration, mucosal inflammation, odynophagia, and stomatitis.
‡ Abdominal pain includes abdominal discomfort, abdominal pain, abdominal pain upper, abdominal tenderness, and gastrointestinal pain.
§ Rash includes acne, dermatitis, dermatitis acneiform, rash, rash macular, rash maculopapular, rash papular, rash pruritic, rash pustular, and urticaria.
¶ Paronychia includes nail bed tenderness, nail disorder, nail infection, onycholysis, and paronychia.
\ Musculoskeletal pain includes arthralgia, back pain, musculoskeletal chest pain, musculoskeletal discomfort, musculoskeletal pain, myalgia, neck pain, non-cardiac chest pain, pain in extremity, and spinal pain.
° Fatigue includes anorexia, and fatigue.
± Cough includes cough, productive cough, and upper-airway cough syndrome.
& Upper respiratory tract infection includes nasopharyngitis, pharyngitis, respiratory tract infection, rhinitis, sinusitis, and upper respiratory tract infection.
(Dyspnea includes dyspnea and dyspnea exertional.
* Ocular toxicity includes dry eye, eye pruritis, abnormal sensation in eye, eye discharge, blepharitis, trichiasis, conjunctival hemorrhage, vitreous floaters, blurred vision and corneal edema.
, QTc interval prolongation includes electrocardiogram QT prolonged and ventricular arrhythmia.
+ Hypertension includes blood pressure increase and hypertension.

Clinically relevant adverse reactions in <10% of patients receiving EXKIVITY included edema (9%), acute kidney injury (8%), peripheral neuropathy (7%), palmar-plantar erythrodysesthesia (4.4%), pneumonitis (2.5%) and cardiac failure (2.6%).

Table 4 summarizes the laboratory abnormalities in Study AP32788-15-101.

Table 4: Select Laboratory Abnormalities (≥20%) Worsening from Baseline in Patients with EGFR Exon 20 Insertion Mutation-Positive NSCLC Whose Disease Has Progressed on or after Platinum-Based Chemotherapy in Study AP32788-15-101

<table>
<thead>
<tr>
<th>Laboratory Abnormality</th>
<th>EXKIVITY** (N = 114)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
</tr>
<tr>
<td>Hematology</td>
<td></td>
</tr>
<tr>
<td>Decreased red blood cells</td>
<td>59</td>
</tr>
<tr>
<td>Decreased lymphocytes</td>
<td>52</td>
</tr>
<tr>
<td>Decreased platelets</td>
<td>26</td>
</tr>
<tr>
<td>Decreased leukocytes</td>
<td>25</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Increased creatinine</td>
<td>52</td>
</tr>
<tr>
<td>Increased amylase</td>
<td>40</td>
</tr>
<tr>
<td>Increased lipase</td>
<td>35</td>
</tr>
<tr>
<td>Decreased potassium</td>
<td>29</td>
</tr>
<tr>
<td>Increased alkaline phosphatase</td>
<td>25</td>
</tr>
<tr>
<td>Decreased albumin</td>
<td>23</td>
</tr>
<tr>
<td>Decreased magnesium</td>
<td>23</td>
</tr>
<tr>
<td>Increased alanine aminotransferase</td>
<td>22</td>
</tr>
<tr>
<td>Increased aspartate aminotransferase</td>
<td>21</td>
</tr>
<tr>
<td>Decreased sodium</td>
<td>20</td>
</tr>
</tbody>
</table>

* Grades per NCI CTCAE v5.0.
** The denominator used to calculate the rate varied from 93 to 113 based on the number of patients with a baseline and at least one post-treatment value. The laboratory abnormalities are values that reflect worsening from baseline.

7 DRUG INTERACTIONS
7.1 Effect of Other Drugs on EXKIVITY

Strong or Moderate CYP3A Inhibitors

** Coadministration of EXKIVITY with strong or moderate CYP3A inhibitors increased mogabertzimib plasma concentrations [see Clinical Pharmacology (12.3)], which may increase the risk of adverse reactions, including QTc interval prolongation.

Prevention or Management

Avoid concomitant use of strong or moderate CYP3A inhibitors with EXKIVITY. If concomitant use of moderate CYP3A inhibitors cannot be avoided, reduce the EXKIVITY dose and monitor the QTc interval more frequently with ECGs [see Dosage and Administration (2.4), Warnings and Precautions (5.1)].

Strong or Moderate CYP3A Inducers

** Coadministration of EXKIVITY with strong or moderate CYP3A inducers decreased mogabertzimib plasma concentrations [see Clinical Pharmacology (12.3)], which may reduce EXKIVITY anti-tumor activity.

Prevention or Management

Avoid concomitant use of strong or moderate CYP3A inducers with EXKIVITY.
7.2 Effect of EXKIVITY on Other Drugs

<table>
<thead>
<tr>
<th>CYP3A Substrates</th>
<th>Clinical Impact</th>
<th>Prevention or Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coadministration of EXKIVITY with CYP3A substrates may decrease plasma concentrations of CYP3A substrates [see Clinical Pharmacology (12.3)], which may reduce the efficacy of these substrates.</td>
<td>Avoid concomitant use of hormonal contraceptives with EXKIVITY [see Warnings and Precautions (5.2), Use in Specific Populations (8.3)]. Avoid concomitant use of EXKIVITY with other CYP3A substrates where minimal concentration changes may lead to serious therapeutic failures. If concomitant use is unavoidable, increase the CYP3A substrate dosage in accordance with the approved product Prescribing Information.</td>
</tr>
</tbody>
</table>

7.3 Drugs that Prolong the QTc Interval

<table>
<thead>
<tr>
<th>Drugs that Prolong the QTc Interval</th>
<th>Clinical Impact</th>
<th>Prevention or Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXKIVITY can cause Qtc interval prolongation [see Warnings and Precautions (5.1), Clinical Pharmacology (12.2)]. Coadministration of EXKIVITY with drugs known to prolong the QTc interval may increase the risk of QTc interval prolongation [see Warnings and Precautions (5.1), Clinical Pharmacology (12.2)].</td>
<td>Avoid concomitant use of other medications known to prolong the QTc interval with EXKIVITY. If concomitant use is unavoidable, monitor the QTc interval more frequently with ECGs [see Warnings and Precautions (5.1)].</td>
<td></td>
</tr>
</tbody>
</table>

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary
Based on findings from animal studies and its mechanism of action [see Clinical Pharmacology (12.1)], EXKIVITY can cause fetal harm when administered to a pregnant woman. There are no available data on EXKIVITY use in pregnant women. Oral administration of mobocertinib to pregnant rats during the period of organogenesis resulted in embryoanomaly (embryo-fetal death) and maternal toxicity at plasma exposures approximately 1.7 times the human exposure based on AUC at the 150-mg once-daily clinical dose [see Data]. Advise pregnant women of the potential risk to a fetus.

In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.

Data
Animal Data
In an embryo-fetal development study, once-daily oral administration of mobocertinib to pregnant rats during the period of organogenesis resulted in maternal toxicity (reduced body weight gain and food consumption) at 10 mg/kg (approximately 1.7 times the human exposure based on AUC at the 150-mg once-daily clinical dose). Adverse effects on embryo-fetal development at this dose level included embryoanomaly due to post-implantation loss (embryo-fetal death) and effects on fetal growth (decreased fetal weights). There was no clear evidence of fetal malformations at the high-dose level (10 mg/kg).

8.2 Lactation

Risk Summary
There are no data on the presence of mobocertinib or its metabolites in human milk or their effects on the breastfed child or on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment with EXKIVITY and for 1 week after the last dose.

8.3 Females and Males of Reproductive Potential

EXKIVITY can cause fetal harm when administered to pregnant women [see Use in Specific Populations (8.1)].

Pregnancy Testing
Verify pregnancy status in females of reproductive potential prior to initiating EXKIVITY.

Contraception

Females
Advise females of reproductive potential to use effective non-hormonal contraception during treatment with EXKIVITY and for 1 month after the last dose. EXKIVITY may render hormonal contraceptives ineffective [see Drug Interactions (7.2)].

Males
Advise males with female partners of reproductive potential to use effective contraception during treatment with EXKIVITY and for 1 week after the last dose.

Infertility
Based on animal studies, EXKIVITY may impair fertility in males and females of reproductive potential [see Nonclinical Toxicology (13.1)].

8.4 Pediatric Use

The safety and effectiveness of EXKIVITY in pediatric patients have not been established.

8.5 Geriatric Use

Of the 114 patients [see Clinical Studies (14)] who received EXKIVITY in clinical studies, 37% were 65 years and over, and 7% were 75 years and over. No overall difference in effectiveness was observed between patients aged 65 and older and younger patients. Exploratory analysis suggests a higher incidence of Grade 3 and 4 adverse reactions (89% vs 47%) and serious adverse reactions (84% vs 35%) in patients 65 years and older as compared to those younger than 65 years.

8.6 Renal Impairment

No dosage adjustment of EXKIVITY is recommended for patients with mild to moderate renal impairment (estimated glomerular filtration rate [eGFR] 30 to 89 mL/min/1.73 m² by Modification of Diet in Renal Disease [MDRD] equation). The recommended dosage of EXKIVITY has not been established for patients with severe renal impairment (eGFR <30 mL/min/1.73 m²) [see Clinical Pharmacology (12.3)].

8.7 Hepatic Impairment

No dosage adjustment of EXKIVITY is recommended for patients with mild (total bilirubin ≤ upper limit of normal [ULN]) and aspartate aminotransferase [AST] > ULN or total bilirubin >1 to 1.5 times ULN and any AST) or moderate hepatic impairment (total bilirubin >1.5 to 3 times ULN and any AST). The recommended dosage of EXKIVITY has not been established for patients with severe hepatic impairment (total bilirubin >3 times ULN and any AST) [see Clinical Pharmacology (12.3)].

17 PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Patient Information). QTc Interval Prolongation and Torsades de Pointes
Inform patients of the risk of QTc prolongation. Symptoms that may be indicative of significant QTc prolongation include dizziness, lightheadedness, and syncope. Advise patients to report these symptoms and to inform their healthcare provider about the use of any heart medications [see Warnings and Precautions (5.1)].

Intestinal Lung Disease (ILD)/Pneumonitis
Inform patients of the risks of severe or fatal ILD/pneumonitis. Advise patients to contact their healthcare provider immediately to report new or worsening respiratory symptoms such as cough, shortness of breath or chest pain [see Warnings and Precautions (5.1)].

Cardiac Toxicity
Inform patients of the risk of heart failure. Advise patients to contact their healthcare provider immediately if they experience any signs or symptoms of heart failure such as palpitations, shortness of breath, chest pain, and syncope [see Warnings and Precautions (5.1)].

Diabetes
Inform patients that EXKIVITY may cause diabetes, which may be severe in some cases and should be treated promptly. Advise patients to have antidiabetic medicine readily available and promptly start antidiabetic treatment (e.g., metformin, increase oral fluids and electrolyte intake, and contact their healthcare provider if diabetes occurs [see Warnings and Precautions (5.4)].

Embryo-Fetal Toxicity
Advise females of reproductive potential of the potential risk to a fetus and to inform their healthcare provider of a known or suspected pregnancy [see Warnings and Precautions (5.5), Use in Specific Populations (8.1)].

Advises of reproductive potential to use effective non-hormonal contraception during treatment with EXKIVITY and for 1 month after the last dose [see Use in Specific Populations (8.3)].

Advise males with female partners of reproductive potential to use effective contraception during treatment with EXKIVITY and for 1 week after the last dose [see Use in Specific Populations (8.3)].

Lactation
Advise women not to breastfeed during treatment with EXKIVITY and for 1 week after the last dose [see Use in Specific Populations (8.2)].

Infertility
Advise females and males of reproductive potential that EXKIVITY may impair fertility [see Use in Specific Populations (8.3)].

Drug Interactions
Advise patients to inform their healthcare provider of all concomitant medications, including prescription medicines, over-the-counter drugs, vitamins, and herbal products [see Drug Interactions (7.3)]. Inform patients to avoid grapefruit or grapefruit juice while taking EXKIVITY.

Missed Dose
Advise patients that if a dose of EXKIVITY is missed by 6 hours or if vomiting occurs, resume treatment as prescribed the next day [see Dosage and Administration (2.2)].
IN THIS ISSUE

PUBLISHER’S NOTE
Call for Reviewers and
Call for Papers

LETTER TO THE READERS
You Can Help Set New
Paradigms Involving ctDNA
Howard S. Hochster, MD

GASTROINTESTINAL CANCER: SPECIAL ISSUE
Clinical Trials Examining ctDNA-Guided
Approaches to Treating Early Colon Cancer
Howard S. Hochster, MD; and Thomas J. George Jr., MD, FACP

GASTROINTESTINAL CANCER:
Clinical Trials Examining ctDNA-Guided
Approaches to Treating Early Colon Cancer
Howard S. Hochster, MD; and Thomas J. George Jr., MD, FACP

Visit CancerNetwork.com, home of the journal ONCOLOGY® and a web destination for oncologists seeking expert peer perspectives, podcasts, and other clinically practical features.

PODCAST
Oncology Peer Review On-The-Go:
Cancer-Related Fatigue Outcome Measures in Integrative Oncology
Cancernetwork.com/podcast_10.22

FDA APPROVAL
FDA Approves Selpercatinib for RET Fusion–Positive Locally Advanced or Metastatic Solid Tumors
Cancernetwork.com/ApprovalAlert_10.22

VIDEO
Tanya Dorff, MD, Discusses Next Steps With CAR T-Cell Therapy in Prostate Cancer
Cancernetwork.com/Dorff_10.22

Check out our e-newsletter for the latest in oncology.
SCAN TO SUBSCRIBE.
BREAST CANCER: INTERVIEW
592 Paolo Tarantino, MD, Spotlights Treatment Trends for Breast Cancer Awareness Month
“The care of patients with breast cancer and most other cancers is like an orchestra. Each physician is part of an orchestra and is needed for...the appropriate treatment for each tumor.”

SPECIAL ISSUE FEATURE: ctDNA AS A MARKER OF MRD
600 Circulating Tumor DNA as a Marker of Minimal Residual Disease
Ben Fangman, MD; Kanwal Raghav, MD; and Scott Kopetz, MD, PhD

SPECIAL ISSUE FEATURE: CIRCULATE-US OVERVIEW
604 Minimal Residual Disease–Directed Adjuvant Therapy for Patients With Early-Stage Colon Cancer: CIRCULATE-US
Ibrahim Halil Sahin, MD; Yan Lin, PhD; Greg Yothers, PhD; Peter C. Lucas, MD, PhD; Dustin Deming, MD; Thomas J. George, MD; Scott Kopetz, MD, PhD; Christopher H. Lieu, MD; and Arvind Dasari, MD, MS

SPECIAL ISSUE FEATURE: CLINICAL TRIALS IN PROGRESS
608 CIRCULATE-US
609 COBRA

SPECIAL ISSUE FEATURE: CTDNA-GUIDED THERAPY IN EARLY COLON CANCER
620 Investigating the Use of Circulating Tumor DNA in Early-Stage Colon Cancer
Ardaman Shergill, MD; and Aparna Raj Parikh, MD

GYNECOLOGIC CANCER: CME
632 Antibody–Drug Conjugates in Gynecological Cancer: Setting the Stage
Kathleen Moore, MD

BEHIND THE SCIENCE
BEHIND THE BEST HOSPITALS FOR CANCER
Recently, US News and World Report released its annual rankings on “Best Hospitals for Cancer.” Among the top centers were the Universities of Pennsylvania and the Siteman Cancer Center at Barnes-Jewish Hospital. CancerNetwork® editors sat down with Robert H. Vanderheimer, MD, DPhiI, director of the Abramson Cancer Center at the University of Pennsylvania in Philadelphia, and Timothy Eberlein, MD, director of the Alvin J. Siteman Cancer Center in St Louis, Missouri, about what makes their centers stand out from the rest.

TO WATCH VISIT: bit.ly/3RnLKyB

CancerNetwork®, home of the journal ONCOLOGY®, partners with leading national cancer centers and organizations to bring multidisciplinary oncology providers clinical take-aways for application in today's time-constrained practice environment.

CHECK OUT CONTINUING EDUCATION ACTIVITIES from our partners at Physicians' Education Resource® (PER®), LLC. For more information go to https://bit.ly/3S3nkfv.
ONCOLOGY® and its website, CancerNetwork.com, provide oncologists with the practical, timely, clinical information they need to deliver the highest level of care to their patients. Expert authors and peer review ensure the quality of ONCOLOGY® and CancerNetwork.com’s articles and features. Focused discussions capture key clinical take-aways for application in today’s time-constrained practice environment.

EDITORIAL ADVISORY BOARD

MISSION STATEMENT

EDITORS-IN-CHIEF

Julie M. Vose, MD, MBA
Omaha, NE

Howard S. Hochster, MD
New Brunswick, NJ

EDITORIAL BOARD

TUMOR CHAIRS

BREAST CANCER
Sara A. Hurvitz, MD, MBA, Los Angeles, CA

GENITOURINARY CANCER
Robert A. Figlin, MD, Los Angeles, CA

GASTROINTESTINAL CANCER
Tanios S. Bekaii-Saab, MD, Phoenix, AZ

HEAD AND NECK CANCER
Eric J. Sherman, MD, New York, NY

HEMATOLOGIC MALIGNANCIES
C. Ola Landgren, MD, PhD, Miami, FL

INTEGRATIVE ONCOLOGY
Ting Bao, MD, New York, NY

LUNG CANCER
David S. Ettinger, MD, Baltimore, MD

NEURO-Oncology
David A. Reardon, MD, Boston, MA

PEDIATRIC ONCOLOGY
David G. Poplack, MD, Houston, TX

PEDIATRIC ONCOLOGY
Richard A. Drachtman, MD, New Brunswick, NJ

PROSTATE CANCER
Tomasz M. Beer, MD, Portland, OR

RADIATION ONCOLOGY
Louis Potters, MD, FACR, Hempstead, NY

RADIATION ONCOLOGY
James B. Yu, MD, MHS, New Haven, CT

SARCOMA
Kenneth Cardona, MD, FACS, Atlanta, GA

SUPPORTIVE AND PALLIATIVE CARE
Thomas J. Smith, MD, FACP, Irvine, CA

SURGICAL ONCOLOGY
Burton L. Eisenberg, MD, Newport Beach, CA

BOARD MEMBERS

BREAST CANCER
William J. Gradishar, MD, FACP, Chicago, IL
Tari King, MD, Boston, MA
Stephen M. Schleicher, MD, MBA, Lebanon, TN
Vered Stearns, MD, Baltimore, MD
Melinda L. Teoli, MD, Palo Alto, CA

CANCER SURVIVORS
Matthew J. Matasar, MD, MS, New York, NY

CLINICAL GUARDIANS
Maria T. Bourtoule, MD, MSc, Mexico City, MX

COLORECTAL/GASTROINTESTINAL CANCER
Edward Chu, MD, Pittsburgh, PA
Mehmet Sitki Copur, MD, FACP, Omaha, NE
Daniel Haller, MD, Philadelphia, PA
John L. Marshall, MD, Washington, DC
Shubham Pant, MD, Houston, TX
Matthew B. Yurgelun, MD, Boston, MA

GENITOURINARY CANCER
L. Michael Glodé, MD, FACP, Denver, CO
Paul Mathew, MD, Boston, MA
Elisabeth Heath, MD, FACP, Detroit, MI
Bobby Liao, MD, New York, NY

GYNECOLOGIC CANCER
Marina M. Liao, MD, New York, NY
Ritu Salani, MD, Los Angeles, CA

HEAD AND NECK CANCER
Apar K. Ganti, MD, MS, FACP, Omaha, NE

HEALTH ECONOMICS
Nora Janjan, MD, MPSA, MBA, Dallas, TX

HEMATOLOGIC MALIGNANCIES
Danielle M. Brandt, MD, Durham, NC
Christopher R. Flowers, MD, Houston, TX
Steven T. Rosen, MD, Duarte, CA
Naval G. Datter, MD, Houston, TX
Ehab L. Atallah, MD, Minneapolis, MN

INFECTIOUS DISEASE
Genovefa Papanicolaou, MD, New York, NY

INTEGRATIVE ONCOLOGY
Ting Bao, MD, New York, NY
Linda Carlson, PhD, RPsych, Calgary, Alberta, Canada

LUNG CANCER
David S. Ettinger, MD, Baltimore, MD
James L. Mulshine, MD, Chicago, IL
Edward S. Kim, MD, Duarte, CA
Jennifer W. Carlisle, MD, Atlanta, GA

MELANOMA
Richard D. Carvajal, MD, New York, NY

NEURO-Oncology
Daniel C. McFarland, DO, New York, NY
Michelle Riba, MD, Ann Arbor, MI

RADIATION ONCOLOGY
Louis Potters, MD, FACR, Hempstead, NY
James B. Yu, MD, MHS, New Haven, CT

SARCOMA
Kenneth Cardona, MD, FACS, Atlanta, GA

SUPPORTIVE AND PALLIATIVE CARE
Thomas J. Smith, MD, FACP, Irvine, CA

SURGICAL ONCOLOGY
Burton L. Eisenberg, MD, Newport Beach, CA

INTERESTED IN SUBMITTING TO ONCOLOGY®?

Please contact CancerNetwork@mjhlifesciences.com for submission guidelines.
IN THIS ISSUE

BREAST CANCER: INTERVIEW
592 Paola Tarantino, MD, Spotlights Treatment Trends for Breast Cancer Awareness Month
“The care of patients with breast cancer and most other cancers is like an orchestra. Each physician is part of an orchestra and is needed for the appropriate treatment for each tumor.”

SPECIAL ISSUE FEATURE: cDNA AS A MARKER OF MRD
600 Circulating Tumor DNA as a Marker of Minimal Residual Disease
Ben Fangman, MD; Kanwal Raghav, MD; and Scott Kopetz, MD, PhD

SPECIAL ISSUE FEATURE: CIRCULATE-US OVERVIEW
604 Minimal Residual Disease–Directed Adjuvant Therapy for Patients With Early-Stage Colon Cancer: CIRCULATE-US
Ibrahim Halli Sahin, MD; Yan Lin, PhD; Greg Yotthers, PhD; Peter C. Lucas, MD, PhD; Dustin Deming, MD; Thomas J. George, MD; Scott Kopetz, MD, PhD; Christopher H. Lieu, MD; and Arvind Dasari, MD, MS

SPECIAL ISSUE FEATURE: CLINICAL TRIALS IN PROGRESS
608 CIRCULATE-US
609 COBRA

SPECIAL ISSUE FEATURE: CTDNA-GUIDED THERAPY IN EARLY COLON CANCER
620 Investigating the Use of Circulating Tumor DNA in Early-Stage Colon Cancer
Ardaman Shergill, MD; and Aparna Raj Parikh, MD

GYNECOLOGIC CANCER: CME
632 Antibody-Drug Conjugates in Gynecological Cancer: Setting the Stage
Kathleen Moore, MD

CancerNetwork®, home of the journal ONCOLOGY®, partners with leading national cancer centers and organizations to bring multidisciplinary oncology providers clinical take-aways for application in today's time-constrained practice environment.
Stay connected!

Across Twitter, Facebook, and LinkedIn, CancerNetwork® caters content that matches the interests of oncology clinicians across various fields.

We post timely content and find different ways to engage with our audience through daily news, takeovers, live podcasts, and more.

Scan QR Code
or visit: CancerNetwork.com

@cancernetwork @cancernetwrk
CALL FOR PEER REVIEWERS

ONCOLOGY® is seeking to expand its list of ad hoc reviewers to provide constructive feedback on manuscripts that have received initial editorial approval. Comments and criticisms are a necessary and invaluable part of the journal’s process, and our need for more willing experts grows in step with the journal.

Areas of expertise that may be needed include, but are not limited to, those about patients with gastrointestinal, breast, gynecologic, genitourinary, and lung cancers, as well as hematologic malignancies. Therapeutic areas may include medical, radiation, or surgical oncology; practice management; survivorship; palliative and supportive care; and integrative oncology.

Additionally, ad hoc reviewers may be offered the opportunity to contribute peer perspectives to the journal. The author of the perspective examines what is discussed in the article and presents a new take on the information, adds to what’s written, or emphasizes an important topic therein. These contributions are independently indexed in PubMed and published online, and they shine a spotlight on the reviewers who help keep ONCOLOGY® going.

If you are interested in serving as an ad hoc reviewer for the journal ONCOLOGY®, we encourage you to reach out to the editorial staff at CancerNetwork@mjhlifesciences.com.

CALL FOR PAPERS

ONCOLOGY® is seeking to expand its coverage of original peer-reviewed research articles and is now encouraging authors to submit high-quality original manuscripts about clinical trials and investigations. Areas of particular interest include, but are not limited to, gastrointestinal, breast, gynecologic, genitourinary, and lung cancers as well as hematologic malignancies.

Authors wishing to submit their original research manuscripts are encouraged to review the ONCOLOGY® author guidelines for formatting and other requirements prior to submission: CancerNetwork.com/guidelines

Manuscripts for consideration should be submitted to https://mc.manuscriptcentral.com/oncology.
Welcome to a special issue of ONCOLOGY® focusing on exciting trials that may set future standards for adjuvant therapy in colon cancer. We are very pleased to highlight these trials, particularly the recently opened phase 2/3 CIRCULATE-US trial (NCT05174169).

What is circulating tumor DNA (ctDNA)? DNA is released into the bloodstream by all dying cells, including tumor cells. With advances in DNA amplification and sequencing, it is now possible to identify cell-free DNA, which derives from cancer cells rather than normal cells. Ideally, such a test would be 100% positive in colon cancer preoperatively and would be negative if the tumor was completely resected with no other tumor cells left in the body. If we had a diagnostic test with 100% accuracy, we would be able to treat every patient with microscopic residual disease and avoid treating those who could be cured with surgery alone. In stage III colon cancer, for example, on average we could identify the 35 out of 100 patients destined to recur after “curative” surgery for adjuvant therapy and avoid treating the other 65 patients who actually were cured with surgery.

Some of the preliminary data on the various ctDNA tests look very promising in prospective cohort trials involving patients treated according to standard of care regimens. For example, results of the 1500-patient GALAXY-Japan study (jRCT1031200006), presented at the Gastrointestinal Cancers Symposium in January 2022, showed a highly predictive value for positive ctDNA in risk of relapse and benefit of chemotherapy. The results also suggested no benefit for adjuvant chemotherapy in patients with negative ctDNA. However, such data are contaminated by stage-based treatment and bias in treatment selection. We therefore need prospective randomized trials.

In this issue of ONCOLOGY®, leaders of these key prospective trials and experts in the area of ctDNA further explain the trials and their goals. For our American readers, I would direct your attention to the National Cancer Institute–sponsored COBRA trial (NCT04068103) for patients with stage IIA disease and the CIRCULATE-US trial for patients with stage II or stage III disease. These are the best opportunities to use this technology for your patients with colon cancer who are eligible for adjuvant treatment. These trials, which will study the outcome of ctDNA-directed treatment with appropriate controls, are needed to demonstrate that by using guidance of ctDNA results, we can do better than our current approach of treating only patients with high-risk pathologic stage II and all pathologic stage III colon cancer with adjuvant chemotherapy.

We need your help and the help of your colleagues, can help bring this technology into the guidelines and standard of care in the quickest time frame possible.

