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A B S T R A C T   

Protein folding problem obtained a practical solution recently, owing to advances in deep learning. There are classes of proteins though, such as antibodies, that are 
structurally unique, where the general solution still lacks. In particular, the prediction of the CDR-H3 loop, which is an instrumental part of an antibody in its antigen 
recognition abilities, remains a challenge. Antibody-specific deep learning frameworks were proposed to tackle this problem noting great progress, both on accuracy 
and speed fronts. Oftentimes though, the original networks produce physically implausible bond geometries that then need to undergo a time-consuming energy 
minimization process. Here we hypothesized that pre-training the network on a large, augmented set of models with correct physical geometries, rather than a small 
set of real antibody X-ray structures, would allow the network to learn better bond geometries. We show that fine-tuning such a pre-trained network on a task of 
shape prediction on real X-ray structures improves the number of correct peptide bond distances, abstracted as the Cα distances. We further demonstrate that pre- 
training allows the network to produce physically plausible shapes on an artificial set of CDR-H3s, showing the ability to generalize to the vast antibody sequence 
space. We hope that our strategy will benefit the development of deep learning antibody models that rapidly generate physically plausible geometries, without the 
burden of time-consuming energy minimization.   

Introduction 

Antibodies are the largest group of biologics [1], recently reaching 
hundred approved molecules [2] with more forecasted to come to 
clinical use [3]. Because of their therapeutic role, there is much interest 
in the development of computational methods addressing these mole-
cules [4]. 

One of the crucial properties of an antibody to be predicted is its 
structure [5]. The antigen-recognizing variable domain has an immu-
noglobulin fold, with a largely conserved framework region and three 
complementarity-determining region loops (CDRs) defining the 
antigen-recognizing paratope. Of the three loops the third CDR of the 
heavy chain (CDR-H3) is particularly problematic for structure predic-
tion [6–9]. Methods such as AlphaFold2 [10] have made great progress 
in general protein structure prediction, however, some of its applica-
tions lack in the face of antibodies [11,12]. The discrepancy might stem 
from the different evolutionary process the CDRs are subjected to 
(evolving in days rather than millions of years), making them structur-
ally unique [13]. 

To address this issue, but also to draw from AlphaFold2 and its de-
rivatives [14,15], many antibody-specific deep learning structure pre-
diction methods have been introduced [4]. The algorithms started by 

addressing CDR-H3 loop prediction such as DeepH3 [7] and AbLooper 
[8], after extending these to the entire variable domain via NanoNet 
[16] and the entire Fv molecule by DeepAb [17], IgFold [11], ABody-
Builder2 [12], EquiFold [18] and tFold-Ab [19]. As opposed to the ho-
mology methods that reported CDR-H3 root mean squared deviation 
(RMSD) accuracies in the region of 3-4Å [9], the deep learning methods 
achieve an RMSD of 2-3Å RMSD. The methods are also faster - achieving 
predictions in seconds, rather than in minutes, as was the case with best 
homology modeling tools [20,21] and tens of minutes in case of 
AlphaFold2. 

The methods introduced a variety of architectures such as residual 
convolutional networks [17], graph neural networks [8] or drawing 
from the structure of AlphaFold2 [11,12]. In certain guises, large-scale 
sequence information from the Observed Antibody Space [22,23] was 
introduced to provide a sequence pre-training basis for the models [11]. 
The methods achieve similar accuracies to each other and the original 
AlphaFold2, perhaps with a minor advantage from focusing on the 
antibody datasets. 

One could argue that the antibody-specific methods provide only a 
moderate improvement in accuracy with respect to AlphaFold2 - for 
instance IgFold achieves 2.99Å RMSD versus 3.02Å for AlphaFold2, 
while ABodyBuilder2 achieved 2.81Å versus 2.9Å for AlphaFold2. 
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Nevertheless, the methods offer great advantage in terms of faster 
running time which is crucial when one sets out to model large volumes 
of sequences. Coordinates can be generated in seconds, rather than in 
minutes or even hours as is the case with AlphaFold2. Though the net-
works produce the results fast, they are afflicted by problems relating to 
the physical plausibility of the generated structures [24]. The problem 
was highlighted by methods such as Ablooper, IgFold, and ABody-
Builder2, as they can produce the coordinates rapidly, but then the final 
structure needs to be energy minimized [8,11,25]. 

Such issues in coordinate generation are addressed in AlphaFold2 by 
enforcing loss terms derived from ideal values of bond lengths and an-
gles [10]. One can also introduce physical priors to improve the quality 
of generated coordinates [26]. In place of employing explicit energy 
calculator programs such as OpenMM, one can attempt to train a neural 
network to approximate such functions [27]. 

Here we address the problem of improving antibody structure pre-
diction by generating more physically plausible structures directly from 
the network. An important aspect that impacts model performance is the 
availability of data that can be used in the training process. With anti-
body diversity estimated to be 1018 unique molecules, the publicly 
available 6,500 of redundant experimentally resolved antibody struc-
tures are a relatively small sample. Most of the models that attempted 
antibody structure prediction were trained on such a small publicly 
available dataset of antibody structures, and to the best of our knowl-
edge only IgFold employed AlphaFold2 to augment its input dataset. 
Such a small dataset of antibodies is clearly powerful enough to teach 
the broad features of an immunoglobulin shape but falls short of making 
the structures physically plausible out-of-the-network. To tackle this 
issue, one can expand the input dataset to expose the network to a larger 
number of correct bond geometries. Here we demonstrate that pre- 
training a network on a large, augmented dataset of antibody model 
structures allows it to learn such physical features. 

