

Δ-EIG PROTOCOL FOR BYZANTINE AGREEMENT

Dr. Arpita Patra, Ishita Mandal, Shikha Panwar Department of Computer Science and Automation Indian Institute of Science, Bengaluru

ABSTRACT

The standard **EIG** (**Exponential Information Gathering**) **protocol** for Byzantine Agreement requires exactly t+1 rounds for achieving consensus between n processors where n = total number of processors and t = upper bound on the total number of faulty processors. Each processor maintains its copy of EIG tree^[1].

By using the Δ -EIG protocol the number of rounds required to reach consensus can be reduced further where Δ is the lower bound on the number of initially disabled faulty processors.

Source: Lynch, Nancy A. Distributed algorithms

INTRODUCTION

•In an instance of Δ -agreement, each nonfaulty processor i starts with an initial value $v_i \in \{0,1\}$ and a set \mathcal{F}_i of processors that i has already detected as faulty. Let Let $\mathcal{D} = \bigcap \mathcal{F}_i$ denote the set of initially disabled processors. If all nonfaulty processors starts with initial vote of 0, parameter Δ has no role to play, otherwise, if vote = 1, then at least Δ faulty processors are initially disabled and # D $\geq \Delta$. Δ -agreement has two additional parameters, n and t, where n and t have their usual meanings and n and t satisfy $n \geq 3t+1$ while $\Delta < t$. The Decision, Agreement and Validity requirements remain same as in case of standard byzantine agreement i.e.

- •**Decision**: Every nonfaulty processor i eventually irreversibly decides on a value $\{0,1\}$.
- •Agreement: The nonfaulty processors all decide on the same value.
- •Validity: If the initial values v_i of all nonfaulty processors are identical then $d_i = v_i$ for all nonfaulty processors i.

The standard EIG protocol for byzantine agreement is an instance of Δ -agreement where $\Delta=0$ and $\mathcal{F}_i=\phi$ for every nonfaulty processor i.

THE PROTOCOL

The Δ -EIG protocol^[2] for a single instance of Δ -agreement is based on some components like it operates on an EIG tree of depth t+1 - Δ (contrary to depth t+1 in standard EIG protocol) and every processor i maintains a set of processors it has detected as faulty. Let $\mathcal{F}_i(r)$ denote the set of faulty processors detected by i in first r rounds which grows monotonically over time i.e. $\mathcal{F}_i(r+1) \supseteq \mathcal{F}_i(r)$ and $\mathcal{F}_i(0) = \mathcal{F}_i$. These sets are useful for both masking values in its own tree as well as for reporting on masked nodes.

Sending: In a given round r + 1, a processor i sends a message to all other processors consisting of two components:

- 1. The message contains reports mask(i, z) where $z \in \mathcal{F}_i(r) \setminus \mathcal{F}_i(r-1)$ i.e. i has just discovered z as faulty. For completeness, let $\mathcal{F}_i(-1) = \phi$ so that in first round i reports that it is masking the processors in $\mathcal{F}_i(0) = \mathcal{F}_i$.
- 2. The message consists of pairs $\langle \sigma j; v \rangle$ where $v = tree_i(\sigma j)$, \forall nodes σj of depth r such that $j \notin \mathcal{F}i(r)$.

Recording and Masking: Processor i appends every mask(i, j) report it receives in round r to the list of mask reports that it maintains. The values are recorded in tree_i by processor i in following two ways:

- 1. If $j \notin \mathcal{F}i(r-1)$ then $tree_i(\sigma j)$ is the value reported by j for σ in round r.
- 2. If $z \in \mathcal{F}i(r-1)$ then $tree_i(\sigma j) = par(|\sigma|)$ i.e. values of nodes corresponding to initially detected failures are always masked.

Fault Detection: $\mathcal{F}_i(r)$ is obtained by adding to $\mathcal{F}_i(r-1)$ new failed processor discovered by applying the fault detection rules given below. Processor i detects z as faulty at the end of round if one of the following conditions holds true:

FD0: z sends ill-formated message in round r.

- FD1:By end of round r, processor i received $\geq t + 1 \max(j, z)$ from distinct processors j.
- FD2:By end of round r, some node σz that was not closed in tree_i by end of round $|\sigma z|$ is committed to both 0 and 1 in tree_i.
- FD3:By end of round r, some node σ az and value v such that (a) $r = |\sigma$ az|+1, and (b) σ az is not closed in tree, by end of round r; we have that
- (i) σaz is committed to v in tree_i.
- (ii) $\geq 2(t+1-|\sigma a|)+1$ of the nodes σ az are committed to 1-v in tree, by end of round r; and
- (iii) z does not mask a in round $|\sigma az| + 1$.

The failures discovered in round r will affect processor's messages and processing from round r+1 onwards.

Fixing nodes: A node σ is fixed in tree_i to value v at end of round r if σ was not closed at end of round r-1 and one of following rules holds true:

Fx1:
$$r = |\sigma| = t + 1 - \Delta$$
 and $tree_i(\sigma) = v$

Fx2:
$$r = |\sigma| + 1$$
, $par(|\sigma|) = v$ and

tree_i(
$$\sigma$$
j) = v for at least $\begin{cases} n - t \text{ nodes } \sigma \text{ if } \sigma = \lambda; \\ n - t - 1 \text{ nodes } \sigma \text{ if } |\sigma| = 1 \text{ and}; \\ n - t - 2 \text{ nodes } \sigma \text{ if } |\sigma| \ge 1 \end{cases}$

Fx3:Rules Fx1 and Fx2 do not apply and either

(a)par($|\sigma|$) = v and \geq F($|\sigma|$) of σ j's are fixed to v; or

(b)par($|\sigma|$) = 1 – v and \geq n – $|\sigma|$ - F($|\sigma|$) + 1 of σ j's are fixed to v.

Here, F is an admissible function.

RESULTS

This protocol in addition to saving in communication also allows a processor to detect failures based on reports received by it and also estimate the number of disabled processors.

Crucial property of this protocol is that two rounds after a node σ is closed in one nonfaulty processor's tree, it will be closed in all processors' tree and once σ is closed, processor i has no use of its descendants.

tree_i(σ)=tree_j(σ) holds for every correct node σ of depth atmost $t+1-\Delta$ and nonfaulty processors i and j.

FUTURE WORKS

Since, i needs to relay vaules in the subtree rooted at σ for atmost 2 rounds after σ is closed in tree, thus, Δ -EIG protocol can be further modified to obtain an early stopping protocol called Δ -Es protocol. This protocol would lead to further decrease in number of nodes in tree,

Applying Δ -Es protocol, sliding-flip protocol together with monitor voting^[3] would lead to fully polynomial byzantine agreement for n > 3t in t+1 rounds.

CONTACT

Ishita Mandal

Computer Science & Technology

Indian Institute of Engineering Science & Technology, Shibpur

E-mail: imandal.dd2014@cs.iiests.ac.in

Phone: 9836303955

REFERENCES

- [1] Lynch, Nancy A. Distributed algorithms. Morgan Kaufmann, 1996.
- [2] Garay, Juan A., and Yoram Moses. "Fully polynomial byzantine agreement for processors in rounds." *SIAM Journal on Computing* 27.1 (1998): 247-290.
- [3] Berman, Piotr, Juan A. Garay, and Kenneth J. Perry. "Towards optimal distributed consensus." *Foundations of Computer Science*, 1989., 30th Annual Symposium on. IEEE, 1989.