Queries for Author

Journal: Journal of Epidemiology & Community Health Paper: jech125195

Title: The effectiveness of anti-illicit-drug public-service announcements: a systematic review and meta-analysis

The proof of your manuscript appears on the following page(s).

Please read the manuscript carefully, checking for accuracy, verifying the reference order and double-checking figures and tables. When reviewing your page proof please keep in mind that a professional copyeditor edited your manuscript to comply with the style requirements of the journal.

This is not an opportunity to alter, amend or revise your paper; it is intended to be for correction purposes only.

During the preparation of your manuscript for publication, the questions listed below have arisen (the query number can also be found in the gutter close to the text it refers to). Please attend to these matters and return the answers to these questions when you return your corrections.

Please note, we will not be able to proceed with your article and publish it in print if these queries have not been addressed.

Query Reference	Query
	Please ensure all author names are correct because we are close to publishing your paper online - these data will be recorded on PubMed and CrossRef
	Please check that the "Provenance and peer review" statement is correct about your article
1	Please provide department name and university name (if any) for affiliation 1.
2	Please provide department name (if any) for affiliation 2.
3	"PRISMA" in full, please
4	"anti-licit drug" - I have changed this to "anti-illicit drug". Please check
5	Please check the value '95% CI=100%, 100%' in the section 'Observational studies'.
6	Please provide publisher name and location for reference 5 and 17.
7	Please provide the complete details for reference 15.
8	Please provide editor name, publication name and location for reference 24 and 33.
9	Please provide publisher location for reference 29.

If you are happy with the proof as it stands, please email to confirm this. Changes that do not require a copy of the proof can be sent by email (please be as specific as possible). Email: production iech@bmigroup.com

Email: production.jech@bmjgroup.com

If you have any changes that cannot be described easily in an email, please mark them clearly on the proof using the annotation tools and email this by reply to the eProof email.

PLEASE RESPOND WITHIN 48 HOURS

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93 94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

The effectiveness of anti-illicit-drug public-service announcements: a systematic review and meta-analysis

Dan Werb,¹ Edward J Mills,^{1,2} Kora DeBeck,¹ Thomas Kerr,^{1,3} Julio S G Montaner,^{1,3} Evan Wood^{1,3}

ABSTRACT

Background Anti-illicit-drug public-service announcements (PSAs) have become a cornerstone of drug policy in the USA. However, studies of the effectiveness of these interventions have not been subjected to a systematic evaluation.

Methods The authors searched 10 electronic databases along with major conference abstract databases (from inception until 15 February 2010) for all articles and abstracts that evaluated the effectiveness of anti-illicitdrug PSAs. The authors evaluated all studies that assessed intention to use illicit drugs and/or levels of illicit-drug use after exposure to PSAs, and conducted meta-analyses of these studies.

Results The authors identified seven randomised trials (n=5428) and four observational trials (n=17 404). Only one randomised trial showed a statistically significant benefit of PSAs on intention to use illicit drugs, and two found evidence that PSAs significantly increased intention to use drugs. A meta-analysis of eligible randomised trials demonstrated no significant effect. Observational studies showed evidence of both harmful and beneficial effects.

Conclusion Existing evidence suggests that the dissemination of anti-illicit-drug PSAs may have a limited impact on the intention to use illicit drugs or the patterns of illicit-drug use among target populations.

BACKGROUND

Illicit-drug use continues to pose a serious threat to public health in a number of settings, and the prevalence of marijuana use among youth continues to be of particular concern.¹⁻⁴ In addition, the consumption of drugs such as methamphetamine, heroin and crack cocaine presents complex public-health challenges.¹⁻³ Given their potential for harm, the effective prevention of the consumption of such drugs among vulnerable populations requires the development of policies guided by the best available scientific evidence.

One popular response to illicit-drug use has been the dissemination of anti-illicit-drug public service announcements (PSAs) through media campaigns, most often targeted at youth. PSAs are commercials that provide advice or information, or promote activities regarded as serving community interests. They are produced for a variety of media including television, radio, print, and the internet,⁴⁻⁶ and antitobacco PSAs appear to have been effective in modifying attitudes towards tobacco use among targeted populations.⁷ In the USA, anti-illicit-drug PSAs have been a cornerstone of the country's drug policy since at least the 1970s,⁸ and a national antiillicit-drug use media campaign has been operating since 1999.⁴ Further, despite announced reforms in American policy on illicit-drug use under the administration of President Barack Obama, the Office of National Drug Control Policy has recently announced an increase of US\$21.5 million in funding for the US National Youth Anti-Drug Media Campaign.⁹ Additionally, Canada, Australia and the UK have all embraced anti-illicit-drug PSAs as part of their national drug-control strategies.⁵ 6 10 11

Despite the popularity of anti-illicit-drug PSAs as a means of combating illicit-drug use among youth, the impact of these strategies in reducing the consumption of, and modifying intentions to use, illicit drugs remains unknown. We therefore conducted the following systematic review and meta-analyses to investigate the state of the research related to the effectiveness of anti-illicitdrug PSAs in modifying behaviour and intention to use illicit drugs among target populations.