Materials and methods 

Datasets 

Rosetta test set. We employed the ‘Rosetta’ test set introduced pre-
viously as multiple methods employed it subsequently for bench-
marking. The original Rosetta test set consisted of 48 Fvs. We removed 
three of them because of low quality, for instance incomplete chains. 
The final dataset consisted of the following 45 PDBs : 3gnm, 2xwt, 2vxv, 
3i9g, 2d7t, 2ypv, 1mlb, 2w60, 1gig, 3g5y, 2adf, 3liz, 3p0y, 3hnt, 3e8u, 
3mxw, 2fbj, 1nlb, 3go1, 2fb4, 3mlr, 1jfq, 3nps, 2e27, 1fns, 2v17, 1seq, 
4nzu, 1mqk, 4f57, 4hpy, 2r8s, 1mfa, 3oz9, 3hc4, 1jpt, 3t65, 1oaq, 3v0w, 
3lmj, 3m8o, 4h20, 1dlf, 3eo9, 3giz. 

Crystal datasets. We downloaded the antibodies from the Protein Data 
Bank on March 13th 2022. We removed the structures with identical 
CDR-H3 or CDR-L3 loops. Only X-ray structures with resolution better 
than 3Å were left in. We removed all the structures that had the same 
CDR-H3 or CDR-L3 as in the Rosetta test set. The final dataset consisted 
of 1,628 training and 185 validation heavy chain structures that we term 
as CrystalHeavy. The CrystalLight dataset consisted of 1,302 training 
and 149 validation light chain structures. The CrystalCombined dataset 
was created by taking the intersection of the two datasets resulting in 
2966 training and 298 validation structures. 

Pre-training datasets. We employed two pre-training datasets ‘Natu-
ral’ and ‘Homology’. In broad terms, both datasets were supposed to be a 
large set of physically sound antibody structures that have no sequence/ 
structural overlap with the final crystal test set. We have employed two 
pre-training datasets to check whether the performance of the training 
strategy is dependent on such datasets. 

The ‘Natural’ dataset was created externally as the sample of the 
public response structures [28]. The ‘Homology’ dataset was created by 
us, by reproducing the homology modeling protocol introduced by 
ABodyBuilder [20] via: 1) selecting the closest template framework from 

the PDB [29], 2) orientating the chains by closest matching pair 3) 
modeling the loops by FREAD [30] and refining the predictions by 
PEARS [31]. 

We assured that neither the ‘Natural’ nor ‘Homology’ dataset had 
sequences/structure closely resembling these in the crystal structure 
dataset. To achieve this, we removed all the structures where CDR-H3 or 
CDR-L3 matched this in the CrystalHeavy or CrystalLight datasets. We 
further removed structures that had less than 1Å RMSD to CDR-H3 or 
CDR-L3 in the Rosetta test set. This resulted in 18,959 training, 2369 
validation and 2369 test structures in the ‘Natural’ dataset. Likewise, the 
‘Homology’ dataset consisted of 37,672 training, 4709 validation and 
4709 test structures. 

We demonstrated that combining heavy and light chains for pre-
diction appears to improve the Cα distances without detriment to shape 
prediction quality. Therefore, we created a PretrainCombined dataset by 
merging the heavy and light chains in the ‘Homology’ and ‘Natural’ 
datasets. This resulted in 113,262 structures for training, 11,326 for 
validation, and 11,326 for test. 

Models 

Model for pre-training. We employed the simplest deep learning ar-
chitecture we could identify that reported heavy chain modeling of 
antibodies, which was NanoNet [16]. In brief it consists of seven con-
volutional residual blocks. It has 1.9m parameters which puts it on the 
lower spectrum with respect to models trained on the basis of 3B pa-
rameters language models (ESMFold) or on the basis of AlphaFold2 
(ABodyBuilder2). The lightweight architecture ensured that we could do 
multiple iterations and variations of the models to test the effects of the 
structural pre-training strategy (e.g. ABodyBuilder2 achieves very good 
results but it takes several weeks to train on a powerful GPU). Further-
more, the lightweight architecture reduced the risk that any effects we 
might observe of better Cα distances, would be accounted for by inge-
nious architectures or training regimes. The method does not come with 
a training loop so the architecture and training functions had to be 
reimplemented from scratch. To allow for alignment with the original 
publication, we trained it for 130 epochs both in pre-training as well as 
fine-tuning steps, keeping the best model as judged by validation loss. 
For the training loss we employ the Mean Squared Error together with a 
loss on the consecutive distances of Cα. The Cα loss was parameterized 
with weight, biasing the predictions towards putting more attention to 
Cα distances. 

