
WebRTC

Ilya Grigorik - @igrigorik
Web Performance Engineer
Google

HTTP 2.0
Why now? What is it?

HTTP 2.0 goals

● Improve end-user perceived latency
● Address the "head of line blocking"
● Not require multiple connections
● Retain the semantics of HTTP/1.1

"a protocol designed for low-latency transport
of content over the World Wide Web"

@igrigorik

"1000 ms time to
glass challenge"

Delay User reaction

0 - 100 ms Instant

100 - 300 ms Slight perceptible delay

300 - 1000 ms Task focus, perceptible delay

1 s+ Mental context switch

10 s+ I'll come back later...

● Simple user-input must be acknowledged within ~100 milliseconds.
● To keep the user engaged, the task must complete within 1000 milliseconds.

 Ergo, our pages should render within 1000 milliseconds.

Speed, performance and human perception

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION

HTTP Archive

Content Type
Desktop Mobile

Avg # of requests Avg size Avg # of requests Avg size

HTML 10 56 KB 6 40 KB

Images 56 856 KB 38 498 KB

Javascript 15 221 KB 10 146 KB

CSS 5 36 KB 3 27 KB

Total 86+ 1169+ KB 57+ 711+ KB

Our applications are complex, and growing...

Ouch!

http://httparchive.org/trends.php#bytesTotal&reqTotal
http://httparchive.org/trends.php#bytesTotal&reqTotal

Is the web getting faster? - Google Analytics Blog

Desktop: ~3.1 s
Mobile: ~3.5 s

@igrigorik

"It’s great to see access
from mobile is around
30% faster compared to
last year."

http://analytics.blogspot.com/2013/04/is-web-getting-faster.html
http://analytics.blogspot.com/2013/04/is-web-getting-faster.html

Great, network will save us?
Right, right? We can just sit back and...

Average connection speed in Q4 2012: 5000 kbps+

State of the Internet - Akamai - 2007-2012

http://www.akamai.com/stateoftheinternet/
http://www.akamai.com/stateoftheinternet/

Fiber-to-the-home services provided 18 ms round-trip latency on average, while cable-based services
averaged 26 ms, and DSL-based services averaged 43 ms. This compares to 2011 figures of 17 ms for
fiber, 28 ms for cable and 44 ms for DSL.

Measuring Broadband America - July 2012 - FCC @igrigorik

http://www.fcc.gov/measuring-broadband-america/2012/july
http://www.fcc.gov/measuring-broadband-america/2012/july

Worldwide: ~100 ms
US: ~50~60 ms

Average RTT to Google in 2012 was...

● Improving bandwidth is "easy"...
○ 60% of new capacity through upgrades in past decade + unlit fiber
○ "Just lay more fiber..."

● Improving latency is expensive... impossible?
○ Bounded by the speed of light - oops!
○ We're already within a small constant factor of the maximum
○ "Shorter cables?"

$80M / ms

Latency is the new Performance Bottleneck @igrigorik

http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

Latency vs. Bandwidth impact on Page Load Time

Average household in is running on a 5 Mbps+ connection. Ergo, average consumer would not see
an improvement in page loading time by upgrading their connection. (doh!)

Bandwidth doesn't matter (much) - Google @igrigorik

Single digit perf
improvement after
5 Mbps

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

Bandwidth doesn't matter (much)*
(for web browsing)

And then there’s mobile...
Variable downloads speeds, spikes in latency… but why?

Inbound packet flow

LTE HSPA+ HSPA EDGE GPRS

AT&T core
network latency 40-50 ms 50-200 ms 150-400 ms 600-750 ms 600-750 ms

... all that to send a single TCP packet?

OK. Latency is a problem.
But, how does it affect HTTP and web browsing in general?

TCP Congestion Control & Avoidance...
● TCP is designed to probe the network to figure out the available capacity
● TCP does not use full bandwidth capacity from the start!

@igrigorik

TCP Slow Start is a feature, not a bug.

Congestion Avoidance and Control

http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL
http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL

Let's fetch a 20 KB file via a low-latency link (IW4)...

