

1
First lessons with MakeCode and the micro:bit	
Lesson 5 of 6: Nightlight

Lesson Plan
Lesson 5: Nightlight
[image:]
	Ages: 7 – 11
	[image:]

	Programming language: MakeCode blocks
	

	Topics: Selection/conditionals (Programming), Input/output, Sensors (Computer systems)
Outcomes: Students develop their use of the micro:bit’s sensors by using logic to make a simple control system, a nightlight that switches on automatically when it gets dark.

	

Key learning in this lesson
Understand how inputs, outputs, and computer code work together to make control systems.
Understand how logic (conditional ‘if… then… else’ instructions) is used to make different outputs happen depending on changes in data from a sensor.
Use ‘forever’ infinite loops to keep control systems responding to changes in the environment.
Practise testing and improving a project to make the nightlight work better in specific local lighting conditions.
Learning objectives
I can code a micro:bit to make a light that switches on when it gets dark using sensors and logic.
I can explain that sensors are inputs that sense things in the real world, such as movement and light.
I can explain that logic is how computers make decisions in code based on whether things are true or false.
·

Preparation: before the lesson
What you need
BBC micro:bits and micro-USB cables – at least one for every two students
At least one computer (laptop or desktop) for every two students, with internet access to the Microsoft MakeCode editor: https://makecode.microbit.org/
Alternatively, you can use iPads with the micro:bit app installed. See our guide: https://mbit.io/lessons-mobile
micro:bit battery packs (optional) – one per micro:bit
PowerPoint presentation – whole class teaching slides
Code blocks student handout (optional)

[image:]The lesson download also includes an optional ‘.hex’ program file of the completed project, which may be useful if you have limited internet access. You can drag and drop this direct onto the MICROBIT drive when you connect a micro:bit to your computer. You can also drag ‘.hex’ files into the MakeCode editor to examine the code and test it in the simulator.
Differentiation ideas
If this is one of your first coding lessons with the micro:bit, it may be hard to know which students will need more support. You can use the extension ideas in the teaching section below for students who complete the task more quickly than others.
Decide how to deliver the ‘Create’ coding activity
You’ll share the completed code on screen with your whole class from the slides. Additional options include:
You (or selected students) model building and testing the code yourself on a large screen. The completed code is in the lesson plan and slide deck.
Give students printed code blocks handouts to follow or cut out and assemble.
Share a step-by-step YouTube coding video with the whole class, or individual students.
If YouTube is blocked in your school, we also provide an animation in the slides showing how to assemble the code.
Students can individually follow an online step-by-step tutorial.
[image:]You can also choose to manage the whole class coding activity and save every student’s code using micro:bit classroom. Find out more at https://mbit.io/lessons-classroom

Decide how to deliver the ‘Evaluate’ activity
Students download their code to real micro:bits and test the project.
You may want your students to answer the evaluation questions:
on paper
verbally with partners
as part of a whole-class discussion.

Glossary
	conditionals:
	see ‘selection’

	control
system:
	a system that controls something depending on inputs from a sensor, such as a thermostat that turns heating on when it gets cold

	infinite loop:
	a loop that runs forever

	input:
	data sent to a computer for processing such as button presses and sensor readings

	LED:
	light emitting diode - the micro:bit display is made of 25 LEDs

	logic:
	how computers make decisions based on whether things are true or false

	loops:
	allow you to repeat sets of instructions without having to write them out multiple times

	output:
	data sent from a computer such as words shown on the display

	selection:
	making different things happen based on different conditions

	sensor:
	an input that senses things in the real world, such as movement, temperature, and light levels

Teaching: during the lesson
Recap prior learning (slide 2)
[image: Screen shot of slide 2]Ask your students what they discovered last time, for example:
Last time we used the micro:bit’s accelerometer input sensor to make a step counter.
We used a variable to count how many steps we had taken.
We investigated how accurate the step counter was and thought about ways of improving it.
Explain that we’re going to be using a different sensor today, the light sensor, to make a light that switches on automatically when it gets dark.
[image: Screenshot of slide 3.]Introducing the light sensor (slide 3)
Optionally show the light sensor introduction YouTube video:
https://mbit.io/lessons-light-video
The micro:bit’s LEDs, as well as acting as an output, also can work as an input, sensing how dark or light it is.
We can use this to make projects that react when it gets dark or light.