Models for benchmarking. We employed five models for bench-
marking, ABodyBuilder2, AbLooper, IgFold, ESMFold and NanoNet. The 
choice was motivated by the availability of the methods and the fact that 
they are state-of-the art. We have not employed AlphaFold2 nor 
AlphaFold2-multimer here as the antibody specific methods demon-
strated improvements upon it. Instead we employed ESMFold as a 
reference for general-purpose protein structure prediction by virtue of 
its speed. The models coming from ABodyBuilder2, AbLooper and 
IgFold did not undergo refinement, which is the full protocol in each 
case. This was to compare the results of predictions coming straight from 
the network. All the methods are freely available and they were obtained 
from the repositories advertised in the corresponding publications. 

Quality metrics 

Cα-Cα peptide bond distances. We calculated the Cα-Cα distances be-
tween the consecutive atoms as the simple euclidean distance of the 
coordinates. Our datasets were not allowed to have structures with 
missing amino acids, resulting in incorrectly large Cα-Cα distances as a 
result of a missing residue or a stretch of these in between. All the Cα-Cα 
distances that fall outside of the [3.6Å–3.9Å] range were considered as 
incorrect, which was an arbitrary choice based on observation of the 
distance in the crystal structures. This range choice does not affect the 
subsequent training regime, however it does affect the results when we 
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qualify a distance as ‘correct’ or ‘incorrect’. To avoid only reporting the 
number of correct and incorrect distances that are affected by this range 
we plotted the distance histograms in Figs. 4 and 5. 

RMSD. Whenever we report the Root Mean Square Deviation be-
tween prediction and native structures we only take Cα into account. 
The RMSDs for the H3s were calculated in two modes - by variable re-
gion alignment (Employed in Table 3) and by CDR-H3 alignment 
(employed in Fig. 3). In the variable region alignment, the Cα co-
ordinates of the entire variable region are aligned using the KABSCH 
algorithm in the python rmsd module and the RMSD is calculated on the 
IMGT-defined CDR-H3 only. In the CDR-H3 alignment, the CDR-H3 Cα 
only are aligned and the RMSD calculated. Clearly, the CDR-H3 align-
ment should typically produce lower numbers. At no point do we 
perform modeling of the combined Vh/Vl dimer. 

Results 

Problem setup 

We test the hypothesis that pre-training on a large set of model 
structures allows the network to learn physically plausible conforma-
tions that can then be fine-tuned on the real dataset of crystal structures. 
There are multiple features that affect the physical plausibility of the 
structure that were consolidated in an error-checking software Top-
Model [24]. For simplicity, in this work we focus on the distances of the 
peptide bond, abstracted to the distance between consecutive Cα car-
bons. In crystal structures, the distribution of such distances is firmly 
centered on 3.8Å, with a small standard deviation in the order of 0.1Å. 
Current deep learning models are trained to have the distribution of Cα 
distances centered on 3.8, however, with a much larger standard devi-
ation. This results from the models oftentimes producing Cα distances 
that are implausibly far away or close together (Fig. 1) - though they are 
close enough in RMSD space to the template that they aim to reproduce. 

As the basis architecture, we aimed for the simplest deep learning 
model that would not rely on improvements such as problem-specific 
loss functions or all-atom predictions. For this purpose, we re-created 
the architecture of NanoNet [16]. The model is a small residual neural 
network (seven blocks, 1.9m parameters) predicting coordinates 
directly, in comparison to other networks using more advanced archi-
tectures and training regimes. In its published form NanoNet predicts all 
the backbone atoms, however, we implemented a version only pre-
dicting Cα to make sure we provide the model with minimal 
information. 

For training & testing the network, we employed two augmented sets 
of homology models for pre-training, a set of crystal structures for fine- 
tuning and the Rosetta test set as the hold-out. The Rosetta test set was 
previously used to benchmark several models [7,8], but we reduced it to 
45 structures due issues such as incomplete chains. The crystal structure 
dataset was obtained from the PDB by identifying antibodies therein 
[32,33]. Here we have three datasets, CrystalHeavy, consisting of heavy 
chain structures, CrystalLight, consisting of light chain structures and 
CrystalCombined, where we merged the two previous datasets. We used 
two pre-training datasets, ‘Natural’ and ‘Homology’. The Homology 
dataset results from homology modeling a subset of approximately 40, 
000 paired structures available in OAS [22,23]. To control whether the 
results we obtain are the function of the dataset we chose and the ho-
mology method we implemented, we also employed the Natural dataset 
that was created independently of NaturalAntibody. This consisted of 
the public-response structures, carefully curated from naturally occur-
ring antibodies in NGS datasets [28]. We also created a combined 
pre-training dataset consisting of all heavy and light chains in the Nat-
ural and Homology datasets, termed PretrainingCombined. All the 
datasets employed are briefly described in Table 1, with details in 
Methods. 

Fig. 1. Example of CDR-H3 predictions with consecutive Cα distances requiring refinement. Distances outside of the range of [3.6Å-3.9Å] range are circled. The two 
structures are outputs from the neural networks of AbLooper and IgFold, without applying refinement post-processing. After energy refinement using OpenMM and 
Rosetta respectively for each method, the distances become physically plausible, however at a high computational cost. 

Table 1 
Datasets employed in this study.  

