Lean Containers

1/49



Who am I?

e Jerome Petazzoni (@jpetazzo)
e French software engineer living in California

e Joined Docker (dotCloud) more than 4 years ago
(I was at Docker before it was cool!)

I have built and scaled the dotCloud Paa$S

I learned a few things about running containers
(in production)

2 /49


https://twitter.com/jpetazzo

Outline

e Briefintro about Docker and containers

VMs and containers: technical differences

VMs and containers: functional differences

e [.ean containers

e Composing stacks of containers

3/49



Brief intro
about Docker
and containers



Build, ship, and run
any app, anywhere

5/49



Take any Linux program, and put it in a container

e Web apps and services, workers
(Go, Java, Node, PHP, Python, Ruby...)

e Data stores: SQL, NoSQL, big data
(Cassandra, ElasticSearch, Hadoop, Mongo, MySQL, PostgreSQL, Redis...)

e Other server-y things
(Consul, Etcd, Mesos, RabbitMQ, Zookeeper...)

¢ Command-line tools
(AWS CLI, Ffmpeg...)

e Desktop apps
(Chrome, LibreOffice, Skype, Steam...)

6/49



What about non-Linux programs?

e Desktop apps with WINE
(e.g.: Spotify client)

e Coming soon: Docker for Windows
(run Windows apps on Windows machines)

e Coming soon: Docker for FreeBSD
(port in progress)

e Coming eventually: Docker for OS X
(technically possible; but is this useful?)

749



Ship that container easily and efficiently

e Docker comes with an image distribution protocol

e Distribution server can be hosted by Docker Inc.
(free for public images)

e Distribution protocol is public

e Open source reference implementation
(used by Docker Inc. for the public registry)

e Container images are broken down into layers

e When updating and distributing an image,
only ship relevant layers

8/49



Run those containers anywhere

e Containers can run in VMs or in physical machines

e Docker is available on all modern Linux variants

Many IAAS providers have server images with Docker

On OS X and Windows dev machines: boot2docker

There are distros dedicated to run Docker containers
(Atomic, CoreOS, RancherOS, Snappy Core...)

Other Docker implementations exist (e.g. Joyent Triton)

9/49



\/Ms and

containers:
technical
differences

10/49



Containers are portable

e VMs can't easily be moved
o nested hypervisors (VMs in VMs) exist, but still rare

o VM images have to be converted and transferred
(both are slow operations)

e The same container can run on any machine
(physical or virtual)

e Containers use a stable interface
o Intel 64 bits machine code

o Linux system calls ABI

11/49



Containers have low overhead

e Normal* process(es) running on top of normal kernel
e No device emulation (no extra code path involved in I/O)

e Context switch between containers
= context switch between processes

e Benchmarks show no difference at all
between containers and bare metal
(after adequate tuning and options have been selected)

e Containers have higher density

* There are extra "labels" denoting membership to given
namespaces and control groups. Similar to regular UID.

12 /49



\IMs have stronger isolation

e Inter-VM communication must happen over the network
(Some hypervisors have custom paths, but non-standard)

e VMs can run as non-privileged processes on the host
(Breaking out of a VM will have ~zero security impact)

e Containers run on top of a single kernel
(Kernel vulnerability can lead to full scale compromise)

e Containers can share files, sockets, FIFOs, memory areas...
(They can communicate with standard UNIX mechanisms)

13/49



Analogy: brick walls vs. room dividers

e Brick walls
o sturdy
o slow to build
o messy to move
e Room dividers
o fragile
o deployed in seconds

o moved easily

14 /49



Blurring lines

e Intel Clear Containers; Clever Cloud
(stripped down VMs, boot super fast, tiny footprint)

e Joyent Triton
(Solaris "branded zones," running Linux binaries securely,
exposing the Docker API)

e Ongoing efforts to harden containers
(GRSEC, SELinux, AppArmor)

15/49



\/Ms and
containers:
functional
differences

16 /49



Inside

e VMs typically contains™ everything they need
(Backups, logging, periodic job execution, remote access...)

e Containers are the subject of an epic debate:

o machine container
(runs init, cron, ssh, syslog ... and the app)

o application container
(runs the app and nothing else;
relies on external mechanisms)

* No pun intended!

17 /49



Creation / deployment

e Containers are (typically) created from an image
e Updates = update the image, redeploy a new container
e "Immutable servers" pattern

e VMs can use the same pattern ("golden images"),
but it's heavier to setup

e VMs often have a long lifecycle instead
(provisioning—»update—update-...»update—disposal)

o easily leads to configuration drift
(subtle differences that add up over time)

o requires tight configuration management

18/49



Development process (V/Ms)

Hypothesis: app broken down in 10 components

Production: 10+ VMs (each component in 1+ VM)

e Development: typically 1 VM for whole app

Different components depending on environment
(e.g.: logging, monitoring, service discovery...)

e Consequence: prod and dev deployments differ a lot

19/49



Development process (containers)

Hypothesis: app broken down in 10 components

Production: 10+ containers (across any number of VMs)

e Development: 10 containers on 1 dev VM

Re-use the same container images for prod and dev

e How do we provide container variants?

20/49



Bloated containers

e Containers have all the software required for production
e In dev mode, only essential processes are started
e In prod mode, additional processes run as well
e Problems:
o bigger containers
o behavior can differ (because of extra processes)
o extra processes duplicated between containers

o hard to test those extra processes in isolation

21/49



Lean containers

22 /49



Principle

e "Do one thing, do it well"

e One container for the component itself

e One container for logging

e One container for monitoring

¢ One container for backups

e One container for debugging (when needed)

® efc.

