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Who the heck is this guy?

Quick Bio

• Worked at Amazon as an Engineer/Manager 
• Worked at Netflix as a Manager 
• Employee #20-something at PagerDuty 

• Infrastructure was a monolithic Rails app and a 

single service 
• Still have the MonoRail, now with 10+ services 
• Over last year, ~20 servers -> ~200 servers
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Quick Disclaimer

• I did not come up with 

everything 
• I am speaking for myself
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The Magical Formula

What is Software Operations?
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The Magical Formula

What is Software Operations?

• Change ~ Downtime 
• More change => More Problems
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Let’s Revise the Magical Formula

Why this is scary
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Let’s Revise the Magical Formula

Why this is scary

• Changes ~ Innovation ~ Downtime 
• Maintain stability by stopping innovation 

• Scrappy Startup vs. Big Company 
• Most Big Companies do not innovate 

because they cannot risk the change 
• Does this mean all companies are 

eventually doomed to not innovate?
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The Magical Formula Revised Again

What is Software Operations?

• Changes ~ (k) Innovation ~ (h) Downtime 
• There are two constants - k and h 

• k - Increase k to amplify innovation per change 
• Test environments, A/B testing, splitting up 

codebases 
• h - Decrease h to improve stability per change 

• Fast deploys, better alerting, splitting up 

codebases
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Netflix Architecture Diagram

0. Accept that no infrastructure is perfect
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0. Accept that no infrastructure is perfect

• Make the best decisions at the time 
• Accept constraints 
• Learn more as our systems or 

business evolve 
• This is ok

Really, it is ok
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1. Initial Setup of Infrastructure

• Using personal email accounts 
• No, setup mailing lists, ideally have Google 

Apps setup from the beginning 

• Pre-Optimizing for Scale 
• Use Heroku or other PaaS for as long as you can 

• Technology selection 
• Boring technologies to do cool things 

• Password storage 
• Not in the git repo, use ENV vars or your 

configuration management tool
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2. Proper Test Environments
• Separate hosting account for testing 
• Have separate provider accounts for test 

(e.g. email providers) 
• For local development, use VMs 

• Do no run services on localhost 
• Use Vagrant for this
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3. Configuration Management

• Early on, use Ansible or Salt 
• Light weight and easy to learn 
• Enforces treating ‘Infrastructure as Code’ 
• Will scale just fine when you only have 4-5 

server types 
• Avoid Bash Scripts 

• Beyond 5 server types, move to Chef, 

Puppet, Asgard, or other heavier tools 
• Augment Cloud Formation or other PaaS 

specific tools
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4. Deployments
• Consistency 

• Every Engineer 
• Every Piece of Code 

• Use some orchestration tool with Git 
• Capistrano 
• Ansible 
• Salt 
• Celery
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5. Incident Management
• Have a process in place and document 

somewhere that is easily shared 
• Wiki 
• Dropbox document 
• Not in a random email 

• Make sure you review it monthly
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Example Procedure

5. Incident Management

1. Everyone jumps onto chat client 

2. Everyone dials into group call 

3. Each member of the team gives a status update 

4. Single person acts as call leader (not a resolver) 

5. Call leader gives out orders 

6. Have a status update every 10 minutes 

7. Call leader maintains an outage log 

8. Conduct a post-mortem
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6. Monitoring and Alerting
• Start with anything 

• StatsD with Graphite backend 
• CloudWatch 
• Sensu 
• Nagios 

• Use hosted solutions (as long as they 

make fiscal sense) 
• New Relic or other APM’s
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7. Backups
• Backup your data regularly to S3 
• Test your restores at least monthly 

• Practice restoring production data to test env 
• Make sure to scrub sensitive data 
• Measure time to recovery
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8. High Availability 101

• Multiple servers at every layer 
• Multiple Load Balancers in DNS 
• Multiple App Servers 

• App servers have to be stateless 

• Use Clustered Datastores 
• MySQL XtraDB Cluster 
• Cassandra 
• Avoid Master/Slave architectures 

• Worry about sharding later 
• You do not know what to shard on yet
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9. Security 101
• Use Gateway Hosts for SSH 

• These hosts are whitelisted for SSH, everything 

else should have global SSH turned off 

• Unique user accounts for everything 
• Easy to revoke access when something happens 

• Use PaaS security features 
• Security Groups, VPC, etc 

• SSL encryption on everything



PagerDuty

10. Internal IT needs
• Have a central list of tools that every 

department needs 
• Onboarding docs are a good place for this 

• Consolidate machine types 
• Do not let everyone have every machine that 

they want 
• Easier to support and swap out machines 

• Use images for machines 
• Easy to take a USB stick and make a general 

image
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for managing change

Exploiting your business patterns

• Look for seasonality in traffic patterns 
• You can make changes when traffic is at the trough 

• Look for where you can be latency tolerant 
• Can you tolerate an extra 100-200ms of latency? 

• What gets impacted when you go down? 
• Actual revenue 
• Customer trust
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Thank you.
Slides will be available at https://speakerdeck.com/arupchak
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