● 5 Mbps connection
● 56 ms roundtrip time (NYC > London)
● 40 ms server processing time

@igrigorikCongestion Avoidance and Control

Plus DNS and TLS roundtrips

4 roundtrips, or 264 ms!

http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL
http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL

● No pipelining: request queuing
● Pipelining*: response queuing

HTTP does not support multiplexing!

HOL

client server

● Head of Line blocking
○ It's a guessing game...
○ Should I wait, or should I pipeline?

@igrigorik

● 6 connections per host on Desktop
● 6 connections per host on Mobile (recent builds)

 So what, what's the big deal?

Lets just open multiple TCP connections! Easy, right..?

@igrigorik

The (short) life of a web request

@igrigorik

● (Worst case) DNS lookup to resolve the hostname to IP address
● (Worst case) New TCP connection, requiring a full roundtrip to the server
● (Worst case) TLS handshake with up to two extra server roundtrips!

● HTTP request, requiring a full roundtrip to the server
● Server processing time

HTTP Archive says...
● 1169 KB, 86 requests, ~15 hosts... or ~14 KB per request!
● Most HTTP traffic is composed of small, bursty, TCP flows.

You are here

1-3 RTT's

Where we
want to be

@igrigorik

3G (200 ms RTT) 4G (100 ms RTT)

Control plane (200-2500 ms) (50-100 ms)

DNS lookup 200 ms 100 ms

TCP Connection 200 ms 100 ms

TLS handshake (optional) (200-400 ms) (100-200 ms)

HTTP request 200 ms 100 ms

Total time 800 - 4100 ms 400 - 900 ms

Anticipate network latency overhead

Let's fetch a 20 KB file via a 3G / 4G link...

x4 (slow start)

One 20 KB HTTP request!

http://chimera.labs.oreilly.com/books/1230000000545/ch08.html#MOBILE_NETWORK_LATENCY_OVERHEAD
http://chimera.labs.oreilly.com/books/1230000000545/ch08.html#MOBILE_NETWORK_LATENCY_OVERHEAD

Updates CWND from 3 to 10 segments, or ~14960 bytes.

Default size on Linux 2.6.33+, but upgrade to 3.2+ for best performance.

An Argument for Increasing TCP's initial Congestion window @igrigorik

https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf
https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf

When there’s a will, there is a way...
web developers are an inventive bunch, so we came up with some “optimizations”

● Concatenating files (JavaScript, CSS)
○ Reduces number of downloads and latency overhead
○ Less modular code and expensive cache invalidations (e.g. app.js)
○ Slower execution (must wait for entire file to arrive)

● Spriting images
○ Reduces number of downloads and latency overhead
○ Painful and annoying preprocessing and expensive cache invalidations
○ Have to decode entire sprite bitmap - CPU time and memory

● Domain sharding
○ TCP Slow Start? Browser limits, Nah... 15+ parallel requests -- Yeehaw!!!
○ Causes congestion and unnecessary latency and retransmissions

● Resource inlining
○ Eliminates the request for small resources
○ Resource can’t be cached, inflates parent document
○ 30% overhead on base64 encoding

… why not fix HTTP instead?

(hopefully now you’re convinced we really need it)

● Improve end-user perceived latency
● Address the "head of line blocking"
● Not require multiple connections
● Retain the semantics of HTTP/1.1

HTTP 2.0 is a protocol designed for low-latency
transport of content over the World Wide Web ...

Brief history of HTTP 2.0...

1. Jan 2012 Call for Proposals for HTTP/2.0
2. Oct 2012 First draft of HTTP/2.0, based on draft-mbelshe-httpbis-spdy-00
3. Jul 2013 First “implementation” draft (04) of HTTP 2.0
4. Apr 2014 Working Group Last call for HTTP/2.0
5. Nov 2014 Submit HTTP/2.0 to IESG for consideration as a Proposed Standard

@igrigorik

Earlier this month… interop testing in Hamburg!
● ALPN patch landed for OpenSSL
● Firefox implementation of 04 draft
● Chrome implementation of 04 draft
● Google GFE implementation of 04 draft (server)
● Twitter implementation of 04 draft (server)
● Microsoft (Katana) implementation of 04 draft (server)
● Perl, C#, node.js, Java, Ruby, … and more.