Dataset Size 
(#structures) 

Comment 

Rosetta test set 45 Employed as hold-out for testing. 
CrystalHeavy 1,813 Heavy chain structures from the PDB 
CrystalLight 1,451 Light chain structures from the PDB 
CrystalCombined 3,264 Heavy and light chain structures from 

the PDB 
Natural 23,697 Homology models of the public response 

structures, containing heavy and light 
chains 

Homology 47,090 Homology models of a subset of OAS 
paired data, containing heavy and light 
chains. 

PretrainingCombined 135,914 Combination of all the heavy and light 
chains from Homology and Natural 
datasets.  
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Structural and sequence similarities between pre-training data and real 
crystal structures - controlling for data leaks 

There exists a risk of data leakage between the pre-training and 
crystal structure datasets. The similarities could arise from (1) data 
leakage of templates between pre-training and crystal structure datasets 
(2) close sequence identity between pre-training and crystal structure 
datasets as well as (3) close data leakage as a result of test templates 
being employed in generating the datasets. It must be noted that we are 
only performing the modeling of separate heavy and light chains. The 
orientation of the Vh/Vl chains can affect resulting structure where 
simple CDR-H3/L3 identity check would not be sufficient [34]. Also, 
whether the CDR-H3 is contacting the antigen might affect its confor-
mation, nevertheless because of the paucity of structural data we 
decided not to stratify the datasets by this feature. 

In our Homology pre-trained dataset, we ensured that no templates 
were being used that were in the Rosetta test set, judging by identical 
CDR-H3/L3 sequences. No such control was possible for the Natural 
dataset as it was pre-prepared. Attempting a conservative approach, we 
purged the Homology and Natural datasets from sequences that had a 
close resemblance to those in the entire crystal structure dataset as 
judged by identical CDR-H3 or CDR-L3. 

Even after removing all the non-identical CDR-H3s and CDR-L3s, the 
pre-training datasets still had structures within 1Å RMSD of one in the 
Rosetta training set, which were subsequently removed. A total of 4761 
structures were removed from the Homology dataset and 339 from the 
Natural dataset. Afterwards, the Homology dataset had an average CDR- 
H3 RMSD of 2.8Å to the closest CDR-H3 in the Rosetta test set with the 
corresponding figure for the Natural dataset being 3.2Å. In total, 146 
structures in the crystal dataset had an RMSD of less than 1Å to the 
closest one in the Rosetta test set, indicating that diverse sequences of 
CDR-H3 can still adopt similar folds. 

Finally, we also checked the overlap between the structural training 
set ‘purged’ of identical CDR-H3s, with that of the Rosetta test set, given 
in Table 2. Overall, we did not note radical closeness of the pre-training 
datasets to that of the Rosetta test set. 

Effect of structural pre-training on the number of incorrect Cα distances in 
heavy chain prediction 

Equipped with two pre-training sets, Natural and Homology, we used 
our interpretation of the NanoNet model to see whether pre-training has 
any effect on the number of incorrect Cα distances. We defined the 
‘incorrect’ Cα distances as those falling outside of the range 
[3.6Å–3.9Å]. 

For training, we employed a simplistic loss function that consisted of 
the Mean Squared Error in Cα of the predicted vs template positions, 
together with the consecutive Cα distance loss parameter. The Cα dis-
tance loss component is weighted, with higher weights incurring a larger 
penalty for consecutive Cα’s distance being different from 3.8Å. For 
training, we checked the effect of the Cα loss weight of 1, 5, 10, 15, 20. 

For each value of the Cα loss weight, we trained six models to predict 
the heavy chain. Three models without any benefit of pre-training, each 
for Natural, Homology, and CrystalHeavy with a learning rate of 10− 3. 

Such models were named after the dataset and the Cα weight, e.g. 
CrystalHeavy model with the Cα weight of 5 would be called Crys-
talHeavy5. Then, each of the three models served as a pre-training basis 
for training on the CrystalHeavy structure dataset with a learning rate of 
10− 5. In each case of fine-tuning the Cα weight was the same as in pre- 
training. A fine-tuned model would be called by combining its pre- 
trained name with CrystalHeavy and the Cα parameter. For instance, a 
model pre-trained on Homology with the Cα weight of 10 would be 
Homology10CrystalHeavy10. Using the Crystal dataset for both pre- 
training and fine-tuning was supposed to contrast the effects of using 
the Natural and Homology pre-training datasets. Each of the models was 
benchmarked on the Rosetta test set, noting the number of Cα distances 
outside of the [3.6Å-3.9Å] range, median and standard deviation of the 
Cα distances distribution as well as the Cα RMSD of the CDR-H3 (after 
aligning the entire V-region). All the results are compiled in Table 3. 

Though there are discrepancies between CDR-H3 modeling quality, 
all the models appear to end up within a quality range, rather than 
specific models being better than others by an order of magnitude. 

In each case reported in Table 3, models that had the benefit of pre- 
training using either the Homology or Natural dataset produced better 
Cα distances lengths than base models without pre-training. In contrast, 
pre-training on the CrystalHeavy structure dataset led to worse Cα dis-
tances than pre-training on either Natural or Homology dataset, showing 
the benefit of the different base models. The number of incorrect Cα 
distances is lower with pre-training without a significant effect on the 
quality of CDR-H3 prediction. 