23 /49



Implementation (general principles)

e Containers can share almost anything, selectively

o files
(logs, data at rest, audit)

o network stack
(traffic routing and analysis, monitoring)

O process space, memory
(process tracing and debugging)

24 /49



Let's dive into the
details



Logging (option 1: Docker logging drivers)

e Containers write to standard output
e Docker has different logging drivers:
o writes to local JSON files by default

o can send to syslog

Imperfect solution for now, but will be improved.
Preferred in the long run.

26 /49



Logging (option 2: shared log directory)

e Containers write regular files to a directory

e That directory is shared with another container
docker run -d --name myappl -v /var/log myapp:v1.0
In development setup:

docker run --volumes-from myappl ubuntu \
sh -c 'tail -F /var/log/*'

In production:

docker run -d --volumes-from myappl logcollector

27149



Logging takeaways

e Application can be "dumb" about logging

e Log collection and shipping happens in Docker,
or in separate(s) container(s)

e Run custom log analyzer without changing app container
(e.g. apachetop)

e Migrate logging system without changing app container

28 /49



"Yes, but..."

e "What about performance overhead?"
o no performance overhead

o both containers access files directly
(just like processes running on the same machine)

e "What about synchronization issues?"

© same as previous answer!

29 /49



Backups (file-based)

e Store mutable data on Docker volumes
(same mechanism as for logs)

e Share volumes with special-purpose backup containers

e Put backup tools in the backup container
(boto, rsync, s3cmd, unison...)

docker run --volumes-from mydbl ubuntu \
rsync -av /var/lib/ backup@remotehost:mydb1/

e The whole setup doesn't touch the app (or DB) container

30/49



Backups (network-based)

e Run the backup job (pg_dump, mysqldump, etc.)
from a separate container

e Nothing complicated, but with VMs, this is overkill

("this VM does nothing at all; except a few minutes per day!")
e Advantages (vs. running in the same container):
o nothing to install in the app (or DB) container

o if the backup job runs amok, it remains contained (!)

31/49



Network analysis

e Packet capture (tcpdump, ngrep, ntop, etc.)
e Low-level metrics (netstat, ss, etc.)
e Install required tools in a separate container image

¢ Run a container in the same network namespace

docker run -d --name webl nginx
docker run -ti --net container:webl tcpdump -pni eth®
docker run -ti --net container:webl ubuntu ss -n --tcp

32 /49



Service discovery

e Docker can do linking and generic DNS injection

e Your code connects to e.g. redis
(pretending that redis resolves to something)

e Docker adds a DNS alias™ so that redis resolves
to the right container, or to some external service

e In dev, Docker Compose manages service dependencies

e In prod, you abstract service discovery from the container

* Really, an entry in the container's /etc/hosts.

33/49



Service discovery in practice

When service A needs to talk to service B...

1. Start container B on a Docker host

34/49



Service discovery in practice

When service A needs to talk to service B...
1. Start container B on a Docker host

2. Retrieve host+port allocated for B

35/49



Service discovery in practice

When service A needs to talk to service B...
1. Start container B on a Docker host
2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)

36 /49



Service discovery in practice

When service A needs to talk to service B...
1. Start container B on a Docker host
2. Retrieve host+port allocated for B
3. Start ambassador (relaying to this host+port)

4. Start container A linked to ambassador

37 /49



Service discovery in practice

When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)
4. Start container A linked to ambassador

5. Profit!

38/49



General pattern

e Your code runs in the same container in dev and prod
e Add "sidekick*" containers for additional tasks
e Developers don't have to be bothered about ops

e Ops can do their job without messing with devs' code

* Kubernetes sometimes calls them "sidecars."

39/49



Composing
stacks of
containers

40/ 49



Docker Compose

41 /49



docker-compose.yml

rng:
build: rng

hasher:
build: hasher

webui:
build: webuti
links:
- redis
ports:
- "80:80"
volumes:
- "webui/files/:/files/"

redis:
image: redis

worker:
build: worker
links:
- rng
- hasher
- redis

42 [ 49



Docker Compose

e Start whole stack with docker-compose up

e Start individual containers (and their dependencies)
with docker-compose up xyz

e Takes care of container lifecycle
(creation, update, data persistence, scaling up/down...)

e Doesn't automatically solve networking and discovery (yet)

43 /49



Docker Compose

e Start whole stack with docker-compose up

e Start individual containers (and their dependencies)
with docker-compose up xyz

e Takes care of container lifecycle
(creation, update, data persistence, scaling up/down...)

e Doesn't automatically solve networking and discovery (yet)

... However ...

44 [ 49



docker-compose.yml, reloaded

hasher:
build: hasher

worker:
build: worker
links:
- Nng
- hasherproxy:hasher
- redis

hasherproxy:
image: jpetazzo/hamba
links:
- hasher
command: 80 hasher 80

(This was automatically generated by a tiny Python script.)

45 [ 49



Fair warning

e Docker networking is evolving quickly

e Docker 1.7 (to be released Real Soon Now) will support:
o "networks" as first class objects
o multiple networks

o overlay driver allowing to span networks across
multiple hosts

o networking plugins from ecosystem partners

46 / 49



Conclusions

47 [ 49



Conclusions

e Containers can share more context than VMs

e We can use this to decouple complexity
(think "microservices" but for ops/devs separation)

o All tasks typically requiring VM access
can be done in separate containers

e As aresult, deployments are broken down
in smaller, simpler pieces

e Complex stacks are expressed with simple YAML files
e Dockerisn't a "silver bullet" to solve all problem:s,

but it gives us tools that make our jobs easier

48 / 49



Thanks!
Questions?

@)petazzo
@docker

49 /49


https://twitter.com/docker
https://twitter.com/jpetazzo