Moving fast, and (for once), everything looks on schedule!

http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=6f017a8f9db3a79f3a3406cf8d493ccd346db691
http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=6f017a8f9db3a79f3a3406cf8d493ccd346db691
https://wiki.mozilla.org/Networking/http2
https://wiki.mozilla.org/Networking/http2
https://github.com/http2/http2-spec/wiki/Fredschromium
https://github.com/http2/http2-spec/wiki/Fredschromium
http://msopentech.com/blog/2013/07/29/start-testing-with-first-implementation-of-ietf-http2-0-draft-from-ms-open-tech/
http://msopentech.com/blog/2013/07/29/start-testing-with-first-implementation-of-ietf-http2-0-draft-from-ms-open-tech/
https://github.com/http2/http2-spec/wiki/Implementations

● One TCP connection
● Request = Stream

○ Streams are multiplexed
○ Streams are prioritized

● (New) binary framing layer
○ Prioritization
○ Flow control
○ Server push

● Header compression

HTTP 2.0 in a nutshell

@igrigorik

 “... we’re not replacing all of HTTP — the methods, status
codes, and most of the headers you use today will be the
same. Instead, we’re re-defining how it gets used “on the
wire” so it’s more efficient, and so that it is more gentle to
the Internet itself”

- Mark Nottingham (chair)

● Length-prefixed frames
● Type indicates … type of frame

○ DATA, HEADERS, PRIORITY, PUSH_PROMISE, …
● Each frame may have custom flags

○ e.g. END_STREAM
● Each frame carries a 31-bit stream identifier

○ After that, it’s frame specific payload...

All frames have a common 8-byte header

@igrigorik

 frame = buf.read(8)

 if frame_i_care_about

 do_something_smart

 else

 buf.skip(frame.length)

 end

● Common 8-byte header
● Client / server allocate new stream ID

○ client: odd, server: even

Opening a new stream with HTTP 2.0 (HEADERS)

@igrigorik

● Optional 31-bit stream priority field
○ Flags indicates if priority is present
○ 2^31 is lowest priority

● HTTP header payload
○ see header-compression-01

http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-01
http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-01

● Each side maintains “header tables”
● Header tables are initialized with

common header key-value pairs

● New requests “toggle” or “insert”
new values into the table

● New header set is a “diff” of the
previous set of headers

● E.g. Repeat request (polling) with exact
same headers incurs no overhead
(sans frame header)

HTTP 2.0 header compression (in a nutshell)

@igrigorik

● Common 8-byte header
● Followed by application data…

● In theory, max-length = 2^16-1
● To reduce head-of-line blocking: max frame size is 2^14-1 (~16KB)

○ Larger payloads are split into multiple DATA frames, last frame carries “END_STREAM” flag

Sending application data with … DATA frames.

@igrigorik

● Single TCP connection
● Streams are multiplexed by splitting communication into frames

○ e.g. HEADERS, DATA, etc.

● Frames are interleaved
○ Frames can be prioritized (by the server)
○ Frames can be flow controlled

● In diagram above: 3 active streams, all client initiated (odd).

Basic data flow in HTTP 2.0...

@igrigorik

We’re multiplexing multiple streams within a single TCP connection!
● Priority signals to the server the relative order of each stream
● Stream flow-control enables fine-grained resource control between streams
● Connection flow-control enables resource control between connections (e.g. proxies)

Very simple mechanism...
● Each stream and connection starts with 64KB window
● (only) DATA frames decrement the window
● Window size is updated by WINDOW_UPDATE frame

Stream / Connection flow-control

@igrigorik

If the server knows you’ll need script.js, style.css, why not push it to the client?
● Server initiates a stream via PUSH_PROMISE frame (similar to HEADERS)
● Must send PUSH_PROMISE to avoid client race condition (i.e. requesting same resource)
● Pushed resources are subject to same-origin policy
● How do you know when to push? Good question...

Server push… aka, replacement to inlining!

