[bookmark: _Hlk20722801]INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2020/m54468
July 2020, OnLine

	Source:
	InterDigital Communications, Inc.

	Status:
	Input contribution

	Title:
	[NNR] Syntax and mechanism for weight tensor decomposition

	Authors:
	[bookmark: _Hlk10117474]Fabien Racapé, Shahab Hamidi-Rad, Swayambhoo Jain

Introduction
This contribution presents a mechanism and the syntax elements required to support the reconstruction of decomposed tensors of parameters. The proposed syntax has been added on top of the Working Draft 4 of Compression of neural networks for multimedia content description and analysis [1]. Please refer to the attached edited working draft for exact text changes.
Decoded Tensor Buffer
The current NNR Working Draft 4 [1], decomposes the bitstream into NNR Units as shown in Figure 1. These units contain either Headers and High-Level Syntax parameter sets or payload corresponding to compressed tensor parameters.

[image:]
[bookmark: _Ref43473105]Figure 1: NNR bitstream data structure
In the current architecture, a compressed data unit contains one tensor at a time. However, in the case of tensor decomposition, reconstructing the tensors in their original shape might be required, which requires to access two decoded units.
For instance, Low Rank approximations represent an original matrix of weights as a product:

where G is a matrix and His matrix that can be derived from an SVD decomposition, r corresponds to the chosen rank for factorizing the input W of size .
Since G and H need to be multiplied at the decoder to reconstruct the tensor in its original shape, but belong to different units, this contribution proposes to introduce a Decoded Tensor Buffer (DTB) that enables such reconstruction at the decoder as well as the mechanism to output or store decoded tensors.

The following subsections 6.3.2 and 6.3.3 are proposed to be added to the specification text (the numbers have been kept in line with the current working draft).

In the following, the added text is highlighted in yellow.
[bookmark: _Ref42457495]
6.3.1 Tensor output
This process is invoked once per NNR compressed payload, after decoding of the unit header nnr_compressed_data_unit_header and the compressed payload.
The output of the current tensor is specified as follows:
· If output_original_graph is equal to 0 or if lps_tensor_decomposition_flag is equal to 0, or if nnr_decomposition_tensor_type is equal to “TENSOR_OTHER”, the current tensor is output
· Otherwise if there are no tensors with a ref_id specifying the same layer in the DTB, add the current tensor into the DTB. No tensor is output.
· Otherwise (the current nnr_decomposition_tensor_type specifies a tensor of type “TENSOR_G” or “TENSOR_H” and there exists a tensor with ref_id specifying the same layer in the DTB), invoke the reconstruction of the tensor in its original shape, as specified in clause 6.3.2, passing both the current tensor of type “TENSOR_G” or “TENSOR_H”, respectively, and its corresponding tensor in the DTB, of type “TENSOR_H” or “TENSOR_G”, respectively. The latter is deleted from the DTB. The returned tensor is output.

[bookmark: _Ref42457164]6.3.2 Reconstruction of tensors in their original shape
This process is invoked after the decoding a tensor of type “TENSOR_G” or “TENSOR_H” and the corresponding tensor with ref_id specifying the same layer is present in the DTB, as specified in clause 6.3.1.

The inputs to this process are
· A tensor tensor_h[] of type “TENSOR_H”
· The tensor_dimensions_h[] corresponding to the dimensions of tensor_h[] , as defined by its decoded syntax tensor_dimensions from the corresponding nnr_compressed_data_unit_header
· A tensor tensor_g[] of type “TENSOR_G”.
· An array tensor_dimensions_g[] corresponding to the dimensions of tensor_g[], as defined by its decoded syntax tensor_dimensions
· The values tensor_reconstruction_mode and tensor_reconstruction_additional_info from the layer parameter set of the tensor just decoded header.

Output of this process is the current tensor array_w in its original shape, prior to applying tensor decomposition.

