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A LOCAL CHARACTERIZATION OF VC-MINIMALITY

URI ANDREWS AND VINCENT GUINGONA

Abstract. We show VC-minimality is Π0
4-complete. In particular, we give

a local characterization of VC-minimality. We also show dp-smallness is Π1
1-

complete.

1. Introduction

Motivated by successes in stability theory, model theorists have recently been
interested in generalizing results for stable theories to a wider class of theories.
The primary candidate of study is the class of NIP theories1, which includes math-
ematically important theories left out of the class of stable theories, such as the
first order theory of the real field and the p-adic field. To study this large class
of theories, it helps to first understand simpler cases, considering theories that are
minimal with respect to various notions of “dimension” (e.g., Vapnik-Chervonenkis
(VC) dimension and dp-rank).

VC-minimality is a notion of simplicity for a first-order theory which simultane-
ously generalizes weak o-minimality and C-minimality. Until now, VC-minimality
has been a very difficult notion to work with. This difficulty is due to the complex-
ity of the definition of VC-minimality. In particular, the definition is Σ1

1, i.e., it
requires an existential quantifier over sets of formulae. As such, it is quite difficult
to verify that a theory is not VC-minimal. Instead, most instances of proofs that a
theory is not VC-minimal actually show that the theory fails to satisfy one of sev-
eral weaker principles such as convex orderability, dp-smallness, or dp-minimality.
In this paper, we answer the following question:

Question 1.1. How hard is it to determine whether or not a theory is VC-minimal?

Index sets are a tool used to quantify the complexity of notions. Let P be a
property of objects in a class K. Then the index set of P is the set

I(P ) := {i | i is an index for a recursive C ∈ K with the property P}.
By restricting to the recursive C ∈ K, the complexity of this set comes from the
complexity of the notion P , not the inherent complexity in the object C.

The question is formalized as asking to characterize the complexity of the index
set I(VC-minimal theories). We show that in fact VC-minimality is far simpler
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than expected, being Π0
4-complete, and we give a simple characterization. This

characterization makes VC-minimality far easier work with. We hope that it will
spur further research in the area. Our characterization, which holds for theories in
countable languages, is ‘local’ in the sense that it gives a condition that must hold
for each formula.

It is known that VC-minimality implies convex orderability [7], which in turn
implies dp-smallness [6] (which implies dp-minimality which implies NIP). So, a
question naturally arises: How complex are the definitions of convex orderability
and dp-smallness?

We show that dp-smallness is, in fact, far more complicated than VC-minimality;
it is Π1

1-complete. In this vain, we also answer a question from [6] by giving examples
of dp-small theories in countable languages which are not convexly orderable.

We leave the following question open:

Open Question 1.2. What is the complexity of convex orderability?

2. Background

Let X be a set, C ⊆ P(X). We say C is directed if, for all A,B ∈ C, at least one
of the following holds:

• A ⊆ B,
• B ⊆ A, or
• A ∩B = ∅.

For simplicity of notation, for A,B ⊆ X, we write A ⊥ B to denote that {A,B} is
not directed. That is,

• A \B 6= ∅,
• B \A 6= ∅, and
• A ∩B 6= ∅.

Remark 2.1 (Swiss Cheese Decomposition). Suppose C ⊆ P(X) is directed. If
A ∈ C and Bi ∈ C for i < n with Bi ⊆ A for all i < n and Bi ∩Bj = ∅ for all i 6= j,
then we call S = A \ (B0 ∪ ... ∪ Bn−1) a swiss cheese, A is the wheel of S and the
Bi’s are the holes of S. If D ⊆ X is a (finite) boolean combination of elements of
C, then there exists swiss cheeses S0, ..., Sm−1 such that

• Si ∩ Sj = ∅ for all i 6= j,
• no wheel of some Si is equal to a hole of some Sj , and
• D = S0 ∪ ... ∪ Sm−1.

We call such S0, ..., Sm−1 a swiss cheese decomposition of D. See Lemma 2.1 of [4]
for more details. By Theorem 3.1 of [4], there is a means of canonically choosing a
decomposition, so we may consider “the” swiss cheese decomposition of D.

Lemma 2.2 (Union of Chains). If C ⊆ P(X) is directed, C0 ⊆ C is a chain, and
A :=

⋃
C0, then C ∪ {A} is directed.

Proof. Fix B ∈ C. We must show that either A ∩ B = ∅, A ⊆ B, or B ⊆ A. If
any B′ ∈ C0 contains B, then B ⊆ A, and we are done. Similarly, if every B′ ∈ C0
is disjoint from B, then A ∩ B = ∅. The remaining case is where some B′ ∈ C0
intersects B, but none contains B. Thus this B′ is contained in B. As C0 is a chain,
every element intersects B and none contains B, so every member of the chain is
contained in B. Thus A ⊆ B. �
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Definition 2.3. Fix a language L, an L-theory T , and a monster model U |= T .
For a tuple of variables x, let |x| denote the length of x and let Ux = U |x|. If ϕ(x; y)
is a formula and b ∈ Uy, then let ϕ(U ; b) be the set of all a ∈ Ux satisfying the
formula ϕ(a; b).