@igrigorik

HTTP Upgrade flow from HTTP 1.x

Alternatively, use ALPN + TLS negotiation:

1. Client advertises in ClientHello
○ ProtocolNameList: http/2.0

2. Server selects protocol and in ServerHello
○ ProtocolName: http/2.0

● ALPN is the preferred negotiation method
for HTTP 2.0
○ Alas, proxies, intermediaries…

● ALPN negotiation is protocol agnostic and can
be used for other applications also!

@igrigorik

 GET /page HTTP/1.1
 Host: server.example.com
 Connection: Upgrade
 Upgrade: HTTP/2.0
 HTTP2-Settings: (SETTINGS payload)

 HTTP/1.1 200 OK
 Content-length: 243
 Content-type: text/html

 (... HTTP 1.1 response ...)

 (or)

 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: HTTP/2.0

 (... HTTP 2.0 response ...)

● Optimizing TCP server stacks
● Optimizing TLS deployments
● Optimizing for mobile networks
● HTTP 2.0 features, framing, deployment...
● XHR, SSE, WebSocket, WebRTC, ...

For an in-depth discussion on all of the above...

http://bit.ly/1fgTOsj
</shameless self promotion>

http://bit.ly/1fgTOsj
http://bit.ly/1fgTOsj

So, where does that leave us?
sounds great and all, but how do we adapt and adopt HTTP 2.0?

Let’s work bottom up...

Application

HTTP 1.x - 2.0

TLS
TCP

● Upgrade kernel: Linux 3.2+
● IW10 + disable slow start after idle
● TCP window scaling
● Position servers closer to the user
● Reuse established TCP connections
● Compress transferred data
●

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

Application

HTTP 1.x - 2.0

TLS
TCP

● Upgrade TLS libraries
● Use session caching / session tickets
● Early TLS termination (CDN)
● Optimize TLS record size
● Optimize certificate size
● Disable TLS compression
● Configure SNI support
● Use HTTP Strict Transport Security
●

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

Application

HTTP 1.x - 2.0

TLS
TCP

HTTP 1.x hacks:

● Concatenate files (CSS, JS)
● Sprite small images
● Shard assets across origins
● Minimize protocol overhead
● Inline assets
●

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

Application

HTTP 1.x - 2.0

TLS
TCP

HTTP 2.0 to the rescue!

● Unshard your assets (step 1)
● Undo other HTTP 1.x hacks... :-)
● Leverage server push
●

● Simpler applications, faster
delivery, better caching, fewer
server resources… \o/

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

● Full request & response multiplexing
● Mechanism for request prioritization
● Stream and connection flow control

● Many small files? No problem
● Better TCP throughput
● Fewer TCP connections
● More efficient use of server resources
● Low overhead HTTP transfers

○ Header compression
○ Binary framing

Benefits

@igrigorik

Opportunities

● Develop smarter servers
○ Improved prioritization
○ Stream flow control
○ Smart resource push (mobile!)

● Develop smarter clients
○ Low latency, low overhead ...
○ Eliminate other RPC layers …
○ Ready to use if you control both

client and server

● Help sites/apps migrate to HTTP 2.0
○ HTTP 1.x will be around for a while
○ Smart proxies / load balancers

Ilya Grigorik - @igrigorik
igvita.com

Slides @ http://bit.ly/18ZaMd7

Questions?

http://bit.ly/1fgTOsj

http://bit.ly/18ZaMd7
http://bit.ly/1fgTOsj
http://bit.ly/1fgTOsj

Can haz SPDY?
Apache, nginx, Jetty, node.js, ...

● Chrome, since forever..
○ Chrome on Android + iOS

● Firefox 13+
● Next stable release of Opera

Server
● mod_spdy (Apache)
● nginx
● Jetty, Netty
● node-spdy
● ...

Who supports SPDY?

3rd parties
● Twitter
● Wordpress
● Facebook*

● Akamai
● Contendo
● F5 SPDY Gateway
● Strangeloop
● ...

All Google properties
● Search, GMail, Docs
● GAE + SSL users
● ...