Table 5: Specification of the reconstruction mode
	tensor_reconstruction_mode
	Name of tensor_reconstruction_mode
	Description

	0
	NNR_FC
	Fully connected layer

	1
	NNR_CONV
	Convolutional layer

	2
	NNR_DWCONV
	Depth-wise convolutional layer

	3-7
	NNR_URM
	unspecified reconstruction modes

if (tensor_reconstruction_mode == NNR_FC)
array_w = MatrixProd(tensor_g, tensor_h)
else if (tensor_reconstruction_mode == NNR_CONV) {
rank = tensor_dimensions_g [3]
wShape = [tensor_dimensions_g [0], tensor_dimensions_g [1], tensor_dimensions_g [2], 	tensor_dimensions_h [3]]
prod = MatrixProd(TensorReshape (g, [-1, rank]), TensorReshape (h, [rank, -1])
array_w = TensorReshape (prod, wShape)
}
else if (tensor_reconstruction_mode == NNR_DWCONV) {
kernel = tensor_reconstruction_additional_info[0]
wShape = [kernel, kernel, -1,1]
array_w = TensorReshape (MatrixProd(g, h), wShape)
}

The following operation definitions are required:
MatrixProd(array_name_1[], array_name_2[]) returns the matrix product of array_name_1 by array_name_2.
TensorReshape(array_name[], tensor_dimension[]) returns the reshaped tensor array_name[] with the specified tensor_dimension[], without changing its data.

High Level Syntax

HLS for Tensor reconstruction
In terms of HLS, the following sets of parameters need to be added/updated:

8.2.4.6 NNR compressed data unit header syntax
	nnr_compressed_data_unit_header() {
	Descriptor

		nnr_layer_parameter_set_id
	u(8)

		nnr_compressed_data_unit_payload_type
	u(5)

		nnr_multiple_topology_elements_present_flag
	u(1)

		nnr_decompressed_data_format_present_flag
	u(1)

		input_parameters_present_flag
	u(1)

		if (nnr_multiple_topology_elements_present_flag = = 1)
	

			topology_elements_ids_list()
	

		else
	

			ref_id
	st(v)

		if (nnr_compressed_data_unit_payload_type = =
	 NNR_PT_CB_FLOAT32) {
	

			codebook_zero_offset
	u(8)

			codebook_size
	u(16)

			For (j = 0 ; j < codebook_size; j++) {
	

				codebook[j]
	flt(32)

			}
	

		}
	

		if (lps_tensor_decomposition_flag == 1) {
	

			nnr_decomposition_tensor_type
	u(2)

		}
	

		if (nnr_decompressed_data_format_present_flag = = 1)
	

			nnr_decompressed_data_format
	u(7)

		if (input_parameters_present_flag = = 1) {
	

			tensor_dimensions_flag
	u(1)

			cabac_unary_length_flag
	u(1)

			if (tensor_dimensions_flag = = 1)
	

				tensor_dimensions()
	

			If (cabac_unary_length_flag = = 1)
	

				cabac_unary_length
	u(8)

		}
	

		byte_alignment()
	

	}
	

Syntax element definitions:
nnr_layer_parameter_set_id specifies the value of lps_layer_parameter_set_id for the compressed unit in use. The value of unit_layer_parameter_set_id shall be in the range of 0 to 63, inclusive.

nnr_decomposition_tensor_type specifies the tensor type in the case of tensor decomposition, as defined in clause 6.2

8.2.5.2 NNR model parameter set payload syntax
	nnr_model_parameter_set_payload() {
	Descriptor

		mps_model_parameter_set_id
	u(4)

		topology_carriage_flag
	u(1)

		sparsification_flag	
	u(1)

		mps_tensor_decomposition_flag
	u(1)

		quantization_method_flags
	u(6)

		if ((quantization_method_flags & NNR_QSU) = = NNR_QSU) {
	

			qp_density
	u(3)

			quantization_parameter
	i(13)

		}
	

		If (sparsification_flag = = 1) {
	

			sparsification_performance_map()
	

		}
	

		if (mps_tensor_decomposition_flag) {
	

			output_original_graph
	u(1)

			if (output_original_graph)
	

				decomposition_performance_map()
	

				mps_max_dec_tensor_buffering_minus1
	u(6)

		}
	

		ctu_partition_flag
	u(1)

		if(ctu_partition_flag){
	

			max_ctu_dim_flag
	u(2)

			nnr_reserved_zero_5bits
	u(5)

		}else{
	

			nnr_reserved_zero_7bits
	u(7)

		}
	

	}
	

mps_model_parameter_set_id provides an identifier for the MPS for reference by other syntax elements. The value of mps_model_parameter_set_id shall be in the range of 0 to 15, inclusive.
decomposition_flag equal to 1 specifies that tensor decomposition was applied to at least one layer of the model.
output_original_graph equal to 1 specifies that the decoder outputs the tensors of weights in their original shape when tensor decomposition is used.
mps_max_dec_tensor_buffering_minus1 plus 1 specifies the maximum required size of the decoded tensor buffer for the NNR model, in units of tensor storage buffers. The value of mps_max_dec_tensor_buffering_minus1 shall be in the range of 0 to 63

