
Lean Containers

1 / 49

Who am I?
Jérôme Petazzoni (@jpetazzo)

French software engineer living in California

Joined Docker (dotCloud) more than 4 years ago
(I was at Docker before it was cool!)

I have built and scaled the dotCloud PaaS

I learned a few things about running containers
(in production)

2 / 49

https://twitter.com/jpetazzo

Outline
Brief intro about Docker and containers

VMs and containers: technical differences

VMs and containers: functional differences

Lean containers

Composing stacks of containers

3 / 49

Brief intro
about Docker

and containers

4 / 49

Build, ship, and run
any app, anywhere

5 / 49

Take any Linux program, and put it in a container
Web apps and services, workers
(Go, Java, Node, PHP, Python, Ruby...)

Data stores: SQL, NoSQL, big data
(Cassandra, ElasticSearch, Hadoop, Mongo, MySQL, PostgreSQL, Redis...)

Other server-y things
(Consul, Etcd, Mesos, RabbitMQ, Zookeeper...)

Command-line tools
(AWS CLI, Ffmpeg...)

Desktop apps
(Chrome, LibreOffice, Skype, Steam...)

6 / 49

What about non-Linux programs?
Desktop apps with WINE
(e.g.: Spotify client)

Coming soon: Docker for Windows
(run Windows apps on Windows machines)

Coming soon: Docker for FreeBSD
(port in progress)

Coming eventually: Docker for OS X
(technically possible; but is this useful?)

7 / 49

Ship that container easily and efficiently
Docker comes with an image distribution protocol

Distribution server can be hosted by Docker Inc.
(free for public images)

Distribution protocol is public

Open source reference implementation
(used by Docker Inc. for the public registry)

Container images are broken down into layers

When updating and distributing an image,
only ship relevant layers

8 / 49

Run those containers anywhere
Containers can run in VMs or in physical machines

Docker is available on all modern Linux variants

Many IAAS providers have server images with Docker

On OS X and Windows dev machines: boot2docker

There are distros dedicated to run Docker containers
(Atomic, CoreOS, RancherOS, Snappy Core...)

Other Docker implementations exist (e.g. Joyent Triton)

9 / 49

VMs and
containers:

technical
differences

10 / 49

Containers are portable
VMs can't easily be moved

nested hypervisors (VMs in VMs) exist, but still rare

VM images have to be converted and transferred
(both are slow operations)

The same container can run on any machine
(physical or virtual)

Containers use a stable interface

Intel 64 bits machine code

Linux system calls ABI

11 / 49

Containers have low overhead
Normal* process(es) running on top of normal kernel

No device emulation (no extra code path involved in I/O)

Context switch between containers
= context switch between processes

Benchmarks show no difference at all
between containers and bare metal
(after adequate tuning and options have been selected)

Containers have higher density

* There are extra "labels" denoting membership to given
namespaces and control groups. Similar to regular UID.

12 / 49

VMs have stronger isolation
Inter-VM communication must happen over the network
(Some hypervisors have custom paths, but non-standard)

VMs can run as non-privileged processes on the host
(Breaking out of a VM will have ~zero security impact)

Containers run on top of a single kernel
(Kernel vulnerability can lead to full scale compromise)

Containers can share files, sockets, FIFOs, memory areas...
(They can communicate with standard UNIX mechanisms)

13 / 49

Analogy: brick walls vs. room dividers
Brick walls

sturdy

slow to build

messy to move

Room dividers

fragile

deployed in seconds

moved easily

14 / 49

Blurring lines
Intel Clear Containers; Clever Cloud
(stripped down VMs, boot super fast, tiny footprint)

Joyent Triton
(Solaris "branded zones," running Linux binaries securely,
exposing the Docker API)

Ongoing efforts to harden containers
(GRSEC, SELinux, AppArmor)

15 / 49

VMs and
containers:
functional

differences
16 / 49

Inside
VMs typically contains* everything they need
(Backups, logging, periodic job execution, remote access...)

Containers are the subject of an epic debate:

machine container
(runs init, cron, ssh, syslog ... and the app)

application container
(runs the app and nothing else;
relies on external mechanisms)

* No pun intended!

17 / 49

Creation / deployment
Containers are (typically) created from an image

Updates = update the image, redeploy a new container

"Immutable servers" pattern

VMs can use the same pattern ("golden images"),
but it's heavier to setup

VMs often have a long lifecycle instead
(provisioning→update→update→…→update→disposal)

easily leads to configuration drift
(subtle differences that add up over time)

requires tight configuration management

18 / 49

Development process (VMs)
Hypothesis: app broken down in 10 components

Production: 10+ VMs (each component in 1+ VM)

Development: typically 1 VM for whole app

Different components depending on environment
(e.g.: logging, monitoring, service discovery...)

Consequence: prod and dev deployments differ a lot

19 / 49

Development process (containers)
Hypothesis: app broken down in 10 components

Production: 10+ containers (across any number of VMs)

Development: 10 containers on 1 dev VM

Re-use the same container images for prod and dev

How do we provide container variants?

20 / 49

Bloated containers
Containers have all the software required for production

In dev mode, only essential processes are started

In prod mode, additional processes run as well

Problems:

bigger containers

behavior can differ (because of extra processes)

extra processes duplicated between containers

hard to test those extra processes in isolation

21 / 49

Lean containers

22 / 49

Principle
"Do one thing, do it well"

One container for the component itself

One container for logging

One container for monitoring

One container for backups

One container for debugging (when needed)

etc.