Think: starter activity[image:][image:][image:]
[image: Screenshot of slide 4.]Learning objective (slide 4)
I can code a micro:bit to make a light that switches on when it gets dark using sensors and logic.
I can explain that sensors are inputs that sense things in the real world, such as movement and light.
I can explain that logic is how computers make decisions in code based on whether things are true or false.

Explain that Sensors are inputs that measure things outside a computer, like light, or movement.
Logic is a key idea in computing. It helps machines to make decisions, like turning a light on if it’s dark.

Nightlight introduction video
(slide 5)

[image: Screenshot of slide 5.]Optionally play the project introduction video: https://mbit.io/lessons-nightlight-intro-video

This explains that the micro:bit light sensor works in a range from 0 (very dark) to 255 (the brightest it can go).
Create: coding activity
Examine code with students (slide 6)
[image: Screenshot of slide 6.]Explain:
The ‘forever’ loop keeps the micro:bit checking the light level.
The logic ‘if… then’ block checks if the light level is low, less than (<) 100.
If the light level is less than (<) 100, it must be dark, so it lights all the LEDs.
Else (otherwise) the light level must be 100 or more. It must be light, so it turns the LEDs off with ‘clear screen’.
You can also follow the link in slide 6 to open the completed code in the editor and model testing it in the simulator by dragging the yellow line in the circle up and down: https://mbit.io/lessons-nightlight-code

Model building the code (slides 7-10)
[image: Screenshot of slide 7.]You can open a new MakeCode project from slide 7 and model building the code.
Optionally share the YouTube coding video on slide 8 with your class: https://mbit.io/lessons-nightlight-code-video
Or share the coding animation on slide 9 if YouTube is blocked in your school.

Students recreate the code, testing it in the simulator. They can either:
Copy the code from slide 6.
Follow printed code blocks handouts.
Individually follow a step-by-step online tutorial:
https://mbit.io/tutorial-night-light - you can share the link from slide 10.

If you are using micro:bit classroom, start a new session and ask your students to join your lesson. You can also open a session with completed code to edit and share with students: https://mbit.io/lessons-nightlight-classroom

[image: Screenshot of slide 11.]Evaluate: (slide 11)
Students transfer code to their micro:bit and test it. They can cover and uncover the micro:bit, shine a light on it, move it closer and further away from a light source, or cover it with different materials.

Questions:
Does it work as you expect?
Change the number 100 to a smaller number if the LEDs switch on too easily.
Change the number 100 to a larger number if it’s hard to make them switch on.
Transfer the code to the micro:bit and test again.
How good is the project?
Would you recommend it to a friend?
How could you improve it?
Could it have other uses?
How does it work?
Encourage students to think about how it works when holding it in their hands.

Extend: (optional, slide 12)
Make different pictures appear if it’s bright[image: Screenshot of slide 12.] or dark. (Sun and moon example on slide).
Experiment by changing the logic comparison block from less than < to greater than > (Opportunity to reinforce mathematics learning about ‘less than’ and ‘greater than’ symbols.)

Share: revisit learning objectives (slide 13)
I can code a micro:bit to make a light that switches on when it gets dark using sensors and logic.
I can explain that sensors are inputs that sense things in the real world, such as movement and light.
I can explain that logic is how computers make decisions in code based on whether things are true or false.

[image:]
Ask:

What are sensors? How did you use them? (The LEDs work as an input, sensing light levels).
What is logic? How did we use it today? (We used logic to make a control system: if the light level is low, then we turn the lights on, else we turn them off.)
How did you test or improve your code? (Depending on the lighting conditions in your classroom, students may have had to use larger numbers to make the lights more sensitive – turn on when it’s brighter – or use smaller numbers to make them turn on only when it’s very dark.)

[image: Screenshot of slide 14.]Next steps (slide 14)
Today we used the micro:bit light sensor and logic to turn LED lights on automatically when it gets dark.
Next time, we’ll use micro:bit sensors and logic to make a classic game of chance.

Assessment: after the lesson

When assessing students’ work you may find it helpful to ask these questions:

	[image:]
	How well did the student follow instructions to code and test an automatic nightlight?

	[image:]
	
Can they explain what sensors are and that the light sensor is used to make the nightlight work?