Please enjoy these state-of-the-art articles and see the Clinical Trials in Progress section for a quick reference guide (see pages 608-609). We hope this issue will aide your participation in these trials. I would like to express my heartfelt thanks to all the authors of articles in this issue of ONCOLOGY® and also my coeditor for this special edition, Thomas J. George Jr, MD, FACP.
Antibody-drug conjugates (ADCs) have been at the forefront of care for patients with breast cancer in recent years. Recently, the ADC fam-trastuzumab deruxtecan-nxki (T-DXd; Enhertu) was approved for patients with HER2-positive breast cancer and patients with HER2-low breast cancer.1,2

In an interview with ONCOLOGY® ahead of Breast Cancer Awareness Month, Paolo Tarantino, MD, talked about the importance of multidisciplinary care for patients with breast cancer, the most exciting data presented this year in the HER2-positive and HER2-low space, where future research should be focused to improve treatment and patient care, and the possibility of using T-DXd in the HER-negative setting.

Q: What is your role as part of a multidisciplinary care team?
TARANTINO: Oncology has evolved over time and has become more of a multidisciplinary practice, especially in breast cancer. It’s impossible to treat a patient with either early-stage or advanced-stage breast cancer without the involvement of a large multidisciplinary team, which in most cases includes medical oncologists, surgeons, radiation oncologists, geneticists, pulmonologists, and cardiologists among many others. The care of patients with breast cancer and most other cancers is like an orchestra. Each physician is part of an orchestra and is needed for the final symphony, the final treatment, the appropriate treatment for each tumor.

Q: What has been the biggest breakthrough in the management of breast cancer within the past year?
TARANTINO: At the [2022 American Society of Clinical Oncology Annual Meeting] during the plenary presentation of the DESTINY-Breast04 trial [NCT03734029],3 there was this impressive standing ovation. It was an emotional moment. This was related to the fact that something unprecedented [was shared] during that presentation. [We told the audience that we had] observed the benefit of anti-HER2 drugs for the first time expanding from HER2-positive breast cancer, which accounts for approximately 20% of all patients with breast cancer, toward what we now call HER2-low breast cancer, which is an additional 50% or 60% of all patients with breast cancer.

This ADC, T-DXd, which delivers a highly potent chemotherapy payload in a targeted way, has shown to be much more effective than standard traditional chemotherapy for patients with metastatic breast cancer and low HER2 expression. This was unprecedented because it not only showed a benefit to progression-free but also overall survival, which is something we don’t see every day in metastatic breast cancer. That standing ovation was the highlight of this
Q: What are some barriers to optimal care in patients with breast cancer that need to be overcome in the near future?

TARANTINO: As an Italian physician who has moved to the United States, I’ve experienced the striking disparity in access to drugs among countries. In the US, it is easier to get access to some new drugs as compared with Europe, and particularly Italy where I was practicing before. Nonetheless, there is a wide disparity in the access to many drugs. This is an important barrier to optimal care because sometimes there is a highly effective treatment but you cannot always use it the way you would want. This is where we need to work hard to ensure access to highly effective drugs for all the patients who might benefit.

A second important aspect is that we still are working on the right sizing of treatments. This is true in the metastatic setting, but even more for the [management] of early breast cancer. I’m lucky to work at Dana-Farber Cancer Institute with Sara M. Tolaney, MD, MPH, who has worked a lot in this field and has developed de-escalated regimens that allow us to treat patients with fewer toxicities, but with the same efficacy of treatments. We still need to work hard on this because still many patients are overtreated. We are developing promising tools that may allow us to achieve right-sized treatments, including circulating tumor DNA, gene signatures, and other biomarkers that can help us understand which patients need more and which patients need less. In the end, the aim is treating and curing patients with cancer with the least possible amount of adverse effects. This is one important barrier right now because we don’t have the tools or the biomarkers readily available. We are still developing them, but I think we are getting there.

Q: Which ongoing clinical trials are you most excited to see the results of?

TARANTINO: Usually we start developing drugs in the pretreated metastatic setting, then we slowly bring them into the earlier-line settings, and finally into the curable setting. This is what is happening now and we are [seeing] the benefit of ADCs in early-line settings. We have seen it already with T-DM1 [ado-trastuzumab emtansine; Kadcyla], which is the first ADC to be approved for breast cancer. When it was brought in the early setting, it is shown to be able to improve cure rates in the KATHERINE trial [NCT01772472].

Now there are some trials that are doing the same with novel ADCs. For T-DXd, there is the DESTINY-Breast05 trial [NCT04622319] that is comparing T-DXd with T-DM1 in the adjuvant setting to see if we can further improve cure rates for the HER2-positive disease. Sacituzumab govitecan [Trodelvy] is an anti-TROP2 ADC that is being tested in the SASCIA trial [NCT04595565] in the same setting to try to improve cure rates. In the neoadjuvant setting, there is the NeoSTAR trial [NCT04230109]. In general, there are several trials in the neoadjuvant or adjuvant setting that aim to expand the benefits of ADCs to the early setting. Some of these trials could bring important benefits, but for these we will need to wait a few more years.

A trial we might hear about sooner is the DESTINY-Breast06 trial [NCT04494425], which is testing T-DXd both in patients with HER2-low as well as HER2 0 [immunohistochemistry 0] breast cancer. It’s a provocative idea; notably this drug has already shown some early activity in patients with HER2 0 disease, thus T-DXd might work in this category and expand its benefit to a much larger population of patients. This is one of those trials that could further change the way we categorize breast cancer beyond the recent evolutions.

Q: What do we have to look forward to in the breast cancer space?

TARANTINO: Drug development is going fast, and it’s going well; we’re developing highly efficacious drugs. Now we are understanding how to master their use. In general, there’s a lot of optimism regarding several new drugs, some of which have been recently approved and some of which may be approved in the coming months and years. The second point is [regarding] biomarkers. We cannot use the same drugs for all patients, we need to tailor our treatments. We need to dedicate extensive efforts not only to drug development but also to identifying biomarkers that tell us up front which patients require an intensified treatment and who might instead be treated with less. [We also need to know] which patients might derive benefit from a specific drugs. For instance, we use a TROP-2 ADC but we don’t assess for TROP-2 expression, although we have some data suggesting there might be increasing benefit to this therapy with increased target expression. We need to work on developing biomarkers to tailor treatments in clinical practice. We can be optimistic because we have been developing highly efficacious drugs. In the coming years, we’ll better manage breast cancer with increased precision.
In adult and pediatric patients 12 years and older

Intervene With Jakafi at the First Sign of Initial Systemic Treatment Failure for cGVHD

Timely Diagnosis and Early Intervention Are Critical to Prevent Potentially Irreversible Organ Damage

Jakafi® (ruxolitinib) is indicated for treatment of chronic graft-versus-host disease (cGVHD) after failure of one or two lines of systemic therapy in adult and pediatric patients 12 years and older.

REACH3 Primary Endpoint: ORR at Week 24

49.7% (82/165) with Jakafi vs 25.6% (42/164) with BAT (OR: 2.99; 95% CI, 1.86-4.80; P<0.0001)\(^2,3,\)†

ORR through Week 24

70% (116/165) with Jakafi vs 57% (94/164) with BAT\(^3\)‡

- In the Jakafi Prescribing Information, efficacy was based on ORR through week 24 (Cycle 7 Day 1)\(^4\)

\(^*\)Overall response rate was defined as the proportion of patients with complete or partial response, according to 2014 NIH consensus criteria, at Week 24.\(^2,3\)

\(^1\)One-sided P value, odds ratio, and 95% CI were calculated using stratified Cochran-Mantel-Haenszel test, stratifying for moderate and severe cGVHD.\(^2\)

\(^2\)Defined as proportion of patients who achieved complete or partial response, according to 2014 NIH response criteria, through Week 24 (Cycle 7 Day 1).\(^4\)

REACH3 Subgroup Analysis: ORR by Baseline Disease Severity at Week 24\(^4,5\)

<table>
<thead>
<tr>
<th>Disease Severity</th>
<th>Patients, %</th>
<th>Jakafi</th>
<th>BAT</th>
<th>CR</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate GVHD</td>
<td>40.7 (35/86)</td>
<td>49.4</td>
<td>32.0</td>
<td>10.1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>(95% CI: 1.46, 5.84)</td>
<td>(26/80)</td>
<td>(47/79)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe GVHD</td>
<td>19.0 (15/84)</td>
<td>37.2</td>
<td>37.2</td>
<td>16.7</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>(95% CI: 1.46, 5.84)</td>
<td>(35/86)</td>
<td>(35/91)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall Response Rates Were Higher With Jakafi in Patients With Moderate Disease Severity at Week 24 vs BAT\(^3\)

IMPORTANT SAFETY INFORMATION

- Treatment with Jakafi can cause thrombocytopenia, anemia and neutropenia, which are each dose-related effects. Perform a pre-treatment complete blood count (CBC) and monitor CBCs every 2 to 4 weeks until doses are stabilized, and then as clinically indicated
- Manage thrombocytopenia by reducing the dose or temporarily interrupting Jakafi. Platelet transfusions may be necessary
- Patients developing anemia may require blood transfusions and/or dose modifications of Jakafi
- Severe neutropenia (ANC <0.5 × 10\(^9\)/L) was generally reversible by withholding Jakafi until recovery
- Serious bacterial, mycobacterial, fungal and viral infections have occurred. Delay starting Jakafi until active serious infections have resolved. Observe patients receiving Jakafi for signs and symptoms of infection and manage promptly. Use active surveillance and prophylactic antibiotics according to clinical guidelines
- Tuberculosis (TB) infection has been reported. Observe patients taking Jakafi for signs and symptoms of active TB and manage promptly. Prior to initiating Jakafi, evaluate patients for TB risk factors and test those at higher risk for latent infection. Consult a physician with expertise in the treatment of TB before starting Jakafi in patients with evidence of active or latent TB. Continuation of Jakafi during treatment of active TB should be based on the overall risk-benefit determination
- Progressive multifocal leukoencephalopathy (PML) has occurred with Jakafi treatment. If PML is suspected, stop Jakafi and evaluate
- Advise patients about early signs and symptoms of herpes zoster and to seek early treatment
- Increases in hepatitis B viral load with or without associated elevations in alanine aminotransferase and aspartate aminotransferase have been reported in patients with chronic hepatitis B virus (HBV) infections. Monitor and treat patients with chronic HBV infection according to clinical guidelines
- When discontinuing Jakafi, myeloproliferative neoplasm-related symptoms may return within one week. After discontinuation, some patients with myelofibrosis have experienced fever, respiratory distress, hypotension, DIC, or multi-organ failure. If any of these occur after discontinuation or while tapering Jakafi, evaluate and treat any intercurrent illness and consider restarting or increasing the dose of Jakafi. Instruct patients not to interrupt or discontinue Jakafi without consulting their physician. When discontinuing or interrupting Jakafi for reasons other than thrombocytopenia or neutropenia, consider gradual tapering rather than abrupt discontinuation
- Non-melanoma skin cancers (NMSC) including basal cell, squamous cell, and Merkel cell carcinoma have occurred. Perform periodic skin examinations
- Treatment with Jakafi has been associated with increases in total cholesterol, low-density lipoprotein cholesterol, and triglycerides. Assess lipid parameters 8-12 weeks after initiating Jakafi. Monitor and treat according to clinical guidelines for the management of hyperlipidemia
- Another JAK-inhibitor has increased the risk of major adverse cardiovascular events (MACE), including cardiovascular death, myocardial
Overall Response Rates Were Higher With Jakafi at Week 24 Regardless of Organs Involved at Baseline vs BAT

REACH3 was a randomized, open-label, multicenter, phase 3 study of Jakafi vs BAT in patients with steroid-refractory cGVHD (N=329).1,2,3 The starting dose for Jakafi was 10 mg BID. Crossover from BAT to Jakafi was permitted on or after Week 24 if patients progressed, had a mixed or unchanged response, developed toxicity to BAT, or experienced a cGVHD flare.1

Patients with >1 affected organ were counted in each organ subgroup. Organ involvement was defined as organ score ≥1 based on the cGVHD staging criteria.3,6

The starting dose for Jakafi was 10 mg BID. Crossover from BAT to Jakafi was permitted on or after Week 24 if patients progressed, had a mixed or unchanged response, developed toxicity to BAT, or experienced a cGVHD flare.1

Another JAK-inhibitor has increased the risk of lymphoma and other malignancies excluding NMSC (compared to those treated with TNF blockers) in patients with rheumatoid arthritis, a condition for which Jakafi is not indicated. Consider the benefits and risks for the individual patient prior to initiating or continuing therapy with Jakafi particularly in patients who are current or past smokers and patients with other cardiovascular risk factors. Patients should be informed about the symptoms of serious cardiovascular events and the steps to take if they occur.

Another JAK-inhibitor has increased the risk of thrombosis, including deep venous thrombosis (DVT), pulmonary embolism (PE), and arterial thrombosis (compared to those treated with TNF blockers) in patients with rheumatoid arthritis, a condition for which Jakafi is not indicated. In patients with myelofibrosis (MF) and polycythemia vera (PV) treated with Jakafi in clinical trials, the rates of thromboembolic events were similar in Jakafi and control treated patients. Patients with symptoms of thrombosis should be promptly evaluated and treated appropriately.

Another JAK-inhibitor has increased the risk of lymphoma and other malignancies excluding NMSC (compared to those treated with TNF blockers) in patients with rheumatoid arthritis, a condition for which Jakafi is not indicated. Patients who are current or past smokers are at additional increased risk. Consider the benefits and risks for the individual patient prior to initiating or continuing therapy with Jakafi, particularly in patients with a known secondary malignancy (other than a successfully treated NMSC), patients who develop a malignancy, and patients who are current or past smokers.

In myelofibrosis and polycythemia vera, the most common nonhematologic adverse reactions (incidence ≥20%) were infections (pathogen not specified) and edema. In chronic graft-versus-host disease, the most common nonhematologic adverse reactions (incidence ≥50%) were infections (pathogen not specified) and viral infections.

Avoid concomitant use with fluconazole doses greater than 200 mg. Dose modifications may be required when administering Jakafi with fluconazole doses of 200 mg or less, or with strong CYP3A4 inhibitors, or in patients with renal or hepatic impairment. Patients should be closely monitored and the dose titrated based on safety and efficacy.

Use of Jakafi during pregnancy is not recommended and should only be used if the potential benefit justifies the potential risk to the fetus. Women taking Jakafi should not breastfeed during treatment and for 2 weeks after the final dose.

Please see Brief Summary of Full Prescribing Information for Jakafi on the following pages.

Incyte and the Incyte logo are registered trademarks of Incyte. Jakafi and the Jakafi logo are registered trademarks of Incyte. © 2022, Incyte. MAT-JAK-04015 0722
Jakafi® (ruxolitinib)

WARNINGS AND PRECAUTIONS

Thrombocytopenia, Anemia and Neutropenia Treatment with Jakafi can cause thrombocytopenia, anemia and neutropenia. [see Adverse Reactions (6.1) in Full Prescribing Information]. Myelofibrosis patients by reducing the dose of temporarily interrupting Jakafi. Platelet transfusions may be necessary [see Dosage and Administration (2) in Full Prescribing Information]. Patients developing anemia may require blood transfusions and/or dose modifications of Jakafi. Severe neutropenia (ANC less than 0.5 × 10^9/L) was generally reversible by withholding Jakafi until recovery. Perform a pre-treatment complete blood count (CBC) and monitor CBCs every 2 to 4 weeks until doses are stabilized, and then as clinically indicated [see Dosage and Administration (2) in Full Prescribing Information]. Risk of Infection Serious bacterial, mycobacterial, fungal and viral infections have occurred [see Adverse Reactions (6.1) in Full Prescribing Information]. Delay starting therapy with Jakafi until active serious infections have resolved. Observe patients receiving Jakafi for signs and symptoms of infection and manage promptly. Use active surveillance and prophylactic antibiotics according to clinical guidelines.

Tuberculosis Tuberculosis infection has been reported in patients receiving Jakafi. Observe patients receiving Jakafi for signs and symptoms of active tuberculosis and manage promptly. Prior to initiating Jakafi, patients should be evaluated for tuberculosis risk factors, and those at higher risk should be tested for latent infection. Risk factors include but are not limited to, prior residence in or travel to countries with a high prevalence of tuberculosis, close contact with a person with active tuberculosis, and a history of active or latent tuberculosis with an extended period of treatment cannot be confirmed. For patients with evidence of active or latent tuberculosis, consult a physician with expertise in the treatment of tuberculosis before starting Jakafi. The decision to continue Jakafi during treatment of active tuberculosis should be based on the overall risk-benefit determination. [see Clinical Studies (14.2) in Full Prescribing Information].

Selected laboratory abnormalities during treatment with Jakafi. An adverse reaction resulting in dose modification [see Clinical Studies (14.3) in Full Prescribing Information].

Secondary Malignancies Another Jak-kinase inhibitor has increased the risk of lymphoma and other malignancies excluding NMSC [compared to those treated with TNF blockers] in patients with rheumatoid arthritis, a condition for which Jakafi is not indicated. Patients who are current or past smokers and patients with other cardiovascular risk factors. Patients should be informed about the symptoms of serious cardiovascular events and the steps to take if they occur. Thrombosis Another Jak-kinase inhibitor has increased the risk of thrombosis, including deep venous thrombosis (DVT), pulmonary embolism (PE), and arterial thrombosis (compared to those treated with TNF blockers) in patients with rheumatoid arthritis, a condition for which Jakafi is not indicated. In patients with MP and PV treated with Jakafi in clinical trials, the rates of thromboembolic events were similar in Jakafi and control treated patients. Patients with symptoms of thrombosis should be promptly evaluated and treated appropriately.

Description of Selected Adverse Reactions: Anemia in the two Phase 3 clinical studies, median time to onset of first CTCAE Grade 2 or higher anemia was approximately 6 weeks. One patient (< 1%) discontinued treatment because of anemia. In patients receiving Jakafi, mean decreases in hemoglobin reached a nadir of approximately 1.5 to 2.0 g/dL below baseline after 8 to 12 weeks of therapy and then gradually recovered to reach a new steady state that was approximately 1.0 g/dL below baseline. This pattern was observed in patients regardless of whether they had received transfusions during therapy. In the randomized, placebo-controlled study, 60% of patients treated with Jakafi and 39% of patients receiving placebo received red blood cell transfusions during randomized treatment. Among transfused patients, the median number of units transfused per month was 1.2 in patients treated with Jakafi and 1.7 in placebo treated patients. Thrombocytopenia in the two Phase 3 clinical studies, in patients who developed Grade 3 or 4 thrombocytopenia, the median duration of exposure was approximately 8 weeks. Thrombocytopenia was generally reversible with dose reduction or dose interruption. The median time to recovery of platelet counts above 50 × 10^9/L was 14 days. Platelet transfusions were administered to 5% of patients receiving Jakafi and to 4% of patients receiving control regimens. Discontinuation of treatment occurred in 5% of patients treated with Jakafi or placebo.
of treatment because of thrombocytopenia occurred in < 1% of patients receiving Jakafi and < 1% of patients receiving control regimens. Patients with a platelet count of 100 × 10^9/L to 200 × 10^9/L, before starting Jakafi, had a higher frequency of Grade 3 or 4 thrombocytopenia compared to patients with a platelet count greater than 200 × 10^9/L (17% versus 7%). Neutropenia in the two Phase 3 clinical studies, 1% of patients reduced or stopped Jakafi because of neutropenia. Table 2 provides the frequency and severity of clinical hematology abnormalities reported for patients receiving treatment with Jakafi or placebo in the placebo-controlled study.

Table 2: Myelofibrosis: Worst Hematology Laboratory Abnormalities in the Placebo-Controlled Study

<table>
<thead>
<tr>
<th>Laboratory Parameter</th>
<th>All Grades (%)</th>
<th>Grade 3 (%)</th>
<th>Grade 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>70 4 31 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>14 2 11 8 16 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>19 5 2 9 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Presented values are worst grade values regardless of baseline.
* National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0

Additional Data from the Placebo-Controlled Study

• 25% of patients treated with Jakafi and 7% of patients treated with placebo developed newly occurring or worsening Grade 1 abnormalities in alanine transaminase (ALT). The incidence of greater than or equal to Grade 2 elevations was 2% for Jakafi with 1% Grade 3 and no Grade 4 ALT elevations. • 17% of patients treated with Jakafi and 6% of patients treated with placebo developed newly occurring or worsening Grade 1 abnormalities in aspartate transaminase (AST). The incidence of Grade 2 AST elevations was < 1% for Jakafi with no Grade 3 or 4 AST elevations. • 17% of patients treated with Jakafi and < 1% of patients treated with placebo developed newly occurring or worsening Grade 1 elevations in cholesterol. The incidence of Grade 2 cholesterol elevations was < 1% for Jakafi with no Grade 3 or 4 cholesterol elevations. Polycythemia Vera in a randomized, open-label, active-controlled study, 110 patients with PV resistant to or intolerant of hydroxyurea received Jakafi and 111 patients received best available therapy (see Clinical Studies (14.2) in Full Prescribing Information). The median duration of treatment with Jakafi was 46 days (range, 4-382 days). There were no fatal adverse reactions to Jakafi. An adverse reaction resulting in treatment discontinuation occurred in 31% of patients. The most common adverse reaction leading to treatment discontinuation was infection (10%). Table 5 shows the adverse reactions other than laboratory abnormalities.

Table 3: Polycythemia Vera: Nonhematologic Adverse Reactions Occurring in < 5% of Patients on Jakafi in the Open-Label, Active-controlled Study up to Week 32 of Randomized Treatment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All Grades (%)</th>
<th>Grade 3 (%)</th>
<th>Grade 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>10 9 8 7 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>15 0 13 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryness</td>
<td>13 3 4 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle pain</td>
<td>12 1 5 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>8 0 3 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoarseness</td>
<td>6 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight loss</td>
<td>6 0 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>6 0 3 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Presented values are worst grade values regardless of baseline.
* National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 3.0

Thrombocytopenia, anemia and neutropenia are dose-related adverse reactions. The incidence of Grade 3 or 4 adverse reactions was similar in Jakafi and control treated patients. The incidence of Grade 3 or 4 thrombocytopenia was generally reversible by withholding Jakafi until recovery. Severe neutropenia (ANC less than 0.5 × 10^9/L) was generally reversible by withholding Jakafi until recovery. Severe anemia (hemoglobin less than 8 g/dL) was generally reversible by withholding Jakafi until recovery. The median time to recovery of platelet counts above baseline (pretreatment platelet counts greater than 200 × 10^9/L), was generally reversible by withholding Jakafi until recovery. The median time to recovery of platelet counts above baseline (pretreatment platelet counts greater than 200 × 10^9/L), was approximately 1.5 weeks for patients started treatment at 15 mg twice daily and approximately 6 weeks. One patient (< 1%) discontinued treatment because of thrombocytopenia occurred in 23%. The most common fatal adverse reactions were bruising, dizziness and headache. Discontinuation for adverse events, regardless of causality, was observed in 4% of patients treated with Jakafi. Table 3 presents the most frequent nonhematologic adverse reactions occurring up to Week 32.
steroid-refractory aGVHD has been established for treatment of children 12 years and older. Use of Jakafi in pediatric patients with steroid-refractory aGVHD is supported by evidence from adequate and well-controlled trials of Jakafi in adults [see Clinical Studies (14.3) in Full Prescribing Information] and additional pharmacokinetic and safety data in pediatric patients. The safety and effectiveness of Jakafi for treatment of steroid-refractory aGVHD has not been established in pediatric patients younger than 12 years old. The safety and effectiveness of Jakafi for treatment of cGVHD after failure of one or two lines of systemic therapy has been established for treatment of children 12 years and older. Use of Jakafi in pediatric patients with cGVHD after failure of one or two lines of systemic therapy is supported by evidence from adequate and well-controlled trials of Jakafi in adults and adolescents [see Clinical Studies (14.3, 14.4) in Full Prescribing Information] and additional pharmacokinetic and safety data in pediatric patients. The safety and effectiveness of Jakafi for treatment of cGVHD has not been established in pediatric patients younger than 12 years old. Jakafi was evaluated in a single-arm, dose-escalation study (NCT01164163) in 27 pediatric patients with relapsed or refractory solid tumors (Cohort A) and 20 with leukemias or myeloproliferative neoplasms (Cohort B). The patients had a median age of 14 years (range, 2 to 21 years) and included 18 children (age 2 to < 12 years), and 14 adolescents (age 12 to < 17 years). The dose levels tested were 2.5, 5, 10, 15, 21, 29, 39, or 50 mg/m² twice daily in 28-day cycles with up to 6 patients per dose group. Overall, 38 (61%) patients were treated with more than a single cycle of Jakafi, while 31, 1, 2, and 3 patients received 2, 3, 4, and 5 or more cycles, respectively. A protocol-defined maximal tolerated dose was not observed, but since few patients were treated for multiple cycles, tolerability with continued use was not assessed adequately to establish a recommended Phase 2 dose higher than the recommended dose for adults. The safety profile in children was similar to that seen in adults. Juvenile Animal Toxicity Data Administration of ruxolitinib to juvenile rats resulted in effects on growth and bone measures. When administered starting at postnatal day 7 (the equivalent of a human newborn) at doses of 1.5 to 75 mg/kg/day, evidence of fractures occurred at doses ≥ 30 mg/kg/day, and effects on body weight and other bone measures [e.g., bone mineral content, peripheral quantitative computed tomography, and x-ray analysis] occurred at doses ≥ 5 mg/kg/day. When administered starting at postnatal day 21 (the equivalent of a human 2-3 years of age) at doses of 5 to 60 mg/kg/day, effects on body weight and bone occurred at doses ≥ 15 mg/kg/day, which were considered adverse at 60 mg/kg/day. Males were more severely affected than females in all age groups, and effects were generally more severe when administration was initiated earlier in the postnatal period. These findings were observed at exposures that are at least 27 times the clinical exposure at the maximum recommended dose of 25 mg twice daily. Gericital Use Of the total number of patients with MF in clinical studies with Jakafi, 52% were 65 years and older, while 15% were 75 years and older. No overall differences in safety or effectiveness of Jakafi were observed between these patients and younger patients. Clinical studies of Jakafi in patients with aGVHD did not include sufficient numbers of subjects age 65 and over to determine whether they respond differently from younger subjects. Of the total number of patients with cGVHD treated with Jakafi in clinical trials, 11% were 65 years and older. No overall differences in safety or effectiveness of Jakafi were observed between these patients and younger patients. Renal Impairment Total-body exposure of ruxolitinib and its active metabolites increased with moderate (CLCR 30 to 59 mL/min) and severe (CLCR 15 to 29 mL/min) renal impairment, and ESRD (CLCR less than 15 mL/min) on dialysis [see Clinical Pharmacology (12.3) in Full Prescribing Information]. Modify Jakafi dosage as recommended [see Dosage and Administration (2.6) in Full Prescribing Information]. Hepatic Impairment The safety and effectiveness of Jakafi increased with mild (Child-Pugh A), moderate (Child-Pugh B) and severe (Child-Pugh C) hepatic impairment [see Clinical Pharmacology (12.3) in Full Prescribing Information].
Clinical Trials Examining ctDNA-Guided Approaches to Treating Early Colon Cancer

INSIDE THE ISSUE

600 Circulating Tumor DNA as a Marker of Minimal Residual Disease
604 Minimal Residual Disease–Directed Adjuvant Therapy for Patients With Early-Stage Colon Cancer: CIRCULATE-US
608 CIRCULATE-US Trial in Progress
609 COBRA Trial in Progress
620 Investigating the Use of Circulating Tumor DNA in Early-Stage Colon Cancer

SERIES EDITORS

Howard S. Hochster, MD
DISTINGUISHED PROFESSOR OF MEDICINE
Rutgers Robert Wood Johnson Medical School
ASSOCIATE DIRECTOR FOR CLINICAL RESEARCH
Rutgers Cancer Institute
DIRECTOR OF ONCOLOGY RESEARCH
RWJBarnabas Health, New Brunswick, NJ

Thomas J. George Jr, MD, FACP
DIRECTOR
Gastrointestinal Oncology Program
University of Florida, Gainesville, FL
ASSOCIATE DIRECTOR
Clinical Research UF Health Cancer Center
CHAIR
Colorectal Cancer
Gastrointestinal Cancer Committee, NRG Oncology
Colorectal cancer (CRC) remains the third most common cancer and second most common cause of cancer death in the United States.\(^1\) Traditionally, treatment and prognostication have been based on American Joint Committee on Cancer tumor–node–metastasis staging, relying on the extent of radiographically evident disease; locoregional disease is treated primarily with surgery, with or without adjuvant chemotherapy, and metastatic disease is primarily treated with systemic therapy. The clinical decision regarding use of adjuvant therapy has been based on lymph node status and other clinic pathological risk factors (eg grade or presence of obstruction or perforation).\(^2\) However, this risk stratification is incomplete. With increasingly widespread availability of genomic sequencing methods and subsequent greater sensitivity in detecting microscopic disease in peripheral blood, significant research has been focused on utilizing this capability to improve outcomes in CRC, particularly after curative resection.