As expected, the higher the weight for the Cα penalty, the lower the 
number of Cα distances falling outside of our predefined erroneous 
range. Note, however, that even the highest values for the loss penalty 
we employed in Table 3 (20), did not approach the crystal structure 
number of incorrect Cα distances on the same dataset which is 26. To test 
the limits of the Cα penalty, we employed a radically higher weight of 
100. The resulting CrystalHeavy100 model achieved a radically worse 
number of Cα distances, than models with lower penalties (3,910). By 
contrast the Natural100Crystal100 model achieved 138 incorrect bonds. 
This suggests that there are limits to biasing the loss function that can be 
overcome by the benefit of a larger pre-training test set. 

Altogether, these results demonstrate that using structural pre- 
training, appears to reduce the number of incorrect Cα distances inde-
pendently of the weight of Cα and the training regime, without the 
detriment to the CDR-H3 RMSD accuracy. 

Effect of mixing heavy and light chain predictions 

The previous experiment consisted entirely of the heavy chain pre-
dictions. We, therefore, tested a hypothesis that creating a combined 
predictor of heavy and light chains would offer better results on the 
constraints of Cα distances, by the same virtue of using a larger dataset. 

We employed three training datasets/regimes - heavy chain only 
(CrystalHeavy), light chain only (CrystalLight), and combining the 
heavy and light prediction (CrystalCombined). Each model was trained 
in three copies to test the reproducibility. We employed the Cα penalty 
of 3.0, so as not to give it too much bias but also so as not to leave the 
model too reliant on the template MSE loss as well. The heavy models 
were tested on the CDR-H3 structures from the Rosetta test, the light 
ones on the CDR-L3 from the Rosetta test, and the combined set on both. 
The results are compiled in Table 4. 

Judging by RMSD accuracy in Table 4, predicting the CDR-L3 chain 
is a much easier task for the network than CDR-H3 prediction - except for 
3mlr which is an outlier with a shifted beta sheet (Fig. 2). We do not note 
any observable benefit or detriment to the prediction of CDR-H3 or CDR- 
L3 by combining the predictions. However, it appears that having access 
to more structures allowed the combined model to reduce the number of 
incorrect Cα distances across heavy and light chains. This provides 
supplementary evidence that augmenting the datasets in antibody 
modeling appears to have a favorable effect on the basic physical 

Table 2 
CDR-H3 Sequence overlaps between the CrystalHeavy and the pre-training 
datasets. The alignments were computed for length-matched IMGT CDR-H3s 
using the biopython pairwise alignment function.   

Rosetta Test Set 
(n=45) 

Crystal Structures 
(CrystalHeavy) 
(n=1,813)  

μ Max Min μ Max Min 

Crystal Structures (CrystalHeavy) 57% 92% 25% n/a   
Natural pre-training 54% 77% 33% 46% 88% 0% 
Homology pre-training 66% 91% 38% 59% 92% 0%  
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plausibility of produced structures without significant detriment, nor 
benefit to the quality of the estimated backbone shape. 

Benchmarking antibody structure prediction methods for their ability to 
produce plausible physical Cα distances 

We aimed to establish how the effects of CDR-H3 and Cα distance 
accuracies are placed in the context of other available methods. For this 
reason, we tested those that were freely available for download & aca-
demic purposes. These criteria were satisfied by AbLooper, IgFold, 
ABodyBuilder2, and ESMFold. 

All the methods except for AbLooper produce full antibody struc-
tures. Ablooper requires the framework to be modeled and predicts the 
CDRs only. We supplied the real crystal structures of our Rosetta test set 
as a basis for AbLooper. IgFold, ABodyBuilder2, and AbLooper produce 
excellent Cα distances when allowed the refinement step of the structure 
produced by the network. Therefore, for the analysis here, we employed 
the unrefined structures produced by these methods straight from the 

network. The ESMFold models were used directly as produced by the 
network. 

Given the findings from previous sections, we created a combined 
heavy/light chain pre-trained model, by merging the Homology and 
Natural datasets together (PretrainedCombined). We employed Cα loss 
penalty of 100 and thus called the model PretrainedCombined100. This 
model was designed to be a radical version that reduces the number of 
incorrect Cα distances. For contrast we also employed CrystalHeavy1 
and CrystalHeavy100 models, to demonstrate the effects of no- 
pretraining and high Cα penalty loss. 

We only focused on the prediction of Cα CDR-H3 accuracy, as the 
methods produce different outputs from the network - AbLooper only 
does CDRs, NanoNet and IgFold only backbone and ESMFold and ABo-
dyBuilder2 produce side-chains as well. The CDR-H3 predictions are 
aligned to the original crystal structures and the RMSDs for each method 
are given in Fig. 3. Even though RosettaAntibody was not a test set for all 
methods, (validation set for ABodyBuilder2 and no control for ESM-
Fold), all the methods appear to produce a similar distribution of their 

Table 3 
Structural pre-training improves the Cα distance quality of the model. We checked to what extent increasing the weight on the Cα bond in the loss function improves the 
matters vs pretraining. In each case, increasing the Cα bond weight in loss reduces the number of incorrect Cα bonds. However in each case, consistently, the models 
that had been pre-trained achieved the best results, on both pre-training datasets. For contrast, the very bottom row shows the Cα distances from the crystal structures 
in the Rosetta test dataset. The results in the table are grouped by their Cα loss penalty weights.  

