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A B S T R A C T   

The recognition of an epitope by a T-cell receptor (TCR) is crucial for eliminating pathogens and establishing 
immunological memory. Prediction of the binding of any TCR–epitope pair is still a challenging task, especially 
for novel epitopes, because the underlying patterns are largely unknown to domain experts and machine learning 
models. To achieve a deeper understanding of TCR–epitope interactions, we have used interpretable deep 
learning techniques to gain insights into the performance of TCR–epitope binding machine learning models. We 
demonstrate how interpretable AI techniques can be linked to the three-dimensional structure of molecules to 
offer novel insights into the factors that determine TCR affinity on a molecular level. Additionally, our results 
show the importance of using interpretability techniques to verify the predictions of machine learning models for 
challenging molecular biology problems where small hard-to-detect problems can accumulate to inaccurate 
results.   

1. Background 

When a pathogen enters the human body, antigen-presenting cells 
display short peptides of the pathogen (called epitopes) on their cell 
surface using a major histocompatibility complex (MHC). A T-cell re-
ceptor (TCR) sequence on the surface of a T-cell recognizes the epitope 
to activate and subsequently initiate the adaptive immune response. 
Quasi-random genetic rearrangements of the V, D, and J genes that 
express the TCR sequence make the recognition of a large variety of 
epitopes possible. The activation of the T-cell is crucial for eliminating 
the pathogen and creating the immunological memory to prevent severe 
symptoms with future infections of the same pathogen [1]. 

Predicting the binding of any given TCR–epitope pair can potentially 
lead to many advances in healthcare, by aiding diagnostics, vaccine 
development, and cancer therapies. Although some machine learning 
tools that perform TCR—epitope binding predictions exist, their per-
formance is still insufficient for many applications. To increase their 
application potential, a more in-depth analysis of these models is 
required to gain a better understanding of how they work, which input 
features they use, and why their performance is not better. Because the 
CDR3 region of the TCR sequence is in close contact with the epitope [2, 
3], for simplicity this is often used by prediction tools instead of the full 
TCR sequence [4–15]. However, it is still unclear which underlying 

patterns within the CDR3 and epitope sequences lead to binding. Indeed, 
high-quality machine learning models that are able to learn relevant 
rules underlying TCR–epitope binding do not currently exist. Broadly, a 
distinction can be made between the seen-epitope and the 
unseen-epitope prediction task. For seen-epitope prediction, one at-
tempts to predict if a TCR will bind a known epitope, which means that 
the training dataset includes TCR–epitope pairs that involve this 
epitope. This requires a much lower amount of generalization capabil-
ities and pattern learning from the model because it can compare the 
CDR3 sequence from the test sample to previously seen samples with the 
same epitope. In contrast, the unseen-epitope prediction task is more 
difficult because the model is evaluated on samples with novel epitopes 
that have not been seen during training. This no longer allows matching 
against known sequences and requires the model to learn more general 
binding patterns to make a correct prediction. As a consequence, the 
state-of-the-art performance on the unseen-epitope task is much lower 
[4,5,12,16] and only marginally better than random. As these models 
continue to be published and utilized, it is essential to closely examine 
the feature explainability and predictions of these models to know why 
they are not doing better, e.g. if these models are even learning to look at 
the correct features. This is crucial for improving prediction models in 
the future. In addition, the patterns learned by unseen-epitope models 
are far more interesting because they model a more realistic setting. 
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They also have a higher disruptive potential for healthcare as the 
possible epitope space far exceeds any feasible database. However, due 
to the increased complexity of the prediction problem, methods that 
have been developed to tackle the unseen-epitope task have turned out 
to be complex machine learning models. All current methods are 
exclusively based on neural networks, which are notoriously poor at 
explaining why a prediction is made the way it is, and thus what 
recognition patterns may underlie an interaction. 

Feature attribution extraction methods provide information on 
which input features are mainly used by machine learning models to 
make a prediction for a single sample [17]. When extracting feature 
attributions from neural networks, we can divide the extraction methods 
into two classes. The first class consists of gradient-based methods. 
Neural networks typically consist of multiple hidden layers connecting 
the input layer with the output layer. The output of each inner layer 
becomes the input of its subsequent layer, passing the input through all 
layers. Each of these layers has weights that are learned when the model 
is trained. The weights define the relation between the input and output 
of a layer. The partial derivative with respect to one of the input features 
of all these weights combined is the gradient for that feature. Intuitively, 
one might think about the gradient of a feature as the amount of change 
in the predicted output for a minor change in the input feature. Vanilla 
[18] is the oldest and simplest gradient-based method. It gives each 
input feature an attribution by calculating the gradients of the neural 
network weights for the given input sample. Another method that is 
often used is Integrated Gradients (IG) [19]. IG is a path-attribution 
method: it integrates the Vanilla gradients over a range of input sam-
ples. The input samples are constructed by taking samples on the linear 
interpolation path between a baseline input (e.g., 0 for all features) and 
the original sample. A third gradient-based method, SmoothGrad (SG) 
[20], is designed to reduce noise in the feature attributions by adding 
noise to the input. SG samples similar inputs by adding random noise to 
the original input and averages the Vanilla feature attributions for those 
samples. The second class of feature attribution extraction methods is 
model-agnostic methods. These treat the model as a black box and only 
require the ability to make predictions with a chosen input. One example 
is SHAP [21], which computes feature attributions by looking at the 
change in the predicted output probability when part of the feature 
values is replaced by their baseline value. In our case, the baseline is a 
distribution of actual input samples: during each iteration, a random 
feature value is chosen from the input distribution as the baseline. This 
method is repeated multiple times to average the influence of the 
randomly chosen baseline. 

In this study, we have used interpretable deep learning techniques to 
understand TCR–epitope binding by applying feature attribution 
extraction methods to two state-of-the-art TCR–epitope prediction 
models: ImRex [4] and TITAN [5]. ImRex is a convolutional neural 
network (CNN) that follows the general design of CNNs for image pro-
cessing. ImRex converts CDR3 and epitope sequences into interaction 
maps by calculating the pairwise difference between selected physico-
chemical properties (hydrophobicity, hydrophilicity, mass, and iso-
electric point) of the amino acids of both sequences. This interaction 
map can be interpreted as a multi-channel image, with each channel 
corresponding to a specific physicochemical property (Figure S1), after 
which TCR–epitope binding prediction is performed using a multi-layer 
CNN. TITAN is based on one-dimensional CNNs using a contextual 
attention mechanism. The CDR3 and epitope sequences are encoded 
using a trainable embedding and separately fed into multiple 
one-dimensional convolutional layers, followed by a context attention 
layer that uses the epitopes as context for the TCR sequences and vice 
versa. The attention weights of both sequences are concatenated, and a 
stack of dense layers is used to output the binding probability. Here, we 
have applied several feature attribution extraction methods to ImRex 
and TITAN to obtain insights into the performance of TCR–epitope 
binding prediction by state-of-the-art machine learning models and 
investigate the biological patterns that underlie TCR–epitope binding. 