A term initially coined in the context of hematologic malignancies after induction therapy, molecular residual disease (MRD)—sometimes also referred to as “minimal residual disease “in solid tumors—is defined as molecular evidence of disease detected via cell-free circulating tumor DNA (ctDNA) or another tumor-derived moiety, in the absence of radiographically evident disease.\(^3,4\) ctDNA is shed from either a primary tumor or metastatic site via secretion, apoptosis, or necrosis into the bloodstream, where it can subsequently be collected by venous sampling.\(^1\) ctDNA has been widely studied for MRD detection in CRC to aid in clinical decision-making.\(^3,5-9\)

The ability to use ctDNA to identify patients with MRD has important clinical relevance in CRC for several reasons. First, it identifies those who have micrometastatic disease and are therefore at highest risk for relapse after curative-intent therapy.\(^10,11\) Second, ctDNA shares the same somatic and epigenetic variants of the tumor from which it was shed, thus providing dynamic information regarding acquired resistance to therapy.\(^12\) Lastly, given that ctDNA allows for higher sensitivity of disease detection, it provides the ability to tailor systemic therapy to a greater degree than do standard imaging modalities. In patients without radiographic evidence of disease, MRD detection allows for earlier intervention, potentially when minimal disease, without a substantial tumor protective microenvironment, may still be curable; this is thereby an extension of a risk-stratified adjuvant approach. In patients with known metastatic disease who are undergoing systemic therapy with palliative intent, MRD may be used as a guide for treatment deescalation or treatment holidays, sparing patients from cumulative therapy-related toxicities.

The utilization of ctDNA in the management of patients with CRC has evolved over time. Advancements in methods of polymerase chain reaction (PCR) and genome-wide sequencing have improved sensitivity of detection, and standardization of practices has allowed for widespread access to genomic profiling capabilities. A key challenge that continues to impede the broad clinical applicability of ctDNA in clinical practice, particularly in the MRD setting, is related to false negative results. This is influenced by a variety of factors, most notably low levels of circulating ctDNA; these low levels can occur because of either low tumor burden or, in some cases, decreased shedding of ctDNA, as is seen in peritoneal disease.\(^13\)

Today, multiple different assays are used clinically, each with differing methodology. There are 2 broad categories of platforms, tumor-informed and tumor-uninformed, each with unique roles, advantages, and disadvantages, as we outline below.

Circulating Tumor DNA as a Marker of Minimal Residual Disease

Ben Fangman, MD\(^1\); Kanwal Raghav, MD\(^1\); and Scott Kopetz, MD, PhD\(^1\)

Tumor-Informed Assays

Tumor-informed assays involve sequencing the patient’s tumor specimen, utilizing either biopsy or resection sample, to create a tumor-specific signature of detectable unique aberrations such as single nucleotide variants, short indels, chromosomal breakpoints, and others. Depending on the platform, multiple strategies exist for initial profiling, but they are largely based either on next-generation sequencing (NGS) through whole exome sequencing or whole-genome sequencing (WGS) of the surgical tumor specimen. Once the unique alterations have been identified, PCR-based or personalized NGS panels are typically utilized for serial monitoring of ctDNA. If ctDNA harbors a detectable quantity of the same mutations as the tumor-informed probe, the sample is said to be MRD positive. Assays differ in the threshold of number and quantity of ctDNA alterations required to be considered MRD positivity, which impacts the specificity and sensitivity of the resulting assay. The focus on the previously identified alterations in the tumor allows increased depth of coverage of the alterations of interest, which makes these assays more sensitive. Additionally, by using a tumor-informed probe, this approach increases specificity by reducing the impact of sequencing errors or naturally occurring clonal populations not derived from the tumor of interest, such as clonal hematopoiesis of indeterminate potential from white blood cells.

Although a thorough description of available assays is not within the scope of this review, we will describe several of the more commonly utilized assays to provide a perspective on the methodologic differences. There are not yet robust comparisons of the performance of these techniques, although such studies are planned.

The Signatera assay was the first to offer MRD testing commercially, and it is currently the most utilized clinical assay. After whole exome or large targeted panel sequencing, 16 unique alterations are identified and multiplex PCR primer pairs are generated to probe for the identified alterations. The test results are either negative or positive for MRD, based upon whether 2 or more of the alterations are present within the circulating plasma; if the results are positive, quantification of the level of detected ctDNA is provided. The RaDaR assay expands the panel to 48 tumor-informed alterations for amplicon-based sequencing.

SafeSeqS (and the newer methodologic variant, SaferSeqS) is a PCR-based approach that utilizes double-stranded molecular barcoding and semi-nested PCR for duplex sequencing. This decreases the sequencing error rate and detects mutations at frequencies of 10^{-5} as well. Asaf Zviran, PhD, MSc, and colleagues, created a machine-learning integrated WGS approach using a tumor-informed prior which increased the sensitivity for single nucleotide variations (SNVs) and copy number alterations (CNAs) down to approximately 10^{-5} in the setting of low tumor burden. One notable limitation to this approach is limited ability to confidently identify driver mutations, which would decrease the sensitivity for mutational profiling for treatment decisions. Thus, the utility of this approach in CRC is largely confined to the MRD detection setting.

Targeted error correction sequencing (TEC-Seq) and Cancer Personalization Profiling by Deep Sequencing (CAPP-Seq) are hybrid capture–based NGS methods that target multiple regions of the genome known to be associated with driver mutations in a variety of malignancies. These are subsequently deep sequenced. With this approach, the sensitivity of detection of SNV, indels, CNAs, and fusions is greatly increased. Phased variant enrichment and detection sequencing (PhasED-Seq) is another approach that utilizes WGS and has reported the lowest limits of detection of a plasma-based approach at 10^{-6}. As a group, tumor-informed assays have important limitations. First, there is an approximate 4-week turnaround time for construction of the tumor-specific probe. However, once the tumor-informed probe is created, the initial and subsequent plasma testing can be completed with rapid turnaround time, typically on the order of 1 to 2 weeks. Second, the creation of tumor-specific probes relies on adequate tissue for genomic sampling, which may not always be available. Currently, the theoretical performance benefit of tumor-informed testing justifies this longer testing timeframe, but this will be a key consideration as clinical experience with tumor-agnostic assays accumulates.

Tumor-Uninformed Assays

Tumor-uninformed assays are plasma-based approaches that do not need to sequence the primary tumor. These assays largely use targeted NGS-based approaches, and each has specific features to improve sensitivity and specificity. We outline the general approaches to these assays below.

To improve its sensitivity, the Reveal assay (Guardant) leverages a fixed gene panel of known CRC-specific mutations with the fact that CRC commonly has aberrant methylated DNA, particularly at CpG positions on cytosine. Aparna Parikh, MD, and colleagues demonstrated a sensitivity of 55% with a single data point, which was improved with serial monitoring to 91%; its specificity was 100% in predicting recurrence after definitive therapy with this approach. Collections of larger prospective data sets are underway.

Other methylation-specific strategies, such as the evaluation of the methylation of WIFI and NPY, genes commonly hypermethylated in CRC, have been attempted, with evidence of prognostic effect in CRC cohorts. Although this approach benefits from low cost and
simplicity of implementation, neither the sensitivity nor specificity of these assays is as exemplary as those of NGS-based assays.

The advantages of tumor-uninformed approaches include quicker turnaround time, lower costs, and lack of need to rely on tissue and biopsy integrity. An added benefit of these approaches is detecting epigenetic information, which tumor-informed or plasma-based genomic panels cannot do.21

Assay Performance and Preanalytical Considerations

For the applications envisioned with MRD testing, both high sensitivity and specificity are required. High sensitivity is especially critical for deescalation strategies in which patients may be offered less intense therapy than would otherwise be considered, such as shorter duration or delayed adjuvant therapy, or nonoperative management. In contrast, high specificity is required particularly in studies where escalation would be considered, especially when the escalation is to experimental therapy with less well-defined toxicity. Many of the ongoing trials of novel therapeutics, including unapproved agents and cellular therapies, are possible because of the high specificity of the assays, which reduces the risk of treating patients on the basis of false positives when in fact no MRD is present. Several variables (too numerous to examine in depth in this review) impact the performance of these assays. The need to integrate these outcomes into clinical management mandates their timely turnaround, which represents another variable in consideration of the optimal assay.

The effective utilization of ctDNA for MRD detection begins with the optimal timing of sample collection, storage, and processing. Ideally, samples should be collected at least 2 weeks postoperatively (Figure 1) to allow for the large levels of host cell-free DNA (cfDNA) that may be seen postoperatively to decrease, as increased levels can negatively impact sample sensitivity via ctDNA dilution.22 Figure 2 illustrates the optimal process of collecting ctDNA. Samples should be collected in either K2 ethylenediaminetetraacetic blood collection tubes, if white cells are to be able to be separated from plasma within 1 to 2 hours, or Streck cell-free DNA tubes, in which plasma can be stored for days without significant ctDNA degradation.13 Two sequential centrifugations to isolate plasma are recommended to further reduce the level of germline DNA contamination. Although serum was utilized in earlier studies, it is not recommended for current methodologies because serum contains increased cfDNA from hematologic cells due to lysis from clotting; this dilutes ctDNA in the sample, decreasing assay sensitivity. Thus, current methodologies utilize plasma for ctDNA detection.
Opportunities and Next Steps
The rapid progress in the development of ctDNA assays provides substantial opportunities and challenges for integrating them into clinical practice. Several clinical trials are ongoing, as described more fully within this issue; trial results will ultimately define the clinical utility of these assays. Although the clinical oncology community will likely ultimately favor assays with the highest level of clinical data, the rapidly changing field means that studies to understand the relative performance of new assays will be necessary. As the performance of these assays improves, it will be a challenge to integrate their results into clinical practice, as some questions, such as when patients may benefit from adjuvant therapy, may be very dependent on the threshold of detection of the assays. The efforts recently announced by the National Institutes of Health to compare ctDNA assays will be a welcome addition to the landscape and will help define performance more rigorously for future studies. Novel methodologies—including integration of fragmentation patterns (fragmentomics), nucleosomic compartment, and methylomics—will supplement existing approaches and further drive the amount of information discernible from ctDNA. Ultimately, the focus on conducting high-quality trials with rigorously validated assays will be required to unlock the full potential of this technology to benefit patients.

DISCLOSURES: BF has nothing to disclose. SK has served as a consultant or paid advisory board member for AbbVie, Amal Therapeutics, AstraZeneca/MedImmune, Bayer Health, Bicara Therapeutics, Boehringer Ingelheim, Boston Biomedical, Carina Biotechnology, Daiichi Sankyo, Eli Lilly and Company, EMD Serono, EndoVax BioMedicines, Firma Biosciences, Genentech, Gilead Sciences, GlaxoSmithKline, Halicx, Holy Stone, Invata, Ispen, Iytron, Jacobio, Jazz Pharmaceuticals, Johnson & Johnson, Janssen, Lutris, Merck, Mirati Therapeutics, Natera, Novartis, Numab Pharma, Pfizer, Pierre Fabre, Reck Pharma, Repare Therapeutics, Servier, and Xlais; received grants from Amgen, Array BioPharma, Biocartis, Daiichi Sankyo, Eli Lilly and Company, EMD Serono, Guardant Health, Genentech/Roche, MedImmune, Novartis, and Sanofi; and has ownership stake in Iylon, Lutris, and MolecularMatch. KR has served as a consultant or paid advisory board member for and receives honoraria from Bayer Health, Daiichi Sankyo, Eisai, and Seagen.

AUTHOR AFFILIATIONS
1Division of Cancer Medicine and Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX

CORRESPONDING AUTHOR
Scott Kopetz, MD, PhD
Email: SKopetz@mdanderson.org
Phone: 713-792-0959
Fax: 713-792-3708

For references visit cancernetwork.com/Fangman_10.22
Minimal Residual Disease–Directed Adjuvant Therapy for Patients With Early-Stage Colon Cancer: CIRCULATE-US

Ibrahim Halil Sahin, MD; Yan Lin, PhD; Greg Yothers, PhD; Peter C. Lucas, MD, PhD; Dustin Deming, MD; Thomas J. George, MD; Scott Kopetz, MD, PhD; Christopher H. Lieu, MD; and Arvind Dasari, MD, MS

ABSTRACT

BACKGROUND: The ability to detect circulating tumor DNA (ctDNA), a novel surrogate for minimal residual disease (MRD) for patients with solid tumors, has significantly evolved over the past decade. Several studies have shown that ctDNA may provide clinical insight into the biological dynamics of MRD. The CIRCULATE-US (NRG-GI008; NCT05174169) trial will aim to address the role of ctDNA for risk stratification to intensify and deintensify adjuvant chemotherapy for patients with early-stage colon cancer.

METHODS: CIRCULATE-US, a prospective phase 2/3 randomized trial, is investigating the molecular dynamics and prognostic role of ctDNA (evaluated by Natera's Signatera assay) for patients with resected colon cancer. Patients with negative postoperative ctDNA will be enrolled in cohort A and randomized to receive either immediate treatment with 5-fluorouracil and folinic acid or capecitabine plus oxaliplatin (FOLFOX6 or CAPEOX; Arm 1) or serial ctDNA surveillance with delayed adjuvant therapy (Arm 2). Patients randomized to Arm 2 with subsequent positive ctDNA results will be enrolled in cohort B for a second randomization to receive either FOLFOX6/CAPEOX (Arm 3) or 5-fluorouracil, folinic acid, oxaliplatin, and irinotecan (FOLFIRINOX; Arm 4) for 6 months. Patients with positive postoperative ctDNA results will be directly enrolled in cohort B and randomized to receive either FOLFOX6/CAPEOX (Arm 3) or FOLFIRINOX (Arm 4). Patients with stage II or stage III colon cancer with positive ctDNA results (tested as standard of care with commercial testing) will be eligible for enrollment in cohort B. The primary end point for cohort A is time to positive ctDNA status for phase 2 and disease-free survival for phase 3 with a noninferiority design. The primary end point for cohort B is disease-free survival for both phase 2 and phase 3 with a superiority design.

DISCUSSION: CIRCULATE-US will aim to understand postoperative ctDNA dynamics in early-stage colon cancer and will investigate escalation and de-escalation approaches by using ctDNA status as a surrogate for MRD status.

Rationale

Management of early-stage colon cancer has evolved over the past decade, leading to improved survival outcomes particularly with evolution of adjuvant chemotherapy.1,2 Historically, whether to use adjuvant therapy—and, if so, which type—was determined by using the tumor/node/metastasis (TNM) staging system and by considering high-risk clinical and pathological factors for recurrence, such as tumor grade, presence of lymphovascular or perineural invasion, tumor perforation, bowel obstruction, and positive margin. However, the TNM staging system and the prognostic factors used to determine adjuvant therapy regimens lack precision. Given that adjuvant chemotherapy is beneficial only for a subgroup of patients with colon cancer and because the long-term toxicities of chemotherapy agents, such as neuropathy, can significantly impact quality of life, a more precise identification of the patient population that would benefit from adjuvant chemotherapy is needed.

Minimal residual disease (MRD) is a well-defined risk factor for inferior outcomes for patients with several cancers. MRD can be detected with different methodologies; these include...
molecular methods with the use of cell-free tumor DNA (molecular residual cancer) or immunological methods including flow cytometry (used in liquid tumors). Moreover, MRD has long been utilized to determine treatment stratification for patients with acute myeloid leukemia. Research on circulating tumor DNA (ctDNA), a surrogate for MRD for patients with early-stage colon cancer, has rapidly evolved within the past decade. When investigating ctDNA in patients with stage II colon cancer, Jeanne Tie, MD, MBChB, and colleagues found that 79% of patients with positive postoperative ctDNA status, but only 9.8% of patients with negative ctDNA status, had recurrent disease (HR, 18; 95% CI, 7.9-40; P < .001). In another study among patients with stage III colon cancer who underwent serial ctDNA testing, Tie and colleagues again showed a significantly increased risk of recurrence for patients with positive ctDNA status after R0 resection (HR, 3.8; 95% CI, 2.4-21.0; P < .001). A study by Maximilian Diehn, MD, PhD, and colleagues investigated the role of ctDNA in R0 resected stage II and III colorectal cancer, and the 2-year relapse-free survival rate was 17% vs 88% for patients with positive and negative ctDNA status, respectively (HR, 10.3; 95% CI, 2.3-46.9; P < .00001). In the same study, time to recurrence was shorter for patients with positive ctDNA status (HR, 20.6; 95% CI, 3.1-139.0; P < .00001).

More recently, the CIRCULATE-Japan study (jRCT1031200006) investigated serial ctDNA testing using Signatera assays. In this study, patients with positive ctDNA status 4 weeks after surgery had significantly lower 1-year disease-free survival (DFS) rate compared with patients with negative ctDNA status (55.5% vs 95.2%; respectively; HR, 13.3; 95%, CI 8.0-22.2; P < .001). Notably, patients who remained ctDNA positive at 12 weeks after surgery and who had negative-to-positive seroconversion were found to be at further increased risk of recurrence at 6 months (HR, 15.8; 95% CI, 5.7-44.2; P < .001) compared with patients with negative ctDNA, indicating the greater importance of serial testing vs that of a single ctDNA test. The investigators also found that ctDNA clearance at 12 weeks was significantly higher for patients who received adjuvant chemotherapy for stage III disease (58% vs 11%; P < .001). Cumulative incidence of ctDNA clearance was also significantly higher for patients who received adjuvant therapy than for those who did not (67% vs 7% by 24 weeks; HR, 17.1; 95% CI, 6.7-43.4; P < .001). How ctDNA clearance correlates with clinical outcomes for these patients will require longer follow-up.

Collectively, these data indicate that ctDNA status is a clinically meaningful surrogate for MRD status for patients with colon cancer who are undergoing adjuvant therapy and that serial ctDNA can be utilized to escalate and de-escalate adjuvant therapy and to deliver adjuvant therapy to the right patient population more precisely than TNM staging.

Hypothesis

The primary hypothesis of this phase 2/3 randomized study is that patients with negative postoperative ctDNA results (considered MRD negative) can undergo serial ctDNA testing in place of immediate adjuvant chemotherapy without significant detrimental effect on the 3-year DFS rate with the introduction of adjuvant therapy at the time of seroconversion to positive ctDNA: phase 3 H0 (null hypothesis): 3-year DFS, 85.0% vs 74.6%; HR, 1.8; and alternative hypothesis (HA): 3-year DFS, 85.0% vs 82.1% (HR, 1.21), with a 90% power at α of 0.025 one-sided. For patients with positive postoperative ctDNA results (considered MRD positive), we hypothesize that escalation of chemotherapy to FOLFIRINOX in place of CAPEOX and FOLFIRINOX will result in an improved 3-year DFS rate with a 33.3% risk reduction (phase 3 HA: HR of 0.667 or a 3-year DFS rate of 40.0% vs 54.3%, with a 90% power at α of 0.025 one-sided). The primary objective for cohort A (ctDNA negative) is to compare time to ctDNA positivity (phase 2) and DFS (phase 3) between immediate and delayed adjuvant chemotherapy arms. The primary objective for Cohort B (ctDNA positive) is to compare DFS between patients in the FOLFOX/CAPEOX and FOLFIRINOX arms for both phase 2 and phase 3 cohorts.

Eligibility

The study will enroll patients with histologically/pathologically confirmed stage IIIA/IIIB mismatch repair–proficient colon adenocarcinoma (T1-3, N1/N1c) with R0 resection and an ECOG performance status of 0 or 1. Patients with mismatch repair–deficient colon cancer or distal tumor extension of 12 cm or less from the anal verge or below the peritoneal reflection will not be enrolled in this study. Patients will be required to undergo Signatera ctDNA testing no longer than 8 weeks after surgical date to allow ctDNA results to be available and to initiate adjuvant therapy within acceptable 12 weeks postoperative period of time. Time interval between surgery (defined as postoperative day 7) and study entry must be within 60 days (ie, 67 days from date of R0 resection). Due to the potential false-negative risk of ctDNA testing and the inherently increased risk of recurrence of T4 or N2 disease, cohort A will not enroll patients with T4 or N2 disease. Patients with pathologic stage II or IIIIC colon adenocarcinoma with R0 resection and commercially obtained Signatera ctDNA assay with positive results are eligible for enrollment in cohort B. These patients will require confirmatory central ctDNA testing before randomization in cohort B. Patients should have negative CT or MRI...
results for metastatic disease and adequate organ function within 28 days prior to enrollment. Patients with tumor perforation, history of prior colorectal cancer, previous systemic therapy or radiotherapy for colorectal cancer, or tumor histology other than adenocarcinoma will be excluded from the trial. Patients with a history of other active cancer within 5 years, bone marrow or solid organ transplant, or grade 2 or greater sensory or motor neuropathy will also be excluded. Patients with HIV who are on antiviral therapy and have a negative viral load are eligible for enrollment.

Interventions
In this randomized phase 2/3 trial, patients with negative ctDNA status will be included in cohort A and then will undergo randomization to either receive the standard of care with immediate adjuvant therapy for 3 to 6 months with FOLFOX6/CAPEOX (Arm 1) or undergo serial ctDNA testing without adjuvant therapy every 3 months (±21 days) over the first year and every 6 months throughout years 2 and 3 until ctDNA becomes positive (Arm 2). Patients randomized to Arm 1 will also undergo ctDNA testing at the same frequency. Patients in Arm 2 with subsequent positive ctDNA results will transition to cohort B and will undergo a second randomization to receive either 6 months of FOLFOX/CAPEOX (Arm 3) or FOLFIRINOX (Arm 4).

Patients with positive postoperative ctDNA status assessed no later than 8 weeks after R0 resection will be included in cohort B and randomized to either the standard-of-care arm with FOLFOX/CAPEOX (Arm 3) or the intervention arm with FOLFIRINOX for 6 months (Arm 4). All patients will undergo routine clinical and radiological surveillance with follow-up restaging scans every 6 months. Patients in cohort B will undergo the same serial ctDNA testing as those in Arm 2.

End Points and Statistical Plan
The primary end point of phase 2 for cohort A is time to ctDNA positivity, which is defined as the time from randomization to the first ctDNA-positive result after randomization to Arm 1 and the second ctDNA-positive result after randomization to Arm 2. The difference in definition of ctDNA positivity for Arm 1 and Arm 2 allows for the possibility that delayed chemotherapy on Arm 2 could seroconvert the patient back to negative ctDNA. Recurrence without a positive ctDNA result will be considered as an event for the primary end point for both arms (Arms 1 and 2). The last ctDNA test will be used to censor patients without any postrandomization positive ctDNA results. Patients with only 1 positive ctDNA result in Arm 2 will be censored at the last ctDNA test. The primary end point of phase 3 for cohort A and of phase 2/3 for cohort B is DFS, which is defined as time from randomization to recurrence or death from any cause.

The stratification factors for cohort A include disease stage (IIIA vs IIIB) and intended fluoropyrimidines chemotherapy (5-FU vs capecitabine). The stratification factors for cohort B include intended fluoropyrimidines chemotherapy (5-FU vs capecitabine) and the initial postoperative ctDNA status (positive vs negative). The statistical design for cohort A is powered to prove the noninferiority of delayed adjuvant therapy with serial ctDNA testing compared with immediate adjuvant therapy (no more than a small detriment with delayed adjuvant chemotherapy under HA; phase 2: 1-year event-free rate for immediate and delayed adjuvant arms, 88.0% vs 85.7%, respectively [HR, 1.21]; phase 3: 3-year DFS rate, 85.0% vs 82.1%, respectively [HR, 1.21]). The statistical design for cohort B is powered to prove the superiority of treatment intensification with FOLFIRINOX compared with standard arm with regard to 3-year DFS rate (HA for phases 2 and 3: 54.3% vs 40.0%, respectively [HR, 0.667]). The 1-sided type I errors of the noninferiority tests (Cohort A) are set to be 0.05 and 0.025 for phases 2 and 3, respectively. The type I errors of the superiority tests (Cohort B) are set to be 0.15 (1-sided) and 2.5% (1-sided) for phases 2 and 3, respectively.

Study Status
The study was activated on March 1, 2022, through the National Cancer Institute’s National Clinical Trials Network and is actively recruiting across the United States. All United States cooperative groups (ALLIANCE, ECOG-ACRIN, SWOG, and NRG) through their network members are actively participating in the trial to enhance study recruitment. The study is expected to open at both community and academic institutions to maximize race, gender, and age diversity in the study cohorts.

ACKNOWLEDGMENTS: We thank Ashli Nguyen-Villamain, Associate Scientific Editor, and Sarah Bronson, Scientific Editor, in the Research Medical Library at The University of Texas MD Anderson Cancer Center, for providing editorial assistance.

AUTHOR AFFILIATIONS
1H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; 2NRG Oncology, Pittsburgh, PA; 3University of Pittsburgh, Pittsburgh, PA; 4National Surgical Adjuvant Breast and Bowel Project, Division of Pathology, NRG Oncology Biospecimen Bank, Pittsburgh, PA; 5University of Wisconsin Carbone Cancer Center, Madison, WI; 6University of Florida Health Cancer Center, Gainesville, FL; 7University of Texas MD Anderson Cancer Center, Houston, TX; 8University of Colorado Cancer Center, Aurora, CO
*Denotes equal contribution.

CORRESPONDING AUTHOR
Ibrahim Halil Sahin, MD
Division of Hematology and Oncology
University of Pittsburgh School of Medicine
UPMC Hillman Cancer Center
5150 Centre Ave, Pittsburgh, PA 15232
sahinh@upmc.edu
Tel: 412 623 3245; Fax: 412 692 4705

For references visit cancernetwork.com/Sahin_10.22
Know cancer’s next move

Signatera is prognostic and predictive of treatment benefit in early-stage CRC

Data presented at ASCO Gastrointestinal Cancers Symposia in January 2022 included an interim analysis from the largest MRD-guided trial indicating that personalized MRD testing can guide adjuvant treatment decisions.