Model Cα eight #d < 3.6Å #d>3.9Å Sum incorrect Cα distances σ μ Mean IMGT H3 RMSD 

CrystalHeavy1 1 1330 1176 2506 .26 3.73 2.11 
Natural1 1 665 501 1166 .19 3.73 2.79 
Homology1 1 976 372 1348 .19 3.70 2.06 
CrystalHeavy 1 CrystalHeavy 1 1 1091 974 2065 .23 3.72 2.09 
Natural1 CrystalHeavy 1 1 477 597 1074 .16 3.75 2.20 
Homology1 CrystalHeavy 1 1 603 634 1237 .16 3.75 2.04 
CrystalHeavy 5 5 328 978 1306 .13 3.79 2.15 
Natural5 5 426 843 1269 .16 2.77 2.26 
Homology5 5 702 529 1231 .18 3.72 2.02 
CrystalHeavy 5 CrystalHeavy 5 5 503 493 996 .12 3.75 2.17 
Natural5 CrystalHeavy 5 5 208 641 849 .11 3.79 2.16 
Homology5 CrystalHeavy 5 5 209 563 772 .11 3.78 2.10 
CrystalHeavy 10 10 345 546 891 .11 3.76 2.19 
Natural10 10 334 352 686 .13 3.75 2.26 
Homology10 10 238 741 979 .12 3.78 2.14 
CrystalHeavy 10 CrystalHeavy 10 10 300 396 696 .10 3.75 2.20 
Natural10 CrystalHeavy 10 10 117 316 433 .08 3.78 2.21 
Homology10CrystalHeavy10 10 182 238 420 .08 3.76 2.22 
CrystalHeavy15 15 272 835 1107 .14 3.78 2.10 
Natural15 15 296 444 740 .11 3.77 2.34 
Homology15 15 310 292 602 .13 3.75 2.20 
CrystalHeavy15CrystalHeavy15 15 135 408 543 .9 3.78 2.10 
Natural15CrystalHeavy15 15 126 362 488 .8 3.78 2.27 
Homology15CrystalHeavy15 15 122 189 311 .7 3.77 2.16 
CrystalHeavy20 20 265 600 865 .13 3.77 2.19 
Natural20 20 271 185 456 .10 3.75 2.19 
Homology20 20 298 394 692 .12 3.76 2.25 
CrystalHeavy20CrystalHeavy20 20 111 396 507 .08 3.78 2.26 
Natural20CrystalHeavy20 20 83 358 441 .07 3.79 2.19 
Homology20CrystalHeavy20 20 50 349 399 .07 3.79 2.14 
Rosetta test set crystal structures n/a 1 25 26 .05 3.8 n/a  

Table 4 
Contrasting of CDR-H3/CDR-L3 modeling between chain-specific models and the combined model. We trained three different models on a different train/validation 
split on the CrystalHeavy, CrystalLight and CrystalCombined datasets. We used the Rosetta test set to verify the CDR-H3 and CDR-L3 predictions only. It appears that 
combining heavy and light chain predictions does not improve the accuracy of CDR3 prediction based on RMSD. However, it appears to contribute to a smaller number 
of incorrect Cα distances (<3.6Å or >3.9Å) in the resulting structures.   

Heavy-only Model Light-only Model Combined Heavy/Light Model  

#Incorrect Bonds CDR3 RMSD #Incorrect Bonds CDR3 RMSD #Incorrect Bonds CDR3 RMSD 

CrystalHeavy 1802 
1832 
1808 

2.09 
2.11 
2.15 

N/A 1506 
1383 
1429 

2.16 
2.08 
2.07 

CrystalLight N/A 1419 
1795 
1402 

0.88 
0.96 
1.13 

1231 
1047 
1162 

0.9 
0.86 
0.96  
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predictions (Fig. 3). This could be indicative of the limits of current deep 
learning methods in backbone shape prediction. This is of course 
notwithstanding producing supplementary output, such as additional 
backbone atoms to Cα, side chains, or the physical plausibility of the 
structures. 

In Table 5 we summarize the number of Incorrect Cα distances ac-
cording to our definition that all the methods in Fig. 3 achieved. Unlike 
in Table 3 where we calculated the total number of incorrect Cα 

distances, here we only calculated the Cα distances in the IMGT-Defined 
CDR-H3 region. Our pre-trained network achieved the least number of 
incorrect Cα distances, followed by ESMFold and IgFold. The training 
regimen that did benefit from pre-training (CrystalHeavy100), obtained 
a notably worse number of incorrect Cα distances, 527 vs 20 in Pre-
trainedCombined100. Furthermore, the predictions of the Pre-
trainedCombined100 are well centered on 3.8Å (Fig. 4), with similar 
distribution shape in ESMFold. Other methods appear to produce dis-
tances even in the range below 3Å. 

These results suggest that the pre-training strategy we introduced 
could have an effect on the number of correct Cα distances, without 
notable detriment to CDR-H3 prediction accuracy with respect to other 
methods, despite simplistic model and training regimen. 