METHODS

We referred to PRISMA guidelines for reporting of ^[3] systematic reviews and meta-analyses in this analysis as well as the 'Meta-analysis of observational studies in epidemiology' statement on reporting of meta-analyses of observational studies.¹² ¹³

Eligibility criteria

Our primary outcome of interest was the effectiveness of anti-illicit-drug PSAs in modifying intentions to use and/or reducing self-reported use of illicit drugs. We reviewed both randomised controlled trials (RCTs) and observational studies, but placed primary emphasis on RCTs. We considered all studies published in peer-reviewed journals, abstracts from international conferences and governmental reports. We did not include evaluations of anti-illicit-drug (ie, tobacco or alcohol) PSAs in our analyses as alcohol and tobacco are government sanctioned. Studies of illicit-drug 4 prevention campaigns that included multicomponent interventions (ie, school-based and mediabased interventions) were only included if the impacts of anti-illicit-drug PSAs were evaluated independently.

Information sources

We searched the following 10 electronic databases (from inception to 15 February 2010): PubMed, PsycINFO, EMBASE, Cochrane CENTRAL,

 ¹British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
 ²Faculty of Health Sciences, Simon Fraser University, Vancouver Canada
 ³Department of Medicine, University of British Columbia, Vancouver, Canada

Correspondence to

Evan Wood, BC Centre for Excellence in HIV/AIDS, Department of Medicine, University of British Columbia 608-1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada; uhri-ew@cfenet.ubc.ca

Accepted 7 April 2011

168

169

170

171

189

190

129

130

CINAHL, Web of Science, TOXNET, AIDSLINE, AMED and ERIC.

Search

We searched for all English-language articles and abstracts, and set no date limits. Search terms included 'anti-drug,' 'antimarijuana,' 'national anti-drug youth media campaign,' 'youth,' 'drug prevention,' 'adolescent,' 'public service announcement' and 'PSA.' We also examined references from relevant articles.

Study selection

Using a predefined protocol (available from corresponding author on request), two investigators (DW, EW), working independently, scanned all of the abstracts and obtained the full text of articles and reports that evaluated a measure of effectiveness. We assessed validity in duplicate using the following criteria: (1) study design and (2) measure of effectiveness. After obtaining the full reports of the candidate studies (a full peerreviewed article, conference abstract or non-peer-reviewed report), the same reviewers independently assessed eligibility. After all potentially relevant full-text articles and abstracts were identified, three of the authors (DW, EM, EW) met to achieve consensus regarding eligibility.

Data collection process

Between 1 May 2007 and 15 February 2010, we conducted data extraction independently, in duplicate, using a standardised form. Data abstractors collected information about the study design, sample size, methods of effectiveness measurement and outcomes. The data were entered into an electronic database such that duplicate entries existed for each study; when the two entries did not match, we reached consensus through discussion (DW, EW).

Risk of publication bias

Experts have noted that evaluations of school-based anti-illicitdrug interventions may suffer from publication bias that may deter researchers from publishing negative or null findings of these interventions.¹⁴ Given the similarities between educationbased and social-marketing anti-illicit-drug interventions, a similar bias may affect the publication of evaluations of antiillicit-drug PSAs.

Meta-analysis

172 The primary meta-analysis considered all RCTs used random 173 effects, which is an approach that recognises and anchors studies 174 as a sample of all potential studies, and incorporates an addi-175 tional between-study component to the estimate of variability. 176 In trials that evaluated multiple interventions (ie, more than one 177 anti-drug campaign), we included the outcomes for the 178 substudies as separate entries within the meta-analysis. In cases 179 where study samples were stratified between particular groups, 180 we conducted subgroup analyses and entered each subgroup as 181 a separate data point in our meta-analysis. Because studies 182 reported primary outcomes as continuous, we applied the 183 weighted mean difference as the primary outcome. We used the 184 I^2 to detect heterogeneity between studies in our meta-analysis. 185 We also reviewed all observational studies and conducted 186 a second meta-analysis of observational studies again using 187 a weighted means difference design with random effects. Anal-188 yses were conducted using StatsDirect version 2.5.2.¹⁵

Role of the funding source

191 This was an investigator-initiated study without external 192 funding support. No external funder played a role in the collection, analyses, interpretation of data, writing of the report or decision to publish. All authors had complete access to all data, and all had final responsibility to submit for publication. 193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

RESULTS

Our initial search yielded 462 potential studies, of which 49 met our criteria and were further assessed. Thirteen studies were excluded because they were neither peer-reviewed nor published by a governmental agency. A further 18 studies were excluded because they did not directly evaluate the effect of antiillicit PSAs on intention to use illicit drugs or on self-reported illicit-drug use. Four studies were excluded because they only evaluated the effectiveness of anti-drug media interventions in reducing licit drug use (ie, tobacco or alcohol). Two studies were excluded because they investigated multicomponent interventions and did not provide separate findings for antiillicit-drug media interventions. Twelve studies,^{4 5} ^{16–25} published between 1989 and 2008, met the eligibility criteria for our review. However, one was excluded because it reported duplicate findings,¹⁷ and we opted to include the more recent publication of this study.¹⁶ Of the remaining 11 studies, seven (n=5428) used an RCT design,^{16 18–23} and four (n=17404) used observational study designs.^{4 5 24 25}