2. Results 

2.1. Molecular distances correlate with recognition patterns in 
TCR–epitope complexes 

While the complete TCR sequence might influence the recognition of 
a given epitope, previous studies have shown that the CDR3 is the main 
binding region [2,3]. This is illustrated in Fig. 1 showing a bound 
TCR–epitope complex, with the CDR3 region a sequence of 14 amino 
acids and the epitope a sequence of 9 amino acids. A molecular inter-
action between two protein sequences can only occur when there is close 
contact between amino acids of both sequences. The distance between 
residues from both sequences can therefore be used as a measure for 
indicating which amino acids are likely responsible for the interaction. 
Furthermore, it can be expected that any model that attempts to predict 
this interaction must make use of these residues, and thus the pairwise 
distances between amino acids of the TCR and the epitope can be used as 
a metric for evaluating the learned patterns within a model. To this end, 
we collected 105 solved TCR–epitope structures from the public RCSB 
Protein Data Bank (PDB) database [23] as ground truth data. 

2.2. Feature attribution extraction methods reveal interacting residues in 
the ImRex model 

We retrained the ImRex and TITAN models and evaluated them with 
epitope-grouped cross-validation, i.e. the train and test datasets do not 
share samples with the same epitope sequence. The performance is al-
ways given in the format: metricmodel = mean ± standard deviation. Both 
models achieve an average receiver-operating characteristic (ROC) area 
under the curve (AUC) and precision-recall (PR) AUC of less than 56% 
(ROC AUCImRex = 0.550 ± 0.027; ROC AUCTITAN = 0.559 ± 0.050;
PR AUCImRex = 0.556 ± 0.033; PR AUCTITAN = 0.541 ± 0.049), which 
shows that TCR–epitope binding prediction is still a very difficult task, 
even for state-of-the-art machine learning models. Given the low per-
formance of these methods, it is unclear whether these models are truly 
learning the interaction. While it can be expected that these models may 
perform better with an increase in training data, a thorough evaluation 
of their current capacities is warranted. If these models are capturing the 
relevant molecular patterns, then they should be making use of those 
residues within the TCR and epitope sequences that are driving the 
interaction. Comparing the amino acid usage of the prediction tools with 

Fig. 1. Molecular complex of a TCR–epitope interaction. The 3D image of 
the PDB complex 2P5W [22,23]. Only the TCR beta chain and the epitope are 
shown, with the CDR3 region of the TCR beta chain colored red and the epitope 
colored green. The amino acids of both sequences are labeled with their 
one-letter abbreviation. 
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the actual distance between the amino acids may help to evaluate and to 
improve the performance and robustness of these tools. 

To explore whether feature attribution extraction methods can be 
applied to these models, and which one is the most relevant, four 
common attribution extraction methods were applied to ImRex and 
TITAN. Extracting feature attributions for a sample from the ImRex 
model results in a 4-channel 2D feature attribution matrix with the same 
dimensions as the input sample. The attributions of the four physico-
chemical properties are summed per amino acid pair. For each pairwise 
combination of amino acids from the CDR3 and epitope sequence, the 
feature attribution extraction method returns a value that represents 
how much that input feature contributed to the prediction for the given 
input sample. For comparison to TITAN, the pairwise feature attribu-
tions from ImRex were merged per amino acid by taking the maximum 
of all feature attribution values for that amino acid. TITAN only uses the 
amino acid sequences as input, which results in one feature attribution 
value per amino acid. For each sample, we computed the Pearson cor-
relation coefficient between the feature attributions and the residue 
distance of the amino acids. The correlation coefficient is multiplied by 
− 1 to represent the correlation with the residue proximity, as we expect 
an amino acid pair with a small distance to have a higher feature 
attribution. Also the pairwise residue distance was merged per amino 
acid by taking the maximum value for each residue. 

Figure 2 shows the correlation of each sample extracted with 4 
different feature attribution extraction methods: Vanilla, Integrated 
Gradients (IG), SmoothGrad (SG), and SHAP from ImRex (Fig. 2a and b) 
and TITAN (Fig. 2c). For ImRex, there is a lower correlation when 
comparing pairwise feature attributions and residue proximity (Fig. 2a) 
compared to per residue attributions and proximity (Fig. 2b) for all four 
methods, but the variation increases as well. Although less significant in 
the per residue case, feature attributions extracted with SG are most 
correlated with the residue proximity (CorrImRex pairwise SG =

0.435 ± 0.175; CorrImRex per residue SG = 0.516 ± 0.186). This can be 
explained by the de-noising effect of SG, as it will give higher attributions 
to the most important features and less to the other features. An addi-
tional explanation is that SG extracts the feature attributions multiple 
times with a slightly different input, which can make the algorithm more 
robust against high small-scale fluctuations in the gradient. For ImRex, 
we find that IG results in a lower correlation than Vanilla 

(CorrImRex pairwise IG = 0.229 ± 0.117; CorrImRex per residue IG = 0.384±
0.230; CorrImRex pairwise Vanilla = 0.318 ± 0.146; CorrImRex per residue Vanilla =

0.474 ± 0.205). Feature attributions extracted by SHAP from ImRex are 
very weakly correlated with the residue proximity (CorrImRex 
pairwise SHAP = 0.096 ± 0.102; CorrImRex per residue SHAP = 0.214±
0.205), our results show that feature attributions extracted with gradient- 
based methods have a higher correlation with residue proximity. The 
feature attribution extraction methods on TITAN all give a similar result 
and the correlation is only a limited amount higher than the random 
correlation (CorrTITAN Vanilla = 0.299 ± 0.148; CorrTITAN IG = 0.297±
0.154; CorrTITAN SG = 0.342 ± 0.128; CorrTITAN SHAP = 0.293 ± 0.116; 
Corrrandom = − 0.001 ± 0.212). An overview of the correlation of all 9 
feature attribution extraction methods we tested can be seen in Figure S2, 
a detailed ImRex feature attribution matrix for a single sample can be 
seen in Figure S3 and the feature attributions from different methods for 
TITAN can be seen in Figure S4. 