• We say a set of partitioned L-formulae Ψ = {ψi(x; yi) | i ∈ I} is directed if
the set CΨ := {ψi(U ; b) | i ∈ I, b ∈ Uyi} is directed (in the ambient set Ux).
• We say that the theory T is VC-minimal if, there exists a directed set of

formulae Ψ (in the free variable x with |x| = 1) such that, every (parameter)
definable set A ⊆ U is a (finite) boolean combination of elements from CΨ.
• In this case, we call Ψ a generating family for T .
• If Ψ is a generating family for T , then a set ψi(U , b) for ψi ∈ Ψ is called a

ball in Ψ.

If C ⊆ P(X) is directed, then C ∪ {{a} | a ∈ X} is directed. Therefore, without
loss of generality, we may assume the formula x = y is in the generating family of
any VC-minimal theory.

An L-structure M is called convexly orderable if there exists a linear order E
on M (not necessarily definable) such that, for all L-formulas ϕ(x; y) with |x| = 1,
there exists k < ω such that, for all b ∈ My, ϕ(M ; b) is a union of at most k
E-convex subsets of M . By Proposition 2.3 of [7], if M is convexly orderable and
N ≡ M , then N is convexly orderable, so convex orderability is a property of
theories. By Theorem 2.4 of [7], any VC-minimal theory is convexly orderable.

3. Devastation and Immortality

The following is a technical definition which plays an important role in our local
characterization of VC-minimality.

Definition 3.1 (Devastation, Immortality). Suppose that ψ(x; y) is a partitioned
L-formula and ϕ(x) is an L(U)-formula, both with a common free variable, x. We
say that ϕ devastates ψ if there exists a sequence 〈ci : i < ω〉 of elements in Uy such
that, for all i < j < ω,

• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ϕ(x)), and
• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ¬ϕ(x)).

If there exists no L(U)-formula ϕ(x) which devastates ψ(x; y), then we say that
ψ(x; y) is immortal.

Remark 3.2. If ϕ(x; y) is an L-formula such that, for all d ∈ Uy, ϕ(x; d) does not
devastate ψ(x; z), then by compactness there exists k < ω such that, for all d ∈ Uy,
there does not exist 〈ci : i < k〉 from Uz so that for all i < j < k,

• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ϕ(x, d)), and
• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ¬ϕ(x, d)).

It follows that immortality of ψ(x, y) in a recursive theory T is a Π0
2 condition

defined by ∀ϕ(x; y)∃kT ` θ where θ is the sentence saying there are no 〈ci : i < k〉
as above.

If ϕ(x) devastates ψ(x; y) witnessed by c := 〈ci : i < ω〉, then we may assume c is
indiscernible (i.e., any two finite subsequences of c satisfy all the same L-formulae).
To see this, use compactness to reduce to only finitely many L-formulae and a finite
length sequence, then use Ramsey’s Theorem to choose a finite subsequence of c
where all the selected L-formulae either hold or fail similarly across the subsequence.
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Lemma 3.3 (Directed and Devastated). Suppose ϕ(x) is an L(U)-formula, and
ψ(x; y) is a directed L-formula. Then ϕ(x) devastates ψ(x; y) if and only if there
exists an indiscernible sequence 〈ci : i < ω〉 in Uy such that one of the following
hold:

(1) for all i < ω, |= ∀x(ψ(x; ci+1) → ψ(x; ci)), |= ∃x(ψ(x; ci) ∧ ¬ψ(x; ci+1) ∧
ϕ(x)), and |= ∃x(ψ(x; ci) ∧ ¬ψ(x; ci+1) ∧ ¬ϕ(x)); or

(2) for all i < ω, |= ¬∃x(ψ(x; ci+1) ∧ ψ(x; ci)), |= ∃x(ψ(x; ci) ∧ ϕ(x)), and
|= ∃x(ψ(x; ci) ∧ ¬ϕ(x)).

Proof. If (1) or (2) hold, then clearly ϕ(x) devastates ψ(x; y). Conversely, if ϕ(x)
devastates ψ(x; y), then by Remark 3.2 we can assume the witness 〈ci : i < ω〉 is
indiscernible. Therefore, we have either that, for all i < ω, ψ(U ; ci+1) ⊆ ψ(U ; ci) or,
for all i < j < ω, ψ(U ; ci)∩ψ(U ; cj) = ∅. Now (1) or (2) follow from each case. �

Definition 3.4. If ϕ(x; y) is any formula and a is any parameter, we refer to ϕ(x; a)
as an instance of ϕ.