Systematic review of RCTs

Eligible studies are presented in table 1. As shown, studies used diverse methodologies to examine the impact of anti-illicit-drug PSAs on intention to use illicit drugs and levels of illicit-drug use among targeted populations. All RCTs used a control program or compared the effectiveness of various PSAs. Of seven RCTs, six compared individuals exposed to anti-illicit-drug PSAs with individuals exposed to a control program,16 18-22 while one study employed a between-groups design in which individuals exposed to different types of anti-illicit-drug PSAs were compared.²³ Sample sizes ranged from 28 to 3608 (median: 284, IQR: 47-80). Three RCTs exposed individuals to marijuanaspecific anti-illicit-drug PSAs,18 20 23 and four RCTs exposed individuals to a variety of anti-illicit-drug PSAs.¹⁶ ¹⁹ ²¹ ²² Two RCTs reported positive effects of anti-illicit-drug PSAs corresponding to a -0.01 reduction in intention to use illicit drugs on a 1-7 scale of intention, and to a 0.06 increase in intention to call a drug-abuse hotline on a 1-5 scale of intention.¹⁶ ¹⁸ Five RCTs reported non-significant and/or negative effects of such interventions.¹⁹⁻²³ Furthermore, the RCTs by Fishbein et al,²² Yzer et al^{21} and David et al^{23} used novel methodological approaches to measuring PSA effectiveness.

Fishbein et al conducted an RCT in which they evaluated the relative effectiveness of 30 anti-illicit-drug PSAs in modifying the intention of targeted individuals to use illicit drugs.² Participants (n=3608) were randomly assigned to view six of a possible 30 anti-illicit-drug PSAs or a control program. They were then immediately evaluated after exposure, and their assessment of the PSAs was recorded. Overall mean relative scores of PSA effectiveness were then generated. The mean scores suggest that 16 PSAs were more effective than the control program in reducing intention to use illicit drugs among study participants, eight did not differ significantly from the control, and six were significantly less effective than the control in reducing intention to use illicit drugs (ie, these PSAs significantly increased the intention to use illicit drugs) among participants. In this study, an effect size of 0 represented a null effect, and the five most effective PSAs were those with content focussing on heroin and methamphetamine, with relative effect sizes ranging from 0.597 to 0.938. By contrast, the five least effective PSAs

Authors, year	n	Study setting	Sample	Length of study	Intervention and intensity
Randomised control trials					
Palmgreen <i>et al</i> , 1991 ¹⁶	207	USA	Randomly recruited 18—22 year olds in Fayette County, Kentucky	Immediate post-test	Two anti-illicit-drug PSAs viewed twice over 10 min
Fishbein <i>et al</i> , 2002 ²²	3608	USA	Middle and high school students from 10 American schools	Immediate post-test	Six anti-illicit-drug PSAs of a total of 30 viewed once
Harrington <i>et al</i> , 2003 ¹⁸	338	USA	18—20 year olds recruited from a local college in Fayette County, Kentucky	4 weeks	Four PSAs viewed once a week for 4 weeks for a total of 16 exposures
Yzer <i>et al</i> , 2003 ²¹	418	USA	Students (mean age 14 years) from a middle school and a high school in Philadelphia	Immediate post-test	Two anti-marijuana PSAs, two anti-'hard' drug PSAs and an anti- drug testimonial, two anti-marijuana and two anti-'hard' drug PSAs, or four anti-'hard' drug PSAs once
David <i>et al</i> , 2006 ²³	535	USA	7th- and 12th-grade students from 3 schools in Philadelphia	Immediate post-test	10 PSAs viewed once; participants then randomised to engage in online chatting immediately following viewing
Czyzewska and Ginsburg, 2007 ²⁰	229	USA	Undergraduate freshmen aged 18—19 in San Marcos, Texas	Immediate post-test	15 anti-marijuana or 15 anti-tobacco ads once
Wagner and Sundar, 2008 ¹⁹	65 (Trial 1); 28 (Trial 2)	USA	High-school seniors aged 17—18 in Pennsylvania (Trial 1). Undergraduate students in Pennsylvania (Trial 2).	Immediate post-test	Four anti-illicit-drug PSAs once
Observational			-		
Palmgreen <i>et al</i> , 2002 ²⁴	3174 (Fayette County); 3197 (Knox County)	USA	Public school students aged 12–16 in Knox County, Tennessee and Fayette County, Kentucky	32 months	70% of sample exposed to a minimum of three anti-illicit-drug PSAs per week for 4 months
Orwin <i>et al</i> , 2004 ⁴	3142	USA	Youth aged 9 to 18 surveyed through the National Survey of Parents and Youth	5 years	Average of 2.5 anti-illicit-drug PSAs viewed by sample over 58 months
Pennay <i>et al</i> , 2006 ⁵	Pretest: 1400 Post-test: 1490	Australia	Youth aged 13—20 recruited into a national survey of youth	1 year	Three anti-illicit-drug PSAs over 9 weeks. Intensity not reported.
Palmgreen <i>et al</i> , 2007 ²⁵	4795 (Fayette County); 4803 (Knox County)	USA	Public school students aged 13–17 in Knox County, Tennessee and Fayette County, Kentucky	48 months	Four antimarijuana PSAs. Intensity not reported.

