
Jeremy Edberg

Why am I here?

Why should we
learn from other

people’s
mistakes?

Mistakes we’ve made

What is reddit?
reddit is an online community

Way back in 2005...

• Two UVA students applied for this thing
called YCombinator

• They were rejected

• They were called back

June 23rd, 2005

0M

375M

750M

1,125M

1,500M

0M

0M

0M

0M

0M

0M

1M

10M

100M

1,000M

10,000M

Text

http://xkcd.com/833/

http://xkcd.com/833/
http://xkcd.com/833/

Monthly Page Views and
Costs

200M

420M

640M

860M

1,080M

1,300M

Mar May Jul Sep Nov Jan Mar
$20,000.00

$42,000.00

$64,000.00

$86,000.00

$108,000.00

$130,000.00

Monthly Page Views and
Costs

200M

420M

640M

860M

1,080M

1,300M

Mar May Jul Sep Nov Jan Mar
$20,000.00

$42,000.00

$64,000.00

$86,000.00

$108,000.00

$130,000.00

reddit gold is
launched

If it won’t scale, it'll fail.
-- paradrox

The key to scaling is
finding the bottlenecks

before your users do
-- jedberg

Infrastructure

reddit Timeline
April 2006 -- S3 for logos

September 2007 -- S3 for thumbnails

November 2008 -- EC2 for batch processing

May 2009 -- EC2 for entire site

reddit moved from self
hosting to EC2

EC2 for Overflow
Used openvpn to create a secure link to our

datacenter for batch processing

Moving to EC2
• Started by migrating all data

• Got a complete stack running on EC2

• Long Friday night finishing the migration
and “forklifting” the last bits of data

Takeaways

• EC2 makes things easier, but isn’t a magic
bullet.

• The higher network latency and noisy
neighbors will be problematic -- expect to
work around it.

• Scaling on EC2 is a lot like anywhere else,
but you need to be more disciplined.

Webserver or Proxy?

What about event driven
and non-blocking web

servers?

• Good for long connections

• More complicated to start, but scales better

Mistake

• Not accounting for increased latency in a
virtualized environment

• Workaround: Fewer network calls, ask for
more data at a time.

Pain Points

Instances (or machines) go away sometimes
or become so slow that you want to make
them go away.

Workaround: Avoid single points of failure
and make sure your servers have automated
configuration.

Protip

Security was not the first thought when a lot
of the cloud systems were designed

Make it your first thought though. A little
planning goes a long way. Use security
groups judiciously and keep those keys safe!

Protip

Keep track of those limits!

To prevent someone from consuming too
much, all resources have per account limits.
Keep track of them and get them raised
ahead of when you need them. Make sure to
catch the exceptions too.

Mistake

• Relying on a single cloud product and
expecting it to work as advertised

Bleeding edge in
production

• Cassandra wasn’t always perfect

• No data loss, but it was a pain sometimes

Automate all the things!

http://hyperboleandahalf.blogspot.com/2010/06/this-is-why-ill-never-be-adult.html

(Including Your Infrastructure)

http://hyperboleandahalf.blogspot.com/2010/06/this-is-why-ill-never-be-adult.html
http://hyperboleandahalf.blogspot.com/2010/06/this-is-why-ill-never-be-adult.html

Architecture

Is it necessary to build a
scalable architecture from

the beginning?

Example 1 -- reddit

Example 2 -- Netflix

Personaliz
aECon#
Engine

User#
Info

Movie#
Metadat

Movie#
RaCngs

Similar#
Movies

API

Reviews A/B#Test#
Engine

2B#requests#
per#day#
into#the#

Ne3lix#API
12B#outbound#
requests#per#
day#to#API#

dependencies

Customer)Device)
(PC,)PS3,)TV…))

Web)Site)or)
Discovery)API)

User)Data)

PersonalizaAon)

Streaming)API)

DRM)

QoS)Logging)

OpenConnect)
CDN)Boxes)

CDN)
Management)and)

Steering)

Content)Encoding)

Consumer)
Electronics)

AWS)Cloud)
Services)

CDN)Edge)
LocaAons)

Browse)

Play)

Watch)

Advantages to a Service
Oriented Architecture

• Easier auto-scaling

• Easier capacity planning

• Identify problematic code-paths more easily

• Narrow in the effects of a change

• More efficient local caching

Disadvantages to a
Service Oriented

Architecture
• Need multiple dev teams, or need people

to work on multiple services.

