The courtship dance
of product discovery

Steve Boak ¢ VP, Product Design @ Datadog @sboak

2016—Present

Datadog

2015-2016 (Co-founder & CPO)

Opsee (Heavybit)

2013-2015 (Acq. by New Relic)

Opsmatic

2011-2013 (Acq. by BMC)

Boundary

Datadog

EMPLOYEES CUSTOMERS

2,000+ DevOps

FOUNDED BUSINESS

2010 SaaS

&

Let’s start with the obvious

Dev tools companies often founded by devs
Many dogfood their own products

Early on your product does one thing and
you're really close to it

This is what I love as a designer

Engineers who care about the UX since they
are themselves users

Chances are making software will never feel
more personal to you than it does right now

HEAVYDII

INDUSTRIES

You're already connected with customers

In the early days you're defining
core assumptions about your users

These stay with you essentially forever

Everything you build connects to them
You may know these as Personas

I've never liked the dogma around
Personas, User Stories, etc—but the
need to understand and evangelize
these definitions is crucial

What this looks like at Datadog

- EEN
ab ‘Q
DevOps Cloud-native Trust us
e Devs managing their e Hybrid infrastructure e Trustour expertise
own infrastructure e Dynamic, ephemeral e “Show me the best way to
e Breaking down silos environments monitor X”
e Using a wide range of e Lookto usforbest

technologies practices

Recruiting and managing design partners

One of our most well-worn processes

Identify a small number customers interested in the problem you're trying to solve
* Bigusers of product

* Support tickets about problem

* CSM knows customer is concerned about problem

Recruit the most vocal/helpful as Design Partners

* These people are special™

Show them ideas, mockups

Run a private beta, treat all feedback as high-priority

If you're on the right track, release it more widely

Example: Dashboards

Persona: engineer at
a software company

e User story: “I need to troubleshoot
issues with a service(s) I work on”

O D

DevOps Cloud-native Trust us

 McNulty

Add Graphs +

$PSHARD *v @

-~ 6 &

‘ Q Search events to overlay...

© @ Show| 5m Oct 31, 3:57PM - Oct 31, 4:02PM

v« >]

Resp time by haproxy svc & elb (avg)
15

1

0.5 s

15:58 15:59 16:00 16:01 16:02

10 most erroring api endpoints (err / sec)

15:58 15:59 16:00 16:01 16:02

Dogweb latency 95 percentile + Median
2K

1K

I——

0K

1558 15:59 16:00 16:01 16:02

Paster errors

1558 1559 16:00 16:01 16:02

Slow Requests By Page Per Second

0.33 account.update_integration

0.091 kima.web.api.monitor:monitorcontroller.mute_monitor
0.077 api/dash.update

0.067 api/search.search

0.059 kima.web.api.monitor:monitorcontroller.get

0.059 screen_get.board

0.056 kima.web.ui:monitorcontroller.manage

0.053 kima.web.api.monitor:monitorcontroller.get_state_history

CPU iowait max

String query latency

150
100
50
L Ll T T T
15:58 15:59 16:00 16:01 16:02
Restarts
00
) I_I_ll_ll
0
15:58 15:59 16:00 16:01 16:02

nginx down pages (maybe; i got a down page and didn't see it h...

0.06

0.04
0.02
0

15:58 15:59 16:00 16:01 16:02

Session get (+) & set (-) latency (avg p50 & p95 ms; cassandra)

5xx resps by haproxy svc (%) 5xx resp by haproxy svc & elb (reqs / sec)
10 1

0.5

15:58 15:59 16:00 16:01 16:02

1xx, 3xx, & 4xx haproxy resps (reqs / sec) 2xx resps by haproxy svc (reqs / sec)
400 4K

200

15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02

Gunicorn 500, 504 timeout, 512 resps (rate) Paster latency

0.1 1K
0.05 0.5K
0 0K T

15:58 15:59 16:00 16:01 16:02 1558 15:59 16:00 16:01 16:02

Requests (dogweb stats) 10 Slowest Pages

150K
1K
100K
0.5K
50K
0K ; , T T 1 0K
15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02
Static file resp by status (rate? count? who knows!) CPU usage by host (%)