2.3. Feature attributions reveal important residues for each prediction 

The remainder of all experiments were run using the SG feature 
attribution extraction method because it gives the highest correlation for 
both ImRex and TITAN. 

The pairwise feature attributions from ImRex were merged per 
amino acid. For both ImRex and TITAN, all feature attributions were 
normalized per input sample by dividing them by the highest feature 
attribution value for that sample. This results in feature attributions 
ranging between 0 and 1, where the amino acid with the highest attri-
bution gets a normalized value of 1, although the amino acid with the 
lowest attribution will not necessarily get a value of 0. The pairwise 
residue proximity is calculated for all pairs of amino acids from both 
sequences. A single value for each amino acid is derived in a similar way 
as for the pairwise feature attributions from ImRex: for each amino acid, 
the minimal distance (maximal proximity) to the amino acids from the 
other sequence is taken. The residue proximity is derived from the res-
idue distance by taking 1/distance. It the end, the distance array is 
normalized per sample in the same way as the feature attributions. 
Figure 3 shows the feature attributions extracted from ImRex and TITAN 
with SG for the PDB complex 2P5W [22]. For the epitope, we can see 
that the amino acids that are most important for TITAN are also in close 

Fig. 2. Pearson correlation coefficient of feature attributions and residue proximity extracted with different methods from ImRex and TITAN. The Pearson 
correlation is calculated between the feature attributions extracted with a specific method and the residue proximity between the amino acids of the TCR and epitope 
sequences. A boxplot is shown for each method giving the correlation over all 105 complexes. The random correlation is calculated by taking the Pearson correlation 
between a random feature attribution matrix and the actual residue proximity for each sample, repeated multiple times. Thus, this represents the correlation when 
the feature attribution extraction method would give a random output. Boxplots are constructed as follows: the box extends from the lower to upper quartile values of 
the data, with a line at the median. The whiskers extend from the box to the last datum before 1.5 times the interquartile range above/below the box. The random 
correlation is given as mean and standard deviation. (A) Correlation for ImRex using pairwise feature attributions and residue proximity. (B) Correlation for ImRex 
using feature attributions and residue proximity merged per residue. (C) Correlation for TITAN using feature attributions and residue proximity per residue. 
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contact with the CDR3 region, which is not the case for all important 
amino acids according to ImRex. ImRex focuses more on the residues at 
the beginning of the sequence. The attributions for the CDR3 region are 
very different, where ImRex mainly focuses on the middle part of the 
CDR3 sequence while for TITAN all attributions are almost zero. 

2.4. Important residues are distinct for each TCR-epitope model 

The findings derived from a single complex are representative of the 
full dataset, as can be seen in Fig. 4. We calculated the average attri-
butions of the 105 samples and the average residue proximity. The 
epitope and CDR3 sequences were padded left and right after centering 
them, the padded positions are ignored when calculating the average 
feature attributions or residue proximity. This shows that the amino 
acids of the epitope on positions 6 to 9 are on average the closest to the 
CDR3 region. ImRex focuses more on the first part of the epitope while 
TITAN uses mostly the middle part. For the CDR3, the attributions from 
ImRex are similar to the 3D distance but more focused on the middle 

region. The average attributions from TITAN are very close to zero for 
each position of the CDR3 sequence, which suggests that TITAN pri-
marily uses the epitope sequence to make its predictions. 

We calculated the Pearson correlation coefficient between the 
feature attributions extracted from ImRex and TITAN and the proximity 
of the amino acids of the CDR3 and epitope sequence. The attributions of 
ImRex and the residue proximities were first merged per amino acid. 
This results in a higher correlation for ImRex when looking at both se-
quences together (CorrImRex = 0.516 ± 0.186; CorrTITAN= 0.342 ±0.128)
(Fig. 5). When only considering the epitope, the feature attributions 
from ImRex are not more correlated with the residue proximity than 
random attributions. This is caused by ImRex mainly focusing on the 
first residues of the epitopes. TITAN mainly uses the residues close to the 
CDR3 sequence (CorrImRex ep = 0.045 ± 0.446; CorrTITAN ep =

0.639 ± 0.181). On the other hand, the correlation for the attributions 
of the CDR3 sequence is very high for ImRex and similar to random for 
TITAN (CorrImRex CDR3 = 0.807 ± 0.104; CorrTITAN CDR3 = − 0.187±
0.301). This can be explained by the fact that TITAN always gives a near- 

Fig. 3. Feature attributions extracted with SG from PDB complex 2P5W. Feature attributions of (A) ImRex and (B) TITAN extracted with SG from the prediction 
for the PDB complex 2P5W [22,23] and shown on its molecular complex. Only the TCR beta chain and the epitope are shown. The TCR beta chain is colored gray, 
except for the CDR3 region which is colored according to a color range derived from the normalized feature attributions. The epitope is colored in the same way. (C) 
Feature attributions per position and model for the same complex together with the residue proximity. A higher value represents a larger feature attribution or 
residue proximity. 

Fig. 4. Average feature attributions per position. The average feature attribution per position and model extracted with SG, also the average residue proximity is 
given. Both the epitope and CDR3 sequence is centered and padded left and right separately. The average is calculated by only looking at the feature attributions from 
sequences that do not have padding on that position. 
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zero attribution to the entire CDR3 sequence. 