• Need to come up with a common
platform, otherwise work will be
duplicated.

• Too much overhead for a small team just
starting out.

Netflix built a global
PaaS

• Service Oriented Architecture

• HTTP/Rest interfaces between services

Netflix PaaS features
• Supports all regions and zones

• Multiple accounts

• Cross region/account replication

• Internationalized, localized and GeoIP routed

• Advanced key management

• Autoscaling with 1000s of instances

• Monitoring and alerting on millions of metrics

What AWS Provides

• Instances

• Machine Images

• Elastic IPs

• Load Balancers

• Security groups / Autoscaling groups

• Availability zones and regions

What Netflix provides

• Applications

• Clusters

• Discovery services

• Application routing

• Monitoring

Instance Architecture
Linux Base AMI (CentOS or Ubuntu)

Java (JDK 6 or 7)

Tomcat

Optional
Apache

Monitoring

Log Rotation
to S3

Appdynamics
Machine
Agent

Appdynamics
App Agent

monitoring

Application war file, base
servlet, platform, interface

jars for dependent
services

GC and
thread
dump
logging

Healthcheck, status
servelets, JMX interface,

Servo autoscale

Instance Architecture
Linux Base AMI (CentOS or Ubuntu)

Python 2.7

Django

Optional
Apache

Monitoring

Log Rotation
to S3

Appdynamics
Machine
Agent

monitoring

Application file, base
server, platform, interface

libs for dependent
services

Exception
logging

Freedom and
Responsibility

• Developers deploy when they want to

• They also manage their own capacity and
autoscaling

• And fix anything that breaks at 4am!

“Build for three”
We hold a boot camp every 5-8 weeks for new engineers

to teach them how to build for a highly distributed
environment.

All systems choices
assume some part will

fail at some point.

Don’t follow fads

Postgres is still a good
database

Offload to the client
with Javascript

What else do you need
to worry about?

• Queues

• Locking service (can you avoid the locks?)

• Email (outsource it: deliverability is a pain)

• ???

Limits everywhere!

• Put a limit on everything.

• Make it really really high.

• Lower it or raise it as needed

1 > 2 > 3
Going from two to three is hard

1 > 2 > 3
Going from one to two is harder

1 > 2 > 3
If possible, plan for 3 or more from the beginning.

Monitoring

• We used Ganglia at reddit

• Backed by RRD

• Makes good rollup graphs

• Gives a great way to visually detect errors

• Wasn’t friendly to rapidly changing
infrastructure.

Mistake

• Not having enough monitoring and using a
system that isn’t “virtualization friendly”.

Reliability and $$

The Monkey Theory

• Simulate things that go wrong

• Find things that are different

The simian army

• Chaos -- Kills random instances

• Latency -- Slows the network down

• Conformity -- Looks for outliers

• Doctor -- Looks for passing health checks

• Janitor -- Cleans up unused resources

• Howler -- Yells about bad things

Netflix autoscaling

Traffic Peak

Text
1

2

Automate all the things!

Automate all the things!

• Application startup

• Configuration

• Code deployment

• System deployment

Netflix has moved the
granularity from the

instance to the cluster

Why Bake?

Generic AMI
Instance

Traditional:
•launch OS
•install
packages
•install app

Netflix:
•launch OS+app

App AMI Instance

Getting Baked

Perforce / Git

libraries

source

Ant targets

Ivy

Groovy all over

snapshot / release
libraries / apps

app bundles

Jenkins

sync

resolve

buildcompile report

publishtest

Artifactory

Base
Image
Baking

Yum / Apt

Linux: CentOS, Fedora, Ubuntu

RPMs: Apache, Java...

ec2 slave instances

S3 / EBS

foundation
AMI

base

Bakery

mount

install

Ready
for
app
bake

snapshot

AWS

App
Image
Baking

Jenkins / Yum /
Artifactory

Linux, Apache, Java, Tomcat

AWS
app bundle

ec2 slave instances

S3 / EBS

base AMI

app

Bakery

mount

install

Ready
to

launch!

snapshot

Code

Picking a framework

You must construct
additional Pylons

Scaling Pylons

• pylons scaling == python scaling

• run lots of appservers and make them
independent of each other

• We built our own caching

• We built our own database layer

Would I use Pylons again?

