
1. [AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas and Ben Riva. Non-Interactive Secure Computation Based on Cut-and-Choose.
Eurocrypt 2014, 387-404

2. [BPRS17] Megha Byali, Arpita Patra, Divya Ravi and Pratik Sarkar. Efficient, Round-optimal, Universally-Composable Oblivious Transfer and
Commitment Scheme with Adaptive Security. IACR Cryptology ePrint Archive 2017: 1165 (2017)

3. [IKOPS11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran and Amit Sahai. Efficient Non-interactive Secure Computation.
Eurocrypt 2011, 406-425

4. [MR17] Payman Mohassel and Mike Rosulek, Non-interactive Secure 2PC in the Offline/Online and Batch Settings. In Eurocrypt 2017, pages
425-455

5. [MW16] Pratyay Mukherjee and Daniel Wichs. Two Round Multiparty Computation via Multi-Key FHE. Eurocrypt 2016, 735-763.

We use the primitives of Yao’s Garbled Circuit (GC) and Oblivious Transfer (OT) to
construct our Secure 2PC protocol π.

Garbled Circuit: It is an encrypted representation, C’, of a circuit C, computing the
function f(x, y). It is constructed by a party known as constructor. Another party
known as evaluator can evaluate C’ given the garbled inputs, x’ and y’,
corresponding to x and y respectively. Correctness holds when C’(x’, y’) = f(x, y) and
it is secure when x or y are not leaked to evaluator or constructor respectively.

Oblivious Transfer: It is a protocol between two parties: a sender S and a receiver
R, where S holds a pair of strings (m0, m1) and R holds a selection bit b. At the end
of the protocol, R learns mb only, S gets no information about b.

Next, we give a high level overview of our protocol π as follows. For simplicity we
assume that x and y are bits.

In the diagram, C’ are the garbled circuits, x’ and y’ are the garbled inputs and aux
contains auxiliary information to ensure security against a malicious A, who can
corrupt Alice or Bob or both. The OT is performed in 2 rounds, where Alice sends
the first message; thereby fixing the round complexity to 2. Bob can also obtain the
output in 2 rounds by symmetric execution of the protocol, with some changes in π.

Current Results: We have constructed a 2 round OT [BPRS17] which can be
efficiently implemented using hash functions and few public key operations. We
reduced the size of aux and improved the runtime of the protocol over previous
results [IKOPS11,AMPR14, MR17]. We have also considered the case where
multiple executions of f is performed. In such a case, the runtime and
communication for a single run gets amortized and it is more optimized, when
compared with a single execution of f performed in isolation.

Ongoing Work: We are developing more efficient constructions for C’ which would
significantly reduce the communication and runtime of the protocol. Another
optimization under consideration is to make the first message of OT independent of
|y|. Currently, the first OT message is linearly dependent on |y|. This optimization
would allow Alice to broadcast few (security parameter size) bits, as the first
message π1 on the public domain even if y is arbitrarily large.

Computing on Private Data in High

Latency Networks

Arpita Patra and Pratik Sarkar

Department of Computer Science & Automation, Indian Institute of Science

Contact References

Suppose two parties Bob and Alice want to compute any arbitrary function f(x, y)
on their private inputs x and y respectively s.t. Bob (resp. Alice) gets no information
about y (resp. x) other than the output. Ideally, this can be performed using a
Trusted Third party (TTP).

However, TTPs do not exist in real life. Hence, we rely on Secure Two-Party
Computation (2PC) to perform this task. Secure 2PC allows Bob and Alice to
compute any arbitrary function f(x, y) on their inputs x and y by executing a
protocol π.

π has to satisfy the following two properties:
Correctness: The following should hold f(x, y) = π(x, y) for all x, y pairs.
Security: If Adversary A corrupts Bob, then he obtains no more information about
y, from protocol π, than what can be computed from f(x, y). Same holds when A
corrupts Alice and Bob is honest.

Our Adversarial Model:
Static - A corrupts one (or both) parties at the outset of the protocol.
Malicious - A can arbitrarily deviate from the protocol steps and follow his own
adversarial algorithm, while controlling a corrupted party.

Our protocol π requires 1 interaction, i.e. 2 rounds of message communication
between Alice and Bob. This is round-optimal since 2 rounds is necessary [MW16]
for Secure 2PC. We denote π = (π1 , π2), where π1 and π2 is the first and

second message of π. π can be considered Non - Interactive since Alice can post
π1 on a public bulletin, e.g. her Facebook Wall. Later, Bob read π1 when he is
online, and complete the protocol by sending π2 to Alice. Both parties need not

be simultaneously online.

Pratik Sarkar
Department of Computer Science & Automation
Indian Institute of Science
Email: pratiks@iisc.ac.in
Phone: 08277359870

x y

f(x, y) f(x, y)

Bob
Input: x

TTP Alice
Input: y

.

.

.

.

f(x, y) f(x, y)

Protocol π
Bob

Input: x
Alice

Input: y

.

.

.

.

.

.

.

.

We consider the problem of Secure 2PC between Alice and Bob in a setting, where
the parties are connected through high-latency networks, like the Internet. In high
latency networks, sending messages causes delay in the network.

It models practical situations where the parties are connected through slow
connections. In such cases, sequential message exchanges between the parties
increases the round complexity of the protocol; thereby drastically increasing the
delay and affecting the runtime of the protocol.

In order to address this issue, we try to reduce the interaction between the parties,
by keeping the round complexity of the protocol at a minimum.

High Latency Networks

y π1

Input: x
Output: f(x, y)

Public
Bulletin

Input: y
Output: f(x, y)

π1

π2

K1

K0 y

Ky = y’

Input: x
Constructs C’

Input: y
Output: C’(x’, y’)

OT

C’, x’, aux

Our Protocol Structure

.

.

.

.

.

.

.

.

Motivation

Our Techniques and Results

Our ApproachIntroduction