PSA, public-service announcement.

addressed marijuana use or focused on building the self-esteem of viewers, with the authors reporting relative effect sizes ranging from -0.089 to -0.286.²² These effect sizes suggest that these five PSAs had significant negative effects on reducing intention to use illicit drugs compared with a control program; that is, they actually increased the intention of exposed participants to use illicit drugs.

Additionally, Yzer *et al* observed no significant effects of exposure to anti-illicit-drug PSAs among a sample of youth (n=418) compared with a control program in decreasing intention to use marijuana.²¹ However, individuals exposed to anti-illicit-drug PSAs that explicitly mentioned the gateway theory of drug use (ie, that marijuana use leads to the use of 'harder' drugs such as cocaine and heroin) reported significantly weaker anti-marijuana norms than the control group.²¹

Finally, the possibility that the effectiveness of anti-marijuana PSAs is mediated by group interaction was investigated using an RCT by David et al, who conducted a post-test only between-subjects study of 7th- and 12th-grade students in the Philadelphia area (n=535), in which group interaction was measured by observation of online 'chatting' (ie, participation in an online chat room environment) between study participants.²³ The authors found that individuals who participated in online chatting after exposure to anti-marijuana PSAs reported signifi-cantly weakened anti-marijuana beliefs compared with those study participants that did not engage in online chatting.²³

318 Systematic review of observational studies

319 Among the four observational studies that investigated the 320 effectiveness of anti-illicit-drug PSAs in reducing levels of

illicit-drug use, sample sizes ranged from 1490 to 4803 (median: 3186; IQR: 3142-4795), and study periods ranged from 1 to 5 years. All observational studies observed the effects of antiillicit-drug PSAs within the context of either a community- or national-based media campaign, and two studies examined the effects of the US National Youth Anti-Drug Media Campaign.^{4 25} Specifically, two observational studies conducted by Palmgreen et al in the state of Kentucky found that anti-illicit-drug PSAs were associated with significant 8.8% and 10.7% reductions in illicit-drug use.^{24 25} Furthermore, one national study conducted in Australia observed a 3% reduction in use among study participants but did not report on levels of significance.⁵ Finally, as will now be described, one 5-year US-based national observational study observed a non-significant 0.4% increase in use as well as potential negative effects on attitudes towards illicit drugs.4

Specifically, the US Office of National Drug Control Policy's National Youth Anti-Drug Media Campaign, ongoing since 1999, constitutes the largest PSA-based anti-illicit-drug intervention in the world. A 5-year observational study using a national sample of youth as well as county-level observational studies were conducted in order to determine its potential effectiveness in modifying drug use patterns among youth. It is noteworthy that those observational studies conducted by Palmgreen *et al* in two counties in Kentucky concluded that components of the National Youth Anti-Drug Media Campaign appeared to be effective in reducing rates of illicit-drug use among youth, as mentioned above.²⁴ ²⁵ However, when campaign effects were investigated at the national level by Orwin *et al*, there was no evidence that the dissemination of

385 anti-illicit-drug PSAs had a significant effect on reducing levels of illicit-drug use.⁴ Further, the authors found that higher exposure 386 387 to the campaign was significantly associated with the negative 388 effect of weaker anti-illicit-drug norms among study partici-389 pants corresponding to a 6.29 decrease in negative attitudes and 390 beliefs related to marijuana on a scale with a baseline mean and 391 SD of 100 each.⁴

392 Phase 2 of the Australian government's National Drugs 393 Campaign, targeted towards youth aged 13-24 years old, was 394 also evaluated using a prospective observational study design.⁵ 395 According to the evaluators, modest attitudinal changes were 396 observed among the entire sample during the 1-year study 397 period. Specifically, significant increases were observed among 398 youth believing that amphetamine and ecstasy use can lead to 399 paranoia, depression, aggression and lethargy. However, no 400 significant differences in rates of illicit-drug use were observed.⁵

Findings of effectiveness in both RCTs and observational studies in our systematic review were generally restricted to subpopulations identified as high sensation seekers. High sensation seeking is a personality trait characterised by the need for novel, complex, ambiguous and emotionally intense stimuli, and the willingness to take risks to obtain such stimulation. Individuals identified as high sensation seekers are believed to be at higher risk of initiating illicit-drug use compared with low sensation seekers.²⁴