Effect of predicting out-of-distribution CDR-H3 structures 

Antibody structural modeling tools need to be able to generalize to 
the vast number of conformations these molecules can adopt [35]. 
Therefore, we checked to what extent different networks can produce 
physically plausible out-of-distribution sequences. For this purpose, we 

Fig. 2. 3mlr outlier in light chain modeling. Our prediction (pink) has been overlaid on the native structure (green). One beta strand appears to shift with respect to 
where it would normally be expected in the immunoglobulin fold. Our modeling consistently failed in that case and produced CDR-L3 RMSD in the region of 10Å. 

Fig. 3. Accuracy of the benchmarked 
models on the Rosetta dataset. The 
CDR-H3 were structurally aligned and 
consecutive Cα distances and RMSD 
were calculated. The Rosetta test set 
was also a test set for IgFold and 
AbLooper. It was a validation set in the 
case of ABodyBuilder2 and there was no 
control possible in the case of ESMFold. 
Despite no proper control for test in 
such cases, all the methods appear to be 
in a similar range for their predictions, 
suggesting that the deep learning pre-
dictions of CDR-H3 converge in their 
accuracy. To offer context for the error 
achieved by such methods, we struc-
turally aligned CDR-H3s with the same 
sequence, but experimentally solved 
multiple times. Total of 1023 heavy se-
quences, from our dataset, were present 
in more than one PDB file. We calcu-
lated the Cα RMSD between each pair of 
identical CDR-H3 sequences sourced 
from different PDB structures, resulting 
in the mean of 0.31Å.   

Table 5 
Number of incorrect Cα distances on the Rosetta test benchmark. The Cα dis-
tances were calculated on IMGT-defined CDR-H3 only.  

Model #Cα-Cα <3.6Å, Cα-Cα >3.9Å 

PretrainedCombined100 20 
CrystalHeavy1 357 
CrystalHeavy100 527 
NanoNet 278 
AbLooper 369 
IgFold 110 
ABodyBuilder2 297 
ESMFold 65  
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randomly generated ten CDR-H3s, between lengths [10–19] for each of 
the sequences in the Rosetta test set. This was supposed to be the most 
extreme case of introducing the diversity, as opposed to following the 
natural substitution profiles [36] or sampling novel sequences from the 
OAS [22,23]. It was checked that none of the generated CDR-H3s were 
in the crystal structure or the pre-training datasets. This resulted in 450 
sequences. 

We ran the predictions on our pre-trained model Pre-
trainedCombined100, those without the benefit of pre-training, Crys-
talHeavy1 and CrystalHeavy100 as well as on IgFold, ESMFold, 
AbLooper and ABodyBuilder2. The ABodyBuilder2 predictions (final 
refined models) were used by AbLooper for remodeling the CDRs. 

For each model, we calculated the number of incorrect Cα distance 
values (<3.6Å and >3.9Å). The number of CDR-H3 incorrect Cα dis-
tances for each model is given in Table 6. It is evident that in their un-
refined form, IgFold, ABodyBuilder2 and AbLooper produce a large 
number of Cα-Cα distances falling outside of [3.6Å-3.9Å] range. As on 
the proper Rosetta test-set, IgFold appears to produce a smaller amount 
of distances that would need to be refined as compared to AbLooper, 
ABodyBuilder2 or our not pre-trained models. From the previously 
developed methods, ESMFold does the best job of rapidly producing a 
low (509) number of incorrect bonds. Note that though the 509 values 
fall outside our range of [3.6Å-3.9Å], the distribution is not too wide, 
not venturing below 2Å, which is not the case for other methods other 
than our pre-trained model (Fig. 5). Note however that ESMFold ach-
ieves such performance without the benefit of costly refinement and 
produces full atom models, as opposed to simplistic Cα-only residual 

networks, trained here. 
Following on from results in Tables 5 and 6, ESMFold and IgFold 

appear to produce a smaller number of incorrect Cα distances than other 
methods. This appears to support the hypothesis presented here that 
exposing the network to a large number of structures from the onset, 
leads to more plausible geometries directly from the network. ESMFold 
has the benefit of being trained on a much larger set of general proteins 
than antibodies alone. To the best of our knowledge, IgFold was the only 
instance of an antibody-specific method that employed an augmented 
dataset in the training. 

Most importantly from the point of view of pre-training, Crys-
talHeavy100 model, which did not get the benefit of pre-training but a 
very large Cα parameter, produces the largest amount of incorrect Cα 
distances, at 5,740. The model with a small Cα parameter but also 
without pre-training (CrystalHeavy1), also achieves a bad result in terms 
of number of incorrect Cα distances (4,686). By contrast, the pre-trained 
model produces only 517 incorrect contacts. Since the only difference 
between the methods was the benefit of pretraining, we venture a 
statement that the network benefited from learning more correct phys-
ical bonds from a large pre-trained dataset that is able to generalize to 
physically plausible shapes of unseen (though perhaps unrealistic) CDR- 
H3s. 