	[image:]
	What is their understanding of how logic is used to make the light turn on or off depending on the light level reading from the light sensor?

Here are some guiding criteria you might want to include when assessing your students’ work:
WORKING TOWARDS the learning objective

	[image:]
	
Student tested a nightlight project in the simulator with assistance or with pre-prepared code.

	[image:]
	The student may know a light sensor is used but can’t link the light sensor to other sensors like the accelerometer or explain what sensors are in general terms (inputs that sense things in the real world, such as movement, temperature, and light levels).

	[image:]
	The student may be able to use but cannot describe how the ‘if… then… else’ blocks work using natural language.

MEETING the learning objective

	[image:]
	Student independently coded and tested a nightlight project in the simulator and on a real micro:bit.

	[image:]
	The student knows a light sensor is used and can link the light sensor to other sensors like the accelerometer and can explain what sensors are in general terms (inputs that sense things in the real world, such as movement, temperature, and light levels).

	[image:]
	The student can describe how the ‘if… then… else’ blocks work using natural language.

EXCEEDING the learning objective

	[image:]
	Student independently coded and tested a nightlight project in the simulator and on a real micro:bit and made improvements to their code following testing and downloaded and tested improved code on to a micro:bit.

	[image:]
	The student knows a light sensor is used and can link the light sensor to other sensors like the accelerometer and can explain what sensors are in general terms (inputs that sense things in the real world, such as movement, temperature, and light levels), and give other examples of sensors being used in control systems, for example a thermostat in a heating system.

	[image:]
	The student can describe how the ‘if… then… else’ blocks work using natural language and describe them using the terms ‘selection’ or ‘conditionals’. They may also explain that logic works on the basis of certain statements being true or false. The student may also explain that a ‘forever’ or infinite loop is needed so the micro:bit can constantly keep checking the light level and react accordingly.

[image: Image of micro:bit logo]
© Micro:bit Educational Foundation. This content is published under a
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) licence.
image4.png
Recap: step counter

S
= Last time we used the micro:bit's -

accelerometer input sensor to make a

step counter.
= We used a variable to count how many st steps + to @)

steps we had taken.

= We investigated how accurate the step
counter was and thought about ways of
improving t.

Pee—

= Today we're going to use another
sensor, the light sensor, to make a light
that switches on automatically when it
gets dark.

show nusber steps =

image5.png
Introducing the light sei

-4 UGHT g
‘“‘SENSING

image6.png

image7.svg

image8.png

image9.svg

image10.png

image11.svg

image12.png
L 1can code amicrotit to make a

3Q: ghtinat swiches on when
gets dark using sensors and
logie.

& + 1 can explain that sensars are

Q" inputs that sense things in the
real world, such as movement
and g

+ I can explain that logic is how
computers make decisions in
code based on whether things
are true or faise.

learning objectives

(e}

image13.png
‘Optionallyplay video:

night light introduction video

image14.png
v [

examine the code

“The forever'loop keeps the microit checking
the light level.

“The logic ... then’ block checks Ifthe iht level
s low, loss than (<) 100.

‘When the accelerometer input senses a shake,
the ‘change’ block adds 1 10 the number stored in
the ‘teps'variable.

Eso (otherwise) the ightlevel must be 100 or
more. It must be light, 50 i urns the LEDS offwith
“clear screen.

image15.png
build the code Q
~

= Open a new MakeCode project
https:/makecode.microbitorg/

image16.png
Download your code to a micro:bit

Does it work as you expect? Use smaller
numbers if the LEDs switch on too easily,
or larger numbers fit's hard to make the
lights switch on.

How good is the project?

Could it have other uses?

How does it work?

image17.png
4 Make different pictures appear If
its bright or dark.

4 You could experiment by
changing the logic comparison
block from less than <
to greater than >

image18.png

image19.svg

.MsftOfcResponsive_Fill_d00165 {
 fill:#D00165;
}

image20.png
Next steps @

« Today we used the micro:bit
light sensor and logic to turn
LED lights on automatically
when it gets dark.

* Next time, we'll use micro:bit
sensors and logic to make a
classic game of chance.

image21.png

image22.svg

image23.png

image24.svg

image25.png

image26.svg

image27.png

image28.svg

image1.png

image2.svg

image3.jpeg

image29.png
(aD)

micro:bit