Meta-analyses

RCTs

401

402

403

404

405

406

407 408

409

410 411

412

413

414

415

416

417

418

419

We conducted a meta-analysis restricted to the RCTs included in our systematic review. Three RCTs were reviewed but were ineligible for inclusion in our meta-analysis because, while they evaluated the effect of PSAs on intention to use illicit drugs, they did not present the required outcome data.^{16 22 23} Also, because the study by Wagner and Sundar included two separate RCTs, we considered these trials independently in the meta-analysis. As shown, when we conducted a weighted means difference meta-analysis of RCTs using random effects, we found a non-significant effect size of 0.29 (95% CI -0.17 to 0.75 (p=0.217), $I^2=66.1\%$; 95% CI 0% to 84.9%). The study by Harrington et al stratified participants into high- and lowsensation-seeking youth, and we therefore conducted a subgroup analysis among these subgroups in the meta-analysis. This meta-analysis generated a non-significant effect size of 0.15 $(95\% \text{ CI} - 0.19 \text{ to } 0.49 \text{ (p}=0.382), I^2=53.2\% \text{ to } 95\% \text{ CI } 0\% \text{ to}$ 80.8%). Effect sizes and findings of the subgroup meta-analysis are presented in figure 1.

Observational studies

We conducted a second meta-analysis restricted to observational studies. Because certain studies included multiple evaluations of separate interventions or stratified findings by sensation seeking status,^{24 25} we entered these findings separately in our metaanalysis (full data available from the corresponding author). As described in figure 2, when we conducted a meta-analysis of the four observational studies, we found an effect size of -0.04 (95%) CI -0.06 to -0.01 (p=0.004), I²=100%, 95% CI 100%, 100%), 5 corresponding to an estimated 4% reduction in the use of illicit drugs among individuals exposed to anti-illicit-drug PSAs, though it is noteworthy that we observed the maximum level of heterogeneity in this analysis.

CONCLUSION

The present systematic review demonstrates limited evidence to support the use of PSAs for illicit-drug prevention among youth. Our meta-analysis of RCTs demonstrated no significant benefit, and no studies reported any long-term effectiveness of these

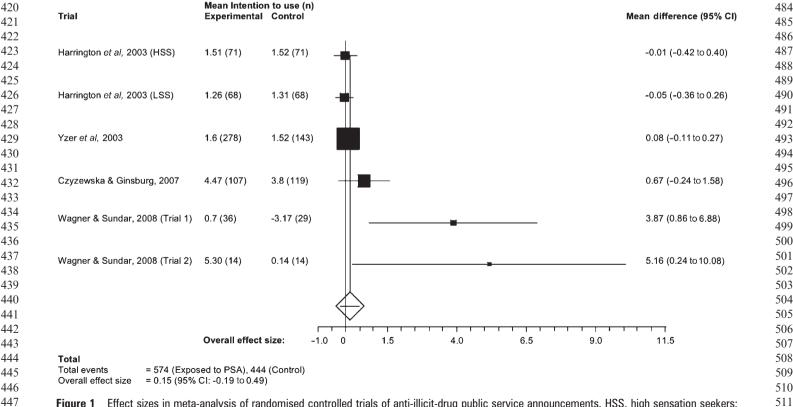


Figure 1 Effect sizes in meta-analysis of randomised controlled trials of anti-illicit-drug public service announcements. HSS, high sensation seekers; LSS, low sensation seekers.

512

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

Evidence-based public health policy and practice

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

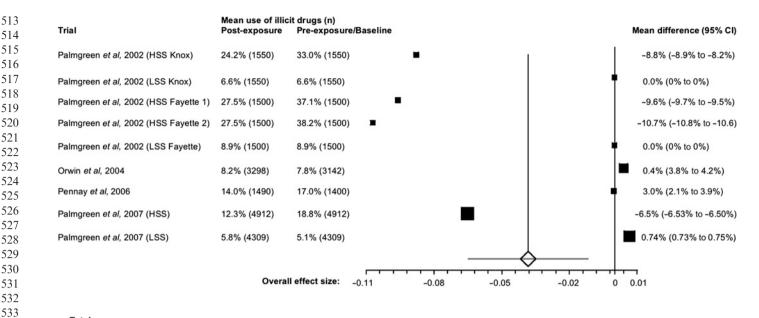
631

632

633

634

635


636

637

638

639

640

 Total
 = 17 404

 Total events
 = 17 404

 Overall effect size
 = 0.15 (95% CI: -0.19 to 0.49) p>0.05

534

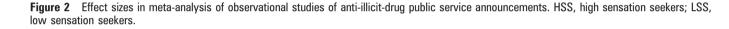
535

536

537

538

539


540

541

542

543

544

interventions. Importantly, most RCT and observational studies reported non-significant results, and three RCTs and one observational study found that anti-illicit-drug PSAs may have negative effects on anti-illicit-drug-use norms among targeted populations.⁴ ¹⁹ ²⁰ ²²