23 / 49

Implementation (general principles)
Containers can share almost anything, selectively

files
(logs, data at rest, audit)

network stack
(traffic routing and analysis, monitoring)

process space, memory
(process tracing and debugging)

24 / 49

Let's dive into the
details

25 / 49

Logging (option 1: Docker logging drivers)
Containers write to standard output

Docker has different logging drivers:

writes to local JSON files by default

can send to syslog

Imperfect solution for now, but will be improved.
Preferred in the long run.

26 / 49

Logging (option 2: shared log directory)
Containers write regular files to a directory

That directory is shared with another container

docker run -d --name myapp1 -v /var/log myapp:v1.0

In development setup:

docker run --volumes-from myapp1 ubuntu \
 sh -c 'tail -F /var/log/*'

In production:

docker run -d --volumes-from myapp1 logcollector

27 / 49

Logging takeaways
Application can be "dumb" about logging

Log collection and shipping happens in Docker,
or in separate(s) container(s)

Run custom log analyzer without changing app container
(e.g. apachetop)

Migrate logging system without changing app container

28 / 49

"Yes, but..."
"What about performance overhead?"

no performance overhead

both containers access files directly
(just like processes running on the same machine)

"What about synchronization issues?"

same as previous answer!

29 / 49

Backups (file-based)
Store mutable data on Docker volumes
(same mechanism as for logs)

Share volumes with special-purpose backup containers

Put backup tools in the backup container
(boto, rsync, s3cmd, unison...)

docker run --volumes-from mydb1 ubuntu \
 rsync -av /var/lib/ backup@remotehost:mydb1/

The whole setup doesn't touch the app (or DB) container

30 / 49

Backups (network-based)
Run the backup job (pg_dump, mysqldump, etc.)
from a separate container

Nothing complicated, but with VMs, this is overkill
("this VM does nothing at all; except a few minutes per day!")

Advantages (vs. running in the same container):

nothing to install in the app (or DB) container

if the backup job runs amok, it remains contained (!)

31 / 49

Network analysis
Packet capture (tcpdump, ngrep, ntop, etc.)

Low-level metrics (netstat, ss, etc.)

Install required tools in a separate container image

Run a container in the same network namespace

docker run -d --name web1 nginx
docker run -ti --net container:web1 tcpdump -pni eth0
docker run -ti --net container:web1 ubuntu ss -n --tcp

32 / 49

Service discovery
Docker can do linking and generic DNS injection

Your code connects to e.g. redis
(pretending that redis resolves to something)

Docker adds a DNS alias* so that redis resolves
to the right container, or to some external service

In dev, Docker Compose manages service dependencies

In prod, you abstract service discovery from the container

* Really, an entry in the container's /etc/hosts.

33 / 49

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

34 / 49

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

35 / 49

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)

36 / 49

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)

4. Start container A linked to ambassador

37 / 49

Service discovery in practice
When service A needs to talk to service B...

1. Start container B on a Docker host

2. Retrieve host+port allocated for B

3. Start ambassador (relaying to this host+port)

4. Start container A linked to ambassador

5. Profit!

38 / 49

General pattern
Your code runs in the same container in dev and prod

Add "sidekick*" containers for additional tasks

Developers don't have to be bothered about ops

Ops can do their job without messing with devs' code

* Kubernetes sometimes calls them "sidecars."

39 / 49

Composing
stacks of

containers

40 / 49

Docker Compose

41 / 49

docker-compose.yml
rng:
 build: rng

hasher:
 build: hasher

webui:
 build: webui
 links:
 - redis
 ports:
 - "80:80"
 volumes:
 - "webui/files/:/files/"

redis:
 image: redis

worker:
 build: worker
 links:
 - rng
 - hasher
 - redis

42 / 49

Docker Compose
Start whole stack with docker-compose up

Start individual containers (and their dependencies)
with docker-compose up xyz

Takes care of container lifecycle
(creation, update, data persistence, scaling up/down...)

Doesn't automatically solve networking and discovery (yet)

43 / 49

Docker Compose
Start whole stack with docker-compose up

Start individual containers (and their dependencies)
with docker-compose up xyz

Takes care of container lifecycle
(creation, update, data persistence, scaling up/down...)

Doesn't automatically solve networking and discovery (yet)

... However ...

44 / 49

docker-compose.yml, reloaded

hasher:
 build: hasher

worker:
 build: worker
 links:
 - rng
 - hasherproxy:hasher
 - redis

hasherproxy:
 image: jpetazzo/hamba
 links:
 - hasher
 command: 80 hasher 80

(This was automatically generated by a tiny Python script.)

45 / 49

Fair warning
Docker networking is evolving quickly

Docker 1.7 (to be released Real Soon Now) will support:

"networks" as first class objects

multiple networks

overlay driver allowing to span networks across
multiple hosts

networking plugins from ecosystem partners

46 / 49

Conclusions

47 / 49

Conclusions
Containers can share more context than VMs

We can use this to decouple complexity
(think "microservices" but for ops/devs separation)

All tasks typically requiring VM access
can be done in separate containers

As a result, deployments are broken down
in smaller, simpler pieces

Complex stacks are expressed with simple YAML files

Docker isn't a "silver bullet" to solve all problems,
but it gives us tools that make our jobs easier

48 / 49

Thanks!
Questions?

@jpetazzo
@docker

49 / 49

https://twitter.com/docker
https://twitter.com/jpetazzo