Key takeaways

- MRD-positive CRC patients at 4w post-op benefit significantly from chemo (HR 8.8-9.4)
- MRD-negative CRC patients at 4w post-op do NOT benefit significantly from chemo

Scan or visit www.natera.com/events/asco-gi-2022 to learn how a tumor informed approach optimizes patient management

References

Colon Adjuvant Chemotherapy Based on Evaluation of Residual Disease: CIRCULATE-US (NRG-GI008) (NCT05174169)

BACKGROUND

Currently, determination of whether adjuvant chemotherapy is required for colon cancer is based on tumor/node/metastasis staging and clinical and pathological factors. However, the absolute benefit of adjuvant therapy for stage II and III colon cancer is ~5% and ~25% to 30%, respectively, indicating that the benefit is limited to a subgroup of patients with colon cancer. Therefore, more precise approaches to defining patients at risk for recurrence are required.

The detection of circulating tumor DNA (ctDNA) in blood samples has evolved significantly over the past decade, and studies have investigated the clinical and prognostic value of ctDNA in early-stage colon cancer. Recent studies identified ctDNA status as one of the most powerful prognostic factors and a surrogate for minimal residual disease (MRD) for patients with early-stage colon cancer. However, at this time, the clinical use of ctDNA for the determination of adjuvant therapy is not well established and represents an unmet need for research. CIRCULATE-US, a prospective phase 2/3 trial, will be investigating MRD-based adjuvant therapy for patients with early-stage colon cancer with intensified and deintensified adjuvant therapy approaches by using ctDNA status as a surrogate for MRD status. This trial will use Signatera ctDNA testing to determine the ctDNA status of patients entering the study.

INCLUSION CRITERIA

Patients with confirmed stage III A or stage III B mismatch repair–proficient colon adenocarcinoma (T1-3, N1/N1c) will be included in this study. Patients with T4 or N2 disease will be excluded from cohort A to exclude the potential negative impact of a possible false-negative result of ctDNA testing on the survival of patients. Patients who have positive ctDNA results from commercially obtained Signatera testing and stage II and III colon adenocarcinoma and who otherwise meet the rest of the eligibility criteria can be enrolled in cohort B. Eligible patients will have adequate organ function and a baseline radiologic exam within 28 days before enrollment without evidence of metastatic disease. Patients with mismatch repair–deficient colon cancer, tumor-related bowel perforation, or distal tumor extension of 12 cm or less will be excluded from this study.

STUDY SITES

The study is activated across the National Cancer Institute’s National Clinical Trials Network. Please find more details at: https://clinicaltrials.gov/ct2/show/results/NCT05174169?view=results

CONTACT INFORMATION

PRIMARY INVESTIGATOR: Arvind Dasari, MD, MS Gastrointestinal Oncology The University of Texas MD Anderson Cancer Center Houston, TX ADasari@mdanderson.org

CO-PRIMARY INVESTIGATOR: Christopher Lieu, MD Medical Oncology University of Colorado Cancer Center Aurora, CO christopher.lieu@cuanschutz.edu Phone: +81 4 7133 1111 Fax: +81 4 7134 6928

STUDY FUNDING SUPPORT:

U10-CA-180868, -180822; UG1CA-189867; Natera.

CLINICAL TRIALS IN PROGRESS

CIRCULATE-US

INCLUSION CRITERIA

Patients with confirmed stage III A or stage III B mismatch repair–proficient colon adenocarcinoma (T1-3, N1/N1c) will be included in this study. Patients with T4 or N2 disease will be excluded from cohort A to exclude the potential negative impact of a possible false-negative result of ctDNA testing on the survival of patients. Patients who have positive ctDNA results from commercially obtained Signatera testing and stage II and III colon adenocarcinoma and who otherwise meet the rest of the eligibility criteria can be enrolled in cohort B. Eligible patients will have adequate organ function and a baseline radiologic exam within 28 days before enrollment without evidence of metastatic disease. Patients with mismatch repair–deficient colon cancer, tumor-related bowel perforation, or distal tumor extension of 12 cm or less will be excluded from this study.

STUDY SITES

The study is activated across the National Cancer Institute’s National Clinical Trials Network. Please find more details at: https://clinicaltrials.gov/ct2/show/results/NCT05174169?view=results

CONTACT INFORMATION

PRIMARY INVESTIGATOR: Arvind Dasari, MD, MS Gastrointestinal Oncology The University of Texas MD Anderson Cancer Center Houston, TX ADasari@mdanderson.org

CO-PRIMARY INVESTIGATOR: Christopher Lieu, MD Medical Oncology University of Colorado Cancer Center Aurora, CO christopher.lieu@cuanschutz.edu Phone: +81 4 7133 1111 Fax: +81 4 7134 6928

STUDY FUNDING SUPPORT:

U10-CA-180868, -180822; UG1CA-189867; Natera.

CLINICAL TRIALS IN PROGRESS

CIRCULATE-US

INCLUSION CRITERIA

Patients with confirmed stage III A or stage III B mismatch repair–proficient colon adenocarcinoma (T1-3, N1/N1c) will be included in this study. Patients with T4 or N2 disease will be excluded from cohort A to exclude the potential negative impact of a possible false-negative result of ctDNA testing on the survival of patients. Patients who have positive ctDNA results from commercially obtained Signatera testing and stage II and III colon adenocarcinoma and who otherwise meet the rest of the eligibility criteria can be enrolled in cohort B. Eligible patients will have adequate organ function and a baseline radiologic exam within 28 days before enrollment without evidence of metastatic disease. Patients with mismatch repair–deficient colon cancer, tumor-related bowel perforation, or distal tumor extension of 12 cm or less will be excluded from this study.

STUDY SITES

The study is activated across the National Cancer Institute’s National Clinical Trials Network. Please find more details at: https://clinicaltrials.gov/ct2/show/results/NCT05174169?view=results

CONTACT INFORMATION

PRIMARY INVESTIGATOR: Arvind Dasari, MD, MS Gastrointestinal Oncology The University of Texas MD Anderson Cancer Center Houston, TX ADasari@mdanderson.org

CO-PRIMARY INVESTIGATOR: Christopher Lieu, MD Medical Oncology University of Colorado Cancer Center Aurora, CO christopher.lieu@cuanschutz.edu Phone: +81 4 7133 1111 Fax: +81 4 7134 6928

STUDY FUNDING SUPPORT:

U10-CA-180868, -180822; UG1CA-189867; Natera.

PATIENTS WITH RESECTED COLON ADENOCARCINOMA*

<table>
<thead>
<tr>
<th>Cohort A*</th>
<th>Cohort B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM 1: CAPEOX or FOLFOX®</td>
<td>ARM 3: CAPEOX or FOLFOX®</td>
</tr>
<tr>
<td>R</td>
<td>ARM 4: FOLFOXIRI®</td>
</tr>
<tr>
<td>Surveillance with serial ctDNA</td>
<td>ctDNA detected</td>
</tr>
<tr>
<td>No ctDNA detected</td>
<td>No ctDNA detected</td>
</tr>
</tbody>
</table>

CTDNA testing

CAPEOX, capecitabine plus oxaliplatin; ctDNA, circulating tumor DNA; FOLFOX, fluorouracil, folinic acid, and oxaliplatin; FOLFOXIRI, fluorouracil, folinic acid, oxaliplatin, and irinotecan.

*Stage III (T1-3, N1/N1c) or ctDNA+ stage II or IIIC post-R0 resection. Patients in Arm 2 who subsequently have positive ctDNA results will cross over to Cohort B.

**Duration and regimen at physician discretion.

**Stratification factors: intended fluoropyrimidine (5-FU vs capecitabine, both cohorts), disease stage (IIIA vs IIIB, Cohort A), initial postoperative ctDNA status (positive vs negative, Cohort B).
CLINICAL TRIALS IN PROGRESS

TITLE

Phase 2/3 Study of Circulating Tumor DNA as a Predictive Biomarker in Adjuvant Chemotherapy in Patients With Stage IIA Colon Cancer (COBRA)

BACKGROUND

In 2022, approximately 25% of all new cases of colon cancer will be diagnosed as stage II. Although adjuvant chemotherapy is recommended for patients with high-risk stage II colon cancer, its overall benefit is marginal (<5%) in an unselected population and exposes many to excessive toxicity. This trial addresses the need for more objective criteria for patients with risk-stratifying stage II colon cancer who may (or may not) benefit from adjuvant chemotherapy.

Identification of circulating tumor DNA (ctDNA), which is shed into the bloodstream following cancer cell apoptosis, represents a highly sensitive approach to detecting minimal residual disease after surgery. Across all stages of colon cancer, the presence of ctDNA postoperatively is strongly associated with eventual recurrence. Conversely, those with undetectable ctDNA are likely to remain disease free.

Despite clear prognostic utility for ctDNA methodologies, observational series thus far have reported mixed outcomes regarding the ability of chemotherapy to clear ctDNA and improve survival for patients with resected locoregional colon cancer. NRG GI-005 (NCT04068103), a first-in-kind trial supported by the National Cancer Institute for any locoregional colon cancer. NRG GI-005 (NCT04068103) is currently enrolling at sites across the United States and Canada. This trial opened in December 2019. As of September 16, 2022, 416 of 1408 planned participants (30%) have been enrolled.

PATIENT ACCRUAL INFORMATION

NRG GI-005 (NCT04068103) is currently enrolling at sites across the United States and Canada. This trial opened in December 2019. As of September 16, 2022, 416 of 1408 planned participants (30%) have been enrolled.

CONTRIBUTORS

Van Morris, MD, MS
The University of Texas MD Anderson Cancer Center
1400 Holcombe Blvd, Unit 426
Houston, TX 77030
vkmorris@mdanderson.org
Phone: (713) 792-2828
Fax: (713) 745-1163

Atif Iqbal, MD, FACS, FACRS
Associate Professor Chief, Section of Colorectal Surgery
Baylor College of Medicine
7200 Cambridge St, 7th Fl
Houston, TX 77030
Atif.iqbal@bcm.edu
Phone: (713) 798-4321
Fax: (713) 798-6244

CLINICAL TRIALS IN PROGRESS

NRG GI-005 (NCT04068103) is currently enrolling at sites across the United States and Canada. This trial opened in December 2019. As of September 16, 2022, 416 of 1408 planned participants (30%) have been enrolled.

CONTRIBUTORS

Van Morris, MD, MS
The University of Texas MD Anderson Cancer Center
1400 Holcombe Blvd, Unit 426
Houston, TX 77030
vkmorris@mdanderson.org
Phone: (713) 792-2828
Fax: (713) 745-1163

Atif Iqbal, MD, FACS, FACRS
Associate Professor Chief, Section of Colorectal Surgery
Baylor College of Medicine
7200 Cambridge St, 7th Fl
Houston, TX 77030
Atif.iqbal@bcm.edu
Phone: (713) 798-4321
Fax: (713) 798-6244

CLINICAL TRIALS IN PROGRESS

TITLE

Phase 2/3 Study of Circulating Tumor DNA as a Predictive Biomarker in Adjuvant Chemotherapy in Patients With Stage IIA Colon Cancer (COBRA)

BACKGROUND

In 2022, approximately 25% of all new cases of colon cancer will be diagnosed as stage II. Although adjuvant chemotherapy is recommended for patients with high-risk stage II colon cancer, its overall benefit is marginal (<5%) in an unselected population and exposes many to excessive toxicity. This trial addresses the need for more objective criteria for patients with risk-stratifying stage II colon cancer who may (or may not) benefit from adjuvant chemotherapy.

Identification of circulating tumor DNA (ctDNA), which is shed into the bloodstream following cancer cell apoptosis, represents a highly sensitive approach to detecting minimal residual disease after surgery. Across all stages of colon cancer, the presence of ctDNA postoperatively is strongly associated with eventual recurrence. Conversely, those with undetectable ctDNA are likely to remain disease free.

Despite clear prognostic utility for ctDNA methodologies, observational series thus far have reported mixed outcomes regarding the ability of chemotherapy to clear ctDNA and improve survival for patients with resected locoregional colon cancer. NRG GI-005 (NCT04068103), a first-in-kind trial supported by the National Cancer Institute for any solid tumor to evaluate ctDNA as an integral biomarker, seeks to provide level 1 evidence in evaluating the role of ctDNA as a guide

for clinicians in the decision to administer adjuvant chemotherapy to patients with stage IIA colon cancer.

The Guardant Health REVEAL assay will evaluate ctDNA status in this study. This assay is a next-generation sequencing diagnostic test that can detect ctDNA in cell-free DNA that is isolated from whole blood by identifying somatic variations and colorectal cancer-specific epigenetic signatures. No accompanying tumor tissue is required for analysis of ctDNA in a CLIA-certified central laboratory, and estimated turnaround time for results is less than 3 weeks.

The primary end points are ctDNA clearance (phase 2) and recurrence-free survival (phase 3) among ctDNA-detected participants. The phase 2 analysis will be performed after 16 ctDNA-detected patients have been on study for 6 months (ie, the time to complete adjuvant chemotherapy). If P > .35 for ctDNA clearance between the 2 arms of patients with detectable ctDNA who do or do not receive adjuvant chemotherapy on study, then the trial will be stopped for futility. If P ≤ .35, then enrollment will continue to the phase 3 portion. For the phase 3 primary analysis, using a 1-sided α = .025 and a power of 92%, we hypothesize that, among the “ctDNA detected” group, adjuvant chemotherapy will improve recurrence-free survival by 60%. Secondary end points will evaluate overall survival, recurrence-free survival, and time to recurrence according to ctDNA status and treatment arm.

ELIGIBILITY CRITERIA

Participants with low-risk pT3N0M0 stage IIA colon (nonrectal) cancer who would be deemed suitable for observation (and no adjuvant chemotherapy) according to current practice patterns by their evaluating provider are eligible. Participants are not allowed to have had prior testing for ctDNA status prior to study entry, and prior systemic therapy or radiotherapy for colon cancer is not permitted. At least 12 lymph nodes must have been resected, and there must be no evidence for micro- or macropenetration of the primary colon cancer. Study registration must occur within 60 days of resection.

Eligible patients must have completed resection of their primary colon cancer and must not have received prior systemic therapy or radiotherapy for colon cancer. Participants are not allowed to have had prior ctDNA testing for ctDNA status prior to study entry, and there must be no evidence for micro- or macropenetration of the primary colon cancer. Study registration must occur within 60 days of resection.

No adjuvant chemotherapy

Low risk: suitable for observation; no adjuvant chemotherapy recommended

Active surveillance

R E A D Y M O D E L

Resected pT3N0M0 stage IIA
colon cancer

Low risk: suitable for observation; no adjuvant chemotherapy recommended

Arm 1: active surveillance

Arm 2: prospective ctDNA testing

ctDNA detected

FOLFOX (or CAPOX) × 6 months

ctDNA not detected

Active surveillance

CAPOX, capecitabine and oxaliplatin; ctDNA, circulating tumor DNA; FOLFOX, folinic acid, fluorouracil, and oxaliplatin.
In the treatment of newly diagnosed, transplant-ineligible multiple myeloma:

ADD TO THE MOMENTUM WITH DARZALEX® + Rd IN FRONTLINE

Reach for a treatment that significantly extended progression-free survival vs Rd alone in a clinical trial

IMPORTANT SAFETY INFORMATION

DARZALEX® AND DARZALEX FASPRO®: CONTRAINDICATIONS

DARZALEX® and DARZALEX FASPRO® are contraindicated in patients with a history of severe hypersensitivity to daratumumab, hyaluronidase (for DARZALEX FASPRO®), or any of the components of the formulations.

DARZALEX®: Infusion-Related Reactions

DARZALEX® can cause severe and/or serious infusion-related reactions including anaphylactic reactions. These reactions can be life-threatening, and fatal outcomes have been reported. In clinical trials (monotherapy and combination: N=2066), infusion-related reactions occurred in 37% of patients with the Week 1 (16 mg/kg) infusion, 2% with the Week 2 infusion, and cumulatively 6% with subsequent infusions. Less than 1% of patients had a Grade 3/4 infusion-related reaction at Week 2 or subsequent infusions. The median time to onset was 1.5 hours (range: 0 to 73 hours). Nearly all reactions occurred during infusion or within 4 hours of completing DARZALEX®. Severe reactions have occurred, including bronchospasm, hypoxia, dyspnea, hypertension, tachycardia, headache, laryngeal edema, pulmonary edema, and ocular adverse reactions, including choroidal effusion, acute myopia, and acute angle closure glaucoma.

Signs and symptoms may include respiratory symptoms, such as nasal congestion, cough, throat irritation, as well as chills, vomiting, and nausea. Less common signs and symptoms were wheezing, allergic rhinitis, pyrexia, chest discomfort, pruritus, hypotension, and blurred vision. When DARZALEX® dosing was interrupted in the setting of ASCT (CASSIOPEIA) for a median of 3.75 months (range: 2.4 to 6.9 months), upon re-initiation of DARZALEX®, the incidence of infusion-related reactions was 11% for the first infusion following ASCT.

Infusion-related reactions occurring at re-initiation of DARZALEX® following ASCT were consistent in terms of symptoms and severity (Grade 3 or 4: <1%) with those reported in previous studies at Week 2 or subsequent infusions. In EQUULEUS, patients receiving combination treatment (n=97) were administered the first 16 mg/kg dose at Week 1 split over two days, ie, 8 mg/kg on Day 1 and Day 2, respectively. The incidence of any grade infusion-related reactions was 42%, with 36% of patients experiencing infusion-related reactions on Day 1 of Week 1, 4% on Day 2 of Week 1, and 8% with subsequent infusions.

Pre-medicate patients with antihistamines, antipyretics, and corticosteroids. Frequently monitor patients during the entire infusion. Interrupt DARZALEX® infusion for reactions of any severity and institute medical management as needed. Permanently discontinue DARZALEX® therapy if an anaphylactic reaction or life-threatening (Grade 4) reaction occurs and institute medical management as needed.

IMPORTANT SAFETY INFORMATION CONTINUES ON NEXT PAGE
After a median ~30 months* of follow-up, mPFS was not reached with DARZALEX® + Rd vs 31.9 months with Rd alone.4
- 76.6% of patients had not progressed with Drd vs 55.6% of patients in the Rd group (DRd: 95% CI, 65.0–75.4; Rd: 95% CI, 49.5–61.3)!

44% reduction in the risk of disease progression or death with Drd vs Rd alone (HR=0.56; 95% CI, 0.43–0.73; P<0.0001)

MAIA Study Design: A phase 3, global, randomized, open-label study, compared treatment with Drd (n=368) to Rd (n=369) in adult patients with newly diagnosed, transplant-ineligible multiple myeloma. Treatment was continued until disease progression or unacceptable toxicity. The primary efficacy endpoint was PFS.1

DARZALEX® FASPRO® can be administered substantially faster than intravenous daratumumab1,9

With an ~3 to 5 minute subcutaneous injection, DARZALEX FASPRO® can be administered substantially faster than intravenous daratumumab1,9

Visit FrontlineMomentum.com
See the latest data rolling out.

Cancer patients are often elderly and have a variety of comorbidities, which can increase the risk of infection. For patients with Grade 1, 2, or 3 reactions, reduce the infusion rate when re-starting the infusion.

To reduce the risk of delayed infusion-related reactions, administer oral corticosteroids to all patients following DARZALEX® infusions. Patients with a history of chronic obstructive pulmonary disease may require additional post-infusion medications to manage such reactions.

Ocular adverse reactions, including acute myopia and narrowing of the anterior chamber angle due to cilioschoidal effusions with potential for increased intraocular pressure or glaucoma, have occurred with DARZALEX® infusion. If ocular symptoms occur, interrupt DARZALEX® infusion and seek immediate ophthalmologic evaluation prior to restarting DARZALEX®.

DARZALEX FASPRO®: Hypersensitivity and Other Administration Reactions

Both systemic administration-related reactions, including severe or life-threatening reactions, and local injection-site reactions can occur with DARZALEX FASPRO®. Fatal reactions have been reported with daratumumab-containing products, including DARZALEX FASPRO®.

Systemic Reactions

In a pooled safety population of 898 patients with multiple myeloma (N=705) or light chain (AL) amyloidosis (N=193) who received DARZALEX FASPRO® as monotherapy or in combination, 9% of patients experienced a systemic administration-related reaction (Grade 2: 3.2%, Grade 3: 1%). Systemic administration-related reactions occurred in 8% of patients with the first injection, 0.3% with the second injection, and cumulatively 1% with subsequent injections. The median time to onset was 3.2 hours (range: 4 minutes to 3.5 days). Of the 140 systemic administration-related reactions that occurred in 77 patients, 121 (86%) occurred on the day of DARZALEX FASPRO® administration. Delayed systemic administration-related reactions have occurred in 1% of the patients.

Severe reactions included hyposxia, dyspnea, hypertension, tachycardia, and ocular adverse reactions, including choroidal effusion, acute myopia, and acute angle closure glaucoma. Other signs and symptoms of systemic administration-related reactions may include respiratory symptoms, such as bronchospasm, nasal congestion, cough, throat irritation, allergic rhinitis, and wheezing, as well as anaphylactic reaction, pyrexia, chest pain, pruritus, chills, vomiting, nausea, hypotension, and blurred vision.

Pre-medicate patients with histamine-1 receptor antagonist, acetaminophen, and corticosteroids. Monitor patients for systemic administration-related reactions, especially following the first and second injections. For anaphylactic reaction or life-threatening (Grade 4) administration-related reactions, immediately and permanently discontinue DARZALEX FASPRO®. Consider administering:

IMPORTANT SAFETY INFORMATION CONTINUES ON NEXT PAGE ▶
In multiple myeloma, the most common adverse reaction (≥20%) with DARZALEX FASPRO® monotherapy is upper respiratory tract infection. The most common adverse reactions with combination therapy (≥20% for any combination) include fatigue, nausea, diarrhea, dyspnea, insomnia, headache, pyrexia, cough, muscle spasms, back pain, vomiting, hypertension, upper respiratory tract infection, peripheral sensory neuropathy, constipation, pneumonia, and peripheral edema. The most common hemato logical laboratory abnormalities (≥40%) with DARZALEX FASPRO® are decreased leukocytes, decreased lymphocytes, decreased neutrophils, decreased platelets, and decreased hemoglobin.

INDICATIONS DARZALEX® (daratumumab) is indicated for the treatment of adult patients with multiple myeloma.

- In combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for autologous stem cell transplant and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy
- In combination with bortezomib, melphalan, and prednisone in newly diagnosed patients who are ineligible for autologous stem cell transplant
- In combination with bortezomib, thalidomide, and dexamethasone in newly diagnosed patients who are eligible for autologous stem cell transplant
- In combination with bortezomib and dexamethasone in patients who have received at least one prior therapy
- In combination with carfilzomib and dexamethasone in patients with relapsed or refractory multiple myeloma who have received one to three prior lines of therapy
- In combination with pomalidomide and dexamethasone in patients who have received at least two prior therapies including lenalidomide and a proteasome inhibitor (PI)
- As monotherapy in patients who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double-refractory to a PI and an immunomodulatory agent
- DARZALEX FASPRO® (daratumumab and hyaluronidase-fihj) is indicated for the treatment of adult patients with multiple myeloma:
 - In combination with bortezomib, melphalan, and prednisone in newly diagnosed patients who are ineligible for autologous stem cell transplant
 - In combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for autologous stem cell transplant and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy
 - In combination with bortezomib, thalidomide, and dexamethasone in newly diagnosed patients who are eligible for autologous stem cell transplant
 - In combination with carfilzomib and dexamethasone in patients with relapsed or refractory multiple myeloma who have received one to three prior lines of therapy
 - In combination with bortezomib and dexamethasone in patients who have received at least one prior therapy
 - As monotherapy in patients who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double-refractory to a PI and an immunomodulatory agent

Please see Brief Summary of full Prescribing Information for DARZALEX® and DARZALEX FASPRO® on adjacent pages.

© Janssen Biotech, Inc. 2022
All rights reserved. 06/22 cp-233641V4

CNC1022_610-619_Janssen-Darzalex Fasprom.indd 612
9/28/22 10:39 AM
Daratumumab binds to CD38 on red blood cells (RBCs) and results in a positive interference with serological testing.

Ocular adverse reactions, including acute myopia and narrowing of the chronic obstructive pulmonary disease may require additional post-infusion corticosteroids to all patients following DARZALEX infusions.

Infusion-related reactions occurring at re-initiation of DARZALEX following ASCT were consistent in terms of symptoms and severity (Grade 3 or 4:<1%). Infusion-related reactions occurring at re-initiation of DARZALEX following ASCT were consistent in terms of symptoms and severity (Grade 3 or 4:<1%).

Daratumumab is a human IgG kappa monoclonal antibody that can be detected on both, the serum protein electrophoresis (SPE) and immunofixation (IFE) assays used for the clinical monitoring of endogenous M-protein [see Drug Interactions]. This interference can impact the determination of complete response and of disease progression in some patients with IgG kappa myeloma protein.

Endometrial Toxicity

DARZALEX® (daratumumab) injection, for intravenous use

Brief Summary of Full Prescribing Information

INDICATIONS AND USAGE

DARZALEX® is indicated for the treatment of adult patients with multiple myeloma: in combination with lenalidomide and dexamethasone in newly diagnosed patients who are eligible for autologous stem cell transplant and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy.

CONTRAINDICATIONS

DARZALEX® is contraindicated in patients with a history of severe hypersensitivity (e.g., anaphylactic reaction) to daratumumab or any of the components of the formulation [see Warnings and Precautions].

WARNINGS AND PRECAUTIONS

Infusion-Related Reactions

DARZALEX® can cause severe and/or serious infusion-related reactions including anaphylactic reactions. These reactions can be life-threatening and fatal outcomes have been reported [see Adverse Reactions].

In clinical trials (monotherapy and combination: N=2,066), infusion-related reactions occurred in 37% of patients with the Week 1 (16 mg/kg) infusion, 2% with the Week 2 infusion, and cumulatively 5% with subsequent infusions. Less than 1% of patients had a Grade 3/4 infusion-related reaction at Week 2 or subsequent infusions. The median time to onset was 1.5 hours (range: 0 to 73 hours). The incidence of infusion modification due to reactions was 36%. Median durations of 16 mg/kg infusions for the Week 1, Week 2, and subsequent infusions were approximately 7, 4, and 3 hours respectively. Nearly all reactions occurred during infusion or within 4 hours of completing DARZALEX. Prior to the introduction of post-infusion medication in clinical trials, infusion-related reactions occurred up to 48 hours after infusion.

Severe reactions have occurred, including bronchospasm, hypoxia, dyspnea, hypertension, tachycardia, headache, laryngeal edema, pulmonary edema, and ocular adverse reactions, including choroidal effusion, acute myopia, and acute angle closure glaucoma. Signs and symptoms may include respiratory symptoms, such as nasal congestion, cough, throat irritation, as well as chills, vomiting and nausea. Less common signs and symptoms were wheezing, allergic rhinitis, pyrexia, chest discomfort, pruritus, hypotension, and blurred vision [see Adverse Reactions].

