
PagerDuty

Arup Chakrabarti
OPERATIONS ENGINEERING

@arupchak

arup@pagerduty.com



PagerDuty

Common Ops Mistakes and 
How to Prevent Them



PagerDuty

Who the heck is this guy?

Quick Bio

• Worked at Amazon as an Engineer/Manager 
• Worked at Netflix as a Manager 
• Employee #20-something at PagerDuty 

• Infrastructure was a monolithic Rails app and a 

single service 
• Still have the MonoRail, now with 10+ services 
• Over last year, ~20 servers -> ~200 servers



PagerDuty

Quick Disclaimer

• I did not come up with 

everything 
• I am speaking for myself



PagerDuty

The Magical Formula

What is Software Operations?



PagerDuty

The Magical Formula

What is Software Operations?

• Change ~ Downtime 
• More change => More Problems



PagerDuty

Let’s Revise the Magical Formula

Why this is scary



PagerDuty

Let’s Revise the Magical Formula

Why this is scary

• Changes ~ Innovation ~ Downtime 
• Maintain stability by stopping innovation 

• Scrappy Startup vs. Big Company 
• Most Big Companies do not innovate 

because they cannot risk the change 
• Does this mean all companies are 

eventually doomed to not innovate?



PagerDuty

The Magical Formula Revised Again

What is Software Operations?

• Changes ~ (k) Innovation ~ (h) Downtime 
• There are two constants - k and h 

• k - Increase k to amplify innovation per change 
• Test environments, A/B testing, splitting up 

codebases 
• h - Decrease h to improve stability per change 

• Fast deploys, better alerting, splitting up 

codebases



PagerDuty

Netflix Architecture Diagram

0. Accept that no infrastructure is perfect



PagerDuty

0. Accept that no infrastructure is perfect

• Make the best decisions at the time 
• Accept constraints 
• Learn more as our systems or 

business evolve 
• This is ok

Really, it is ok



PagerDuty

1. Initial Setup of Infrastructure

• Using personal email accounts 
• No, setup mailing lists, ideally have Google 

Apps setup from the beginning 

• Pre-Optimizing for Scale 
• Use Heroku or other PaaS for as long as you can 

• Technology selection 
• Boring technologies to do cool things 

• Password storage 
• Not in the git repo, use ENV vars or your 

configuration management tool



PagerDuty

2. Proper Test Environments
• Separate hosting account for testing 
• Have separate provider accounts for test 

(e.g. email providers) 
• For local development, use VMs 

• Do no run services on localhost 
• Use Vagrant for this



PagerDuty

3. Configuration Management

• Early on, use Ansible or Salt 
• Light weight and easy to learn 
• Enforces treating ‘Infrastructure as Code’ 
• Will scale just fine when you only have 4-5 

server types 
• Avoid Bash Scripts 

• Beyond 5 server types, move to Chef, 

Puppet, Asgard, or other heavier tools 
• Augment Cloud Formation or other PaaS 

specific tools



PagerDuty

4. Deployments
• Consistency 

• Every Engineer 
• Every Piece of Code 

• Use some orchestration tool with Git 
• Capistrano 
• Ansible 
• Salt 
• Celery



PagerDuty

5. Incident Management
• Have a process in place and document 

somewhere that is easily shared 
• Wiki 
• Dropbox document 
• Not in a random email 

• Make sure you review it monthly



PagerDuty

Example Procedure

5. Incident Management

1. Everyone jumps onto chat client 

2. Everyone dials into group call 

3. Each member of the team gives a status update 

4. Single person acts as call leader (not a resolver) 

5. Call leader gives out orders 

6. Have a status update every 10 minutes 

7. Call leader maintains an outage log 

8. Conduct a post-mortem



PagerDuty

6. Monitoring and Alerting
• Start with anything 

• StatsD with Graphite backend 
• CloudWatch 
• Sensu 
• Nagios 

• Use hosted solutions (as long as they 

make fiscal sense) 
• New Relic or other APM’s



PagerDuty

7. Backups
• Backup your data regularly to S3 
• Test your restores at least monthly 

• Practice restoring production data to test env 
• Make sure to scrub sensitive data 
• Measure time to recovery



PagerDuty

8. High Availability 101

• Multiple servers at every layer 
• Multiple Load Balancers in DNS 
• Multiple App Servers 

• App servers have to be stateless 

• Use Clustered Datastores 
• MySQL XtraDB Cluster 
• Cassandra 
• Avoid Master/Slave architectures 

• Worry about sharding later 
• You do not know what to shard on yet



PagerDuty

9. Security 101
• Use Gateway Hosts for SSH 

• These hosts are whitelisted for SSH, everything 

else should have global SSH turned off 

• Unique user accounts for everything 
• Easy to revoke access when something happens 

• Use PaaS security features 
• Security Groups, VPC, etc 

• SSL encryption on everything



PagerDuty

10. Internal IT needs
• Have a central list of tools that every 

department needs 
• Onboarding docs are a good place for this 

• Consolidate machine types 
• Do not let everyone have every machine that 

they want 
• Easier to support and swap out machines 

• Use images for machines 
• Easy to take a USB stick and make a general 

image



PagerDuty

for managing change

Exploiting your business patterns

• Look for seasonality in traffic patterns 
• You can make changes when traffic is at the trough 

• Look for where you can be latency tolerant 
• Can you tolerate an extra 100-200ms of latency? 

• What gets impacted when you go down? 
• Actual revenue 
• Customer trust



PagerDuty

arup@pagerduty.com

Thank you.
Slides will be available at https://speakerdeck.com/arupchak

Arup Chakrabarti
OPERATIONS ENGINEERING

@arupchak