2.5. Feature attributions explain model performance 

As already mentioned in Section 2.2, we evaluated both the ImRex 
and TITAN models on the task they were designed for: TCR–epitope 
interaction prediction. We use epitope-grouped cross-validation for all 
models which means that none of the epitopes will occur in samples of 
both the train and test split. Thus, for these performance metrics, all test 
samples concern an unseen epitope. The default TITAN model has a 
slightly better average ROC AUC and ImRex has a slightly better average 

PR AUC (ROC AUCImRex = 0.550 ± 0.027; ROC AUCTITAN = 0.559 ±

0.05; PR AUCImRex = 0.556 ± 0.033; PR AUCTITAN = 0.541 ± 0.049). 
The variance of both metrics is higher for TITAN, which also exhibited 
cross-validation splits with a performance below 0.500 (Fig. 6). We 
previously found that TITAN primarily considers the epitope sequence 
to make its prediction. Here we see that it is still able to get decent 
performance when evaluated with epitope-grouped cross-validation, 
even though a model that only uses the epitope sequence is not expected 
to achieve a good performance in this setting. We investigated this in 
more detail by training and evaluating the TITAN model on exactly the 
same data and cross-validation splits as ImRex (the ‘TITAN on ImRex 
data’ model in Fig. 6, also see figures S5 and S6 for average feature at-
tributions and correlation of this model). When the TITAN model is 
trained on the same data as ImRex, the performance on both metrics 
drops (ROC AUCTITAN on ImRex data = 0.523 ± 0.013; PR AUCTITAN on 
ImRex data= 0.514 ± 0.012). This indicates that there might be an in-
formation leakage issue in the TITAN training data, which explains why 
a model that completely focuses on the epitope is still able to get a good 
performance on an unseen-epitope task. At last, we trained and evalu-
ated the TITAN model on a third dataset with scrambled CDR3 se-
quences. This dataset is the same as the original dataset (including cross- 
validation train-test splits), but the CDR3 sequences are randomized by 
sampling random amino acids to create a new sequence of the same 
length for each original sequence while ensuring that the distribution of 
the amino acids from the original CDR3 sequences is retained. The 
performance of the TITAN model trained on this random data is very 
similar to the performance of the original TITAN model 
(ROC AUCTITAN scrambled TCRs = 0.559 ± 0.045;
PR AUCTITAN scrambled TCRs = 0.540 ± 0.046), which is only possible when 
the CDR3 sequence does not contribute to the predictions. Thus, this 
confirms that our feature attribution extraction method made correct 
conclusions about the usage of the CDR3 sequence. 

3. Discussion 

Although recently multiple improvements have been made in 
unseen-epitope TCR interaction prediction, the performance of the 
current state-of-the-art models is still limited [4,5,12,16]. One of the 
reasons is that the determining factors for these molecular interactions 
are still unknown to both human experts and machine learning models. 
We presented a method that can extract which amino acids of the input 
were mainly used by the models to make their prediction. Highlighting 

Fig. 5. Pearson correlation between attributions and residue proximity 
for models and sequences. The correlation is calculated between the feature 
attributions extracted from ImRex and TITAN with SG and the proximity of the 
amino acid pairs from both sequences. For ImRex, the attributions were first 
merged per amino acid to allow comparison with TITAN. On the right, the 
correlation for both the epitope and CDR3 sequences separately is shown. The 
random correlation is calculated by taking the correlation between a random 
feature attribution array and the actual residue proximity for each sample, 
repeated multiple times. Thus, this represents the correlation when the feature 
attribution extraction method would give a random output. Boxplots are con-
structed as follows: the box extends from the lower to upper quartile values of 
the data, with a line at the median. The whiskers extend from the box to the last 
datum before 1.5 times the interquartile range above/below the box. The 
random correlation is given as mean and standard deviation. 

Fig. 6. Comparison of model performance. The TCR–epitope interaction prediction performance of the different models measured with (A) ROC AUC and (B) PR 
AUC. ‘ImRex’ and ‘TITAN on ImRex data’ were both trained on the ImRex dataset and evaluated with 5-fold epitope-grouped cross-validation. ‘TITAN’ was trained on 
the original TITAN dataset and evaluated with 10-fold epitope-grouped cross-validation, ‘TITAN scrambled TCRs’ was trained on the TITAN dataset with scrambled 
CDR3 sequences and also evaluated with 10-fold epitope-grouped cross-validation. Boxplots are constructed as follows: the box extends from the lower to upper 
quartile values of the data, with a line at the median. The whiskers extend from the box to the last datum before 1.5 times the interquartile range above/below 
the box. 
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those feature attributions on the molecular complex gives additional 
information to the domain expert about why the prediction was made 
and can give new insights into the factors that determine TCR affinity on 
a molecular level. However, these results should also be interpreted in 
the context of the models’ performances. 

Using the actual distance between the amino acids of the TCR and 
epitope sequences as ground truth, we were able to compare the 
different feature attribution extraction methods and prediction models. 
We found that SG gives the highest correlation for ImRex and TITAN. 
This is not unexpected because it is designed to reduce noise, making it 
focus more on the most important residue pairs and less on the others. 
This is similar to the residue proximity; a limited number of residues 
from both sequences are very close to each other and the proximity 
between the other residues decreases quickly. Another reason can be 
that SG samples multiple similar inputs with random noise, this should 
make the algorithm more robust against high small-scale fluctuations in 
the gradient. On ImRex, all gradient-based methods have a significantly 
higher correlation with the residue proximity than SHAP. We reason 
that these methods are better at finding more detailed attributions 
because they have access to the gradients of the models while SHAP only 
compares the predicted output for altered inputs. 

We found that, on average, ImRex uses mainly the start and middle 
amino acids of the epitope, while the distance is smaller for amino acids 
on positions 6 to 9 (out of 11). We repeated our feature attribution 
analysis on an ImRex model trained on samples with scrambled epitope 
sequences and found that the epitope attributions are now more 
centered (Figure S5). The remaining feature attributions after scram-
bling can possibly be explained by the padding that is added to the start 
and the end of epitope sequences shorter than 11 residues. These posi-
tions have lower variability in input values during training, which might 
make them less interesting for the model. This can also partially explain 
the epitope feature attributions of the regular ImRex model but the 
difference with the model trained on scrambled epitopes suggests that 
ImRex might also find different patterns. ImRex is revealed to use the 
amino acids of the CDR3 region similarly to the average residue prox-
imity with somewhat more attribution to the middle part and less 
attribution to the outer parts of the sequence. We repeated our feature 
attribution extraction again on an ImRex model trained on samples with 
scrambled TCRs (Figure S5). The difference in the feature attributions of 
the middle and outer positions of the CDR3 is now much less extreme, 
the remaining attributions can possibly also be explained by the 
padding. If these attributions are influenced by the residue variability 
when training, then we hypothesize that this can also be the case for the 
CDR3 feature attributions of the regular ImRex model. Next to the 
reduced variability from padding, the center of the CDR3 sequence has 
much more variability in the input samples than the start and end po-
sitions, which makes it more important for the model. This is not 
necessarily a problem, but one needs to take into account that padding 
and training input distributions might influence the focus of a machine 
learning model. 