When DARZALEX dosing was interrupted in the setting of ASCT (CASSIOPEIA) for a median of 3.75 months (range: 2.4 to 6.9 months), upon re-initiation of DARZALEX, the incidence of infusion-related reactions was 11% for the first infusion following ASCT. Infusion rate/dilution volume used upon re-initiation was that used for the last DARZALEX infusion prior to interruption for ASCT. Infusion-related reactions occurring at re-initiation of DARZALEX following ASCT were consistent in terms of severity and the median time to onset of a reaction was 1.8 hours (range: 0.1 to 5.4 hours). The median time to onset of a reaction was 1.8 hours (range: 0.1 to 5.4 hours). The incidence of infusion interruptions due to reactions was 36%. Median durations of 16 mg/kg infusions were 4.2 hours for Week 1, 1.4 hours for Week 1-2-Day, and 3.4 hours for the subsequent infusions.

Pre-medicate patients with antihistamines, antipyretics and corticosteroids. Frequently monitor patients during the entire infusion [see Dosage and Administration (2.3) in Full Prescribing Information]. Interrupt DARZALEX infusion for reactions of any severity and institute medical management as needed. Permanently discontinue DARZALEX therapy if an anaphylactic reaction or life-threatening (Grade 4) reaction occurs and institute appropriate emergency care. For patients with Grade 1, 2, or 3 reactions, reduce the infusion rate when re-starting the infusion [see Dosage and Administration (2.4) in Full Prescribing Information].

To reduce the risk of delayed infusion-related reactions, administer oral corticosteroids to all patients following DARZALEX infusions [see Dosage and Administration (2.3) in Full Prescribing Information]. Patients with a history of chronic obstructive pulmonary disease were administered additional post-infusion medications to manage respiratory complications. Consider prescribing short- and long-acting bronchodilators and inhaled corticosteroids for patients with chronic obstructive pulmonary disease [see Dosage and Administration (2.3) in Full Prescribing Information].

Ocular adverse reactions, including acute myopia and narrowing of the anterior chamber angle due to ciliochoroidal effusions with potential for increased intraocular pressure or glaucoma, have occurred with DARZALEX infusion. If ocular symptoms occur, interrupt DARZALEX infusion and seek immediate ophthalmologic evaluation prior to restarting DARZALEX.

Interference with Serological Testing

Daratumumab binds to CD38 on red blood cells (RBCs) and results in a positive indirect antiglobulin test (Indirect Coombs test). Daratumumab-meditated positive indirect antiglobulin test may persist for up to 6 months after the last daratumumab infusion. Daratumumab-bound to RBCs masks detection of antibodies to minor antigens in the patient’s serum [see References].

The determination of a patient’s ABO and Rh blood type are not impacted [see Drug Interactions].

Notify blood transfusion centers of this interference with serological testing and inform blood banks that a patient has received DARZALEX. Type and screen patients prior to starting DARZALEX [see Dosage and Administration (2.1) in Full Prescribing Information].

Neutropenia

DARZALEX® may increase neutropenia induced by background therapy [see Adverse Reactions].

Monitor complete blood cell counts periodically during treatment according to manufacturer's prescribing information for background therapies. Monitor patients with neutropenia for signs of infection. Consider withholding DARZALEX until recovery of neutrophils.

Thrombocytopenia

DARZALEX® may increase thrombocytopenia induced by background therapy [see Adverse Reactions].

Monitor complete blood cell counts periodically during treatment according to manufacturer’s prescribing information for background therapies. Consider withholding DARZALEX until recovery of platelets.

Interference with Determination of Complete Response

Daratumumab is a human IgG kappa monoclonal antibody that can be detected on both, the serum protein electrophoresis (SPE) and immunofixation (IFE) assays used for the clinical monitoring of endogenous M-protein [see Drug Interactions]. This interference can impact the determination of complete response and of disease progression in some patients with IgG kappa myeloma protein.

Embryo-Fetal Toxicity

Based on the mechanism of action, DARZALEX® can cause fetal harm when administered to a pregnant woman. DARZALEX® may cause depletion of fetal immune cells and decreased bone density. Advise pregnant women of the potential risk to a fetus. Advise females with reproductive potential to use effective contraception during treatment with DARZALEX® and for 3 months after the last dose [see Use in Specific Populations].

The combination of DARZALEX® with lenalidomide, pomalidomide, or thalidomide is contraindicated in pregnant women, because lenalidomide, pomalidomide, and thalidomide may cause birth defects and death of the unborn child. Refer to the lenalidomide, pomalidomide, or thalidomide prescribing information on use during pregnancy.

ADVERSE REACTIONS

The following clinically significant adverse reactions are described elsewhere in the labeling:

• Infusion-related reactions [see Warning and Precautions],
• Neutropenia [see Warning and Precautions],
• Thrombocytopenia [see Warning and Precautions].

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

The safety data described below reflects exposure to DARZALEX® (16 mg/kg) in 2,459 patients with multiple myeloma including 2,303 patients who received DARZALEX® in combination with background regimens and 156 patients who received DARZALEX® as monotherapy. In this pooled safety population, the most common adverse reactions (≥20%) were upper respiratory infection, neutropenia, infusion-related reactions, thrombocytopenia, diarrhea, constipation, anemia, peripheral sensory neuropathy, fatigue, peripheral edema, nausea, cough, pyrexia, dyspnea, and asthenia.

Newly Diagnosed Multiple Myeloma Eligible for Autologous Stem Cell Transplant

Combination Treatment with Lenalidomide and Dexamethasone (RD)

The safety of DARZALEX® in combination with lenalidomide and dexamethasone was evaluated in MAIA [see Clinical Studies (14.1) in Full Prescribing Information].

Adverse reactions described in Table 1 reflect exposure to DARZALEX® for a median treatment duration of 25.3 months (range: 0.1 to 40.4 months) for daratumumab-lenalidomide-dexamethasone (DRd) and of 21.3 months (range: 0.03 to 40.64 months) for lenalidomide-dexamethasone (RD).

Serious adverse reactions with a 2% greater incidence in the DRd arm compared to the Rd arm were pneumonia (RD 15% vs Rd 8%), bronchitis (RD 4% vs Rd 2%) and dehydration (RD 2% vs Rd <1%).
DARZALEX® (daratumumab) injection

Table 1: Adverse Reactions Reported in ≥10% of Patients and With At Least a 5% Greater Frequency in the DRd Arm in MAIA

<table>
<thead>
<tr>
<th>Body System</th>
<th>Adverse Reaction</th>
<th>DRd (N=364)</th>
<th>Rd (N=365)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
<td>Grade 3 (%)</td>
<td>Grade 4 (%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhea</td>
<td>57 7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Constipation</td>
<td>41 1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>32 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>17 1</td>
<td>0</td>
</tr>
<tr>
<td>Infections</td>
<td>Upper respiratory tract infection</td>
<td>52 2</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Bronchitis</td>
<td>29 3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pneumonia</td>
<td>26 14</td>
<td>1</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>16 2</td>
<td>0</td>
<td>10 2</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Infusion-related reactions</td>
<td>41 2</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Peripheral edema</td>
<td>41 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>40 8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Anemia</td>
<td>32 4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pyrexia</td>
<td>23 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Chills</td>
<td>13 0</td>
<td>0</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Back pain</td>
<td>34 3</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Muscle spasms</td>
<td>29 1</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnea</td>
<td>32 3</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Cough</td>
<td>30 <1</td>
<td>0</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy</td>
<td>24 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Headache</td>
<td>19 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Paresthesia</td>
<td>16 0</td>
<td>0</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Decreased appetite</td>
<td>22 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hyperglycemia</td>
<td>14 6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hypocalcemia</td>
<td>14 1</td>
<td><1</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypertension</td>
<td>13 6</td>
<td><1</td>
</tr>
</tbody>
</table>

Key: D=daratumumab, Rd=lenalidomide-dexamethasone.

Laboratory abnormalities worsening during treatment from baseline listed in Table 2.

Table 2: Treatment-Emergent Hematology Laboratory Abnormalities in MAIA

<table>
<thead>
<tr>
<th>Body System</th>
<th>Adverse Reaction</th>
<th>DRd (N=364)</th>
<th>Rd (N=365)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
<td>Grade 3 (%)</td>
<td>Grade 4 (%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhea</td>
<td>57 7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Constipation</td>
<td>41 1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>32 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>17 1</td>
<td>0</td>
</tr>
<tr>
<td>Infections</td>
<td>Upper respiratory tract infection</td>
<td>52 2</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Bronchitis</td>
<td>29 3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pneumonia</td>
<td>26 14</td>
<td>1</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>16 2</td>
<td>0</td>
<td>10 2</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Infusion-related reactions</td>
<td>41 2</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Peripheral edema</td>
<td>41 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>40 8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Anemia</td>
<td>32 4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pyrexia</td>
<td>23 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Chills</td>
<td>13 0</td>
<td>0</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Back pain</td>
<td>34 3</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Muscle spasms</td>
<td>29 1</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnea</td>
<td>32 3</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Cough</td>
<td>30 <1</td>
<td>0</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy</td>
<td>24 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Headache</td>
<td>19 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Paresthesia</td>
<td>16 0</td>
<td>0</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Decreased appetite</td>
<td>22 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hyperglycemia</td>
<td>14 6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hypocalcemia</td>
<td>14 1</td>
<td><1</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypertension</td>
<td>13 6</td>
<td><1</td>
</tr>
</tbody>
</table>

Key: D=daratumumab, Rd=lenalidomide-dexamethasone.

Laboratory abnormalities worsening during treatment from baseline listed in Table 3.

Table 3: Adverse Reactions Reported in ≥10% of Patients and With At Least a 5% Greater Frequency in the DRd Arm in POLLUX

<table>
<thead>
<tr>
<th>Body System</th>
<th>Adverse Reaction</th>
<th>DRd (N=283)</th>
<th>Rd (N=281)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
<td>Grade 3 (%)</td>
<td>Grade 4 (%)</td>
</tr>
<tr>
<td>Infections</td>
<td>Upper respiratory tract infection</td>
<td>65 6</td>
<td><1</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Infusion-related reactions</td>
<td>48 5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>35 8</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Pyrexia</td>
<td>20 2</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhea</td>
<td>43 5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>24 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>17 1</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnea</td>
<td>30 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cough</td>
<td>21 3</td>
<td><1</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Muscle spasms</td>
<td>26 1</td>
<td>0</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Headache</td>
<td>12 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Key: D=daratumumab, Rd=lenalidomide-dexamethasone.

Laboratory abnormalities worsening during treatment from baseline listed in Table 4.

Table 4: Laboratory abnormalities worsening during treatment from baseline listed in Table 2.

<table>
<thead>
<tr>
<th>Body System</th>
<th>Adverse Reaction</th>
<th>DRd (N=364)</th>
<th>Rd (N=365)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (%)</td>
<td>Grade 3 (%)</td>
<td>Grade 4 (%)</td>
</tr>
<tr>
<td>Infections</td>
<td>Leukopenia</td>
<td>90 30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Neutropenia</td>
<td>91 39</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Lymphopenia</td>
<td>84 41</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Lymphocytopenia</td>
<td>67 6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Anemia</td>
<td>47 13</td>
<td>0</td>
</tr>
</tbody>
</table>

Key: D=daratumumab, Rd=lenalidomide-dexamethasone.

Relapsed/Refractory Multiple Myeloma

Combination Treatment with Lenalidomide and Dexamethasone

The safety of DARZALEX in combination with lenalidomide and dexamethasone was evaluated in POLLUX (see Clinical Studies (14.2) in Full Prescribing Information). Adverse reactions described in Table 3 reflect exposure to DARZALEX for a median treatment duration of 13.1 months (range: 0 to 20.7 months) for daratumumab(lenalidomide-dexamethasone (DRd) and of 12.3 months (range: 0.2 to 20.1 months) for lenalidomide-dexamethasone (Rd). Serious adverse reactions occurred in 49% of patients in the DRd arm compared with 42% in the Rd arm. Serious adverse reactions with at least a 2% greater incidence in the DRd arm compared to the Rd arm were pneumonia (DRd 12% vs Rd 10%), upper respiratory tract infection (DRd 7% vs Rd 4%), influenza and pyrexia (DRd 3% vs Rd 1% for each).

Adverse reactions resulted in discontinuations for 7% (n=19) of patients in the DRd arm versus 8% (n=22) in the Rd arm.

Laboratory abnormalities worsening during treatment from baseline listed in Table 4.

Key: D=daratumumab, Rd=lenalidomide-dexamethasone.
Grade 3 or 4 infections were reported as follows:

- Infections at the study site were reported in 0-4% of patients.
- Carcinoma was reported in 0-4% of patients.
- Pneumonia was the most commonly reported severe (Grade 3 or 4) infection across studies. In active controlled studies, discontinuations from treatment due to infections occurred in 1-4% of patients.

Infections

- Relapsed/refractory patient studies: DVd: 1%, Vd: 2%; DRd: 2%, Rd: 1%; DRV: 3%, VR: 2%

Pneumonia was the most commonly reported severe (Grade 3 or 4) infection across studies. In active controlled studies, discontinuations from treatment due to infections occurred in 1-4% of patients.

Fetal infections (Grade 5) were reported as follows:

- Relapsed/refractory patient studies: D-Vd: 1%, Vd: 2%; DRd: 2%, Rd: 1%; D-Pd: 2%, D-Kd: 5%, Kd: 5%, D-Pd: 0%

Fetal infections were generally infrequent and balanced between the DARZALEX containing regimens and active control arms. Fetal infections were primarily due to pneumonia and sepsis.

Other Clinical Trials Experience

The following adverse reactions have been reported following administration of daratumumab and hyaluronidase for subcutaneous injection:

Nervous System disorders: Syncope

Immunogenicity

As with all therapeutic proteins, there is the potential for immunogenicity. The detection of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody (including neutralizing antibody) positivity in an assay may be influenced by several factors including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies in the studies described below with the incidence of antibodies in other studies or to other daratumumab products may be misleading.

In clinical trials of patients with multiple myeloma treated with DARZALEX as monotherapy or as combination therapies, none of the 111 evaluable monotherapy patients, and 2 of the 1,383 evaluable combination therapy patients, tested positive for anti-daratumumab antibodies. One patient administered DARZALEX as combination therapy, developed transient neutralizing antibodies against daratumumab. However, this assay has limitations in detecting anti-daratumumab antibodies in the presence of high concentrations of daratumumab; therefore, the incidence of antibody development might not have been reliably determined.

Postmarketing Experience

The following adverse reactions have been identified during post-approval use of daratumumab. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to DARZALEX.

Immune System disorders: Anaphylactic reaction, IRR (including deaths)

Gastrointestinal disorders: Pancreatitis

Infections: Cytomegalovirus, Listerial infection

Drug Interactions

Effects of Daratumumab on Laboratory Tests

Interference with Indirect Antiglobulin Tests (Indirect Coombs Test)

Daratumumab binds to CD38 on RBCs and interferes with compatibility testing, including antibody screening and cross matching. Daratumumab interference mitigation methods include treating reagent RBCs with dithiothreitol (DTT) to disrupt daratumumab binding [see References] or genotyping. Since the Kell blood group system is also sensitive to DTT treatment, supply K-negative units after ruling out or identifying alloantibodies using DTT-treated RBCs.

If an emergency transfusion is required, administer non-cross-matched ABO/RhD-compatible RBCs for local blood bank practices.

Interference with Serum Protein Electrophoresis and Immunofixation Tests

Daratumumab may be detected on serum protein electrophoresis (SPE) and immunofixation (IFE) assays used for monitoring disease monoclonal immunoglobulins (M protein). False positive SPE and IFE assay results may occur for patients with IgG kappa myeloma protein impacting initial assessment of complete responses by International Myeloma Working Group (IMWG) criteria. In patients with persistent very good partial response, where daratumumab interference is suspected, consider using a FDA-approved daratumumab-specific IFE assay to distinguish daratumumab from any remaining endogenous M protein in the patient’s serum, to facilitate determination of a complete response.

Use in Specific Populations

Pregnancy

Risk Summary

DARZALEX can cause fetal harm when administered to a pregnant woman. The assessment of associated risks with daratumumab products is based on the mechanism of action and data from target antigen CD38 knockout animal models [see Data]. There are no available data on the use of DARZALEX in pregnant women to evaluate drug-associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes. Animal reproduction studies have not been conducted.

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. The combination of DARZALEX and lenalidomide, pomalidomide, or thalidomide is contraindicated in pregnant women, because lenalidomide, pomalidomide, and thalidomide may cause birth defects and death of the unborn child. Lenalidomide, pomalidomide, and thalidomide are only available through a REMS program. Refer to the lenalidomide, pomalidomide, or thalidomide prescribing information on use during pregnancy.

Clinical Considerations

Fetal/Neonatal Adverse Reactions

Immunoglobulin G (IgG3) monoclonal antibodies are transferred across the placenta. Based on its mechanism of action, DARZALEX may cause depletion of fetal CD38 positive immune cells and decreased bone density. Defer administering live vaccines to neonates and infants exposed to DARZALEX in utero until a hematology evaluation is completed.

Data

Animal Data

Mice that were genetically modified to eliminate all CD38 expression (CD38 knockout mice) had reduced bone density at birth that recovered by 5 months of age. Data from studies using CD38 knockout animal models also suggest the involvement of CD38 in regulating humoral immune responses (mice), fetal/neonatal development, and data from studies using CD38 knockout animal models also suggest the involvement of CD38 in regulating humoral immune responses (mice), fetal/neonatal development, and early embryonic development (frogs).

Lactation

Risk Summary

There is no data on the presence of daratumumab in human milk, the effects on the breastfed child, or the effects on milk production. Maternal immunoglobulin G is known to be present in human milk. Published data suggest that antibodies in breast milk do not enter the neonatal and infant circulations in substantial amounts. Because of the potential for serious adverse reactions in the breastfed child when DARZALEX is administered with lenalidomide, pomalidomide, or thalidomide, advise women not to breastfeed during treatment with DARZALEX. Refer to lenalidomide, pomalidomide, or thalidomide prescribing information for additional information.

Females and Males of Reproductive Potential

DARZALEX can cause fetal harm when administered to a pregnant woman [see Use in Specific Populations].

Pregnancy Testing

With the combination of DARZALEX with lenalidomide, pomalidomide, or thalidomide, refer to the lenalidomide, pomalidomide, or thalidomide labeling for pregnancy testing requirements prior to initiating treatment in females of reproductive potential.
DARZALEX® (daratumumab) injection

Contraception
Advise females of reproductive potential to use effective contraception during treatment with DARZALEX and for 3 months after the last dose. Additionally, refer to the lenalidomide, pomalidomide, or thalidomide labeling for additional recommendations for contraception.

Pediatric Use
Safety and effectiveness of DARZALEX in pediatric patients have not been established.

Geriatric Use
Of the 2,459 patients who received DARZALEX at the recommended dose, 38% were 65 to 74 years of age, and 15% were 75 years of age or older. No overall differences in effectiveness were observed between these patients and younger patients. The incidence of serious adverse reactions was higher in older than in younger patients [see Adverse Reactions]. Among patients with relapsed and refractory multiple myeloma (n=1,213), the serious adverse reactions that occurred more frequently in patients 65 years and older were pneumonia and sepsis. Within the DKd group in CANDOR, fatal adverse reactions occurred in 14% of patients 65 years and older compared to 6% of patients less than 65 years. Among patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant (n=710), the serious adverse reaction that occurred more frequently in patients 75 years and older was pneumonia.

REFERENCES

PATIENT COUNSELING INFORMATION
Advise the patient to read the FDA-approved patient labeling (Patient Information).

Infusion-Related Reactions
Advise patients to seek immediate medical attention for any of the following signs and symptoms of infusion-related reactions: itchy, runny or blocked nose; fever, chills, nausea, vomiting, throat irritation, cough, headache, dizziness or lightheadedness, tachycardia, chest discomfort, wheezing, shortness of breath or difficulty breathing, itching, and blurred vision [see Warnings and Precautions].

Neutropenia
Advise patients to contact their healthcare provider if they have a fever [see Warnings and Precautions].

Thrombocytopenia
Advise patients to contact their healthcare provider if they notice signs of bruising or bleeding [see Warnings and Precautions].

Interference with Laboratory Tests
Advise patients to inform their healthcare providers, including personnel at blood transfusion centers that they are taking DARZALEX, in the event of a planned transfusion [see Warnings and Precautions].

Advise patients that DARZALEX can affect the results of some tests used to determine complete response in some patients and additional tests may be needed to evaluate response [see Warnings and Precautions].

Hepatitis B Virus (HBV) Reactivation
Advise patients to inform healthcare providers if they have ever had or might have a hepatitis B infection and that DARZALEX could cause hepatitis B virus to become active again [see Adverse Reactions].

Embryo-Fetal Toxicity
Advise pregnant women of the potential hazard to a fetus. Advise females of reproductive potential to inform their healthcare provider of a known or suspected pregnancy [see Warnings and Precautions, Use in Specific Populations].

Advise females of reproductive potential to avoid becoming pregnant during treatment with DARZALEX and for 3 months after the last dose [see Use in Specific Populations].

Advise patients that lenalidomide, pomalidomide, or thalidomide has the potential to cause fetal harm and has specific requirements regarding contraception, pregnancy testing, blood and sperm donation, and transmission in sperm. Lenalidomide, pomalidomide, and thalidomide are only available through a REMS program [see Use in Specific Populations].

Hereditary Fructose Intolerance (HFI)
DARZALEX contains sorbitol. Advise patients with HFI of the risks related to sorbitol [see Description (11) in Full Prescribing Information].

Manufactured by:
Janssen Biotech, Inc.
Horsham, PA 19044
U.S. License Number 1864
© 2015-2021 Janssen Pharmaceutical Companies
DARZALEX FASPRO® (daratumumab and hyaluronidase-fihj) injection, for subcutaneous use

INSTRUCTIONS AND USAGE

DARZALEX FASPRO is indicated for the treatment of adult patients with multiple myeloma:
- in combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for autologous stem cell transplant and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy.

CONTRAINdications
DARZALEX FASPRO is contraindicated in patients with a history of severe hypersensitivity to daratumumab, hyaluronidase or any of the components of the formulation. See Warnings and Precautions and Adverse Reactions.

WARNINGS AND PRECAUTIONS

Hypersensitivity and Other Administration Reactions
Both systemic administration-related reactions, including severe or life-threatening reactions, and local injection-site reactions can occur with DARZALEX FASPRO. Fatal reactions have been reported with daratumumab-containing products, including DARZALEX FASPRO [see Adverse Reactions].

Systemic Reactions
In a pooled safety population of 888 patients with multiple myeloma (N=705) or light chain (AL) amyloidosis (N=183) who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, 9% of patients experienced a systemic administration-related reaction [Grade 3, 2.3%; Grade 4, 3.1%]. Systemic administration-related reactions occurred in 8% of patients with the first injection, 0.6% with the second injection, and cumulatively 1% with subsequent injections. The median time to onset was 3.2 hours (range: 4 minutes to 3.5 days).

Delayed systemic administration-related reactions have occurred in 1% of the patients. Severe reactions include hypoxia, dyspnea, hypertension, and tachycardia, and ocular adverse reactions, including chordoidal effusion, acute myopia, and acute angle closure glaucoma. Other signs and symptoms of systemic administration-related reactions may include respiratory symptoms, such as bronchospasm, nasal congestion, cough, throat irritation, allergic rhinitis, and wheezing, as well as anaphylactic reaction, pyrexia, chest pain, pruritus, vomiting, nausea, hypotension, and blurred vision.

Pre-medicate patients with histamine-1 receptor antagonist, acetaminophen, and corticosteroids [see Dosage and Administration (2.5) in Full Prescribing Information]. Monitor patients for systemic administration-related reactions, especially following the first and second injections. For anaphylactic reaction or life-threatening [Grade 4] administration-related reactions, immediately and permanently discontinue DARZALEX FASPRO. Consider administering corticosteroids and other medications after the administration of DARZALEX FASPRO depending on dosing regimen and medical history to minimize the risk of delayed (defined as occurring the day after administration) systemic administration-related reactions [see Dosage and Administration (2.5) in Full Prescribing Information].

Ocular adverse reactions, including acute myopia and narrowing of the anterior chamber angle due to ciliochoroidal effusions with potential for increased intraocular pressure or glaucoma, have occurred with daratumumab-containing products. If ocular symptoms occur, interrupt DARZALEX FASPRO and seek immediate ophthalmologic evaluation prior to restarting DARZALEX FASPRO.

Local Reactions
In this pooled safety population, injection-site reactions occurred in 8% of patients, including Grade 2 reactions in 0.7%. The most frequent (>1%) injection-site reaction was injection site erythema. These local reactions occurred a median of 5 minutes (range: 0 minutes to 6.5 days) after starting administration of DARZALEX FASPRO. Monitor for local reactions and consider symptomatic management.

Cardiac Toxicity in Patients with Light Chain (AL) Amyloidosis
Serious or fatal cardiac adverse reactions occurred in patients with light chain (AL) amyloidosis who received DARZALEX FASPRO in combination with bortezomib, cyclophosphamide and dexamethasone [see Adverse Reactions]. Serious cardiac disorders occurred in 18% and fatal cardiac disorders occurred in 10% of patients. Patients with NYHA Class III or Mayo Stage IIIA disease may be at greater risk. Patients with NYHA Class IIIIB or IV disease were not studied.

Monitor patients for cardiac involvement of light chain (AL) amyloidosis more frequently for cardiac adverse reactions and administer supportive care as appropriate.

Neutropenia
Daratumumab may increase neutropenia induced by background therapy [see Adverse Reactions].
Monitor complete blood cell counts periodically during treatment according to manufacturer’s prescribing information for background therapies. Monitor patients with neutropenia for signs of infection. Consider withholding DARZALEX FASPRO until recovery of neutrophils. In lower body weight patients receiving DARZALEX FASPRO, higher rates of Grade 3-4 neutropenia were observed.

DARZALEX FASPRO® (daratumumab and hyaluronidase-fihj) injection
Thrombocytopenia
Daratumumab may increase thrombocytopenia induced by background therapy [see Adverse Reactions]. Monitor complete blood cell counts periodically during treatment according to manufacturer’s prescribing information for background therapies. Consider withholding DARZALEX FASPRO until recovery of platelets.

Emphysema
Based on the mechanism of action, DARZALEX FASPRO can cause fatal harm when administered to a pregnant woman. DARZALEX FASPRO may cause depletion of fetal immune cells and decreased bone density. Advise pregnant women of the potential risk to a fetus. Advise females with reproductive potential to use effective contraception during treatment with DARZALEX FASPRO and for 3 months after the last dose [see Use in Specific Populations]. The combination of DARZALEX FASPRO with lenalidomide, thalidomide or pomalidomide is contraindicated in pregnant women, because lenalidomide, thalidomide or pomalidomide may cause birth defects and death of the unborn child. Refer to the lenalidomide, thalidomide or pomalidomide prescribing information on use during pregnancy.

Interference with Serological Testing
Daratumumab is a human IgG kappa monoclonal antibody that can be detected on both the serum protein electrophoresis (SPE) and immunofixation (IFE) assays used for the clinical monitoring of endogenous M-protein [see Drug Interactions]. This interference can impact the determination of complete response and of disease progression in some DARZALEX FASPRO-treated patients with IgG kappa myeloma protein.