200

100

0
15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02

Used memory by host (%) [mcnulty-web] Network throughput

N T . 1 T N T T
15:58 15:59 16:00 16:01 16:02 1558 1559 16:00 16:01 16:02

Busy gunicorn workers by pool & az (%) dogweb cache hit percentage by cache
T N 1 N T N T - 1
15:58 15:59 16:00 16:01 16:02
Gunicorn errors (% reqs / status / host) Dogweb errors (rate / host)
4
2
1 errpor every 1000 requests
A l_____‘__?_ _______ IA__—_[I_—_\ _____ { L Ll T T T
15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02

Query cache errors (rate) Query cache get (+) & set (TODO -) latency (avg p50 & p95)

0.2

0.1]

0
15:58 15:59 16:00 16:01 16:02 1558 1559 16:00 16:01 16:02

——— e ——

Session Storage Latency (ms)- app.datadoghq.com/dash/41814 Frontend index errors (rate)

* I make one dashboard per service”
“l include clusters of widgets for dependent services/infra”
“I design a dashboard as a 2-column matrix”
* I visually cluster and organize widgets”

“I put the most important metrics on top”

Customer quotes

* I make one dashboard per service”
“l include clusters of widgets for dependent services/infra”
“I design a dashboard as a 2-column matrix”
* I visually cluster and organize widgets”

“I put the most important metrics on top”

Cloud-native + DevOps

 McNulty

Add Graphs +

$PSHARD *v @

-~ 6 &

‘ Q Search events to overlay...

© @ Show| 5m Oct 31, 3:57PM - Oct 31, 4:02PM

v« >]

Resp time by haproxy svc & elb (avg)
15

1

0.5 s

15:58 15:59 16:00 16:01 16:02

10 most erroring api endpoints (err / sec)

15:58 15:59 16:00 16:01 16:02

Dogweb latency 95 percentile + Median
2K

1K

I——

0K

1558 15:59 16:00 16:01 16:02

Paster errors

1558 1559 16:00 16:01 16:02

Slow Requests By Page Per Second

0.33 account.update_integration

0.091 kima.web.api.monitor:monitorcontroller.mute_monitor
0.077 api/dash.update

0.067 api/search.search

0.059 kima.web.api.monitor:monitorcontroller.get

0.059 screen_get.board

0.056 kima.web.ui:monitorcontroller.manage

0.053 kima.web.api.monitor:monitorcontroller.get_state_history

CPU iowait max

String query latency

150
100
50
L Ll T T T
15:58 15:59 16:00 16:01 16:02
Restarts
00
) I_I_ll_ll
0
15:58 15:59 16:00 16:01 16:02

nginx down pages (maybe; i got a down page and didn't see it h...

0.06

0.04
0.02
0

15:58 15:59 16:00 16:01 16:02

Session get (+) & set (-) latency (avg p50 & p95 ms; cassandra)

5xx resps by haproxy svc (%) 5xx resp by haproxy svc & elb (reqs / sec)
10 1

0.5

15:58 15:59 16:00 16:01 16:02

1xx, 3xx, & 4xx haproxy resps (reqs / sec) 2xx resps by haproxy svc (reqs / sec)
400 4K

200

15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02

Gunicorn 500, 504 timeout, 512 resps (rate) Paster latency

0.1 1K
0.05 0.5K
0 0K T

15:58 15:59 16:00 16:01 16:02 1558 15:59 16:00 16:01 16:02

Requests (dogweb stats) 10 Slowest Pages

150K
1K
100K
0.5K
50K
0K ; , T T 1 0K
15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02
Static file resp by status (rate? count? who knows!) CPU usage by host (%)

200

100

0
15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02

Used memory by host (%) [mcnulty-web] Network throughput

N T . 1 T N T T
15:58 15:59 16:00 16:01 16:02 1558 1559 16:00 16:01 16:02

Busy gunicorn workers by pool & az (%) dogweb cache hit percentage by cache
T N 1 N T N T - 1
15:58 15:59 16:00 16:01 16:02
Gunicorn errors (% reqs / status / host) Dogweb errors (rate / host)
4
2
1 errpor every 1000 requests
A l_____‘__?_ _______ IA__—_[I_—_\ _____ { L Ll T T T
15:58 15:59 16:00 16:01 16:02 15:58 15:59 16:00 16:01 16:02