@igrigorik

Apache + SPDY

● mod_spdy is an open-source Apache module
● drop in support for SPDY

SDK @igrigorik

http://code.google.com/p/page-speed/wiki/DownloadPageSpeed
http://code.google.com/p/page-speed/wiki/DownloadPageSpeed

Installing mod_spdy in your Apache server

● Configure mod_proxy + mod_spdy: https://gist.github.com/3817065
○ Enable SPDY for any backend app-server
○ SPDY connection is terminated by Apache, and Apache speaks HTTP to your app server

$ sudo dpkg -i mod-spdy-*.deb
$ sudo apt-get -f install
$ sudo a2enmod spdy

$ sudo service apache2 restart

1

2 Profit

@igrigorik

https://gist.github.com/3817065

Building nginx with SPDY support

 $ wget http://openssl.org/source/openssl-1.0.1c.tar.gz
 $ tar -xvf openssl-1.0.1c.tar.gz

 $ wget http://nginx.org/download/nginx-1.3.4.tar.gz
 $ tar xvfz nginx-1.3.4.tar.gz
 $ cd nginx-1.3.4

 $ wget http://nginx.org/patches/spdy/patch.spdy.txt
 $ patch -p0 < patch.spdy.txt

1

2

@igrigorik

 $./configure ... --with-openssl='/software/openssl/openssl-1.0.1c'
 $ make
 $ make install

3 Profit

http://blog.bubbleideas.com/2012/08/How-to-set-up-SPDY-on-nginx-for-your-rails-app-and-test-it.html

http://blog.bubbleideas.com/2012/08/How-to-set-up-SPDY-on-nginx-for-your-rails-app-and-test-it.html
http://blog.bubbleideas.com/2012/08/How-to-set-up-SPDY-on-nginx-for-your-rails-app-and-test-it.html

node.js + SPDY
var spdy = require('spdy'),
 fs = require('fs');

var options = {
 key: fs.readFileSync(__dirname + '/keys/spdy-key.pem'),
 cert: fs.readFileSync(__dirname + '/keys/spdy-cert.pem'),
 ca: fs.readFileSync(__dirname + '/keys/spdy-csr.pem')
};

var server = spdy.createServer(options, function(req, res) {
 res.writeHead(200);
 res.end('hello world!');
});

server.listen(443);

1

@igrigorik

2 Profit

https://github.com/indutny/node-spdy

https://github.com/indutny/node-spdy
https://github.com/indutny/node-spdy

Jetty + SPDY

1

@igrigorik http://www.smartjava.org/content/how-use-spdy-jetty

Copy X pages of maven XML configs

2 Add NPN jar to your classpath

3 Wrap HTTP requests in SPDY, or copy copius amounts of XML...

...

N Profit

I <3 Java :-)

http://www.smartjava.org/content/how-use-spdy-jetty
http://www.smartjava.org/content/how-use-spdy-jetty

● Chrome, since forever..
○ Chrome on Android + iOS

● Firefox 13+
● Opera 12.10+

Server
● mod_spdy (Apache)
● nginx
● Jetty, Netty
● node-spdy
● ...

How do I use HTTP 2.0 today? Use SPDY...

3rd parties
● Twitter
● Wordpress
● Facebook

● Akamai
● Contendo
● F5 SPDY Gateway
● Strangeloop
● ...

All Google properties
● Search, GMail, Docs
● GAE + SSL users
● ...

@igrigorik

● Chrome SPDY indicator
● Firefox indicator
● Opera indicator

SPDY indicator(s)

@igrigorik

In Chrome console:

https://chrome.google.com/webstore/detail/spdy-indicator/mpbpobfflnpcgagjijhmgnchggcjblin
https://chrome.google.com/webstore/detail/spdy-indicator/mpbpobfflnpcgagjijhmgnchggcjblin
https://addons.mozilla.org/en-us/firefox/addon/spdy-indicator/
https://addons.mozilla.org/en-us/firefox/addon/spdy-indicator/
https://addons.opera.com/en/extensions/details/spdy-indicator/
https://addons.opera.com/en/extensions/details/spdy-indicator/

chrome://net-internals#spdy

@igrigorik Try it @ https://spdy.io/ - open the link, then head to net-internals & click on stream-id

https://spdy.io/