ADVERSE REACTIONS
The following clinically significant adverse reactions are described elsewhere in the labeling:
- Hypersensitivity and Other Administration Reactions [see Warnings and Precautions].
- Cardiac Toxicity in Patients with Light Chain (AL) Amyloidosis [see Warnings and Precautions].
- Neutropenia [see Warnings and Precautions].
- Thrombocytopenia [see Warnings and Precautions].

Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Refractory Multiple Myeloma
In combination with Lenalidomide and Dexamethasone
The safety of DARZALEX FASPRO with lenalidomide and dexamethasone was evaluated in a single-arm cohort of PLEIADES [see Clinical Studies (14.2) in Full Prescribing Information]. Patients received DARZALEX FASPRO 1,800 mg/30,000 units administered subcutaneously once weekly from weeks 1 to 8, once every 2 weeks from weeks 9 to 24 and once every 4 weeks starting with week 25 until disease progression or unacceptable toxicity (N=85) in combination with lenalidomide and dexamethasone. Among these patients, 92% were exposed for 6 months or longer and 20% were exposed for greater than one year.

Serious adverse reactions occurred in 48% of patients who received DARZALEX FASPRO. Serious adverse reactions in >5% of patients included pneumonia, influenza and diarrhea. Fatal adverse reactions occurred in 3.1% of patients.

Permanent discontinuation of DARZALEX FASPRO due to an adverse reaction occurred in 11% of patients who received DARZALEX FASPRO. Serious adverse reactions in >5% of patients included pneumonia, influenza and diarrhea. Adverse reactions resulting in permanent discontinuation of DARZALEX FASPRO in more than 1 patient were pneumonia and anemia.

Dose interruptions due to an adverse reaction occurred in 63% of patients who received DARZALEX FASPRO. Adverse reactions requiring dosage interruptions in >5% of patients included neutropenia, pneumonia, upper respiratory tract infection, influenza, dyspnea, and blood creatinine increased. The most common adverse reactions (≥20%) were fatigue, diarrhea, upper respiratory tract infection, muscle spasm, constipation, pyrexia, pneumonia, and dyspnea.

Table 1 summarizes the adverse reactions in patients who received DARZALEX FASPRO in PLEIADES.
DARZALEX FASPRO® (daratumumab and hyaluronidase-fihj) injection

Table 1: Adverse Reactions (≥10%) in Patients Who Received DARZALEX FASPRO with Lenalidomide and Dexamethasone (DARZALEX FASPRO-Rd) in PLEIADES

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>All Grades (%)</th>
<th>Grades ≥3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>52</td>
<td>5</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Edema peripheral</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>Constipation</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>Nausea</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>Back pain</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Cough</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral sensory neuropathy</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Select Hematology Laboratory Abnormalities Worsening from Baseline in Patients Who Received DARZALEX FASPRO with Lenalidomide and Dexamethasone (DARZALEX FASPRO-Rd) in PLEIADES

<table>
<thead>
<tr>
<th>Laboratory Abnormality</th>
<th>All Grades (%)</th>
<th>Grades 3-4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased leukocytes</td>
<td>94</td>
<td>34</td>
</tr>
<tr>
<td>Decreased lymphocytes</td>
<td>82</td>
<td>56</td>
</tr>
<tr>
<td>Decreased platelets</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>Decreased neutrophils</td>
<td>89</td>
<td>52</td>
</tr>
<tr>
<td>Decreased hemoglobin</td>
<td>45</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 3: Treatment-Emergent Anti-rHuPH20 Antibodies, Development of Treatment-Emergent Anti-daratumumab Antibodies, and Development of Treatment-Emergent Anti-fihj Antibodies in Patients With Relapsed or Refractory Multiple Myeloma Treated With DARZALEX FASPRO or Placebo

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Anti-rHuPH20 Antibodies</th>
<th>Anti-daratumumab Antibodies</th>
<th>Anti-fihj Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilgobine</td>
<td>7%</td>
<td>0.4%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Placebo</td>
<td>0.1%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Values are percentages of the indicated populations. Treatment-emergent positive samples were determined using an enzyme-linked immunosorbent assay (ELISA).

DRUG INTERACTIONS

Efficacy of DARZALEX FASPRO as mono-therapy, in combination with pomalidomide and lenalidomide, and in combination with prednisone in the treatment of patients with relapsed or refractory multiple myeloma.

INTERACTIVITY OF OTHER DRUGS

Cytomegalovirus, Listeriosis

Drug Interactions

Interference with indirect antiglobulin (Coombs) test

Interference with indirect antiglobulin (Coombs) test

Cytomegalovirus, Listeriosis

Immunogenicity

As with all therapeutic proteins, there is the potential for immunogenicity. The detection of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody (including neutralizing antibody) positivity in an assay may be influenced by several factors including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies in the studies described below with the incidence of antibodies in other studies or to other daratumumab products or other hyaluronidase products may be misleading.

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, less than 1% of 819 patients developed treatment-emergent anti-daratumumab antibodies.

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, 7% of 812 patients developed treatment-emergent anti-rHuPH20 antibodies. The anti-rHuPH20 antibodies did not appear to affect daratumumab exposure. None of the patients who tested positive for anti-rHuPH20 antibodies tested positive for neutralizing antibodies.

Postmarketing Experience

The following adverse reactions have been identified in post-approval use of daratumumab. Since these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Gastrointestinal: Anaphylactic reaction

Gastrointestinal: Pancrreatitis

Infections: Cytomegalovirus, Listeriosis

Drug Interactions

Effects of Daratumumab on Laboratory Tests

Interference with indigent antigen tests (Coombs test)

Interference with indirect antiglobulin tests (Coombs test)

Interference with indirect antiglobulin tests (Coombs test)

Postmarketing Experience

The following adverse reactions have been identified in post-approval use of daratumumab.

Drug Interactions

Effects of Daratumumab on Laboratory Tests

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, 7% of 812 patients developed treatment-emergent anti-daratumumab antibodies.

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, less than 1% of 819 patients developed treatment-emergent anti-daratumumab antibodies.

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, 7% of 812 patients developed treatment-emergent anti-rHuPH20 antibodies. The anti-rHuPH20 antibodies did not appear to affect daratumumab exposure. None of the patients who tested positive for anti-rHuPH20 antibodies tested positive for neutralizing antibodies.

Postmarketing Experience

The following adverse reactions have been identified in post-approval use of daratumumab.

Gastrointestinal: Anaphylactic reaction

Gastrointestinal: Pancrreatitis

Infections: Cytomegalovirus, Listeriosis

Drug Interactions

Effects of Daratumumab on Laboratory Tests

Interference with indirect antiglobulin tests (Coombs test)

Interference with indirect antiglobulin tests (Coombs test)

Interference with indirect antiglobulin tests (Coombs test)

Drug Interactions

Effects of Daratumumab on Laboratory Tests

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, 7% of 812 patients developed treatment-emergent anti-daratumumab antibodies.

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, less than 1% of 819 patients developed treatment-emergent anti-daratumumab antibodies.

In patients with multiple myeloma and light chain (AL) amyloidosis who received DARZALEX FASPRO as monotherapy or as part of a combination therapy, 7% of 812 patients developed treatment-emergent anti-rHuPH20 antibodies. The anti-rHuPH20 antibodies did not appear to affect daratumumab exposure. None of the patients who tested positive for anti-rHuPH20 antibodies tested positive for neutralizing antibodies.

Postmarketing Experience

The following adverse reactions have been identified in post-approval use of daratumumab.

Gastrointestinal: Anaphylactic reaction

Gastrointestinal: Pancrreatitis

Infections: Cytomegalovirus, Listeriosis

Drug Interactions

Effects of Daratumumab on Laboratory Tests

Interference with indirect antiglobulin tests (Coombs test)

Interference with indirect antiglobulin tests (Coombs test)

Interference with indirect antiglobulin tests (Coombs test)
Clinical Considerations

Fetal/Neonatal Adverse Reactions

Immunoglobulin G1 (IgG1) monoclonal antibodies are transferred across the placenta. Based on its mechanism of action, DARZALEX FASPRO may cause depletion of fetal CD38 positive immune cells and decreased bone density. Defer administering live vaccines to neonates and infants exposed to daratumumab in utero until a hematologic evaluation is completed.

Data

Animal Data

DARZALEX FASPRO for subcutaneous injection contains daratumumab and hyaluronidase. Mice that were genetically modified to eliminate all CD38 expression (CD38 knockout mice) had reduced bone density at birth that recovered by 5 months of age. Data from studies using CD38 knockout animal models also suggest the involvement of CD38 in the regulation of humoral immune responses (mice), feto-maternal immune tolerance (mice), and early embryonic development (frogs).

No systemic exposure of hyaluronidase was detected in monkeys given 22,000 U/kg subcutaneously (12 times higher than the human dose) and there were no effects on embryofetal development in pregnant mice given 330,000 U/kg hyaluronidase subcutaneously daily during organogenesis, which is 45 times higher than the human dose.

There were no effects on pre- and post-natal development through sexual maturity in offspring of mice treated daily from implantation through lactation with 30,000 U/kg hyaluronidase subcutaneously, which is 134 times higher than the human doses.

Lactation

Risk Summary

There is no data on the presence of daratumumab and hyaluronidase in human milk, the effects on the breastfed child, or the effects on milk production. Maternal immunoglobulin G is known to be present in human milk. Published data suggest that antibodies in breast milk do not enter the neonatal and infant circulations in substantial amounts. Because of the potential for serious adverse reactions in the breastfed child when DARZALEX FASPRO is administered with lenalidomide, thalidomide or pomalidomide, advise women not to breastfeed during treatment with DARZALEX FASPRO. Refer to lenalidomide, thalidomide or pomalidomide prescribing information for additional information.

Data

Animal Data

No systemic exposure of hyaluronidase was detected in monkeys given 22,000 U/kg subcutaneously (12 times higher than the human dose) and there were no effects on embryofetal development through sexual maturity in offspring of mice treated daily from implantation through lactation with 30,000 U/kg hyaluronidase subcutaneously, which is 134 times higher than the human doses.

Females and Males of Reproductive Potential

DARZALEX FASPRO can cause fetal harm when administered to a pregnant woman [see Use in Specific Populations].

Pregnancy Testing

With the combination of DARZALEX FASPRO with lenalidomide, thalidomide or pomalidomide, refer to the lenalidomide, thalidomide or pomalidomide labeling for pregnancy testing requirements prior to initiating treatment in females of reproductive potential.

Contraception

Advise females of reproductive potential to use effective contraception during treatment with DARZALEX FASPRO and for 3 months after the last dose. Additionally, refer to the lenalidomide, thalidomide or pomalidomide labeling for additional recommendations for contraception.

Pediatric Use

Safety and effectiveness of DARZALEX FASPRO in pediatric patients have not been established.

Geriatric Use

Of the 291 patients who received DARZALEX FASPRO as monotherapy for relapsed and refractory multiple myeloma, 37% were 65 to <75 years of age, and 19% were 75 years of age or older. No overall differences in effectiveness of DARZALEX FASPRO have been observed between patients ≥65 years of age and younger patients. Adverse reactions that occurred at a higher frequency (≥3% difference) in patients ≥65 years of age included peripheral edema. Serious adverse reactions that occurred at a higher frequency (≥2% difference) in patients ≥65 years of age included upper respiratory tract infection, urinary tract infection, diarrhea, dizziness, cough, and peripheral edema. Serious adverse reactions that occurred at a higher frequency (≥5% difference) in patients ≥65 years of age included upper respiratory tract infection, urinary tract infection, diarrhea, dizziness, cough, and peripheral edema. Serious adverse reactions that occurred at a higher frequency (≥2% difference) in patients ≥65 years of age included peripheral edema. Of the 214 patients who received DARZALEX FASPRO as combination therapy with pomalidomide and dexamethasone or DARZALEX FASPRO as combination therapy with lenalidomide and low-dose dexamethasone for relapsed and refractory multiple myeloma, 43% were 65 to <75 years of age, and 18% were 75 years of age or older. No overall differences in effectiveness were observed between patients ≥65 years (n=131) and <65 years (n=85). Adverse reactions occurring at a higher frequency (≥5% difference) in patients ≥65 years of age included fatigue, pyrexia, peripheral edema, urinary tract infection, diarrhea, constipation, vomiting, dyspnea, cough, and hyperglycemia. Serious adverse reactions occurring at a higher frequency (≥2% difference) in patients ≥65 years of age included neuropenia, thrombocytopenia, diarrhea, anemia, COVID-19, ischemic colitis, deep vein thrombosis, general physical health deterioration, pulmonary embolism, and urinary tract infection.

Of the 193 patients who received DARZALEX FASPRO as part of a combination therapy for light chain (AL) amyloidosis, 35% were 65 to <75 years of age, and 10% were 75 years of age or older. Clinical studies of DARZALEX FASPRO as part of a combination therapy for patients with light chain (AL) amyloidosis did not include sufficient numbers of patients aged 65 and older to determine whether effectiveness differs from that of younger patients. Adverse reactions that occurred at a higher frequency in patients ≥65 years of age were peripheral edema, anemia, pneumonia and hypotension. No clinically meaningful differences in the pharmacokinetics of daratumumab were observed in geriatric patients compared to younger adult patients [see Clinical Pharmacology (12.3) in Full Prescribing Information].

REFERENCES

PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Patient Information). Hypersensitivity and Other Administration Reactions

Advise patients to seek immediate medical attention for any of the following signs and symptoms of systemic administration-related reactions: itchy, runny or blocked nose; chills, nausea, throat irritation, cough, headache, shortness of breath or difficulty breathing, and blurred vision [see Warnings and Precautions].

Cardiac Toxicity in Patients with Light Chain (AL) Amyloidosis

Advise patients to immediately contact their healthcare provider if they have signs or symptoms of cardiac adverse reactions [see Warnings and Precautions].

Neutropenia

Advise patients to contact their healthcare provider if they have a fever [see Warnings and Precautions].

Thrombocytopenia

Advise patients to contact their healthcare provider if they have bruising or bleeding [see Warnings and Precautions].

Embryo-Fetal Toxicity

Advise pregnant women of the potential hazard to a fetus. Advise females of reproductive potential to inform their healthcare provider of a known or suspected pregnancy [see Warnings and Precautions, Use in Specific Populations].

Advise females of reproductive potential to avoid becoming pregnant during treatment with DARZALEX FASPRO and for 3 months after the last dose [see Use in Specific Populations].

Advise patients that lenalidomide, thalidomide and pomalidomide have the potential to cause fetal harm and have specific requirements regarding contraception, pregnancy testing, blood and sperm donation, and transmission in sperm. Lenalidomide, thalidomide and pomalidomide are only available through a REMS program [see Use in Specific Populations].

Interference with Laboratory Tests

Advise patients to inform their healthcare provider, including personnel at blood transfusion centers, that they are taking DARZALEX FASPRO, in the event of a planned transfusion [see Warnings and Precautions].

Advise patients that DARZALEX FASPRO can affect the results of some tests used to determine complete response in some patients and additional tests may be needed to evaluate response [see Warnings and Precautions].

Hepatitis B Virus (HBV) Reactivation

Advise patients to inform healthcare providers if they have ever had or might have a hepatitis B infection and that DARZALEX FASPRO could cause hepatitis B virus to become active again [see Adverse Reactions].

Product of Switzerland

Manufactured by: Janssen Biotech, Inc.

Horsham, PA 19044

U.S. License Number 1864

© 2021 Janssen Pharmaceutical Companies cp-267881v2
Investigating the Use of Circulating Tumor DNA in Early-Stage Colon Cancer

Ardaman Shergill, MD1, and Aparna Raj Parikh, MD2,3

ABSTRACT
Historically, presence or absence of clinicopathologic features like T stage, N stage, perineural invasion, lymphovascular invasion, tumor deposits, obstruction, etc, are used to select those patients who may benefit from adjuvant chemotherapy. However, emerging data suggest that risk stratification based on clinicopathologic criteria alone may be imprecise. Circulating tumor DNA (ctDNA) is an emerging novel tool in the management of early-stage colon cancer. ctDNA can be used in patients who have had resection of their primary cancer to measure minimal residual disease (MRD) and serve as a biomarker to help refine patient selection for adjuvant therapy. Prospective cohort studies have provided compelling data to suggest that ctDNA outperforms existing clinicopathologic criteria. Several clinical trials are currently underway to examine the role of ctDNA-guided MRD assessment and its role in recurrence risk stratification as well as in selection of adjuvant therapy. In this article, we review the current literature evaluating the role of ctDNA in the management of early-stage colon cancer.
But based on current clinicopathologic criteria, however, adjuvant chemotherapy is recommended for all patients with stage III colon cancer even if they have had curative resection because these criteria do not take residual disease into consideration; this leads to possible overtreatment of some patients.

Oxaliplatin-based adjuvant chemotherapy has improved 5-year disease-free survival (DFS) to about 67% to 70% in patients with resected stage III disease. The benefit of the addition of oxaliplatin in elderly patients has been questioned. In many cancer registries, patients with stage I or II colon cancer have 5-year survival rates of greater than 90% and about 80%, respectively. But based on current clinicopathologic stratification criteria alone, the questions of who benefits most from adjuvant chemotherapy and which patients have the highest risk of disease recurrence are still unanswered. For example, no adjuvant chemotherapy is currently recommended for patients with stage I disease; however, about 5% of such patients will have recurrence, and about 10% to 20% of patients with stage II disease who do not get chemotherapy will have recurrence. Approximately 15% and 30% of patients with stage II and III disease, respectively, experience recurrence despite completing appropriate treatment. These data highlight the limitations of current standards and underscore the need for improved patient selection for adjuvant therapy and better monitoring.

cDNA is proving to be a promising biomarker in this setting. Many studies now have reported a correlation between the presence of cfDNA in plasma after the completion of definitive treatment and cancer recurrence. In general, 95% to 100% of patients with persistently detectable cfDNA recur if no systemic therapy is offered.

Tumor-Informed and Tumor-Agnostic ctDNA Assays for MRD Detection in Colon Cancer

<table>
<thead>
<tr>
<th>ctDNA assay</th>
<th>Test characteristics</th>
<th>Tumor-informed</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| Signatera | WES of tumor tissue used to identify 16 patient-specific somatic variants. Detection of at least 2 tumor-specific variants in plasma constitute positive ctDNA results | Yes | • Requires tumor tissue to be sent to the lab
• Allows quantification of ctDNA
• Turnaround time:
 ◦ First test: 4-6 weeks
 ◦ Subsequent: 7-10 days |
| Guardant REVEAL | Plasma-only test that integrates genomic and epigenomic cancer signatures to identify presence of methylation signatures associated with normal vs cancer DNA | No | • Tumor tissue not required
• Positive or negative test results; no quantification
• Turnaround time:
 ◦ 7-10 days |
| Safe-SeqS | Tumor-specific mutations detected by sequencing tissue and deep sequencing of plasma DNA | Yes | • Tumor tissue required
• Positive or negative test results
• Turnaround time:
 ◦ First test: 4-6 weeks
 ◦ Subsequent: 7-10 days |
| ddPCR [28] | Targeted sequencing of the primary tumor to detect 29 prespecified genes, followed by evaluation of plasma cfDNA to detect tumor-specific mutations (1-2 mutations) | Yes | • Tumor tissue required
• Turnaround time:
 ◦ First test: 4-6 weeks
 ◦ Subsequent: 2-5 days |

cfDNA, cell-free DNA; ctDNA, circulating tumor DNA; ddPCR, digital droplet polymerase chain reaction; WES, whole exome sequencing.

Table 1

These can be divided into tumor-agnostic and tumor-informed assays. Tumor-agnostic assays (eg, Guardant REVEAL) are broad panel–based assays that look for genomic alterations and aberrant DNA methylation patterns known to occur in a given tumor. Advantages of tumor-agnostic assays include logistical simplicity and current standards and underscore the need for improved patient selection for adjuvant therapy and better monitoring.

cDNA refers to short tumor-derived DNA fragments detectable in plasma. Factors including tumor burden, anatomic site of tumors, shedding characteristics of the tumor, and recent trauma or surgery can all influence the detection of cDNA. Several ctDNA assays are currently in practice and Table 1. These can be divided into tumor-agnostic and tumor-informed assays. Tumor-agnostic assays (eg, Guardant REVEAL) are broad panel–based assays that look for genomic alterations and aberrant DNA methylation patterns known to occur in a given tumor. Advantages of tumor-agnostic assays can include logistical simplicity.
SPECIAL ISSUE | ctDNA-GUIDED THERAPY IN EARLY COLON CANCER

because of occasional limited availability of tumor tissue) and faster turnaround time. Tumor-informed assays (eg, Signatera, SafeSeqS) utilize whole-exome sequencing (WES) or targeted sequencing of the tumor. The assay is designed specifically for a given patient’s tumor, and it detects genomic alterations unique to that tumor. Tumor-informed assays have high sensitivity and low rates of false positivity. However, tumor-informed assays have a longer turnaround time, which can mean results are not available in time to influence clinical decision-making if the assays were ordered post surgery.

The fraction of ctDNA in plasma varies widely in patients with cancer, from less than 0.1% to greater than 10%, depending on burden of tumor, tumor DNA shedding, and anatomic site of the tumors. Notably, recent trauma, including surgery, can cause elevated ctDNA levels for up to 4 weeks post event, and thus it can influence ctDNA results. The currently available techniques cannot distinguish trauma-induced ctDNA from ctDNA that would indicate MRD. Hence, the optimal time to check ctDNA may be at least about 4 weeks post surgery. ctDNA results checked sooner than 4 to 6 weeks post surgery may need to be repeated to ensure accuracy.

ctDNA-Guided MRD Detection and Recurrence Risk Assessment

cDNA presence has been studied in several adjuvant studies to predict risk of recurrence as well as to guide adjuvant therapy management (Table 2). Most recently, the DYNAMIC-II study results showed that analysis of ctDNA in resected stage II colon cancer may reduce the use of adjuvant chemotherapy in low-risk patients by 50%, without affecting the risk of disease recurrence. Using the tumor-informed Safe-SeqS assay, patients were randomized 2:1 to have treatment decisions guided by

Table 2. Select Recent Studies Evaluating the Role of ctDNA in Early-Stage Colon Cancer

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Key findings</th>
</tr>
</thead>
</table>
| **DYNAMIC II** Tie et al, 2022 | Tumor-informed, ctDNA-guided management vs standard management for adjuvant chemotherapy for patients with stage II resected CC (SafeSeqS) | - ctDNA-guided management was noninferior to standard management for 2-year RFS
- 3-year RFS rate was 92.5% among ctDNA-negative patients and 86.4% among ctDNA-positive patients
- 3-year RFS rate in untreated ctDNA-negative patients was 92.5% vs 96.7% in patients with low-risk disease who underwent standard management (per standard histopathologic criteria), suggesting that low-risk patients with negative ctDNA may not benefit from adjuvant chemotherapy |
| **GALAXY** Kotaka et al, 2022 | Serial ctDNA measurement in patients with stage II-IV resectable CRC using tumor-informed assay (Signatera) | - 4-week postop ctDNA positivity was associated with inferior DFS
- For patients with positive ctDNA, DFS rates at 6 and 12 months were worse in patients who had positive ctDNA postop and remained positive, compared with those whose ctDNA became negative
- Adjuvant chemotherapy cleared ctDNA in 68% of the patients
- Two of the 3 patients with stage I or low-risk stage II disease and positive 4-week postop ctDNA had recurrence
- Patients with high-risk stage II and III disease and negative 4-week postop ctDNA did not seem to derive significant benefit from adjuvant chemotherapy |
| **Henriksen et al, 2022** | Serial ctDNA measurement in patients with stage III CC using tumor-informed assay (Signatera) | - ctDNA was the strongest prognostic marker among conventionally used risk markers
- ctDNA was a strong prognostic marker even immediately after adjuvant chemotherapy
- Serial ctDNA analysis detected recurrence with 9.8 months lead time
- Serial assessment allowed escalation of ctDNA to be evaluated regularly
- ctDNA escalating relatively quickly was associated with worse clinical outcomes |
| **Parikh et al, 2021** | Prospective evaluation of MRD detection using plasma-only (tumor-agnostic) ctDNA assay in patients with stage I-IV CRC (Guardant REVEAL) | - Recurrence sensitivity and specificity were reported to be 55.6% and 100%, respectively
- Longitudinal specimens increased sensitivity from 55.6% to 69.0%, with specificity remaining 100%
- Integrated epigenomic and genomic results increased MRD detection sensitivity by 25%-36%, relative to genomic results alone |

CC, colon cancer; CRC, colorectal cancer; ctDNA, circulating tumor DNA; DFS, disease-free survival; MRD, minimal residual disease; postop, postoperative; RFS, recurrence-free survival.
ctDNA or standard clinicopathologic features. The 2-year recurrence-free survival (RFS) rates were statistically equivalent in the ctDNA-guided adjuvant therapy group compared with the standard management group: 93.5% vs 92.4%; absolute difference, 1.1%; 95% CI, −4.1 to 6.2; noninferiority margin, −8.5%. The 3-year RFS rate was 92.5% in ctDNA-negative patients and 86.4% in ctDNA-positive patients (HR, 1.83; 95% CI, 0.79-4.27). The risk of recurrence in stage II, low-risk disease by historic clinicopathologic features was 96.7%, indicating that chemotherapy may be avoided in these patients with low-risk disease. These study results suggest that there may be low-risk, ctDNA-negative patients with resected stage II colon cancer in whom chemotherapy may be avoided.