For TITAN, we found that the amino acid usage of the epitope 
sequence is similar to the residue proximity, but it does not consider the 
CDR3 sequence. However, when testing TITAN using epitope-grouped 
cross-validation, unexpectedly its performance was still similar to 
ImRex. Training TITAN on the ImRex data resulted in a much lower 
performance, which leads us to hypothesize that the unexpected per-
formance can be explained by how the TITAN training and evaluation 
data was constructed. TITAN creates its negative samples in a different 
way than ImRex. TITAN uniformly samples a random epitope for each 
TCR sequence, while ImRex samples a random epitope with the same 
probability as in the positive dataset. This can be seen in supplementary 
table S1: for each epitope, the number of positive samples is between 15 
and 400 (which is expected due to the data preprocessing), but the 
number of negative samples is similar for all epitopes. This leads to a 
large imbalance between the number of positive and negative samples 
for most epitopes. Note that the same imbalance is also present in the 

training data (although with other epitopes). This imbalance is learned 
by the TITAN model that thereby completely focuses on the epitope 
sequence, as we found by extracting the feature attributions. The last 
column of supplementary table S1 shows that TITAN almost always 
gives a negative prediction for most epitopes except for a few (TLIGD-
CATV, RQLLFVVEV, EPLPQGQLTAY, and LSDDAVVCFNSTY in this 
specific cross-validation split) for which it almost always gives a positive 
prediction. 

Even though the dataset is imbalanced, this does not fully explain the 
good test performance. TITAN splits its data into two datasets, a train 
and test set, where no epitopes are shared among each. The model is 
trained on the train dataset and at the end of each epoch tested on the 
test dataset. When retraining the model ourselves, we saw that the 
performance on the test dataset is very unstable across multiple epochs 
and does not converge. After training for a given number of epochs, the 
test performance of the best epoch is selected and reported as the final 
test performance. Therefore, we hypothesize that the model tries to give 
a high prediction to random epitopes or patterns in the train data, 
repeatedly changing this every epoch (which results in the very high 
variation in performance across epochs). In the end, the epoch where the 
patterns selected from the train dataset gave (by chance) the best per-
formance on the test dataset is chosen. If true, this could have been 
avoided by using an independent validation dataset to determine the 
best epoch. Afterward, the performance could have been given by 
applying the model from that epoch on the test set. 

4. Conclusions 

We have shown that applying feature attribution extraction methods 
are useful to improve the explainability for protein interaction predic-
tion, as applied here to the TCR–epitope problem. The attributions from 
the gradient-based methods are closer to what we expect than the at-
tributions from the model-agnostic method SHAP. Showing feature at-
tributions on the TCR–epitope molecular complex can be useful to gain 
more knowledge about why specific protein sequences interact. 
Extracting feature attributions is a good way to verify a model and data 
and to check that it works as expected. This is especially true for chal-
lenging problems, where small hard-to-detect issues in the dataset bal-
ance or evaluation methods can compound to inaccurate results. 

5. Methods 

5.1. Data 

5.1.1. Molecular complex data 
A collection of TCR–epitope MHC class I complexes with links to 

their RCSB Protein Data Bank (PDB) [23] entry was downloaded from 
the TCR3d database [24] and all non-human entries were removed. The 
TCR beta chain, epitope chain, and location of the CDR3 region were 
manually selected from the PDB complexes with the help of the 
IMGT/3Dstructure-DB [25–27] online tool. Finally, we ended up with 
105 unique complexes consisting of 51 unique CDR3 sequences and 62 
unique epitopes. 

5.1.2. ImRex training data 
We used the data that was also used in the ImRex [4] paper. It uses 

the VDJdb dataset from August 2019 [28] and is filtered on samples with 
human TCR beta sequences. All samples from the 10x Genomics study 
[29] were excluded and only samples with a length between 10 and 20 
and 8–11 for respectively the CDR3 and epitope were kept. The data was 
downsampled to have at most 400 samples per epitope and negative 
data was generated by shuffling. We performed one additional filtering 
step: all samples that are also present in the molecular complex data 
(based on the CDR3 sequence) were removed, which reduced the posi-
tive dataset size from 6,702 to 6,656 samples. 

We also created two additional datasets: one with scrambled epitope 
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sequences and one with scrambled CDR3 sequences. We used the final 
ImRex dataset but replaced all epitope/CDR3 sequences with a random 
combination of amino acids of equal length. The amino acid distribution 
of the epitope/CDR3 sequences of the original dataset was kept. 

Each model trained on the ImRex data was evaluated with 5-fold 
epitope-grouped cross-validation, as per the original study. This di-
vides the data into five groups with about the same amount of epitopes 
and a similar distribution of number of samples per epitope. Samples 
with the same epitope are all put in the same group. 

5.1.3. TITAN training data 
For TITAN [5], we use their ‘strictsplit’ data which is a combination 

of two datasets: the VDJdb [28] and a COVID-19 specific dataset pub-
lished by the ImmuneCODE project [30]. Both datasets were filtered on 
human TCR beta sequences, all epitopes with less than 15 associated 
TCRs were removed and the data was downsampled to have at most 400 
samples per epitope. For the COVID-19 dataset, only samples with a 
single unique epitope were kept and unproductive samples were 
excluded. After merging both datasets, negative samples were generated 
by shuffling. This means that a negative sample is generated for each 
positive sample, pairing the original CDR3 sequence with a random, 
different epitope from the positive dataset. The only additional filtering 
step we performed on the data was removing all samples that are also 
present in the molecular complex data, which reduced the positive 
dataset size from 23,145 to 23,125 samples. 

We also created an additional dataset with scrambled CDR3 se-
quences. We used the final TITAN dataset but replaced all CDR3 se-
quences with a random combination of amino acids of equal length. The 
amino acid distribution of the CDR3 sequences of the original dataset 
was kept. 

Models trained on any of the TITAN datasets are always evaluated 
with 10-fold epitope-grouped cross-validation. The 10 groups created by 
TITAN were kept. 

5.2. ImRex model training 

We retrained ImRex with the same parameters as the final published 
model [31]. This is the default ‘padded model’, has a batch size of 32, is 
trained for 20 epochs, uses ReLU activation functions, has convolutional 
layers with depth 128, 64, 128, and 64, has a dropout rate of 0.25 for the 
convolutional layers, uses a learning rate of 1e-4, a regularization of 
0.01 on all layers and uses the RMSProp optimizer [32]. 

