
Heroku Operations
Noah Zoschke

noah@heroku.com

mailto:noah@heroku.com




Problem: Cloud Services
Lost EBS + EC2
API + Customer Databases

30% App Servers

Internal Ops Apps + Instances

AWS API Offline
Can’t get new capacity

PagerDuty Crushed
No alerts coming through

Heroku API Offline
Customers helpless

!

!



Solution: HA Architecture



Solution: HA Architecture



Solution: People & 
Operational Culture



A Personal Account...

Oh sh*t, I think the 
pager is blowing up...	




Problem: Culture
Feature Culture → Too Much 
Software
No inventory of what’s up or down

Surprising dependencies

Hacker Culture → Poorly 
Written Software
Feature rich, not fool proof

Lots of “beta” services with production 
workloads

Rockstar Culture → 
Individual Ownership
Lots of low bus factor

Implicit Culture → Unclear 
Expectations
Can I escalate?

How do we prioritize services and 
customers?



“Feature Culture” Side Effect: 
Legacy Services



Problem: Legacy Services
Two Routing Services

Router → Nginx/Varnish → Dyno (Bamboo)

Router → Dyno (Cedar)

Two Database Services
Shiny New Dedicated Databases (Heroku Postgres)

Years-old Legacy Shared Databases

Five Metrics Services, etc... 



Solution: Sunsetting Culture
Treat Sunsetting as First Class Product and 

Engineering Work

Meticulously Catalog Running Services

Celebrate Success When Shutting One Down



Recipe: Lifecycle Board
Prototype → Development → Production → 

Deprecated → Deactivated → Sunset

Follow Checklists to Advance

Reflect Explicit Owners







“Hacker Culture” Side Effect: 
Inoperable Software



Recipe: Production Checklist
Code is visible on GitHub

Has operations docs with executable instructions for common tasks

Has a high-fidelity staging setup with production parity

Alerts a human if it is down

Uses structured logging

Enforces SSL access

Any credentials and their rotation procedures are added to “cred rolls” list

Send a launch email to engineering@ describing the new component

Move to Production on the Engineering Lifecycle board

Auto-scaled to maintain the needed number of instances

Set up to terminate unhealthy instances



“Implicit Culture” Side Effect: 
Platform and Pager Chaos



Problem: Implicit
Do I need to fix these warnings this week? Or put it 

off?

Can I escalate this alert? Should I?

Should I update the status site? Will someone else?



Recipe: PagerDuty Discipline
Everyone engineer is on-call

Every page is visible in HipChat

Monkey - Everyone should help ack pages in HipChat during work hours

Level 1 - Explicit expectation of first responder after hours

Level 2 - Explicit value that the team has each other’s back

Engineering Manager - Explicit accountability for the whole team and its 
body of work service

Incident Commander - Experts trained in explicit procedures around 
updating the status site, opening up AWS tickets, paging extra engineers, etc.





Recipe: Pager Metrics
Measure everything and review weekly

After hours pages are detrimental to engineering health and well being

Engineers deserve weeks with no pages

Engineers have power to improve the operator experience

Engineering Managers are responsible for managing balance between 
operations and feature work

Service Reliability Engineering (SRE) team is accountable for overall 
pager burden program