Furthermore, in this study, those patients who had ctDNA-positive disease and then received chemotherapy seemed to derive a benefit from treatment based on the low rate of disease recurrence that they experienced. It should be noted that among all patients who received adjuvant chemotherapy, a higher percentage of patients in the ctDNA-guided group received an oxaliplatin-based doublet compared with those in the standard-management group (62% vs 10%) per treating physician’s choice. This may reflect a bias based on known prior knowledge of prognostic significance of ctDNA positivity, and historical data suggesting benefit of adding oxaliplatin to adjuvant fluorouracil (5-FU) alone for patients with high-risk disease. Among patients with ctDNA positivity, the 3-year RFS rate was 92.6% among those who received an oxaliplatin-based regimen and 76% among those who received 5-FU alone. Overall, this study shows that in stage II colon cancer that has been resected, ctDNA may be used to choose to de-escalate or even avoid therapy in lower-risk patients with postsurgery ctDNA-negative disease, but we have not yet answered all questions regarding de-escalation of adjuvant therapy in patients with high-risk stage II colon cancer. Furthermore, while numerically better RFS was seen in ctDNA-positive patients who were treated with an oxaliplatin-based regimen compared with 5-FU alone, large studies are needed to define the relative effect of adding oxaliplatin to adjuvant treatment in this setting.23

In prior stage II and III observational studies and pooled analyses, inferior 5-year RFS (38.6% vs 85.5%; P < .001) and overall survival (64.6% vs 89.4%; P < .001) rates in patients with detectable ctDNA after the completion of definitive therapy have been seen, which hints at the prognostic impact of ctDNA in the management of early-stage colon cancer.19,20,24 In a study of patients with stage II colon cancer who were treated with chemotherapy and were ctDNA positive immediately after completing adjuvant chemotherapy, inferior RFS was noted compared with those having ctDNA negativity following adjuvant chemotherapy (HR, 11; 95% CI, 1.8-68, P = .001). Additionally, ctDNA also outperformed CEA in predicting radiographic recurrence; 85% of patients with positive ctDNA had radiographic recurrence vs only 41% of the patients with CEA elevation (P = .0003).19,20,24

Similar studies evaluating the role of ctDNA in postoperative settings showed that patients with ctDNA-positive disease had a higher risk of recurrence compared with patients with ctDNA-negative disease (HR, 7.2; P < .001). Similarly, positive ctDNA immediately after adjuvant chemotherapy and during surveillance was associated with 17 times (HR, 17.5; 95% CI, 5.4-56.5; P < .001) and 40 times (HR, 43.5; 95% CI, 9.8-193.5; P < .001) increased risk of cancer relapse, respectively, compared with negative ctDNA. A single test obtained postoperatively had sensitivity of about 41%; serial testing improved sensitivity to 88%. Specificity was 98% serially. In multivariable analyses, ctDNA was independently associated with the risk of cancer recurrence after adjusting for known clinicopathologic risk factors.11,28

In addition, tumor-agnostic assays, such as Guardant Health’s REVEAL assay, have emerged as important prognostic tools for the management of early-stage colon cancer. The REVEAL assay detects genomic changes and epigenomic signatures related to aberrant DNA methylation; this helps in detecting ctDNA but does not require any sequencing of tumor tissue, and so may be a valuable option especially in cases where tumor cellularity may be low. Aparna Raj Parikh, MD, and colleagues, tested feasibility of using a tumor-uninformed, plasma-only MRD ctDNA assay in 103 patients with stage I to IV colon cancer undergoing curative-intent surgery. Samples were collected 4 weeks after surgery and 4 weeks after completion of adjuvant therapy. The “landmark” time point was defined as when samples were collected approximately 1 month after completion of definitive therapy (surgery alone or surgery and chemotherapy in those who needed adjuvant therapy). Overall, 84 patients were evaluable, of whom 70 were evaluable for “landmark” analysis. Seventeen out of 70 patients (24%) had detectable ctDNA after definitive therapy. Two of the 17 patients had less than 1 year of follow up. Fifteen out of 15 patients with positive ctDNA and at least 1 year of clinical follow up had cancer recurrence (positive predictive value, 100%; HR, 11.28; P < .0001). The single time point sensitivity of this assay was 55.6% and single time point specificity was 100.0%. Longitudinal specimens improved sensitivity from 55.6% to 69.0% (n = 20/29 patients with positive ctDNA; HR, 12.26; P < .0001). In patients who had positive surveillance ctDNA results in a test obtained within 4 months of clinical recurrence, the observed sensitivity improved to 90.9% (n = 20/22). Notably,
in this study, serum CEA levels did not predict recurrence well (positive predictive value, 53.9%; HR, 1.84; \(P = .18 \)). Hence, plasma-based tumor-agnostic assays may have very promising clinical utility in MRD detection.17

The prospective CIRCULATE-Japan trial (jRCT1031200006) is an adaptive platform study that has 3 complementary clinical trials encompassing both de-escalation and escalation treatment strategies for patients with CRC, with selection (or enrollment) into each trial based on their ctDNA results. More than 3000 patients with CRC with stage I to IV disease will enroll. The tumor-informed Signatera assay is used for MRD detection.18 The 3 studies are:

- GALAXY, the observational arm for stage II to IV CRC. Blood samples are collected before surgery, 1 month after surgery, and every 3 months for 2 years.
- VEGA, a randomized phase 3 study designed to test the benefit of 3 months of adjuvant capecitabine plus oxaliplatin therapy compared with surgery alone in patients with high-risk stage II or low-risk stage III colon cancer who have negative ctDNA 4 weeks after curative surgery, per the GALAXY study; VEGA is designed to test the role of de-escalating adjuvant therapy in patients in whom resection alone may be curative based on their postoperative ctDNA results at 4 weeks.
- ALTAIR, a double-blind, phase 3 study designed to establish the superiority of trifluridine/tipiracil (TAS-102) compared with placebo in patients who have ctDNA-positive disease, per the GALAXY study. ALTAIR is designed to test the role of therapy escalation if ctDNA clearance is not achieved after standard adjuvant chemotherapy.

Preliminary results from the GALAXY observational cohort study showed that ctDNA positivity after surgery was predictive of benefit from adjuvant chemotherapy and that changes in the ctDNA in response to adjuvant chemotherapy predicted improved outcomes. Further, those patients who were ctDNA negative did not seem to benefit from adjuvant chemotherapy. The risk of disease relapse in patients with resected stage II and III colon cancer correlated well with ctDNA positivity at 1 month after surgery (HR, 13.3; \(P < .001 \)). ctDNA clearance was observed in 68% of the patients, and in those patients the survival outcomes were similar to the outcomes of those who were ctDNA negative post surgery (HR, 0.8; \(P = .60 \)). On the other hand, patients who were ctDNA positive despite adjuvant chemotherapy had 15.8 times increased risk of cancer recurrence than those who were ctDNA negative (HR ≤ 0.01). Patients with negative ctDNA 4 weeks after surgery had good survival outcomes regardless of adjuvant chemotherapy administration, with a DFS of approximately 95% at 12 months. The results were reported after a median follow-up of only 11.4 months. These data indicate the potential of ctDNA technologies in guiding patient selection for adjuvant therapy; however, longer follow-up, especially at completion of study accrual, is needed.34

Similarly, in a study of Danish and Spanish patients who had stage III CRC, ctDNA detection postoperatively and after adjuvant chemotherapy was strongly predictive of recurrence (HR, 7.0; 95% CI, 3.7-13.5; \(P < .001 \); and HR, 50.76; 95% CI, 15.4-167; \(P < .001 \)). Recurrence rate was 80% in those who had positive ctDNA postoperatively and after adjuvant chemotherapy. Only those patients who cleared their ctDNA permanently did not relapse. This study also evaluated the correlation between the rate of rise of ctDNA and survival prognosis (HR, 2.7; 95% CI, 1.1-6.7; \(P = .039 \)). There were 2 growth patterns: slow (25% mean ctDNA increase per month) and fast (143% mean ctDNA increase per month). The median lead time of detection of recurrence using every-3-month ctDNA detection in addition to standard imaging techniques was 9.8 months. However, importantly, standard imaging recommendations outside of the United States incorporate less-frequent images than those commonly used in this country, which may have influenced the lead time reported in this study.19

Role of ctDNA in Surveillance

The goal of monitoring patients who have achieved what is, clinically, “no evidence of disease,” is to detect early recurrence and enable intervention early enough to improve their outcomes. Currently, the follow-up for patients who have completed definitive therapy for colon cancer incorporates clinical exams, serum CEA levels, periodic CT scans, and periodic colonoscopy evaluations.4 As noted above, studies using serial ctDNA monitoring seem to outperform those involving traditional CEA or radiographic surveillance. In one such study, serial ctDNA testing predicted cancer recurrence up to 16.5 months before radiologic imaging (mean, 8.7 months earlier; range, 0.8-16.5).11 Several studies have compared the sensitivity and specificity of ctDNA vs CEA in predicting cancer relapse, and the outcomes indicated that ctDNA significantly outperformed CEA and imaging.11,20,35 However, whether ctDNA-based early detection of colon cancer recurrence improved overall survival in patients is unclear and is a subject of future studies.

ctDNA-Guided Clinical Trials and Future Directions

Several clinical trials are underway to further investigate the clinical utility of ctDNA (Table 3). These include testing risk of recurrence in various cohorts of patients with CRC, adjuvant therapy modification based on ctDNA levels, and overall impact of these ctDNA-based modifications on survival of patients.
Table 3. Ongoing ctDNA-Based MRD Detection Clinical Trials in Early-Stage Colon Cancer

<table>
<thead>
<tr>
<th>Study title</th>
<th>Stage</th>
<th>Assay</th>
<th>Brief study design</th>
</tr>
</thead>
</table>
| CIRCULATE-US (NCT05174169) | II, III | Signatera | ▪ Postop ctDNA negative: observation vs SOC
▪ Postop ctDNA positive: SOC vs FOLFIRINOX |
| DYNAMIC III (ACTRN-12615000381583) | III | Safe-SeqS | ▪ Randomization to SOC management vs ctDNA-guided management in adjuvant setting (therapy escalation for ctDNA positive; therapy de-escalation for ctDNA negative) |
| VEGA (jRCT1031200006) | High-risk stage II or low-risk stage III colon cancer | Signatera | ▪ ctDNA negative 4 weeks postop: 3 months of adjuvant CAPOX vs observation |
| ALTAIR (NCT04457297) | II, III, IV | — | ▪ Therapy escalation to TAS-102 vs placebo if ctDNA positive after intended adjuvant chemotherapy |
| GALAXY (UMIN000039205) | II, III, IV | Signatera | ▪ Prospective observational study; patients enroll to VEGA or ALTAIR depending on results |
| PEGASUS (NCT04259944) | High-risk stage II or stage III | Guardant REVEAL | ▪ Postop ctDNA-guided adjuvant chemotherapy.
▪ ctDNA positive: CAPOX, 3 months
▪ ctDNA negative: capcitabine, 6 months. Retest after 1 cycle and if ctDNA positive, change to CAPOX
▪ Additional chemotherapy if ctDNA positive after intended chemotherapy |
| TRACC (NCT04050345) | I, II, III | ddPCR | ▪ Prospective observational study |
| COBRA (NCT04068103) | Low-risk stage II | Guardant REVEAL | ▪ SOC observation vs ctDNA-guided management
▪ ctDNA positive: adjuvant chemotherapy for 6 months
▪ ctDNA negative: observation] |
| ACT 3 (NCT03803553) | III | Guardant REVEAL | ▪ Postadjuvant therapy ctDNA evaluation. If ctDNA positive, then biomarker-based additional therapy (or second-line FOLFIRI if no biomarker) vs observation |
| CIRCULATE-PRODIGE 70 (NCT04120701) | II (excluding T4b) | ddPCR | ▪ Postop ctDNA negative: observation
▪ Postop ctDNA positive: randomized to adjuvant chemotherapy vs observation |
| MEDOCC-CrEATE (NL6281/NTR6455) | II | PGDx elio | ▪ Postop ctDNA negative: observation
▪ Postop ctDNA positive: randomized to adjuvant chemotherapy vs observation |
| IMPROVE-IT (NCT03748680) | I, II | ddPCR | ▪ Postop ctDNA positive: randomized to observation vs adjuvant chemotherapy |
| BESPOKE (NCT04264702) | II, III | Signatera | ▪ Prospective observational study |

CAPOX, capcitabine and oxaliplatin; ctDNA, circulating tumor DNA; ddPCR, digital droplet polymerase chain reaction; FOLFIRI, leucovorin, fluorouracil, and irinotecan; FOLFIRINOX, leucovorin, fluorouracil, irinotecan, and oxaliplatin; postop, postoperative; SOC, standard of care; TAS-102, trifluridine/tipiracil.
Some of these trials are PEGASUS (NCT042539944), IMPROVE-IT (NCT037486840), CIRCULATE-US (NRT-G1008; NCT05174169), VEGA (rRCT03120006), COBRA (NCT04068103), DYNAMIC-III (ACTRN-12615000381583), TRACC (NCT04050345), MEDOCC-GEATE (NL6281/NTR6455), and CIRCULATE-PRODIGE 70 (NCT04120701) to name several.

CIRCULATE-US is a large cooperative-group clinical trial, which will use the Signatera assay for MRD detection in patients with stage II and III colon cancer who have undergone resection. Since adjuvant chemotherapy does not cure all patients with colon cancer, this is an effort to improve outcomes by modifying therapy based on ctDNA detection postoperatively. Patients with ctDNA-negative disease will be randomized to standard-of-care (SOC) adjuvant chemotherapy or observation with standard close serial evaluations including clinical examinations, imaging, and CEA as well as ctDNA monitoring. Those with ctDNA-positive disease will be randomized to SOC chemotherapy or intensified chemotherapy with leucovorin, fluorouracil, irinotecan, and oxaliplatin (ie, FOLFIRI) or molecularly driven therapy—in patients who are ctDNA positive after chemotherapy for stage III disease. ACT3 is also evaluating how to modify therapy for those who continue to be ctDNA positive despite completing standard adjuvant therapies. However, additional questions remain to be answered in ongoing and future studies, including determining the best agents for treatment if ctDNA positivity persists and the impact of treating molecularly detected disease vs reintitlating therapy only when there is radiographic or other evidence of recurrent disease.

It is important to note that our outcomes are only as good as our tests, all of which must be used in the appropriate disease settings. We must be cautious about the possibility of false-negative ctDNA results, because if testing is done only immediately after surgery, or prior to 4 weeks post surgery, it may be impossible to say whether or not there is MRD: A patient could have truly negative MRD status or, alternatively, ctDNA titers might not be enough for detection or they could have low-shedding disease. If ctDNA is used for clinical decision-making or prediction, we recommend baseline testing prior to surgery in early-stage disease. In addition, consider repeating tests that indicate undetectable ctDNA post-op, 2 to 4 weeks later, to avoid false-negative results. When a decision is being made to escalate or de-escalate therapy, we want to be confident with the specificity of any given test.

As discussed here, a significant body of literature suggests that ctDNA-guided risk stratification in patients with resected early-stage colon cancer outperforms the current clinicopathologic criteria-based risk stratification. Hence, ctDNA monitoring in early-stage colon cancer is a novel emerging strategy that is likely to change current clinical practice with regard to monitoring, early detection of recurrence, and, potentially, adjuvant therapy selection.

DISCLOSURE: The authors have no significant financial interest in or other relationship with the manufacturer of any product or provider of any service mentioned in this article.

AUTHOR AFFILIATIONS:
1. The University of Chicago Medicine, Chicago, IL; 2. Massachusetts General Hospital, Boston, MA; 3. Dana-Farber Cancer Center, Boston, MA

CORRESPONDING AUTHOR:
Ardaman Shergill, MD
The University of Chicago Medicine Section of Hematology/Oncology
5841 S Maryland Ave
MC2115
Chicago, IL 60637
Office: 773-722-8114
Fax: 773-722-3002
Email: ashergill@medicine.bsd.uchicago.edu

REFERENCES

For full reference list, visit cancernetwork.com/Shergill_10.22

SPECIAL ISSUE | ctDNA-GUIDED THERAPY IN EARLY COLON CANCER

OCTOBER 2022

626 ONCOLOGY®

CNC1022_620-626_other ctDNA trials.indd 626

10/5/22 1:28 PM
In HER2+ MBC following 1L progression and beyond*

EMBRACE

SUPERIOR SURVIVAL

WITH PROVEN SAFETY

TUKYSA + trastuzumab + capecitabine vs placebo + trastuzumab + capecitabine

- Median PFS: 7.8 months (95% CI: 7.5–9.6) vs 5.6 months (95% CI: 4.2–7.1); HR = 0.54 (95% CI: 0.42–0.71); P <0.00001 (primary endpoint)³

More than 2 years median overall survival at follow-up analysis²

- **Primary analysis**: 21.9 months (95% CI: 18.3–31.0) vs 17.4 months (95% CI: 13.6–19.9); HR = 0.66 (95% CI: 0.50–0.87); P = 0.0048 (secondary endpoint)¹

- **Follow-up analysis**: 24.7 months (95% CI: 21.6–28.9) vs 19.2 months (95% CI: 16.4–21.4); HR = 0.73 (95% CI: 0.59–0.90); median follow-up: 29.6 months²

Follow-up OS analysis: Results of this prespecified exploratory analysis are descriptive but not conclusive, are not controlled for type 1 error, and should be interpreted with caution.

Safe and well tolerated¹³

- The most common adverse reactions in patients who received TUKYSA (≥20%) were diarrhea, PPE, nausea, fatigue, hepatotoxicity, vomiting, stomatitis, decreased appetite, abdominal pain, headache, anemia, and rash¹

- 6% of patients discontinued TUKYSA due to adverse reactions vs 3% with placebo²

Indication

TUKYSA is indicated in combination with trastuzumab and capecitabine for treatment of adult patients with advanced unresectable or metastatic HER2-positive breast cancer, including patients with brain metastases, who have received one or more prior anti-HER2-based regimens in the metastatic setting.

Select Important Safety Information

- The Prescribing Information for TUKYSA contains warnings and precautions for diarrhea, hepatotoxicity, and embryo-fetal toxicity, some of which may be severe

- The most common serious adverse reactions in ≥2% of patients who received TUKYSA were diarrhea, vomiting, nausea, abdominal pain, and seizure

Study design: HER2CLIMB was a randomized (2:1) trial of TUKYSA or placebo each in combination with trastuzumab and capecitabine in 612 patients with HER2+ MBC, previously treated with trastuzumab, pertuzumab, and T-DM1. Primary endpoint was PFS per BICR in the first 480 patients enrolled. Secondary endpoints included OS. A prespecified exploratory analysis was included to evaluate OS at ~2 years. Please see additional study design on the following page.

*¹ Anti-HER2-based regimen in the metastatic setting

²Data from the first 480 patients

³Primary analysis (data cutoff: September 4, 2019)

⁴Prespecified exploratory analysis (data cutoff: February 8, 2021)

⁵Based on brand prescriptions from 10/20 to 05/21

1L = first-line; 2L = second-line; BICR = blinded independent central review; CI = confidence interval; HER = human epidermal growth factor receptor; HR = hazard ratio; MBC = metastatic breast cancer; OS = overall survival; PFS = progression-free survival; PPE = palmar-plantar erythrodysesthesia; T-DM1 = ado-trastuzumab emtansine

Please see full Important Safety Information on the following pages.

The TUKYSA regimen is the #1 prescribed treatment for patients with brain metastases in 2L+ HER2+ MBC⁴¹¹

See additional follow-up data inside >
In combination with trastuzumab + capecitabine

TUKYSA ACHIEVED A MEDIAN OVERALL SURVIVAL OF MORE THAN 2 YEARS AT FOLLOW-UP ANALYSIS

OS in the total population (N = 612)

- **Primary Analysis**
 - Hazard Ratio (HR) = 0.66 (95% CI: 0.50–0.87)
 - *P* = 0.0048
 - Median OS: 21.9 months (95% CI: 18.3–31.0)
 - Events: 130/410

- **Exploratory Follow-Up Analysis**
 - HR = 0.73 (95% CI: 0.59–0.90)
 - Median OS: 24.7 months (95% CI: 21.6–28.9)
 - Events: 233/410

Important Safety Information

Warnings and Precautions

- **Diarrhea:** TUKYSA can cause severe diarrhea including dehydration, hypotension, acute kidney injury, and death. In HER2CLIMB, 81% of patients who received TUKYSA experienced diarrhea, including 12% with Grade 3 and 0.5% with Grade 4. Both patients who developed Grade 4 diarrhea subsequently died, with diarrhea as a contributor to death. Median time to onset of the first episode of diarrhea was 12 days and the median time to resolution was 8 days. Diarrhea led to TUKYSA dose reductions in 6% of patients and TUKYSA discontinuation in 1% of patients. Prophylactic use of antidiarrheal treatment was not required on HER2CLIMB. If diarrhea occurs, administer antidiarrheal treatment as clinically indicated. Perform diagnostic tests as clinically indicated to exclude other causes of diarrhea. Based on the severity of the diarrhea, interrupt dose, then dose reduce or permanently discontinue TUKYSA.

- **Hepatotoxicity:** TUKYSA can cause severe hepatotoxicity. In HER2CLIMB, 8% of patients who received TUKYSA had an ALT increase >5 × ULN, 8% had an AST increase >5 × ULN, and 1.5% had a bilirubin increase >3 × ULN (Grade ≥3). Hepatotoxicity led to TUKYSA dose reductions in 8% of patients and TUKYSA discontinuation in 1.5% of patients. Monitor ALT, AST, and bilirubin prior to starting TUKYSA, every 3 weeks during treatment, and as clinically indicated. Based on the severity of hepatotoxicity, interrupt dose, then dose reduce or permanently discontinue TUKYSA.

- **Embryo-Fetal Toxicity:** TUKYSA can cause fetal harm. Advise pregnant women and females of reproductive potential of the potential risk to a fetus. Advise females of reproductive potential, and male patients with female partners of reproductive potential, to use effective contraception during TUKYSA treatment and for at least 1 week after the last dose.

Adverse Reactions

Serious adverse reactions occurred in 26% of patients who received TUKYSA; those occurring in ≥2% of patients were diarrhea (4%), vomiting (2.5%), nausea (2%), abdominal pain (2%), and seizure (2%). Fatal adverse reactions occurred in 2% of patients who received TUKYSA including sudden death, sepsis, dehydration, and cardiogenic shock.

Adverse reactions led to treatment discontinuation in 6% of patients who received TUKYSA; those occurring in ≥1% of patients were hepatotoxicity (1.5%) and diarrhea (1%). Adverse reactions led to dose reduction in 2% of patients who received TUKYSA including sudden death, sepsis, dehydration, and cardiogenic shock.

Lab Abnormalities

In HER2CLIMB, Grade ≥3 laboratory abnormalities reported in ≥5% of patients who received TUKYSA were decreased phosphate, increased ALT, decreased potassium, and increased AST.
The protocol included a prespecified exploratory analysis to evaluate OS, PFS (by investigator assessment), and safety in the total study population (N = 612) at ~2 years from the last patient randomized. After the primary analysis, 12.9% of patients in the placebo arm (202/1602) crossed over to receive TUKYSA in combination with trastuzumab and capecitabine, with the first patient crossover in February 2020. Median overall study follow-up: 29.6 months (data cutoff: February 8, 2021). Because formal testing of all alpha-controlled endpoints was considered final at the primary analysis, data from this prespecified updated analysis are for descriptive purposes only.1-3

* Follow-up safety analysis was done as part of a prespecified exploratory analysis. Results are presented as descriptive data that are not intended to provide conclusions about safety and should be interpreted with caution.

ALT = alanine aminotransferase; AST = aspartate aminotransferase; ORR = objective response rate; TEAE = treatment-emergent adverse event.

CONSISTENT SAFETY PROFILE AT FOLLOW-UP ANALYSIS²

At the 2-year follow-up analysis²

The most common adverse reactions (≥20%) were diarrhea, PPE, nausea, fatigue, vomiting, decreased appetite, stomatitis, headache, AST increased, anemia, ALT increased, and blood bilirubin increased.

<table>
<thead>
<tr>
<th>TEAEs Grade ≥3</th>
<th>TUKYSA</th>
<th>PLACEBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>61% (245/404) in the TUKYSA arm vs 51% (101/197) in the control arm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEAEs leading to death</th>
<th>TUKYSA</th>
<th>PLACEBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% (8/404) in the TUKYSA arm vs 3% (6/197) in the control arm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The rate of discontinuation due to adverse reactions for the TUKYSA arm remained consistent with the primary analysis²,³

<table>
<thead>
<tr>
<th>PRIMARY ANALYSIS³</th>
<th>TUKYSA</th>
<th>PLACEBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>6% vs 3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOLLOW-UP ANALYSIS⁴</th>
<th>TUKYSA</th>
<th>PLACEBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>6% vs 4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Study design: HER2CLIMB was a randomized (2:1), double-blind trial of TUKYSA or placebo each in combination with trastuzumab and capecitabine in 612 patients with HER2+ MBC, previously treated with trastuzumab, pertuzumab, and T-DM1. Primary endpoint was PFS per BICR in the first 480 patients enrolled. Secondary endpoints assessed in the full study population included OS, PFS in patients with brain metastases, confirmed ORR, and safety.

The mean increase in serum creatinine was 32% within the first 21 days of treatment with TUKYSA. The serum creatinine increases persisted throughout treatment and were reversible upon treatment completion. Consider alternative markers of renal function if persistent elevations in serum creatinine are observed.

Drug Interactions

- **Strong CYP3A/Moderate CYP2C8 Inducers**: Concomitant use may decrease TUKYSA activity. Avoid concomitant use of TUKYSA.

- **Strong or Moderate CYP2C8 Inhibitors**: Concomitant use of TUKYSA with a strong CYP2C8 inhibitor may increase the risk of TUKYSA toxicity; avoid concomitant use. Increase monitoring for TUKYSA toxicity with moderate CYP2C8 inhibitors.

- **CYP3A Substrates**: Concomitant use may increase the toxicity associated with a CYP3A substrate. Avoid concomitant use of TUKYSA where minimal concentration changes may lead to serious or life-threatening toxicities. If concomitant use is unavoidable, decrease the CYP3A substrate dosage.

- **P-gp Substrates**: Concomitant use may increase the toxicity associated with a P-gp substrate. Consider reducing the dosage of P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicity.

Use in Specific Populations

- **Lactation**: Advise women not to breastfeed while taking TUKYSA and for at least 1 week after the last dose.

- **Renal Impairment**: Use of TUKYSA in combination with capecitabine and trastuzumab is not recommended in patients with severe renal impairment (CLcr < 30 mL/min), because capecitabine is contraindicated in patients with severe renal impairment.

- **Hepatic Impairment**: Reduce the dose of TUKYSA for patients with severe (Child-Pugh C) hepatic impairment.

Please see Brief Summary of Prescribing Information on adjacent pages.

INDICATIONS AND USAGE

Brief summary of Prescribing Information (PI). See full PI. Rx Only

TUKYSA® can cause severe diarrhea including dehydration, hypotension, acute kidney injury, and death. In HER2CLIMB, 81% of patients who received TUKYSA experienced diarrhea, including 12% with Grade 3 diarrhea and 0.5% with Grade 4 diarrhea. Both patients who developed Grade 4 diarrhea subsequently died, with diarrhea as a contributor to death. The median time to onset of the first episode of diarrhea was 12 days and the median time to resolution was 8 days. Diarrhea led to dose reductions of TUKYSA in 6% of patients and discontinuation of TUKYSA in 1% of patients. Prophylactic use of anti-diarrheal treatment was not required on HER2CLIMB. If diarrhea occurs, administer anti-diarrheal treatment as clinically indicated. Perform diagnostic tests as clinically indicated to exclude other causes of diarrhea. Based on the severity of the diarrhea, interrupt dose, then dose reduce or permanently discontinue TUKYSA.

Hepatotoxicity: TUKYSA can cause severe hepatotoxicity. In HER2CLIMB, 8% of patients who received TUKYSA had an ALT increase > 5 × ULN, 6% had an AST increase > 5 × ULN, and 1.5% had a bilirubin increase >3 × ULN (Grade 3). Hepatotoxicity led to dose reduction of TUKYSA in 8% of patients and discontinuation of TUKYSA in 1.5% of patients. Monitor ALT, AST, and bilirubin prior to starting TUKYSA, every 3 weeks during treatment, and as clinically indicated. Based on the severity of hepatotoxicity, interrupt dose, then dose reduce or permanently discontinue TUKYSA.

Embryo-Fetal Toxicity: Based on findings from animal studies and its mechanism of action, TUKYSA can cause fetal harm when administered to a pregnant woman. In animal reproduction studies, administration of tucatinib to pregnant rats and rabbits during organogenesis caused embryo-fetal mortality, reduced fetal weight, and fetal abnormalities at maternal exposures >1.3 times the human exposure (AUC) at the recommended dose. Advise pregnant women and females of reproductive potential of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with TUKYSA and for at least 1 week after the last dose. Advise male patients with female partners of reproductive potential to use effective contraception during treatment with TUKYSA and for at least 1 week after the last dose. TUKYSA is used in combination with trastuzumab and capecitabine. Refer to the Full Prescribing Information for trastuzumab and capecitabine for pregnancy and contraception information.