Discussion 

We addressed the issue of generating structural antibody models of 
better physical quality without detriment to prediction of the backbone 
Cα. We trained a very simplistic deep learning model with a rudimentary 
loss function to minimize the risk of better Cα distances being the result 
of ingenious model architectures [11,12,18]. We demonstrated that 
even such simple models can learn better quality Cα distances if given 
the benefit of pre-training on a large augmented set of refined antibody 
structures. 

Producing good quality antibody models fast is crucial for practical 
applications of such methods in therapeutic development. During a 
phage-display or animal immunization campaigns, it is not uncommon 
to produce a number of sequences in the region of 105-106 or even 1011 

[37]. Current methods such as IgFold, AbodyBuilder2, and ESMFold 
produce results of comparable quality in matter of seconds, which is an 
order of magnitude improvement versus the pioneer, AlphaFold2. 
However, even assuming an optimistic scenario that with refinement 
such methods would take only one second, 106 sequences would still 
take approximately 11 days on a powerful GPU. 

Fig. 4. The distribution of Cα distances in the CDR-H3 predictions on the Rosetta test set. The red lines indicate the region of [3.6Å-3.9Å]. The distributions 
correspond to the predictions presented in Fig. 3. Please note that the histograms have different bin sizes to fit the same axes in each image. 

Table 6 
Number of incorrect Cα distances in the artificial CDR-H3s. We generated 100 
random CDR-H3s in the length range between 10-20 residues. Each of the 
structures was modeled by IgFold, AbodyBuilder2, ESMFold, NanoNet, our pre- 
trained model PretrainedCombyined100 and the not-pretrained varieties 
(CrystalHeavy100 and CrystalHeavy1). We report the number of Cα bonds that 
fall outside of the [3.6Å-3.9Å] range for the CDR-H3.  

Model #Cα-Cα <3.6Å, Cα-Cα >3.9Å 

PretrainedCombined100 517 
CrystalHeavy1 4,686 
CrystalHeavy100 5,837 
NanoNet 4,005 
AbLooper 5,035 
IgFold 2,554 
ABodyBuilder2 4,097 
ESMFold 509  
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This could be a further hindrance when one wishes to study the 
entire space of antibodies, of which there is estimated to be 1018 unique 
molecules [35]. A relatively tiny snapshot of this space in the form of 
Observed Antibody Space, currently holds 2,426,036,223 unique anti-
body sequences [22,23]. Assuming an optimistic running time of 1s per 
model, covering all of these sequences on a powerful GPU would take 
approximately 673,898 hours or around 75 years. Producing physically 
accurate predictions without the need for energy refinement can reduce 
the running time, and thus make large-scale annotation of the antibody 
space within reach. 

Nevertheless, the current efforts to model the available antibody 
space are not in vain as it was demonstrated that this could be done 
using even very rudimentary methods [29]. We are employing such a 
natural dataset for pre-training obtained from public response struc-
tures. The authors of IgFold and ABodyBuilder2 also make available 
snapshots of more than 100,000 paired sequences available in OAS. 
Since snapshots provided by IgFold and AbodyBuilder2 use more 
advanced tools that we employed for pre-training here, we think that in 
the future they might provide an even better basis for structural 
pre-training. 

Increased availability of large datasets of physically sound structures 
is of utmost importance in the light of our combined light/heavy chain 
modeling. The quality of the combined model produced better Cα dis-
tances but did not improve the quality of the CDR-H3 prediction. This 
suggests that it is the larger number of immunoglobulin-fold structures 
that impacts models’ availability to produce physically sound structures. 
This raises the question of whether the structures in such pre-training 
datasets need to be only ‘physically accurate’ or be models that 
closely resemble the real structures that they model. 

Altogether our proposed scheme performs implicit ‘refinement’ at 
the initial pre-training stages rather than focusing it on later ones as is 
the case with state of the art protein structure predictors such as 
AlphaFold2/ESMFold. Because of its complementarity, employing such 
augmented datasets at the pre-training stages could potentially yield 
benefits to the general purpose protein predictors as well. For instance 
one could employ the large AlphaFoldDB [38] for pre-training structure 
predictors which might yield better physical plausibility for the pro-
duced models. 

The proof of concept demonstrated here only took into account the 
peptide bond, abstracted to the Cα distances. It is not unreasonable to 
imagine that overall plausibility of the structure produced by the 
network might improve in other areas, such as side chains, the number 
of amino acids with D-stereochemistry or clashes [24]. All such con-
siderations hinge on presenting the network with a large, augmented 

dataset so it can develop a basis of inference of correct physical geom-
etries that can be generalized to the vast space of antibody molecules. 

As we demonstrated with the artificial CDR-H3 exercise, many net-
works show unstable behavior (non-physical Cα distances) when pre-
dicting novel sequences, suggesting limited generalizability. Developing 
plausible novel antibodies is not only the domain of structure prediction 
but also generative modeling [26,39]. While our approach of intro-
ducing augmented dataset for model pre-training improved model sta-
bility in CDR-H3 prediction, it might also be applicable to producing 
novel physically plausible structures using generative modeling regimes. 

Altogether, employing a large, augmented dataset for structural pre- 
training appears to produce physically plausible predictions for known 
structures as well as randomly generated ones. Therefore we hope that 
our presented strategy for structural pre-training would benefit the 
many antibody structural modeling tools available currently. 
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