Query cache errors (rate) Query cache get (+) & set (TODO -) latency (avg p50 & p95)

0.2

0.1]

0
15:58 15:59 16:00 16:01 16:02 1558 1559 16:00 16:01 16:02

——— e ——

Session Storage Latency (ms)- app.datadoghq.com/dash/41814 Frontend index errors (rate)

McNu |ty Add Graphs +

SPSHARD *v @

Resp time by haproxy svc & elb (avg)
1.5

T T
15:59 16:00

10 most erroring api endpoints (err / sec)

Dogweb latency 95 percentile + Median
2K

Paster errors

Slow Requests By Page Per Second

0.33 account.update_integration

0.091 kima.web.api.monitor:monitorcontroller.mute_monitor

0.077 api/dash.update

0.067 api/search.search

0.059 kima.web.api.monitor:monitorcontroller.get
0.059 screen_get.board

0.056 kima.web.ui:monitorcontroller.manage

0.053 kima.web.api.monitor:monitorcontroller.get_state_history

CPU iowait max

. T T
15:58 15:59 16:00

String query latency
150
100
50

0

Restarts

100

nginx down pages (maybe; i got a down page and didn't see it h...

0.06

0.04
0.02
0- T T

T
15:58 15:59 16:00 16:01

Session get (+) & set (-) latency (avg p50 & p95 ms; cassandra)

5xx resps by haproxy svc (%)
10

1 errpr every 100 requests
0 = e ——

’ T T
15:58 15:59 16:00

1xX, 3xx, & 4xx haproxy resps (reqs / sec)
400

T T
15:59 16:00

Gunicorn 500, 504 timeout, 512 resps (rate)

0.1

0.05 A

i T f
15:58 15:59 16:00

1
16:01

Requests (dogweb stats)
1K

0.5K

0K -

Static file resp by status (rate? count? who knows!)

200

100

T ’ 1 T N 1
15:58 15:59 16:00 16:01
Used memory by host (%)

40

20

1 T
15:58 15:59 16:00

Busy gunicorn workers by pool & az (%)

Gunicorn errors (% reqs / status / host)

1 errpr every 1000 requests
0 A i
15:58 15:59

Query cache errors (rate)

T T T
15:58 15:59 16:00 16:01

Session Storage Latency (ms)- app.datadoghq.com/dash/41814

5xx resp by haproxy svc & elb (reqs / sec)
1

AT R

f T 1 T
15:58 15:59 16:00 16:01

2xx resps by haproxy svc (reqgs / sec)

Paster latency

10 Slowest Pages
150K

100K

CPU usage by host (%)

1 T
15:59 16:00

[mcnulty-web] Network throughput

T 1 1
15:58 15:59 16:00

dogweb cache hit percentage by cache

T 1 1
15:58 15:59 16:00

Dogweb errors (rate / host)

Query cache get (+) & set (TODO -) latency (avg p50 & p95)

0.2

0.1

0- — 1 T . 1
15:58 15:59 16:00 16:01

Frontend index errors (rate)

1
16:02

Trustus

* 400+ integrations

* Out-of-the-box dashboards for most

integrations

72 HAProxy v + addwidgets

Q Search.. Add Template Variables @

v Summary

2 HAPROXY -

Errors (F&B)

1h Past 1 Hour v m Q
= o
dy &
HAProxy Servers by Status 2d Frontend Denials 4h
4K

™

P A A AAAAMAAAA~ ANt [\ AAAS A I AN

oM 0K

I I T T
Mon 15 12:00 Tue 16 12:00 18:00 19:00 20:00 21:00

Th Connection Errors 5m Response Time m

1K
(SNSRI N N S A, A,
o . I ‘ errs/s
20:15 20:30 20:45 21:00
3xx Response Codes (F&B) 1h 4xx Codes (F&B) 1h 5xx Codes (F&B) 1h
10K
1.5K 40
IKW_ et
5K 20
0.5K
0K — T T T 0K — T T T 0— T T T
20:15 20:30 20:45 21:00 20:15 20:30 20:45 21:00 20:15 20:30 20:45 21:00
v Summary h &