545 These findings are of immediate importance in several 546 settings, given the high costs of the production and dissemina-547 tion of anti-illicit-drug PSAs as well as the high levels of drug use 548 among youth in a variety of settings.²⁶ The government 549 Accountability Office of the US government recently recom-550 mended that 'Congress should consider limiting appropriations 551 for the (National Youth Anti-Drug Media) campaign, beginning 552 in the 2007 fiscal year budget until Office of National Drug 553 Control Policy's provides credible evidence of a media campaign approach that effectively prevents and curtails youth 554 555 drug use.'27 Despite this recommendation, recent increases in 556 funding towards this program have been approved by the administration of President Barack Obama for the 2010/2011 557 558 fiscal year.⁹ While it is noteworthy that a decline from 55% to 559 47% in national prevalence of marijuana use was observed among youth in the USA between 1999 and 2007,²⁸ research to 560 date has not demonstrated any association between this decline 561 and the dissemination of anti-illicit-drug PSAs.⁴ Elsewhere, the 562 563 FRANK anti-illicit-drug media campaign established by the 564 Home Office of the UK has cost £24 million (US\$47 million) and 565 has yet to be the subject of an independent, arms-length scien-566 tific evaluation.⁶ In Australia, over \$60 million has been spent on 567 the National Drugs Campaign since 2001, though the long-term 568 effectiveness of the campaign has not been observed.⁵ The 569 Canadian federal government also announced \$10 million in 570 new funding for the dissemination of anti-illicit-drug PSAs in 2007,¹⁰ ¹¹ which may reflect a greater harmonisation of North 571 American drug policy.²⁹ 572

573 A secondary potential effect of anti-drug media campaigns is 574 that these interventions may help to reinforce support for 575 existing illicit-drug policy approaches. For instance, a large study 576 from the USA, where most citizens derive their drug-use information from the mass media, demonstrated that most Americans approved of a continuation of a 'war on drugs' approach and that only weak support existed for increasing access to addiction treatment.³⁰ These findings imply that, while anti-drug messaging may have little direct benefit in reducing drug use among youth, anti-drug PSAs may nevertheless contribute to support for abstinence- and enforcement-based policy responses to illicit-drug use.

The theoretical framework used to produce and evaluate anti-illicit-drug media campaigns may partially explain the difficulty that scientists have faced in evaluating these interventions. Theories derived from social cognitive theory,³¹ such as the theory of reasoned action and the theory of planned behaviour,^{32 33} serve as foundational models for a range of health-behaviour communication interventions, including antiillicit-drug PSAs.³⁴ While these theories are based on the notion of a specific contiguous relationship between intention and behaviour,³⁵ research has demonstrated that socio-demographic, environmental and other variables may play a critical role in reducing an individual's ability to act according to their intentions.³⁶ In the context of youth drug use, these theories may therefore be unable to explicate associations between behavioural interventions and behaviour, as intentions to use drugs may be mediated by a range of confounding factors. In particular, the exclusion of key sociodemographic variables on study participants such as ethnicity, neighbourhood of residence, income, housing situation and others from the vast majority of anti-illicit-drug PSA evaluations may critically limit the evaluation of these interventions. Furthermore, the fact that the study by David et al found that online chatting decreased the effectiveness of anti-illicit-drug PSAs suggests that social networks likely also act as mediating influences on the effect of these interventions on youth.²³ As such, anti-illicit-drug PSAs should be developed with a broader understanding of the range of external factors that influence drug-related decision-making.

Some evaluators have also suggested that the observed negative outcomes of the dissemination of anti-illicit-drug PSAs may be a result of PSA content that increases the perception that drug use among youth is widespread. Specifically, the evaluators of the National Youth Anti-Drug Media Campaign stated that, 'If the meta-message is that drug use is widespread, higher exposure to Campaign ads should cause an immediate effect on the perception that other kids regularly use marijuana...This perception eventually leads to a more generalised pro-marijuana social norm...and greater likelihood of actual initiation.'⁴

641

642

643

644

645

646

647

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

648 649 Our study contains several important limitations, the first 650 relating to the lack of published research on anti-illicit-drug 651 PSAs, which limits the statistical power of our meta-analyses. 652 This limitation is particularly acute with respect to the dearth of 653 studies on the long-term effectiveness of these interventions. A 654 recent commentary also noted that publication bias may have 655 prevented the publication of a number of negative studies 656 regarding the effectiveness of school-based anti-illicit-drug interventions.¹⁴ Given that similarities exist between such 657 interventions and anti-illicit-drug PSAs, evaluations with null 658 659 findings may be under-reported in the literature. Second, all but one of the studies included in our meta-analyses were from the 660 USA, and as such, our meta-analytical findings may not be 661 generalisable to other settings. Third, although experts have 662 recently suggested the importance of meta-analyses, even when 663 heterogeneity between study designs exists,³⁷ it is noteworthy 664 that the studies we considered used diverse designs and 665 outcomes, and that our meta-analysis of observational studies 666 contained the maximum level of heterogeneity. As such, the 667 results of this meta-analysis reflect only a crude estimate of the 668 669 short-term effectiveness of published observational studies of 670 anti-illicit-drug PSAs. Finally, because two RCT studies only presented outcomes as ratios between groups, $^{16\ 23}$ and one RCT 671 study only measured the effectiveness of 30 anti-illicit-drug 672 PSAs relative to each other,²² we were unable to include these 673 studies in our meta-analysis. While these exclusions also likely 674 affected our calculation of overall effect size, it is noteworthy 675 that the majority of these trials reported non-significant or 676 negative effects of anti-illicit-drug PSAs.¹⁶ ²² ²³ We stress, 677 678 however, that our meta-analysis of RCTs contains important 679 limitations related to the fact that, as previously noted, RCTs of anti-illicit-drug PSAs often contain serious methodological 680 681 problems that restrict their capacity to provide evaluations of 682 effectiveness, particularly in the long-term.

