A-EIG PROTOCOL FOR BYZANTINE AGREEMENT

Dr. Arpita Patra , Ishita Mandal, Shikha Panwar
Department of Computer Science and Automation
Indian Institute of Science, Bengaluru

TR L P A
i | it -
|-

ABSTRACT THE PROTOCOL

The standard EIG (Exponential Information Gathering) protocol for Byzantine
Agreement requires exactly t+1 rounds for achieving consensus between n
processors where n = total number of processors and t = upper bound on the total
number of faulty processors. Each processor maintains its copy of EIG treel!],

level O

level |

nin—1) level 2

level 3

123 eees 12p 231 234 e D3p
L] L] L J

level t+1

Fig 1 EIG TREE
Source: Lynch, Nancy A. Distributed algorithms

By using the A-EIG protocol the number of rounds required to reach consensus
can be reduced further where A is the lower bound on the number of Initially
disabled faulty processors.

INTRODUCTION

*|In an instance of A-agreement, each nonfaulty processor 1 starts with an initial
value v; €{0,1} and a set ‘F; of processors that i has already detected as faulty. Let

Let D = ()7 denote the set of initially disabled processors. If all nonfaulty
processors starts with initial vote of 0, parameter A has no role to play, otherwise,
If vote = 1, then atleast A faulty processors are initially disabled and # D > A.
A-agreement has two additional parameters, n and t, where n and t have their usual
meanings and n and t satisfy n > 3t+1 while A<t. The Decision, Agreement and
Validity requirements remain same as in case of standard byzantine agreement I.e.

*Decision: Every nonfaulty processor I eventually irreversibly decides on a value
{0,1}.

*Agreement: The nonfaulty processors all decide on the same value.

Validity: If the initial values v; of all nonfaulty processors are identical then
d; = v; for all nonfaulty processors 1.

The standard EIG protocol for byzantine agreement is an instance of A-agreement
where A = 0 and ‘F; = ¢ for every nonfaulty processor I.

The A-EIG protocoll? for a single instance of A-agreement is based on some components
like It operates on an EIG tree of depth t + 1 - A(contrary to depth t + 1 in standard EIG

protocol) and every processor I maintains a set of processors it has detected as faulty.
Let Fi(r) denote the set of faulty processors detected by 1 in first r rounds which grows

monotonically over time i.e. F.(r + 1) o Fi(r) and ‘F(0) = .. These sets are useful for
both masking values In its own tree as well as for reporting on masked nodes.

Sending: In a given round r + 1, a processor I sends a message to all other processors
consisting of two components:

1. The message contains reports mask(i, z) where z € Fi(r)\ Fi(r - 1) i.e.i has just
discovered z as faulty. For completeness, let .(-1) = ¢ so that In first round 1 reports

that it Is masking the processors in ‘1:(0) = F.

2. The message consists of pairs <cj; v> where v = tree;(c]), V nodes cj of depth r such
that j& ‘Fi(r).

Recording and Masking: Processor | appends every mask(i, J) report it receives In
round r to the list of mask reports that it maintains. The values are recorded in tree; by
processor I in following two ways:

1. If & Fi(r — 1) then tree;(o)) Is the value reported by | for ¢ in round .

2. If ze Fi(r— 1) then tree;(c)) = par(|c|) 1.e. values of nodes corresponding to initially
detected failures are always masked.

Fault Detection: ‘F(r) Is obtained by adding to ‘/(r — 1) new failed processor discovered
by applying the fault detection rules given below. Processor I detects z as faulty at the
end of round if one of the following conditions holds true :

FDO: z sends ill-formated message in round r.
FD1:By end of round r, processor 1 received > t + 1 mask(j, z) from distinct processors |j.

FD2:By end of round r, some node oz that was not closed in tree; by end of round |oz| Is
committed to both 0 and 1 in tree;.

FD3:By end of round r, some node caz and value v such that (a) r = |caz|+1, and (b) caz
IS not closed In tree; by end of round r; we have that

(1) caz is committed to v In tree;.

(1) > 2(t + 1 —|oa|) +1 of the nodes caz are committed to 1 — v In tree; by end of round
r; and

(111) z does not mask a in round |caz| +1.

The failures discovered 1n round r will affect processor’s messages and processing from
round r + 1 onwards.

t+1l-|ta|)+1 nodes

committedto 1-V

mask(z, a) expected
from =

FIG 2: Fault detection using FD3

Source: Garay, Juan A., and Yoram Moses. "Fully polynomial byzantine agreement for processors in rounds." SIAM Journal on Computing 27.1 (1998): 247-290.

Fixing nodes: A node o Is fixed In tree; to value v at end of round r if ¢ was
not closed at end of round r — 1 and one of following rules holds true:
Fxl:r=|o|=t+1-Aandtreg(c) =V

Fx2:r=|ol| +1, par(|c|) = v and

[n-tnodesdqj if o= A;

treei(oj) = v for atleast<n-t-1nodesgj if | o |=1and,;

| N-t-2nodesqj If |o|=1

Fx3:Rules Fx1 and Fx2 do not apply and either

(a)par(|o]) = v and > F(|o|) of j’s are fixed to v; or

(b)par(lo]) =1-vand = n—|o| - F(lo]) + 1 of 6j’s are fixed to v.

Here, F Is an admissible function.

RESULTS

This protocol in addition to saving in communication also allows a processor to
detect failures based on reports received by it and also estimate the number of
disabled processors.

Crucial property of this protocol Is that two rounds after a node o Is closed In
one nonfaulty processor’s tree, it will be closed in all processors’ tree and once o
IS closed, processor I has no use of its descendants.

tree;(c)=tree;(c) holds for every correct node o of depth atmostt+ 1 - A and
nonfaulty processors I and |.

FUTURE WORKS

Since, 1 needs to relay vaules in the subtree rooted at ¢ for atmost 2 rounds after
o IS closed in tree; thus, A-EIG protocol can be further modified to obtain an
early stopping protocol called A-Es protocol. This protocol would lead to further
decrease In number of nodes In tree; .

Applying A-Es protocol, sliding-flip protocol together with monitor voting!®]
would lead to fully polynomial byzantine agreement for n > 3t int + 1 rounds.