5.3. TITAN model training 

TITAN was trained with the parameter configuration of the AA CDR3 
case as explained in their paper (the configuration on their online re-
pository led to similar results). We chose this setting because it has the 
same performance as its alternative using SMILES strings [33] and/or 
the full TCR sequence on the 10-fold cross-validation strictsplit test [5], 
while the feature attributions can be directly compared to the “ground 
truth” molecular distance data. We set the padding of the CDR3 and 
epitope to 25 instead of 500, otherwise, we could not achieve a better 
than random performance. The epitope is not encoded as SMILES, the 
size of the dense hidden layers is 368 and 184, a ReLU activation 
function is used, a dropout of 0.5, a batch size of 512 without normal-
ization, a learning rate of 1e-4, the attention size for both sequences is 
16, the embedding size for both sequences is 26, the epitope and CDR3 
kernel sizes are both [3, 26], [5, 26], and [11, 26] and the epitope and 
CDR3 embeddings are both learned during training. Note that the pre-
trained version of the TITAN model might give different results. 

Retraining TITAN on its own data was done with the original 10-fold 
epitope-grouped cross-validation splits provided by the authors. 
Retraining TITAN on the ImRex data was done with the 5-fold epitope- 
grouped cross-validation splits generated by ImRex. 

5.4. Feature attribution extraction 

The input for ImRex can be represented as an image, so it is possible 
to apply feature attribution extraction methods made for image classi-
fication CNNs. These methods give an attribution to each of the input 
pixels for the prediction of a single sample. In our case, every pixel is a 
pairwise combination of an amino acid from both sequences. The value 
of the attribution represents how much each pixel contributed to the 
prediction. 

In this research, we focused on two kinds of feature attribution 
extraction methods: a set of methods based on the neural network gra-
dients and a model-agnostic method: SHAP [21]. Gradient-based 
methods can only be used on models with a differentiable input, 
whereas SHAP can be used for any type of black box model. We 
compared 8 different feature attribution extraction methods that are 
based on gradients (Vanilla [18], Integrated Gradients (IG) [19], 
SmoothGrad [20], SmoothGradIG [19,20], GuidedIG [19,34], BlurIG 
[19,35], SmoothGradBlurIG [19,20,35] and XRAI [36]) and the SHAP 
method using random sampling from the dataset as background. Of 
these, for conciseness, four representative methods were used in the 
results section (Vanilla, IG, SmoothGrad, and SHAP), while results for all 
methods are available as supplementary information. The Python 
package shap (version 0.40.0) [21] was used for the implementation of 
the SHAP algorithm and the other methods were implemented with the 
Python package saliency (version 0.1.3) [18,20,34–37]. 

TITAN uses a 1D categorical input: a concatenated list of the amino 
acids from the epitope and CDR3. Therefore, there will only be one 
feature attribution value for each amino acid. Because gradient-based 
feature attribution extraction methods require a differentiable input, 
the embedded input was used with TITAN. 

5.5. Feature attribution evaluation 

We evaluated the feature attribution extraction methods by 
comparing them to the distance between the amino acids of both se-
quences in the molecular complex. The distance between two amino 
acids is the minimal distance between two atoms of each amino acid in 
ångströms. This results in a distance matrix with values between 2.3 Å 
and 30 Å. The amino acids that are closer to the other sequence are also 
more important for the interaction. Therefore, we inverted each value of 
the distance matrix by taking 1/value to get the residue proximity. The 
feature attributions and the residue proximity matrix are both normal-
ized by dividing them by their maximum value. This results in all values 
being between 0 and 1 and the largest value is always equal to 1. 

residue proximityij = pij

pij =
1
dij
, i ∈ {1, ..., n}, j ∈ {1, ...,m}

normalized residue proximityij = npij

npij =
pij

max(p)
, i ∈ {1, ..., n}, j ∈ {1, ...,m}

normalized feature attributionij = nf aij

nf aij =
f aij

max(fa)
, i ∈ {1, ..., n}, j ∈ {1, ...,m}

With n the length of the epitope, m the length of the CDR3 sequence, 
dij the distance between amino acid i of the epitope and amino acid j of 
the CDR3 sequence and faij the feature attribution of the amino acid pair 
(i, j). 

To quantify the correlation between the feature attributions and the 
residue proximity the Pearson correlation coefficient was calculated 
between the feature attributions and the residue distance for each 
sample and multiplied by − 1. This results in a higher, positive value 
when there is a higher correlation between the feature attributions and 
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the residue proximity. 

5.6. 1D feature attributions 

To compare the feature attributions and the correlation with the 
residue proximity between ImRex and TITAN we converted the 2D 
ImRex attributions and distance matrices to a 1D array by merging the 
values per amino acid and concatenating the result of both sequences. 
For each amino acid, the maximum feature attribution and minimum 
distance with respect to every amino acid from the other sequence was 
taken. Those 1D arrays (of length n+ m, with n the length of the epitope 
and m the length of the CDR3) were inverted and normalized in the same 
way as the 2D matrices. 

5.7. Molecular complex highlighting 

The normalized 1D feature attributions from both models are shown 
on the molecular complex with PyMol (version 2.3.0) [38]. For clarity, 
we only show the TCR beta sequence and the epitope. The TCR beta 
chain is colored gray, except the CDR3 region which is colored according 
to a color range derived from the normalized feature attributions, green 
for a feature attribution of zero to blue for a feature attribution of one. 
The epitope is colored with the same color range. The amino acids of 
both sequences are labeled with their one-letter abbreviation. 
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epitope specificity of T cell receptors with TCRGP. bioRxiv 2019. https://doi.org/ 
10.1101/542332. Aug. 21. 

[11] Gielis S, et al. Detection of enriched T cell epitope specificity in full T cell receptor 
sequence repertoires. Front Immunol 2019;10:2820. https://doi.org/10.3389/ 
fimmu.2019.02820. 

[12] Springer I, Besser H, Tickotsky-Moskovitz N, Dvorkin S, Louzoun Y. Prediction of 
specific TCR-peptide binding from large dictionaries of TCR-peptide Pairs. Front 
Immunol 2020;11. Accessed: Apr. 15, 2022. [Online]. Available: https://www. 
frontiersin.org/article/10.3389/fimmu.2020.01803. 

[13] Chronister WD, et al. TCRMatch: predicting T-cell receptor specificity based on 
sequence similarity to previously characterized receptors. Front Immunol 2021;12. 
Accessed: Apr. 15, 2022. [Online]. Available: https://www.frontiersin.org/arti 
cle/10.3389/fimmu.2021.640725. 

