
ABSTRACT THE PROTOCOL

RESULTSINTRODUCTION
•In an instance of -agreement, each nonfaulty processor i starts with an initial
value vi {0,1} and a set Fi of processors that i has already detected as faulty. Let

Let D = denote the set of initially disabled processors. If all nonfaulty

processors starts with initial vote of 0, parameter  has no role to play, otherwise,

if vote = 1, then atleast  faulty processors are initially disabled and # D .

-agreement has two additional parameters, n and t, where n and t have their usual

meanings and n and t satisfy n 3t+1 while < t. The Decision, Agreement and

Validity requirements remain same as in case of standard byzantine agreement i.e.

•Decision: Every nonfaulty processor i eventually irreversibly decides on a value

{0,1}.

•Agreement: The nonfaulty processors all decide on the same value.

•Validity: If the initial values vi of all nonfaulty processors are identical then

di = vi for all nonfaulty processors i.

The standard EIG protocol for byzantine agreement is an instance of -agreement

where  = 0 and Fi =  for every nonfaulty processor i.

The -EIG protocol[2] for a single instance of -agreement is based on some components

like it operates on an EIG tree of depth t + 1 - (contrary to depth t + 1 in standard EIG

protocol) and every processor i maintains a set of processors it has detected as faulty.

Let Fi(r) denote the set of faulty processors detected by i in first r rounds which grows

monotonically over time i.e. Fi(r + 1) Fi(r) and Fi(0) = Fi. These sets are useful for

both masking values in its own tree as well as for reporting on masked nodes.

Sending: In a given round r + 1, a processor i sends a message to all other processors

consisting of two components:

1. The message contains reports mask(i, z) where i.e. i has just

discovered z as faulty. For completeness, let Fi(-1) =  so that in first round i reports

that it is masking the processors in Fi(0) = Fi.

2. The message consists of pairs <j; v> where v = treei(j),  nodes j of depth r such
that j Fi(r).

Recording and Masking: Processor i appends every mask(i, j) report it receives in

round r to the list of mask reports that it maintains. The values are recorded in treei by

processor i in following two ways:

1. If j Fi(r – 1) then treei(j) is the value reported by j for  in round r.

2. If z Fi(r – 1) then treei(j) = par(||) i.e. values of nodes corresponding to initially

detected failures are always masked.

Fault Detection:Fi(r) is obtained by adding to Fi(r – 1) new failed processor discovered

by applying the fault detection rules given below. Processor i detects z as faulty at the

end of round if one of the following conditions holds true :

FD0: z sends ill-formated message in round r.

FD1:By end of round r, processor i received t + 1 mask(j, z) from distinct processors j.

FD2:By end of round r, some node z that was not closed in treei by end of round |z| is

committed to both 0 and 1 in treei.

FD3:By end of round r, some node az and value v such that (a) r = |az|+1, and (b) az

is not closed in treei by end of round r; we have that

(i) az is committed to v in treei.

(ii) 2(t + 1 – |a|) +1 of the nodes az are committed to 1 – v in treei by end of round

r; and

(iii) z does not mask a in round |az| +1.

The failures discovered in round r will affect processor’s messages and processing from

round r + 1 onwards.

This protocol in addition to saving in communication also allows a processor to

detect failures based on reports received by it and also estimate the number of

disabled processors.

Crucial property of this protocol is that two rounds after a node  is closed in

one nonfaulty processor’s tree, it will be closed in all processors’ tree and once 

is closed, processor i has no use of its descendants.

treei()=treej() holds for every correct node  of depth atmost t + 1 -  and

nonfaulty processors i and j.

The standard EIG (Exponential Information Gathering) protocol for Byzantine

Agreement requires exactly t+1 rounds for achieving consensus between n

processors where n = total number of processors and t = upper bound on the total

number of faulty processors. Each processor maintains its copy of EIG tree[1] .

By using the -EIG protocol the number of rounds required to reach consensus

can be reduced further where  is the lower bound on the number of initially

disabled faulty processors.

Since, i needs to relay vaules in the subtree rooted at  for atmost 2 rounds after

 is closed in treei thus, -EIG protocol can be further modified to obtain an

early stopping protocol called -Es protocol. This protocol would lead to further

decrease in number of nodes in treei .

Applying -Es protocol, sliding-flip protocol together with monitor voting[3]

would lead to fully polynomial byzantine agreement for n > 3t in t + 1 rounds.

-EIG PROTOCOL FOR BYZANTINE AGREEMENT

Dr. Arpita Patra , Ishita Mandal, Shikha Panwar

Department of Computer Science and Automation

Indian Institute of Science, Bengaluru

CONTACT

Ishita Mandal

Computer Science & Technology

Indian Institute of Engineering Science &Technology, Shibpur

E-mail: imandal.dd2014@cs.iiests.ac.in

Phone: 9836303955

Fig 1 EIG TREE

Source: Lynch, Nancy A. Distributed algorithms

REFERENCES
[1] Lynch, Nancy A. Distributed algorithms. Morgan Kaufmann, 1996.

[2] Garay, Juan A., and Yoram Moses. "Fully polynomial byzantine agreement for processors in rounds." SIAM Journal on Computing 27.1

(1998): 247-290.

[3] Berman, Piotr, Juan A. Garay, and Kenneth J. Perry. "Towards optimal distributed consensus." Foundations of Computer Science, 1989.,

30th Annual Symposium on. IEEE, 1989.




i

iF







1) - (F\F i i r(r)z



FUTURE WORKS









Fixing nodes: A node  is fixed in treei to value v at end of round r if  was

not closed at end of round r – 1 and one of following rules holds true:

Fx1: r = || = t + 1 –  and treei() = v

Fx2: r = || +1, par(||) = v and

Fx3:Rules Fx1 and Fx2 do not apply and either

(a)par(||) = v and F(||) of j’s are fixed to v; or

(b)par(||) = 1 – v and n – || - F(||) + 1 of j’s are fixed to v.

Here, F is an admissible function.

FIG 2: Fault detection using FD3
Source: Garay, Juan A., and Yoram Moses. "Fully polynomial byzantine agreement for processors in rounds." SIAM Journal on Computing 27.1 (1998): 247-290.

















 1 || if j nodes 2-t-n

and; 1 || if j nodes 1-t-n

; if j nodest -n

atleast for v j)(tree







i