Yes (although it’s called Pyramid now)

C is faster than Python
(sorry)

filters
discount (markdown)

memcache

Open Source is Good

Data

Data is the most important
asset your business will

have.

Data Gravity

• Coined by Dave McCrory

• First described here:
http://blog.mccrory.me/2010/12/07/data-
gravity-in-the-clouds/

http://blog.mccrory.me/2010/12/07/data-gravity-in-the-clouds/
http://blog.mccrory.me/2010/12/07/data-gravity-in-the-clouds/
http://blog.mccrory.me/2010/12/07/data-gravity-in-the-clouds/
http://blog.mccrory.me/2010/12/07/data-gravity-in-the-clouds/

What is Data Gravity?

Source: nationalgeographic.com

Data Gravity and you

• The bigger your dataset, the harder it is to
move from anywhere to anywhere

• Also, how do you move that data without
affecting your running application?

reddit’s data gravity
problem

• We had a lot of data that was ever-growing

• We were so resource constrained we
couldn’t move it without hurting our
application

Sql or “nosql”?

Relational vs.
Non-relational

Mysql, Postgres or
something else?

Data schemas

• Unless you are really really sure of your
business model...

• The less schema the better

• reddit’s database is literally just keys and
values

Expire your data

• It’s a lot easier to manage if your data is
either gone or in static form

• Users will almost never notice

More Transactions
Would Be Good

• Since reddit’s data is spread across two
tables for each thing, we didn’t use sql
transactions

• We should probably have made more
transactions in Python

Think of SSDs as cheap
RAM, not expensive disk

Database Scaling with
Sharding

Sharding
• We split our writes across four master

databases

• Links/Accounts/Subreddits, Comments, Votes
and Misc

• Each has at least one slave

• We avoid reading from the master if possible

• Wrote our own database access layer, called the
“thing” layer

Cassandra

Cassandra Architecture

How it works

• Replication factor

• Quorum reads / writes

• Bloom Filter for fast negative lookups

• Immutable files for fast writes

• Seed nodes

Why Cassandra?

• Fast writes

• Fast negative lookups

• Easy incremental scalability

• Distributed -- No SPoF

Second class users

• Logged out users always get cached
content.

• Akamai bears the brunt of reddit’s traffic

• Logged out users are about 80% of the
traffic

Queues are your friend
• Votes

• Comments

• Thumbnail scraper

• Precomputed queries

• Spam

• processing

• corrections

Sometimes users notice
your data inconstancy

Mistake

• Not using a consistent key hashing
algorithm at first.

Memcachedb

• Using md5’d keys made it difficult to
rebalance.

• It didn’t really have a way to rebalance

• Turns out it was pretty slow under high
workloads

Solutions

• We moved to using a consistent key
hashing for memcache

• We moved to Cassandra, which follows the
Dynamo model, which uses a type of
consistent hashing

A

BC

3

2

A

BC

3

2

D

Protip

The environment in a public cloud is
inherently more variant (co-tenants, abusive
or heavy users, etc)

Make sure your code is written to handle
this -- state should be kept somewhere
shared and redundant, not on the instance.

Best Practices

• Keep data in multiple Availability Zones

• Avoid keeping state on a single instance

• Take frequent snapshots of EBS disks

• No secret keys on the instance

• Different functions in different Security Groups

Social
aspects of

Growth

The Worm
Or, why you should never have your entire team on one

airplane.

Provide an API

The business side of
things

• Running a site that requires user input?

• Be one of the most active users

• People like to see the founders participate

Moderation, cheating,
spam and fraud

• If you take user input, and get popular, people
will cheat and spam.

• If you take money, they will scam people.

• Limits will help a lot, as will pattern detection.

• Hard coded rules only go so far -- you need
learning algorithms.

• Let your users do the work for you.

What made reddit
successful?

• Empowered users

• Better software

• Community interaction

How does reddit make
money?

• Sidebox ads

• Self-serve ads

• Merchandise

• reddit gold

• marketplace

reddit Gold

Ask Me Anything

• Not only did I run technology for reddit
but I also was deeply involved in the
business.

• Ask me anything about running a profitable
social media company.

Getting in touch

Email: jedberg@{gmail,netflix}.com

Twitter: @jedberg

Web: www.jedberg.net

Facebook: facebook.com/jedberg

Linkedin: www.linkedin.com/in/jedberg

