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Let’s start with the obvious

Dev tools companies often founded by devs
Many dogfood their own products

Early on your product does one thing and
you're really close to it

This is what I love as a designer

Engineers who care about the UX since they
are themselves users

Chances are making software will never feel
more personal to you than it does right now
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You're already connected with customers

In the early days you're defining
core assumptions about your users

These stay with you essentially forever

Everything you build connects to them
You may know these as Personas

I've never liked the dogma around
Personas, User Stories, etc—but the
need to understand and evangelize
these definitions is crucial




What this looks like at Datadog
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Recruiting and managing design partners

One of our most well-worn processes

Identify a small number customers interested in the problem you're trying to solve
* Bigusers of product

* Support tickets about problem

* CSM knows customer is concerned about problem

Recruit the most vocal/helpful as Design Partners

* These people are special™

Show them ideas, mockups

Run a private beta, treat all feedback as high-priority

If you're on the right track, release it more widely



Example: Dashboards



Persona: engineer at
a software company

e User story: “I need to troubleshoot
issues with a service(s) I work on”
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* I make one dashboard per service”
“l include clusters of widgets for dependent services/infra”
“I design a dashboard as a 2-column matrix”
* I visually cluster and organize widgets”

“I put the most important metrics on top”

Customer quotes



* I make one dashboard per service”
“l include clusters of widgets for dependent services/infra”
“I design a dashboard as a 2-column matrix”
* I visually cluster and organize widgets”

“I put the most important metrics on top”

Cloud-native + DevOps
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Trustus

* 400+ integrations

* Out-of-the-box dashboards for most

integrations
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What we built

* Widget groups

* Revamped OOTB dashboards using
widget groups

* Copy and paste for widgets & groups
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From explorations to shared resources

Whether you have joined a new team or are designing a new service, you often
need to gather data from different contexts while building an overall picture of
your infrastructure and applications. The Datadog Clipboard streamlines this

. process by letting you gather relevant signals without leaving your current
Datadog tab.
a W‘ Sal As you explore your team’s resources, any graphs you copy are automatically
stored in the Clipboard. You can easily export these graphs to a Notebook.

Notebooks can serve as personal guides or resources to share with your
teammates, who can edit them in real time and add comments for discussion.
This way, you can use the Clipboard to easily create runbooks, allowing

°

B I o OSt O n C I I boq rd teammates to benefit from your research when deploying a new service,
scaling up a cluster, or verifying that a service can communicate with a new
dependency.

In this example, we are adding signals to an existing runbook from the
Clipboard as we learn more about one of our services.

Webstore runbook € an  Past4Hours - «d = %

High error rates during checkout

e Shared resources

Because orders within the webstore are complex, we distribute order processing across multiple
instances for parallelization. But the tradeoff is that we can't isolate errors, which can cause
multiple instances to become unavailable at once. As a result, faulty webstore code can
sometimes cause a wave-like pattern in the count of errors and the count of instances.

e Easier dashboard creation

* Frictionless troubleshooting

New Dashboard

Apm/Service/Web-Store/Ra... Latency On Service Web-Sto... |l Avg Of @Duration
" r New Notebook
web-store (env:shop.ist) Shopist Web Store Timeboard [ Shop.ist Screenboard

New Incident

Webstore runbook

Clear All Clips webstore runbook]

Easier dashboard creation

You can also use the Datadog Clipboard to create dashboards more efficiently.

For example, let’s say you are deploying a new feature and want to
understand how your users interact with it. While browsing through Datadog
—e.g., graphs of RUM analytics data or browser logs—you copy widgets to
the Clipboard. Once you’ve amassed a complete picture of your data, you
select the signals you want to export, then click “Add to a new dashboard.”
Datadog will automatically create a dashboard from the selected signals.
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The dance

Courting stakeholders






Product and design briefs

The inside-out approach, court your team

Start with the persona(s) and use cases

Define successful outcomes and workflows

We started creating these in response to “design failures”
* 7-+iterations of design without agreement on solution

Our biggest launch failures have nearly always been due to lack of clarity in persona
development



What launch failure looks like

We model the persona in the wrong way
Private beta users “don’t get it”
Tear-down as opposed to design iteration
Months of development time lost
Sunken cost fallacy makes this worse

* Be willing to accept medium-scale failure to avoid large-scale failure






Press release-driven development

The outside-in approach, court your customers

Amazon thing: “working backwards”

Imagine how your customers will understand the feature up front
We don’t formally practice this

We tried this a few times

* Product teams cannot work from only a press release

* I'have found myself advocating against them

If you like your designers and engineers you will write proper product briefs also



Bundle & upsell

* Adding to the customer model is the core
dynamic of the business

* Augment the persona with new stories,
upsell on those stories

* Weadded APM and Logs: three pillars
of observability

* Complete picture now means
connecting L.ogs to Traces

* Security, RUM and other products
starting to stretch into new user types
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This also defines how teams are organized

* You add more and more user types and personas
* Pods exist to own distinct customer types
* We organize the Design org around this

* Design teams structured around related products for distinct customer types



In conclusion

Start with a small number of assumptions about our core user types

Recruit small numbers of people into design partner groups based on strong matches from
those assumptions

Over time, bolt on more assumptions and add features/products to meet them
* Upsell based on those value-adds
Organize teams around subgroups of those assumptions

That’s basically where we are today as a $25B+ company



Thanks!

Steve Boak ¢ VP, Product Design @ Datadog @sboak




