
Heroku Operations
Noah Zoschke


noah@heroku.com


mailto:noah@heroku.com




Problem: Cloud Services
Lost EBS + EC2

API + Customer Databases


30% App Servers


Internal Ops Apps + Instances


AWS API Offline

Can’t get new capacity


PagerDuty Crushed

No alerts coming through


Heroku API Offline

Customers helpless


!

!



Solution: HA Architecture



Solution: HA Architecture



Solution: People & 
Operational Culture



A Personal Account...

Oh sh*t, I think the 
pager is blowing up...	





Problem: Culture
Feature Culture → Too Much 
Software

No inventory of what’s up or down


Surprising dependencies


Hacker Culture → Poorly 
Written Software

Feature rich, not fool proof


Lots of “beta” services with production 
workloads

Rockstar Culture → 
Individual Ownership

Lots of low bus factor


Implicit Culture → Unclear 
Expectations

Can I escalate?


How do we prioritize services and 
customers?



“Feature Culture” Side Effect: 
Legacy Services



Problem: Legacy Services
Two Routing Services


Router → Nginx/Varnish → Dyno (Bamboo)


Router → Dyno (Cedar)


Two Database Services

Shiny New Dedicated Databases (Heroku Postgres)


Years-old Legacy Shared Databases


Five Metrics Services, etc... 



Solution: Sunsetting Culture
Treat Sunsetting as First Class Product and 

Engineering Work


Meticulously Catalog Running Services


Celebrate Success When Shutting One Down



Recipe: Lifecycle Board
Prototype → Development → Production → 

Deprecated → Deactivated → Sunset


Follow Checklists to Advance


Reflect Explicit Owners







“Hacker Culture” Side Effect: 
Inoperable Software



Recipe: Production Checklist
Code is visible on GitHub


Has operations docs with executable instructions for common tasks


Has a high-fidelity staging setup with production parity


Alerts a human if it is down


Uses structured logging


Enforces SSL access


Any credentials and their rotation procedures are added to “cred rolls” list


Send a launch email to engineering@ describing the new component


Move to Production on the Engineering Lifecycle board


Auto-scaled to maintain the needed number of instances


Set up to terminate unhealthy instances



“Implicit Culture” Side Effect: 
Platform and Pager Chaos



Problem: Implicit
Do I need to fix these warnings this week? Or put it 

off?


Can I escalate this alert? Should I?


Should I update the status site? Will someone else?




Recipe: PagerDuty Discipline
Everyone engineer is on-call


Every page is visible in HipChat


Monkey - Everyone should help ack pages in HipChat during work hours


Level 1 - Explicit expectation of first responder after hours


Level 2 - Explicit value that the team has each other’s back


Engineering Manager - Explicit accountability for the whole team and its 
body of work service


Incident Commander - Experts trained in explicit procedures around 
updating the status site, opening up AWS tickets, paging extra engineers, etc.





Recipe: Pager Metrics
Measure everything and review weekly


After hours pages are detrimental to engineering health and well being


Engineers deserve weeks with no pages


Engineers have power to improve the operator experience


Engineering Managers are responsible for managing balance between 
operations and feature work


Service Reliability Engineering (SRE) team is accountable for overall 
pager burden program