8.2.5.3 NNR layer parameter set unit payload syntax
	nnr_layer_parameter_set_unit_payload() {
	Descriptor

		lps_model_parameter_set_id
	u(4)

		lps_layer_parameter_set_id
	u(6)

	 independently_decodable_flag
	u(1)

		lps_tensor_decomposition_flag
	u(1)

		sparsification_flag	
	u(1)

		quantization_method_flags
	u(6)

		If ((quantization_method_flags & NNR_QSU) = = NNR_QSU) {
	

			quantization_step_size
	u(8)

		}
	

		If ((quantization_method_flags & NNR_QCB) = = NNR_QCB) {
	

			quantization_map()
	

		}
	

		if (lps_tensor_decomposition_flag) {
	

			tensor_reconstruction_mode
	u(3)

			tensor_reconstruction_additional_info_count
	u(5)

			for (j = 0; j < (tensor_reconstruction _additional_info_count); j++) {
	

				tensor_reconstruction_additional_info[j]
	u(16)

		}
	

	 If (sparsification_flag = = 1) {
	

			sparsification_performance_map()
	

		}
	

	}
	

lps_model_parameter_set_id specifies the value of the mps_model_parameter_set_id of the active LPS. . The value of lps_model_parameter_set_id shall be in the range of 0 to 15, inclusive.

lps_layer_parameter_set_id provides an identifier for the LPS for reference by other syntax elements. The value of lps_layer_parameter_set_id shall be in the range of 0 to 63, inclusive.

lps_tensor_decomposition_flag equal to 1 specifies that tensor decomposition is used for this layer.

tensor_reconstruction_mode specifies the mode which is used to reconstruct the current tensor in its original shape from decomposed decoded tensors as defined in subclause 9.1.1.

tensor_reconstruction_additional_info_count specifies the number of required parameters to perform the reconstruction of decomposed tensors

tensor_reconstruction_additional_info[i] specifies an array of parameters which are required for reconstructing decomposed tensors. (For example, in the case of a depth-wise convolutional layer, tensor_reconstruction_additional_info_count can be set to 1 and tensor_reconstruction_additional_info[0] specifies the kernel size of the convolution).

Decomposition performance map
As for sparsification methods, the receiver can benefit from additional information on how the decomposition impacts the performance of the network.

To this end, it is proposed to include the following Decomposition Performance Map, which is accessed via the Model Parameter set, as shown in the introduced section 8.2.5.2.

decomposition_performance_map() is defined as follows:
	decomposition_performance_map () {
	Descriptor

		count_thresholds
	u(8)

		for (i = 0; i < (count_thresholds-1); i++) {
	

			mse_threshold[i]
	flt(32)

			nn_accuracy[i]
	flt(32)

			nn_reduction_ratio[i]
	flt(32)

			count_classes[i]
	u(16)

			for (j = 0; j < (count_classes-1); j++) {
	

				nn_class_accuracy[i][j]
	flt(32)

			}
	

		}
	

	}
	

decomposition_performance_map() specifies a mapping between different Mean Square Error (MSE) thresholds between the decomposed tensors and their original version and resulting NN inference accuracies. The resulting accuracies are provided separately for different aspects or characteristics of the output of the NN. For a classifier NN, each MSE threshold is mapped to separate accuracies for each class, in addition to an overall accuracy which considers all classes. Classes are ordered based on the neural network output order, i.e, the order specified during training.

count_thresholds specifies the number of decomposition MSE thresholds.

decomposition_threshold specifies an array of MSE thresholds which are applied to derive the ranks of the different tensors of weights.

nn_accuracy specifies the overall accuracy of the NN (e.g., classification accuracy by considering all classes).

nn_reduction_ratio[i] specifies the ratio between the total number of parameters after tensor decomposition of the whole model and the number of parameters in the original model

count_classes specifies number of classes for which separate accuracies are provided for each decomposition thresholds.

nn_class_accuracy specifies an array of accuracies for a certain class, when a certain decompsition threshold is applied.

References
[1]	“N19225 - Working Draft 4 of Compression of neural networks for multimedia content description and analysis.” International Organization for Standardization ISO/IEC JTC1/SC29/WG11, Apr. 2020.

Patent rights declaration(s)
InterDigital Communications, Inc. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
image1.png
NNR Bitstream

NNR Unit

NNR Unit

NNR Unit

NNR Unit