ADVERSE REACTIONS

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

HER2-Positive Metastatic Breast Cancer (HER2CLIMB)

The safety of TUKYSA in combination with trastuzumab and capecitabine was evaluated in HER2CLIMB. Patients received either TUKYSA 300 mg twice daily plus trastuzumab and capecitabine (n=404) or placebo plus trastuzumab and capecitabine (n=197). The median duration of treatment was 5.8 months (range: 3 days, 2.9 years) for the TUKYSA arm. Serious adverse reactions occurred in 26% of patients who received TUKYSA. Serious adverse reactions in ≥ 2% of patients who received TUKYSA were diarrhea (4%), vomiting (2.5%), nausea (2%), abdominal pain (2%), and seizure (2%). Fatal adverse reactions occurred in 2% of patients who received TUKYSA during treatment including sudden death, sepsis, dehydration, and cardiogenic shock.

Adverse reactions leading to treatment discontinuation occurred in 6% of patients who received TUKYSA. Adverse reactions leading to treatment discontinuation of TUKYSA in ≥1% of patients were hepatotoxicity (1.5%) and diarrhea (1%). Adverse reactions leading to dose reduction occurred in 21% of patients who received TUKYSA. Adverse reactions leading to dose reduction of TUKYSA in ≥2% of patients were hepatotoxicity (8%) and diarrhea (6%). The most common adverse reactions in patients who received TUKYSA (≥20%) were diarrhea, palmar-plantar erythrodysesthesia, nausea, fatigue, hepatotoxicity, vomiting, stomatitis, decreased appetite, abdominal pain, headache, anemia, and rash.

Table 2: Recommended TUKYSA Dosage Modifications for Adverse Reactions

Severity TUKYSA Dosage Modification

<table>
<thead>
<tr>
<th>Diarrhea¹</th>
<th>Grade 3 without anti-diarrheal treatment: Initiate or intensify appropriate medical therapy. Hold TUKYSA until recovery to ≤ Grade 1, then resume TUKYSA at the same dose level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 with anti-diarrheal treatment: Initiate or intensify appropriate medical therapy. Hold TUKYSA until recovery to ≤ Grade 1, then resume TUKYSA at the next lower dose level.</td>
<td></td>
</tr>
</tbody>
</table>

Grade 4 Permanently discontinue TUKYSA.

Hepatotoxicity²,³

Grade 2 bilirubin (>1.5 to 3 × ULN) Hold TUKYSA until recovery to ≤ Grade 1, then resume TUKYSA at the same dose level.

Grade 3 ALT or AST (>5 to 20 × ULN) OR Grade 3 bilirubin (>3 to 10 × ULN) Hold TUKYSA until recovery to ≤ Grade 1, then resume TUKYSA at the next lower dose level.

Grade 4 ALT or AST (>20 × ULN) OR Grade 4 bilirubin (>10 × ULN) Permanently discontinue TUKYSA.

ALT or AST >3 × ULN AND Bilirubin >2 × ULN Permanently discontinue TUKYSA.

Other adverse reactions¹

Grade 5 Hold TUKYSA until recovery to ≤ Grade 1, then resume TUKYSA at the next lower dose level.

Grade 4 Permanently discontinue TUKYSA.

¹ Graded based on National Cancer Institute Common Terminology Criteria for Adverse Events Version 4.03.

² Abbreviations: ULN = upper limit of normal; ALT = alanine aminotransferase; AST = aspartate aminotransferase.

³ Hepatotoxicity includes severe hepatotoxicity (Grade 3 or 4 bilirubin and/or aspartate aminotransferase or alanine aminotransferase) and Grade 3 or 4 hepatic events that occur in combination with other Grade 3 or 4 organ toxicities.

Table 3: Adverse Reactions (≥10%) in Patients Who Received TUKYSA and with a Difference Between Arms of ≥5% Compared to Placebo in HER2CLIMB (All Grades)

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>TUKYSA + Trastuzumab + Capecitabine (N = 404)</th>
<th>Placebo + Trastuzumab + Capecitabine (N = 197)</th>
<th>Grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>63</td>
<td>13</td>
<td>53</td>
</tr>
<tr>
<td>Nausea</td>
<td>20</td>
<td>0.7</td>
<td>15</td>
</tr>
<tr>
<td>Vomiting</td>
<td>32</td>
<td>2.5</td>
<td>21</td>
</tr>
</tbody>
</table>

Gastrointestinal disorders

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>81</td>
<td>12</td>
<td>0.5</td>
</tr>
<tr>
<td>Nausea</td>
<td>58</td>
<td>3.7</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>36</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Stomatitis¹</td>
<td>32</td>
<td>2.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Skin and subcutaneous tissue disorders

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmar-plantar erythrodysesthesia</td>
<td>63</td>
<td>13</td>
<td>53</td>
</tr>
<tr>
<td>Rash²</td>
<td>20</td>
<td>0.7</td>
<td>15</td>
</tr>
</tbody>
</table>

Hepatobiliary disorders

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatotoxicity²</td>
<td>42</td>
<td>9</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Metabolism and nutrition disorders

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased appetite</td>
<td>25</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

 Dosage Modifications for Concomitant Use with Strong CYP2C8 Inhibitors: Avoid concomitant use of strong CYP2C8 inhibitors with TUKYSA. If concomitant use with a strong CYP2C8 inhibitor cannot be avoided, reduce the recommended dosage to 100 mg orally twice daily. After discontinuation of the strong CYP2C8 inhibitor for 12 half-lives, resume the TUKYSA dose that was taken prior to initiating the inhibitor.

CONTRAINDICATIONS

None.
Effects of TUKYSA and Other Drugs

Adverse Reaction

<table>
<thead>
<tr>
<th>TUKYSA + Trastuzumab + Capecitabine (N = 404)</th>
<th>Placebo + Trastuzumab + Capecitabine (N = 197)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade (%)</td>
<td>Grade (%)</td>
</tr>
<tr>
<td>All</td>
<td>3</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Blood and lymphatic system disorders</td>
</tr>
<tr>
<td>Anemia</td>
<td>21</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Musculoskeletal and connective tissue disorders</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>15</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td>Nervous System Disorders</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>13</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Respiratory, thoracic and mediastinal disorders</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Stomatitis includes stomatitis, oral mucositis, oral pain, tongue ulceration, oral ulceration, oral ulcers, angiorrhagia, and aphthous ulcer
2. Rash includes rash maculo-papular, rash, dermatitis anexiform, erythema, rash macular, rash papular, rash pruritic, rash pruritic, rash erythematous, skin edema, urticaria, dermatitis allergic, palmar erythema, plantar erythema, skin toxicity, and dermatis
3. Hepatotoxicity includes hyperbilirubinemia, blood bilirubin increased, bilirubin conjugated increased, alkaline aminotransferase increased, transaminases increased, hepatotoxicity, aspartate aminotransferase increased, liver function test increased, liver injury, and hepatocellular injury
4. Anemia includes anemia, hemoglobin decreased, and normocytic anemia
5. Due to inhibition of renal tubular transport of creatinine without affecting glomerular function
6. Peripheral neuropathy includes peripheral sensory neuropathy, neuropathy peripheral, peripheral motor neuropathy, and peripheral sensorimotor neuropathy

Table 4: Laboratory Abnormalities (≥20%) Worsening from Baseline in Patients Who Received TUKYSA and with a Difference of ≥5% Compared to Placebo in HER2CLIMB

<table>
<thead>
<tr>
<th>TUKYSA + Trastuzumab + Capecitabine</th>
<th>Placebo + Trastuzumab + Capecitabine</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Grades (%)</td>
<td>All Grades (%)</td>
</tr>
<tr>
<td></td>
<td>Grades ≥3 (%)</td>
</tr>
<tr>
<td>Hematology</td>
<td></td>
</tr>
<tr>
<td>Decreased hemoglobin</td>
<td>59</td>
</tr>
<tr>
<td>Decreased phosphate</td>
<td>57</td>
</tr>
<tr>
<td>Increased bilirubin</td>
<td>47</td>
</tr>
<tr>
<td>Increased ALT</td>
<td>46</td>
</tr>
<tr>
<td>Increased AST</td>
<td>43</td>
</tr>
<tr>
<td>Decreased magnesium</td>
<td>40</td>
</tr>
<tr>
<td>Decreased potassium</td>
<td>36</td>
</tr>
<tr>
<td>Increased creatinine</td>
<td>33</td>
</tr>
<tr>
<td>Decreased sodium</td>
<td>28</td>
</tr>
<tr>
<td>Increased alkaline phosphatase</td>
<td>26</td>
</tr>
</tbody>
</table>

1. The denominator used to calculate the rate varied from 351 to 400 in the TUKYSA arm and 173 to 197 in the control arm based on the number of patients with a baseline value and at least one post-treatment value. Grading was based on NCI-CTCAE v4.03 for laboratory abnormalities; corrected for increased creatinine which only includes patients with a creatinine increase based on the upper limit of normal definition for grade 1 events (NCI CTCAE v5.0).
2. Laboratory criteria for Grade 1 is identical to laboratory criteria for Grade 2.
3. Due to inhibition of renal tubular transport of creatinine without affecting glomerular function.
4. There is no definition for Grade 2 in CTCAE v4.03.
5. Increased Creatinine: The mean increase in serum creatinine was 32% within the first 21 days of treatment with TUKYSA. The serum creatinine increased persistently throughout treatment and were reversible upon treatment completion. Consider alternative markers of renal function if persistent elevations in serum creatinine are observed.

DRUG INTERACTIONS

Effects of Other Drugs on TUKYSA

Strong CYP3A Inducers or Moderate CYP2C8 Inducers: Concomitant use of TUKYSA with a strong CYP3A or moderate CYP2C8 inducer decreased tucatinib plasma concentrations, which may reduce TUKYSA activity. Avoid concomitant use of TUKYSA with a strong CYP3A inducer or a moderate CYP2C8 inducer.

Strong or Moderate CYP2C8 Inhibitors: Concomitant use of TUKYSA with a strong CYP2C8 inhibitor increased tucatinib plasma concentrations, which may increase the risk of TUKYSA toxicity. Avoid concomitant use of TUKYSA with a strong CYP2C8 inhibitor. Increase monitoring for TUKYSA toxicity with moderate CYP2C8 inhibitors.

Effects of TUKYSA on Other Drugs

CYP3A Substrates: Concomitant use of TUKYSA with a CYP3A substrate increased the plasma concentrations of CYP3A substrate, which may increase the toxicity associated with a CYP3A substrate. Avoid concomitant use of TUKYSA with CYP3A substrates.

where minimal concentration changes may lead to serious or life-threatening toxicities. If concomitant use is unavoidable, decrease the CYP3A substrate dosage in accordance with approved product labeling.

P-glycoprotein (P-gp) Substrates: Concomitant use of TUKYSA with a P-gp substrate increased the plasma concentrations of P-gp substrate, which may increase the toxicity associated with a P-gp substrate. Consider reducing the dosage of P-gp substrates, where minimal concentration changes may lead to serious or life-threatening toxicities.

USE IN SPECIFIC POPULATIONS

Pregnancy

Risk Summary: TUKYSA is used in combination with trastuzumab and capecitabine. Refer to the Full Prescribing Information of trastuzumab and capecitabine for pregnancy information. Based on findings in animals and its mechanism of action, TUKYSA can cause fetal harm when administered to a pregnant woman. There are no available human data on TUKYSA use in pregnant women to inform a drug-associated risk.

In animal reproduction studies, administration of tucatinib to pregnant rats and rabbits during organogenesis resulted in embryo-fetal mortality, reduced fetal weight and fetal abnormalities at maternal exposures ≥ 1.3 times the human exposure (AUC) at the recommended dose. Advise pregnant women and females of reproductive potential of the potential risk to the fetus.

Lactation

Risk Summary: TUKYSA is used in combination with trastuzumab and capecitabine. Refer to the Full Prescribing Information of trastuzumab and capecitabine for breastfeeding information. There are no data on the presence of tucatinib or its metabolites in human or animal milk or its effects on the breastfed child or on milk production. Because of the potential for serious adverse reactions in a breastfed child, advise women not to breastfeed during treatment with TUKYSA and for at least 1 week after the last dose.

Females and Males of Reproductive Potential

TUKYSA can cause fetal harm when administered to a pregnant woman. TUKYSA is used in combination with trastuzumab and capecitabine. Refer to the Full Prescribing Information of trastuzumab and capecitabine for contraception and infertility information.

Pregnancy Testing: Verify the pregnancy status of females of reproductive potential prior to initiating treatment with TUKYSA.

Contraception:

Females: Advise females of reproductive potential to use effective contraception during treatment with TUKYSA and for at least 1 week after the last dose.

Males: Advise male patients with female partners of reproductive potential to use effective contraception during treatment with TUKYSA and for at least 1 week after the last dose.

Infertility: Based on findings from animal studies, TUKYSA may impair male and female fertility.

Pediatric Use: The safety and effectiveness of TUKYSA in pediatric patients have not been established.

Geriatric Use: In HER2CLIMB, 82 patients who received TUKYSA were ≥ 65 years, of whom 8 patients were ≥ 75 years. The incidence of serious adverse reactions in those receiving TUKYSA was 34% in patients ≥ 65 years compared to 24% in patients < 65 years. The most frequent serious adverse reactions in patients who received TUKYSA and ≥ 65 years were diarrhea (9%), vomiting (6%), and nausea (5%). There were no observed overall differences in the effectiveness of TUKYSA in patients ≥ 65 years compared to younger patients. There were too few patients ≥ 75 years to assess differences in effectiveness or safety.

Renal Impairment: The use of TUKYSA in combination with capcitabine and trastuzumab is not recommended in patients with severe renal impairment (Clcr < 30 mL/min estimated by Cockcroft-Gault Equation), because capcitabine is contraindicated in patients with severe renal impairment. Refer to the Full Prescribing Information of capcitabine for additional information in severe renal impairment. No dose adjustment is recommended for patients with mild or moderate renal impairment (creatinine clearance [Clcr] 30 to 89 mL/min).

Hepatic Impairment: Tucatinib exposure is increased in patients with severe hepatic impairment (Child-Pugh C). Reduce the dose of TUKYSA for patients with severe (Child-Pugh C) hepatic impairment. No dose adjustment for TUKYSA is required for patients with mild (Child-Pugh A) or moderate (Child-Pugh B) hepatic impairment.

TUKYSA and its logo, and Seagen and are US registered trademarks of Seagen Inc. © 2021 Seagen Inc., Bothell, WA 98021 All rights reserved Printed in USA REF:51251(1) 4/20
CONTINUING MEDICAL EDUCATION (CME)

Antibody-Drug Conjugates in Gynecological Cancer: Setting the Stage

LEARNING OBJECTIVES

Upon successful completion of this activity, you should be better prepared to:

• Review the structure of an antibody-drug conjugate (ADC) agent, and how this structure impacts the ADC’s function
• Outline how the development of ADC agents is driving discovery of targets on cancer cell
• Discuss ongoing clinical trials of ADC therapy in patients with gynecologic cancers

INSTRUCTIONS FOR PARTICIPATION/HOW TO RECEIVE CREDIT

1. Read this activity in its entirety.
2. Go to http://www.gotoper.com/adc22sts-art to access and complete the posttest.
3. Answer the evaluation questions.
4. Request credit using the drop-down menu.

YOU MAY IMMEDIATELY DOWNLOAD YOUR CERTIFICATE

FACULTY, STAFF, AND PLANNERS’ DISCLOSURES

In accordance with ACCME Guidelines, PER® has identified and resolved all COI for faculty, staff, and planners prior to the start of this activity using a multistep process.

Disclosures (Dr Moore):

Grant/Research Support: PTC Therapeutics, Lilly, Merck, GSK, Verastem;

The staff of PER® have no relevant financial relationships with commercial interests to disclose.

OFF-LABEL DISCLOSURE AND DISCLAIMER

This activity may or may not discuss investigational, unapproved, or off-label use of drugs. Learners are advised to consult prescribing information for any products discussed. The information provided in this activity is for accredited continuing education purposes only and is not meant to substitute for the independent clinical judgment of a health care professional relative to diagnostic, treatment, or management options for a specific patient’s medical condition. The opinions expressed in the content are solely those of the individual faculty members and do not reflect those of PER® or any of the companies that provided commercial support for this activity.

This activity is funded by PER®.

ACCREDITATION/CREDIT DESIGNATION

Physicians’ Education Resource®, LLC, is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. Physicians’ Education Resource®, LLC, designates this enduring material for a maximum of 0.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.
Treatment options for most cancers have expanded rapidly in the past few decades, leading to an improvement in survival for many cancers. However, recent advances in treatment for gynecological cancer as a whole have cast a glimmer of hope into this space.

One class of therapeutics being investigated across a broad spectrum of cancer types is antibody-drug conjugates (ADCs). These agents consist of 3 parts: an antibody targeted to a cell surface molecule, a cytotoxic payload, and a linker to join the two. Ideally, the antibody target would be a marker that is highly expressed on cancer cells but not found on normal tissue throughout the body. Such a marker would limit off-target toxicities due to the action of the payload. The cytotoxic molecule typically attacks microtubules—making them either too stable or too unstable—or topoisomerases, leading to DNA damage. If the linker is cleavable under intracellular conditions, the cytotoxic payload is free to migrate to neighboring cells, increasing the drug’s potency through the bystander effect. If the linker is uncleavable, the conjugate is more stable in circulation, thereby reducing off-target toxicity.

For some ADCs, immunohistochemistry (IHC) testing is required to determine whether the level of the antibody target is sufficiently high on the cancer cell membrane. For others, the marker is known to be ubiquitously expressed, and the ADC can be administered without waiting for test results. In this first of a 2-part series, Kathleen Moore, MD, reviews current treatment options in gynecologic cancers and circumstances in which ADCs might fit into treatment protocols.

Q: What are the limitations of current chemotherapy for ovarian cancer, and what is driving research in targeted therapies?

MOORE: When we think about treatment for epithelial ovarian cancer, we have evolved a great deal over the past few decades. Physicians who’ve been in practice for many years will remember that every patient with epithelial ovarian cancer was treated with paclitaxel or carboplatin. There was no use of maintenance, there was no widespread testing for BRCA, and there was certainly not somatic testing for any sort of targeted therapy, because it really didn’t exist, and there wasn’t an understanding of what could potentially be targetable in ovarian cancer.

This led to a lumping of different subtypes into just the term epithelial ovarian cancer, which prevented us from seeing significant differences. And now we look at epithelial ovarian cancer as having different sorts of categories. We look primarily at high-grade serous and high-grade endometrioid carcinoma for those tumors that have TP53 alterations as one group of tumors. We’re looking differently now at clear cell tumors as a different molecular subtype and what may be targetable there. We look at the low-grade serous subtype as an entirely different disease than high-grade epithelial ovarian cancer in general. It has completely different origins and molecular drivers, and it should be really considered a distinct disease, in my opinion. And then mucinous ovarian cancer is just so rare, and very difficult to treat and is a completely different disease in and of itself.

With that kind of separation of histologies, we’ve gotten a little bit better with standard chemotherapies, because those tumors that are TP53-altered do respond better to chemotherapy, especially in the front line. Carboplatin, which is a DNA damaging agent, is going to work better in tumors that are driven by loss of TP53. These have lost checkpoint 1 and are relying on checkpoint 2, which can also be altered to repair DNA damage. We see responses to frontline therapy being very robust and sometimes of good duration, whereas, in the other histologic subtypes [eg, clear cell, low-grade serous, mucinous], those responses are far less because they’re different molecular drivers.

Once tumors recur—and, unfortunately, the expectation for a good majority of our patients is that these tumors will recur—we’ll reuse platinum-based therapies, and it may work again or it may not. Ultimately, all these tumors develop resistances to platinum. And then we are left with these nontherapeutic cytotoxic agents, such as weekly paclitaxel, which does retain a pretty good response rate in the platinum-resistance setting of about 30%, so it’s not a bad option. After that, though, pegylated liposomal doxorubicin, gemcitabine, topotecan, and oral etoposide, all of these have really pretty dismal expectations for response, and the clinical benefit is relatively low. So the constant development of resistances to these agents is a challenge and we start to run through things quickly.

That’s been the state of affairs for a long time, but with increased understanding of targets we now know are present in ovarian cancer, this is changing. The biggest example is universal testing for germline mutations and BRCA1 and BRCA2, and other high-penetration genes. BRCA1 and BRCA2 are not only prognostic for how a tumor will respond to chemotherapy and how a patient will do over time, but they’re...
also predictive of response to DNA damage therapies, such as carboplatin, pegylated liposomal doxorubicin, and—most importantly—PARP inhibitors, which have been moved into frontline maintenance in this setting.17

Another example is the emergence of somatic testing. Among patients with no BRCA1 or BRCA2 germline mutation, 7% of patients will have tumors that harbor these mutations. While the prognostic implication of that isn’t as understood, because it’s a relatively recent discovery, the predictive significance of finding that in terms of response to PARP inhibition is as strong as that of a germline mutation.18 So somatic testing for BRCA and other high-penetrance genes, has become an expectation. Assays that are testing for vulnerability as to how a tumor fixes its DNA—we call these homologous recombination deficiency assays—have given us additional information on patients who don’t have a BRCA mutation, either germline or somatic, but who have other alterations in the tumor that render it vulnerable to DNA-damaging therapies, such as PARP inhibitors.

Some patients are going to be cured with PARP inhibitors in the front line, and we’re starting to see that data emerge in 2022, and we’ll see more of it in 2023.19 And many patients benefit, but we’re still seeing recurrences. And so there’s still this drive for identifying other targets—either mutational targets, epigenetic targets, or cell-surface antigens—that can be targeted by a new class of drugs called antibody-drug conjugates (ADCs) to try and individualize the therapies we select for our patients in a more precision-medicine way so that we are delivering appropriate therapies in the right sequence over time.

And so this is really being just driven continuously by understanding molecular drivers, and, also, the importance and function of these cell-surface antigens and ways we can best exploit them to therapeutic benefit and, hopefully, less toxicity.

Q: What kinds of testing do you recommend to identify ADC targets on tumor cells?

MOORE: At the current time, for ovarian cancer, we don’t have any approved ADCs. It hopefully will change in 2022, as we await the FDA decision on the ADC mirvetuximab.20 Currently, for ovarian cancer, there’s no established testing for an approved drug. However, there are things that we can do. If mirvetuximab is approved, we will start testing archival tissue via IHC for its target, which is folate receptor alpha.

For a lot of these ADCs, the testing is going to be relatively simple. These are mainly going to be IHC tests looking for antigens that are overexpressed or exclusively expressed on the tumor cell as related to normal cells. In the case of mirvetuximab, we’re looking for FOLR1, which is almost ubiquitously expressed on high-grade serous ovarian cancer. About 80% of tumors will have some expression, and in 40% of tumors, it will be high.21

There are other ADCs that have different markers, such as the sodium-gated phosphate channel NaPi2b. It’s a lineage marker for ovarian cancer, and it is almost ubiquitously expressed on ovarian cancer. It also has degrees of positivity. The up-and-coming trials in the ADC [upiqtamab rilsodotin] will also be looking at a certain level of NaPi2b expression.22

Other markers haven’t required testing up front (eg, TROP2). In cervical cancer, tissue factor hasn’t required testing, because the target is so ubiquitously expressed. The one exception to IHC testing may be for ADCs that are targeting HER2. Now, the IHC tests apply here—and I’ll come back to that point—but when we send next-generation sequencing tests, we’ll find these ERBB2 or HER2 amplifications, which may also identify tumors that would be susceptible to treatment with ADCs targeting HER2.23

Types of testing will evolve over time as agents are approved. We’re just getting to the point where we can start having those conversations for ovarian cancer, but I do believe it will move up. When you have a diagnosis of epithelial ovarian cancer, there’ll be this panel of IHC that you do. You’re going to know your BRCA status, both either germline or somatic. You’re going to know your homologous recombination deficiency test status. And now you’re going to know your FOLR1 status.

And then we’re going to have to figure out when there’s overlapping positivity. For example, what if you’re FOLR1-high and NaPi2b-high? How do you sequence those drugs? We’re going to have to figure that out over time. But I think there’ll be a panel of tests that are sent so that we know what is and is not on a patient’s option list moving forward.

I think the other thing that will change, and is already changing, is specific to the HER2 story. One of the big stories for 2022 was the advocacy of ADCs in targeting breast cancer...
tumors that were previously considered to be HER2-low. They didn’t fall into that HER2-positive, either HER 3+ or 2+ with fluorescence in situ hybridization [FISH]. And so we weren’t accessing traditional HER2-targeted agents, such as trastuzumab and pertuzumab. However, trastuzumab deruxtecan has a phenomenal benefit in breast cancer tumors that are HER2-low.26 So that’s IHC 1+ or IHC 2+, and FISH-negative. This is going to be very important in endometrial cancer.27 It may be important in ovarian cancer, as well, where we’ve never tested for HER2, because HER2 positivity by traditional diagnostics was very low.23 But we don’t really know what HER2-low is in ovarian cancer. And so identifying these markers in tumors may be important—to have that knowledge so you can offer these exciting agents to patients.

It’s not just the incorporation of these IHC tests into the diagnostics for ovarian cancer, but it’s also evolving over time, what we call “positive.” It’s a continuous change in how you interpret pathology, which can be quite challenging not only for a provider, but also for pathologists. Now we’re changing the rules on an uncommon subset of tumors so we can identify our best therapeutic options for patients. This is really a moving target right now, but it’s worth the work that’s going into it, because it’s going to be practice-changing for women with ovarian cancer.

Q: Should testing be repeated when a patient relapses after chemotherapy? Do the results change over time in individual patients?

MOORE: We don’t really know yet what temporal heterogeneity does to the expression of any of these IHC markers, with the exception of mirvetuximab and FOLR1. There was a specific study done where the patients could enroll in the trial based on our archival tissue positivity, but then, before they got their first dose, they had another biopsy done, and it was restained. The concordance was actually quite high. There were some on the edges that were not concordant, but the concordance was quite high, over 80%.28 And so at least for FOLR1, it was not believed that a new biopsy needed to be obtained. And these were all done in a phase 1 setting, so very heavily pretreated and quite temporally distant from the archival specimen. And we still showed that concordance.

For FOLR1, based on current knowledge, I would say, “No.” My sense with NaPi2b is the same in that it is a lineage marker. HER2 may be another story, especially if you’re looking at HER2-low—there may be temporal and spatial heterogeneity that we don’t understand yet in gynecologic cancers, because it hasn’t been as widely studied as it has been in breast cancer. And the others—TROP2, tissue factor, and cadherin-6—are all very new.

At this point, all the studies are based on archival tissue positivity. Many of the studies that are in phase 1, like the cadherin study, are doing a pretissue biopsy.29 If we see signals that the proximal biopsy is more selective, that may prompt us to change our behavior with how we assess a patient’s eligibility for these drugs over time, but right now we’re just using archival. The only time I would use a proximal biopsy is if I didn’t have enough archival to test, and then I would get another biopsy to look.

KEY REFERENCES

For full reference list, visit http://www.gotoper.com/adc22sts-art
Hear timely & informative insights from some of the leading voices in the field.

Listen: www.cancernetwork.com/resources/podcasts