What we built

* Widget groups

* Revamped OOTB dashboards using
widget groups

* Copy and paste for widgets & groups

77 RUM-APP Overview v + Addwidgets

Q Search... = Add Template Variables @

v Application List Health

LCP P75

First input delay P75

Cumulative Layout Shift P75

Get App_List APM Latency P95

0.07s

Most common action (everyone)
ACTION NAME

click on Dashboards
app-list-row__user-sessions
click on Performance

app-list-row__performance-dashboard

Most common views
VIEW PATH GROUP

Jrum/list

4 COUNT

148

frum/list

1h Past 1 Hour v « m Q
W .)
& dy £
Pc75 of @view.largest_contentful_paint over "@view.url_path_group:" frum/list""
0 I\ /\A N A~ /\A o~ I\ /-\‘ A . A i . :
14:55 15:00 15:05 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45
B P75LCP @B week before

Starting page for sessions starting on RUM

INITIAL VIEW PATH GROUP 4 COUNT

[rum/explorer 26 §
6 1

[rum/analytics 51

frum/error-tracking 2

Most common action (org2)
{ COUNT ACTION NAME 4 COUNT

click on Dashboards 1

1 click on Copyright Datadog, Inc. 2021 14

UNIQ:SESSION ID

From explorations to shared resources

Whether you have joined a new team or are designing a new service, you often
need to gather data from different contexts while building an overall picture of
your infrastructure and applications. The Datadog Clipboard streamlines this

. process by letting you gather relevant signals without leaving your current
Datadog tab.
a W‘ Sal As you explore your team’s resources, any graphs you copy are automatically
stored in the Clipboard. You can easily export these graphs to a Notebook.

Notebooks can serve as personal guides or resources to share with your
teammates, who can edit them in real time and add comments for discussion.
This way, you can use the Clipboard to easily create runbooks, allowing

°

B I o OSt O n C I I boq rd teammates to benefit from your research when deploying a new service,
scaling up a cluster, or verifying that a service can communicate with a new
dependency.

In this example, we are adding signals to an existing runbook from the
Clipboard as we learn more about one of our services.

Webstore runbook € an Past4Hours - «d = %

High error rates during checkout

e Shared resources

Because orders within the webstore are complex, we distribute order processing across multiple
instances for parallelization. But the tradeoff is that we can't isolate errors, which can cause
multiple instances to become unavailable at once. As a result, faulty webstore code can
sometimes cause a wave-like pattern in the count of errors and the count of instances.

e Easier dashboard creation

* Frictionless troubleshooting

New Dashboard

Apm/Service/Web-Store/Ra... Latency On Service Web-Sto... |l Avg Of @Duration
" r New Notebook
web-store (env:shop.ist) Shopist Web Store Timeboard [Shop.ist Screenboard

New Incident

Webstore runbook

Clear All Clips webstore runbook]

Easier dashboard creation

You can also use the Datadog Clipboard to create dashboards more efficiently.

For example, let’s say you are deploying a new feature and want to
understand how your users interact with it. While browsing through Datadog
—e.g., graphs of RUM analytics data or browser logs—you copy widgets to
the Clipboard. Once you’ve amassed a complete picture of your data, you
select the signals you want to export, then click “Add to a new dashboard.”
Datadog will automatically create a dashboard from the selected signals.

Paul's Timeboard 6 Jan 2021 11:02 + Edx Widges Past 1 Hour - “ u
ﬂ Q se Add Template Variables
DATADOG

s Dashboards

Clipboard Cmd + Shift + X

P95 Latency Web-Store Web Store Requests By Vers... [l Time To First Byte Duration ... | Time Until DOM Interactive...
hop.ist T S hop st Timeboard v M analytic Web stare AUM a

Add current URL

The dance

Courting stakeholders

Product and design briefs

The inside-out approach, court your team

Start with the persona(s) and use cases

Define successful outcomes and workflows

We started creating these in response to “design failures”
* 7-+iterations of design without agreement on solution