[14] Montemurro A, et al. NetTCR-2.0 enables accurate prediction of TCR-peptide 
binding by using paired TCRα and β sequence data. Commun Biol 2021;4(1). 
https://doi.org/10.1038/s42003-021-02610-3. Art. no. 1, Sep. 

[15] Fischer DS, Wu Y, Schubert B, Theis FJ. Predicting antigen specificity of single T 
cells based on TCR CDR3 regions. Mol Syst Biol 2020;16(8). https://doi.org/ 
10.15252/msb.20199416. Aug. 

[16] Jurtz VI, et al. NetTCR: sequence-based prediction of TCR binding to peptide-MHC 
complexes using convolutional neural networks. Bioinformatics 2018. https://doi. 
org/10.1101/433706. preprint, Oct. 

[17] C. Molnar, Interpretable machine learning: a guide for making black box models 
explainable, 2nd ed. 2022. [Online]. Available: https://christophm.github.io/inter 
pretable-ml-book. 

[18] K. Simonyan, A. Vedaldi, and A. Zisserman, ‘Deep inside convolutional networks: 
visualising image classification models and saliency maps’, ArXiv13126034 Cs, 
Apr. 2014, Accessed: Mar. 31, 2022. [Online]. Available: http://arxiv.org/abs/ 
1312.6034. 

C. Dens et al.                                                                                                                                                                                                                                    

https://github.com/PigeonMark/McFAE
https://doi.org/10.5281/zenodo.6500495
https://github.com/PigeonMark/McFAE
https://github.com/PigeonMark/McFAE
https://doi.org/10.5281/zenodo.6500495
https://doi.org/10.5281/zenodo.6500495
https://doi.org/10.1016/j.immuno.2023.100027
http://refhub.elsevier.com/S2667-1190(23)00007-1/sbref0001
http://refhub.elsevier.com/S2667-1190(23)00007-1/sbref0001
https://doi.org/10.1038/ni1173
https://doi.org/10.1038/334395a0
https://doi.org/10.1093/bib/bbaa318
https://doi.org/10.1093/bioinformatics/btab294
https://doi.org/10.1109/ACCESS.2019.2948178
https://doi.org/10.1007/s00251-017-1023-5
https://doi.org/10.1038/nature22383
https://doi.org/10.1038/nature22976
https://doi.org/10.1101/542332
https://doi.org/10.1101/542332
https://doi.org/10.3389/fimmu.2019.02820
https://doi.org/10.3389/fimmu.2019.02820
https://www.frontiersin.org/article/10.3389/fimmu.2020.01803
https://www.frontiersin.org/article/10.3389/fimmu.2020.01803
https://www.frontiersin.org/article/10.3389/fimmu.2021.640725
https://www.frontiersin.org/article/10.3389/fimmu.2021.640725
https://doi.org/10.1038/s42003-021-02610-3
https://doi.org/10.15252/msb.20199416
https://doi.org/10.15252/msb.20199416
https://doi.org/10.1101/433706
https://doi.org/10.1101/433706
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034


ImmunoInformatics 11 (2023) 100027

9

[19] Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: 
ICML’17: Proceedings of the 34th international conference on machine 
learningVol. 70. JMLR.org; Aug. 2017. p. 3319–28. 

[20] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, ‘SmoothGrad: 
removing noise by adding noise’, ArXiv170603825 Cs Stat, Jun. 2017, Accessed: 
Mar. 31, 2022. [Online]. Available: http://arxiv.org/abs/1706.03825. 

[21] Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. 
Advances in neural information processing systems. Curran Associates, Inc.; 2017. 
Accessed: Mar. 30, 2022. [Online]. Available: https://proceedings.neurips. 
cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html. 

[22] Sami M, et al. Crystal structures of high affinity human T-cell receptors bound to 
peptide major histocompatibility complex reveal native diagonal binding 
geometry. Protein Eng Des Sel 2007;20(8):397–403. https://doi.org/10.1093/ 
protein/gzm033. Aug. 

[23] Berman HM, et al. The protein data bank. Nucleic Acids Res 2000;28(1):235–42. 
https://doi.org/10.1093/nar/28.1.235. Jan. 

[24] Gowthaman R, Pierce BG. TCR3d: the T cell receptor structural repertoire 
database. Bioinforma Oxf Engl 2019;35(24):5323–5. https://doi.org/10.1093/ 
bioinformatics/btz517. Dec. 

[25] Ehrenmann F, Lefranc M-P. IMGT/3Dstructure-DB: querying the IMGT database for 
3D structures in immunology and immunoinformatics (IG or Antibodies, TR, MH, 
RPI, and FPIA). Cold Spring Harb. Protoc. 2011;2011(6). https://doi.org/10.1101/ 
pdb.prot5637. p. pdb.prot5637Jan. 

[26] Ehrenmann F, Kaas Q, Lefranc M-P. IMGT/3Dstructure-DB and IMGT/ 
DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell 
receptors, MHC, IgSF and MhcSF. Nucleic Acids Res 2010;38(suppl_1):D301–7. 
https://doi.org/10.1093/nar/gkp946. Jan. 

[27] Kaas Q, Ruiz M, Lefranc M. IMGT/3Dstructure-DB and IMGT/StructuralQuery, a 
database and a tool for immunoglobulin, T cell receptor and MHC structural data. 
Nucleic Acids Res 2004;32(suppl_1):D208–10. https://doi.org/10.1093/nar/ 
gkh042. Jan. 

[28] Bagaev DV, et al. VDJdb in 2019: database extension, new analysis infrastructure 
and a T-cell receptor motif compendium. Nucleic Acids Res 2020;48(D1): 
D1057–62. https://doi.org/10.1093/nar/gkz874. Jan. 

[29] 10x Genomics: a new way of exploring  immunity digital. Accessed: Mar. 30, 2022. 
[Online]. Available: https://pages.10xgenomics.com/rs/446-PBO-704/images/10 
x_AN047_IP_A_New_Way_of_Exploring_Immunity_Digital.pdf. 

[30] J.N. Dines et al., ‘The ImmuneRACE Study: a prospective multicohort study of 
immune response action to COVID-19 events with the ImmuneCODE™ open access 
database’. medRxiv, p. 2020.08.17.20175158, Aug. 21, 2020. doi:10.1101/ 
2020.08.17.20175158. 

[31] P. Moris, ‘Pretrained ImRex model’, GitHub. https://github.com/pmoris/ImRe 
x/tree/master/models/pretrained/2020-07-24_19-18-39_trbmhcidown-shuffle 
-padded-b32-lre4-reg001 (accessed Jun. 01, 2022). 