In summary, the present review and meta-analysis indicate that insufficient data exist to support the conclusion that antiillicit-drug PSAs are effective in modifying intention to use illicit drugs and reducing self-reported illicit-drug use among targeted youth. As such, novel methods of evaluating the effects of these interventions, and particularly their long-term effects, are urgently needed. Our findings should also help reinforce the need for evidence-based approaches to reducing drug-related harm and a re-evaluation of the use of existing modes of media-delivered illicit-drug-prevention messages. Although further research is necessary, several studies have suggested that these interventions

What is already known on this subject

- Anti-drug PSAs are popular preventive interventions.
- In the USA, over US\$20 million is allocated annually towards anti-drug PSAs, despite a government report suggesting that they are likely ineffective.
- While studies of the effectiveness of anti-drug PSAs have been conducted, findings have been mixed.

What this study adds

- No systematic review or meta-analysis of anti-drug PSAs has yet been conducted.
- The findings of this study suggest that there is little support for the hypothesis that anti-drug PSAs are effective in reducing intention to use drugs, or actual drug use among youth.
- Furthermore, multiple studies have noted the potential of antidrug PSAs to weaken anti-drug norms among youth, which may in turn lead to increases in the prevalence of drug use among this population.

Policy implications

- Consistent with the US government Accountability Office's recommendations, funding for anti-drug PSAs should be contingent on scientific evidence of effectiveness.
- These recommendations hold particular weight considering the massive resources currently allocated by governments towards anti-drug PSAs.
- Future evaluations of anti-drug PSAs should consider the impact of sociodemographic factors in modifying the effectiveness of these interventions.
- Policymakers should fund further research on the potential negative impact of anti-drug PSAs.

may contribute to a weakening of anti-illicit-drug norms and to increased initiation of illicit-drug use among exposed youth. Given the large knowledge gaps that continue to persist, the potential of anti-illicit-drug PSAs to weaken anti-illicit-drug norms among youth and the high cost of anti-illicit-drug media campaigns, funding for these interventions should be contingent on scientific evidence of their effectiveness.

Acknowledgements The authors would like to thank B Rachlis for her advice regarding the implementation of the systematic review. The authors would also like to thank P Palmgreen, N Harrington, M Yzer, M Czyzewska and SS Sundar for providing detailed responses to our requests for additional data.

Funding Michael Smith Foundation for Health Research; Canadian Institutes of Health Research.

Competing interests EM has received grants and served as an ad hoc advisor to Pfizer, and JM has received grants from, served as an ad hoc adviser to, or spoken at events sponsored by Abbott, Argos Therapeutics, Bioject, Boehringer Ingelheim, BMS, Gilead Sciences, GlaxoSmithKline, Hoffmann-La Roche, Janssen-Ortho, Merck Frosst, Panacos, Pfizer, Schering, Serono, TheraTechnologies, Tibotec (J&J) and Trimeris.

Contributors EW had full access to all the data in the study and had final responsibility for the decision to submit for publication. DW and EW drafted the manuscript. EM revised the systematic review and meta-analysis methodology. TK, KD and JM revised the manuscript substantially. All authors have seen and approved the final version.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

- Roy E, Haley N, Leclerc P, et al. Risk factors for hepatitis C virus infection among street youths. CMAJ 2001;165:557–60.
- Edlin BR, Irwin KL, Faruque S, et al. Intersecting epidemics—crack cocaine use and HIV infection among inner-city young adults. N Engl J Med 1994;331:1422—7.
- Ward H, Pallecaros A, Green A, et al. Health issues associated with increasing use of 'crack' cocaine among female sex workers in London. Sex Transm Infect 2000;76:292-3.