Our biggest launch failures have nearly always been due to lack of clarity in persona
development

What launch failure looks like

We model the persona in the wrong way
Private beta users “don’t get it”
Tear-down as opposed to design iteration
Months of development time lost
Sunken cost fallacy makes this worse

* Be willing to accept medium-scale failure to avoid large-scale failure

Press release-driven development

The outside-in approach, court your customers

Amazon thing: “working backwards”

Imagine how your customers will understand the feature up front
We don’t formally practice this

We tried this a few times

* Product teams cannot work from only a press release

* I'have found myself advocating against them

If you like your designers and engineers you will write proper product briefs also

Bundle & upsell

* Adding to the customer model is the core
dynamic of the business

* Augment the persona with new stories,
upsell on those stories

* Weadded APM and Logs: three pillars
of observability

* Complete picture now means
connecting L.ogs to Traces

* Security, RUM and other products
starting to stretch into new user types

"= Services Traces
Search SaveAs
SCETG I [~” Analytics

Requests 321M total (89.3k req/s)

Profiles

Y AllIndexed Spa

i0M
5M
oM T T T
21:00 21:15 21:30
Requests
Facets Saved Views (<) Hide Controls
Q ! DATE
Mar 16 21:53:
Showing 387 of 387 + Add S——
MACORE Mar 16 21:53:
v Duration Mar 16 21:53:
_ ' J Mar 16 21:53;
M : = Mar 16 21:53:
& ® | mMar 16 21:53:
v Status | Mar 16 21:53:
oo 1 var 16 21:53:
o j_]ﬁ | Mar 16 21:53:
BEmor o2 Mar 16 21:53:
> Haig 13‘3 | Mar 16 21:53:
| Mar 16 21:53:
v Service Mar 16 21:53:
Q | Mar 16 21:53:

% web-ui /series/batch_query

Mar 14 21:22:43.000

440 ms POST https://app.datadoghq.com/series/batch_guery

¢ Datadog @& Chrome Mac OS X Japan
Flame Graph Span List (179) Waterfall BETA Trace Map BETA JSON
350 ms

0 50ms WUOI ms 150 ms 200 ms 250 ms 300 ms 400 ms
1 1 1 1 1 1

Open Full Page 4

Hide Legend

1
browser.request /series/batch 240 ms g+ Front End
_ X.request series.botch_query 268 ms.

pylons.request series. batch_query 266 ms.
audit_logs.middleware.call audit_logs.middleware.__call_ 260 ms

dogweb.base.dispatch_call _
Q Full Trace
H controller.series.batch_query 52 M

«f @ web-ui browser.request [series/batch_query 440 ms (100.0%) Q Search |« Analytics
Tags Infrastructure Metrics Logs (4) Processes Network Code Hotsp ots BETA
RUM Event Hierarchy k

® SESSION Browser session lasting 4h by user Yuki TANAKA 3
® VIEW Load Page /dashboard/?/merpay-santa-timeboard
® RESOURCE XHR request https://app.datadoghq.com/series/batch_query

v RUM Session Tags

Session Id d89bd4ec-ff1e-44cf-820d-48010a3bbf91

GEO DEVICE BROWSER
Continent Asia Device Type Desktop Browser Name
Country Japan OS Name Mac OS X Browser Version

|
440 ms
B = Back End 268 ms
Service = % Exec Time =
B web-ui 62.2% |
B logs-api 19.0%
metric-query 7.99% |

B mcnulty-query 3.51%

replica-db 3.47%

etention Filter b ¢
Y Retention Filter X

e

& Chrome

88.0.4324.192

This also defines how teams are organized

* You add more and more user types and personas
* Pods exist to own distinct customer types
* We organize the Design org around this

* Design teams structured around related products for distinct customer types

In conclusion

Start with a small number of assumptions about our core user types

Recruit small numbers of people into design partner groups based on strong matches from
those assumptions

Over time, bolt on more assumptions and add features/products to meet them
* Upsell based on those value-adds
Organize teams around subgroups of those assumptions

That’s basically where we are today as a $25B+ company

Thanks!

Steve Boak ¢ VP, Product Design @ Datadog @sboak