[32] G. Hinton, ‘RMSProp’. 2021. [Online]. Available: http://www.cs.toronto.edu/ 
~tijmen/csc321/slides/lecture_slides_lec6.pdf. 

[33] Weininger D, Weininger A, Weininger JL. SMILES. 2. Algorithm for generation of 
unique SMILES notation. J Chem Inf Comput Sci 1989;29(2):97–101. https://doi. 
org/10.1021/ci00062a008. May. 

[34] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, ‘Striving for 
simplicity: the all convolutional net’, ArXiv14126806 Cs, Apr. 2015, Accessed: Mar. 
31, 2022. [Online]. Available: http://arxiv.org/abs/1412.6806. 

[35] S. Xu, S. Venugopalan, and M. Sundararajan, ‘Attribution in scale and space’, 
ArXiv200403383 Cs, Apr. 2020, Accessed: Mar. 31, 2022. [Online]. Available: htt 
p://arxiv.org/abs/2004.03383. 

[36] A. Kapishnikov, T. Bolukbasi, F. Viégas, and M. Terry, ‘XRAI: better attributions 
through regions’, ArXiv190602825 Cs Stat, Aug. 2019, Accessed: Mar. 31, 2022. 
[Online]. Available: http://arxiv.org/abs/1906.02825. 

[37] ‘saliency: framework-agnostic saliency methods’. Accessed: Apr. 28, 2022. 
[Online]. Available: https://github.com/pair-code/saliency. 

[38] Schrödinger, L.L.C., ‘The PyMOL molecular graphics system, version 2.3.0’. 
[39] C. Dens, ‘McFAE: molecular complex feature attribution extraction’. Apr. 2022. 

[Online]. Available: https://github.com/PigeonMark/McFAE. 
[40] Dens C, Bittremieux W, Affaticati F, Laukens K, Meysman P. Interpretable deep 

learning to uncover the molecular binding patterns determining TCR–epitope 
interactions, 28. Zenodo; 2022. https://doi.org/10.5281/zenodo.7115860. Apr. 

[41] Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley, CA: 
CreateSpace; 2009. 

[42] A. Paszke et al., ‘Automatic differentiation in PyTorch’, 2017. 
[43] Martín Abadi et al., ‘TensorFlow: large-scale machine learning on heterogeneous 

systems’. 2015. [Online]. Available: https://www.tensorflow.org/. 
[44] F. Chollet and others, ‘Keras’. 2015. [Online]. Available: https://keras.io. 
[45] Harris CR, et al. Array programming with NumPy. Nature Sep. 2020;585(7825): 

357–62. https://doi.org/10.1038/s41586-020-2649-2. 
[46] pandas-dev/pandas: pandas. Zenodo; 2020. https://doi.org/10.5281/ 

zenodo.3509134. Feb. 
[47] McKinney W. Data structures for statistical computing in Python. In: van der 

Walt S, Millman J, editors. Proceedings of the 9th Python in science conference; 
2010. p. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a. 

[48] Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng 2007;9(3): 
90–5. https://doi.org/10.1109/MCSE.2007.55. 

[49] Waskom ML. seaborn: statistical data visualization. J Open Source Softw 2021;6 
(60):3021. https://doi.org/10.21105/joss.03021. 

[50] A. Clark, ‘Pillow (PIL Fork) documentation. Readthedocs, 2015. [Online]. 
Available: https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow. 
pdf. 

C. Dens et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2667-1190(23)00007-1/sbref0019
http://refhub.elsevier.com/S2667-1190(23)00007-1/sbref0019
http://refhub.elsevier.com/S2667-1190(23)00007-1/sbref0019
http://arxiv.org/abs/1706.03825
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1093/protein/gzm033
https://doi.org/10.1093/protein/gzm033
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/bioinformatics/btz517
https://doi.org/10.1093/bioinformatics/btz517
https://doi.org/10.1101/pdb.prot5637
https://doi.org/10.1101/pdb.prot5637
https://doi.org/10.1093/nar/gkp946
https://doi.org/10.1093/nar/gkh042
https://doi.org/10.1093/nar/gkh042
https://doi.org/10.1093/nar/gkz874
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_A_New_Way_of_Exploring_Immunity_Digital.pdf
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_A_New_Way_of_Exploring_Immunity_Digital.pdf
https://doi.org/10.1101/2020.08.17.20175158
https://doi.org/10.1101/2020.08.17.20175158
https://github.com/pmoris/ImRex/tree/master/models/pretrained/2020-07-24_19-18-39_trbmhcidown-shuffle-padded-b32-lre4-reg001
https://github.com/pmoris/ImRex/tree/master/models/pretrained/2020-07-24_19-18-39_trbmhcidown-shuffle-padded-b32-lre4-reg001
https://github.com/pmoris/ImRex/tree/master/models/pretrained/2020-07-24_19-18-39_trbmhcidown-shuffle-padded-b32-lre4-reg001
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1021/ci00062a008
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/2004.03383
http://arxiv.org/abs/2004.03383
http://arxiv.org/abs/1906.02825
https://github.com/pair-code/saliency
https://github.com/PigeonMark/McFAE
https://doi.org/10.5281/zenodo.7115860
http://refhub.elsevier.com/S2667-1190(23)00007-1/sbref0041
http://refhub.elsevier.com/S2667-1190(23)00007-1/sbref0041
https://www.tensorflow.org/
https://keras.io
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

	Interpretable deep learning to uncover the molecular binding patterns determining TCR–epitope interaction predictions
	1 Background
	2 Results
	2.1 Molecular distances correlate with recognition patterns in TCR–epitope complexes
	2.2 Feature attribution extraction methods reveal interacting residues in the ImRex model
	2.3 Feature attributions reveal important residues for each prediction
	2.4 Important residues are distinct for each TCR-epitope model
	2.5 Feature attributions explain model performance

	3 Discussion
	4 Conclusions
	5 Methods
	5.1 Data
	5.1.1 Molecular complex data
	5.1.2 ImRex training data
	5.1.3 TITAN training data

	5.2 ImRex model training
	5.3 TITAN model training
	5.4 Feature attribution extraction
	5.5 Feature attribution evaluation
	5.6 1D feature attributions
	5.7 Molecular complex highlighting

	Declarations
	Data and code availability
	Funding
	Materials & correspondence

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Supplementary materials
	References