Evidence-based public health policy and practice

Werb D, Mills EJ, DeBeck K, et al. J Epidemiol Community Health (2011). doi:10.1136/jech.2010.125195

- 769 Orwin R, Cadell D, Chu A, et al. Evaluation of the National Youth Anti-drug Media Δ Campaign: 2004 Report of Findings. Washington, DC: National Institute on Drug 770 Abuse, 2004-1
 - Pennay D, Blackmore D, Milat AJ, et al. National Drugs Campaign: Evaluation of 5 6 Phase Two. 2006.
 - Anon, FRANK Review: 2004-2006, London: Home Office, 2006 6
 - Siegel M. Mass media antismoking campaigns: a powerful tool for health 7
 - promotion. Ann Intern Med 1998;129:128-32. . Feingold PC, Knapp ML. Anti-drug abuse commercials. J Commun 1977;27:20—8. 8
 - ONDCP. FY2011 Budget Summary. Washington, DC: Office of National Drug Control q Policy, 2010.
 - Government of Canada. National Anti-Drug Strategy-Prevention. Ottawa: 10 Government of Canada, 2007.
 - Picard A. Clement Plans 'Plain Truth' Anti-drug Campaign. Toronto: Globe and Mail, 11. 2007
 - Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic 12 reviews and meta-analyses: The PRISMA statement. BMJ 2009;339:b2535.
 - 13. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology (MOOSE statement): a proposal for reporting. JAMA 2000;283:2008-12.
 - McCambridge J. A case study of publication bias in an influential series of reviews of drug education. Drug Alcohol Rev 2007;26:463—8. 14
- 7 786 15 Buchan I. StatsDirect Statistical Software. 2008.

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

793

798

799

- 16 Palmgreen P, Donohew L, Lorch EP, et al. Sensation seeking, message sensation 787 value, and drug use as mediators of PSA effectiveness. Health Commun 788 1991 **3** 217 - 27
- 789 Donohew L. Sensation seeking and targeting of televised anti-drug PSAs. Presented 17 at the Annual Meeting of the Association for Education in Journalism and Mass 790 Communication, 1989. 791
- Harrington NG, Lane DR, Donohew L, et al. Persuasive strategies for effective 18 792 anti-drug messages. Commun Monogr 2003;70:16-30.
 - Wagner CB, Sundar SS. The curiosity-arousing function of anti-drug ads. 19 Open Comm J 2008;2:43-59.
- 794 Czyzewska M, Ginsburg H. Explicit and implicit effects of anti-marijuana and 20 795 anti-tobacco TV advertisements. Addict Behav 2007; 32:114-27.
 - Yzer MC, Cappella JN, Fishbein M, et al. The effectiveness of gateway 21
- 796 communications in anti-marijuana campaigns. J Health Commun 2003;8:129-43. 797

- Fishbein M, Hall-Jamieson K, Zimmer E, et al. Avoiding the boomerang: testing the 22 relative effectiveness of antidrug public service announcements before a national campaign. Am J Pub Health 2002;92:238-45.
- David C, Cappella JN, Fishbein M. The social diffusion of influence among 23 adolescents: Group interaction in a chat room environment about antidrug advertisements. Comm Theor 2006;16:118-40.
- Palmgreen P, Donohew L, Lorch EP, et al. Television campaigns and sensation 24 seeking targeting of adolescent marijuan use: a controlled time-series approach. In: Public Health Communication: Evidence for Change. 2002:35,56.
- Palmgreen P, Lorch EP, Stephenson MT, et al. Effects of the Office of National Drug Control Policy's Marijuana Initiative Campaign on high-sensation-seeking adolescents. Am J Pub Health 2007:97:1644-49.
- UNODC. World Drug Report 2010. Vienna: United Nations Office on Drugs and 26 Crime, 2010:313.
- GAO. ONDCP Media Campaign: Contractor's National Evaluation did not Find that the 27 Youth Anti-drug Media Campaign was Effective in Reducing Youth Drug Use. Washington, DC: Government Accountability Office, 2006.
- Johnston LD, Bachman JG, Schulenberg JE. Monitoring the future: national results 28 on adolescent drug use. Overview of Key Findings, 2006. Bethesda, MD: National Institute on Drug Abuse, 2007:76. 9
- O'Neil P. Canada Looks to USA for Drug Policy Hints. Vancouver Sun, 2006. 29 Blendon RJ, Young JT. The public and the war on illicit drugs. JAMA 30 1998-279-827-32
- 31 Bandura A. The Social Foundations of Thought and Action: A Social Cognitive Theory, Englewood Cliffs, NJ: Prentice-Hall, 1986.
- Ajzen I, Fishbein M. A Theory of Reasoned Action. Englewood Cliffs, NJ: Prentice 32 Hall 1980
- 33 Ajzen I. From intentions to actions: a theory of planned behavior. In: Action Control: From Cognition to Behavior. 1985;2:11.
- Davies J, Foxall GR, Pallister J. Beyond the intention-behaviour mythology an integrated model of recycling. Market Theor 2002;2:29-113.
- Olson JM, Zanna MP. Attitudes and attitude change. Annu Rev Psych 35
- 1993 **44** 117-54
- Brown SP, Stayman DM. Antecedents and consequences of attitude toward the ad: 36 a meta-analysis. J Cons Res 1992;19:34-51.
- Ioannidis JP, Patsopoulos NA, Rothstein HR. Reasons or excuses for avoiding 37 meta-analysis in forest plots. BMJ 2008;336:1413-15

822

823

824

825

826

827

828 829