Definition 3.5 (Instance Sums). Fix L-formulae ϕ(x; y) and ψ(x; z). Then their
instance sum is the following formula

(ϕ⊕ ψ)(x; y, z, w0, w1) := (w0 = w1 → ϕ(x; y)) ∧ (w0 6= w1 → ψ(x; z)).

Remark 3.6 (On Instance Sums). If ϕ(x; y) and ψ(x; z) are L-formulae, then each
instance of (ϕ ⊕ ψ) is T -equivalent to either an instance of ϕ or an instance of ψ.
Conversely, each instance of ϕ and each instance of ψ is T -equivalent to an instance
of (ϕ⊕ ψ).

If ϕ(x; y) and ψ(x; z) are immortal L-formulae, then (ϕ ⊕ ψ) is immortal. If
δ(x) devastates (ϕ⊕ ψ), then by the pigeonhole principle, either δ devastates ϕ or
δ devastates ψ. This contradicts the assumption that both formulae are immortal.

If {ϕ(x; y), ψ(x; z)} is directed, then (ϕ⊕ ψ) is directed.

Lemma 3.7 (Balls are Immortal). If T is VC-minimal and ψ(x; z) is in the gen-
erating family of T , then ψ is immortal.

Proof. Suppose, by means of contradiction, that ψ(x; z) is in the generating family
of T but ψ is not immortal. Therefore, there exists an L(U)-formula ϕ(x) which
devastates ψ. Then by Lemma 3.3, there are ai, bi ∈ Ux and ci ∈ Uz such that, for
all i < j < ω,

• ai ∈ ϕ(U) ∩ ψ(U ; ci) \ ψ(U ; cj), and
• bi ∈ ¬ϕ(U) ∩ ψ(U ; ci) \ ψ(U ; cj).

Since T is VC-minimal, ϕ(U) has a swiss cheese decomposition, namely S0, ..., Sm−1

as in Remark 2.1. Therefore, by the pigeonhole principle, for some j < m we have
infinitely many i < ω such that ai ∈ Sj . Let S = Sj and, without loss of generality,
suppose all ai ∈ S. Let A be the wheel and B0, ..., Bm−1 be the holes of S (if S
has no holes, we get a contradiction, since ψ(U ; ci) 6⊆ S for any i < ω). By the
pigeonhole principle again, there exists j < m and infinitely many i < ω such that
bi ∈ Bj . Let B = Bj . For each i ≥ 1: since bi ∈ B, B ∩ ψ(U , ci) 6= ∅. Since
bi−1 ∈ B, B 6⊆ ψ(U , ci). Thus ψ(U , ci) ⊆ B. But now ai ∈ B, so ai /∈ S, which
contradicts our choice of S. �
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4. Local characterization of VC-minimality

Theorem 4.1 (Local Characterization of VC-Minimality). For a theory T in a
countable language L, the following are equivalent:

(1) T is VC-minimal,
(2) for all L-formulae ϕ(x; y), there exists an immortal directed L-formula

ψ(x; z) such that each instance of ϕ is T -equivalent to a (finite) boolean
combination of instances of ψ.

Since compactness shows that if every instance of ϕ is equivalent to a boolean
combination of instances of ψ, then there is an n so that every instance of ϕ is
a boolean combination of ≤ n instances of ψ, this shows that the index set of
VC-minimal theories is Π0

4.

Remark 4.2. Our restriction to a countable language is necessary. Consider the
example in the language L = {Pi | i < ω1} with ℵ1-many unary predicates and
let T be the L-theory which says that, for all finite disjoint I, J ⊆ ω1, there are
infinitely many x such that ∧

i∈I
Pi(x) ∧

∧
j∈J
¬Pj(x).

This theory has quantifier elimination and is superstable. One can easily check it
satisfies condition (2) of Theorem 4.1, but this is not VC-minimal (see Example
2.10 of [7] for more details).

Lemma 4.3 (Main Construction Lemma). If ϕ(x; y) and ψ(x; z) are each a directed
immortal formula (not assuming {ϕ,ψ} is directed), then there exists δ(x;w) an
immortal formula such that

• {ψ, δ} is directed, and
• each instance of ϕ is a finite boolean combination of instances of ψ and δ.

As the proof of the Main Construction Lemma is somewhat involved and combi-
natorial, we leave it to Section 8. We now consider the proof of Theorem 4.1, given
the Main Construction Lemma.

Proof of Theorem 4.1. (1) ⇒ (2): Suppose T is VC-minimal and fix a L-formula
ϕ(x; y). By compactness, there exists a directed family of finitely many L-formulae
{ψi(x; zi) | i < k} such that each instance of ϕ is T -equivalent to a boolean com-
bination of instances of the ψi’s. By taking instance sums, we may assume that
k = 1. By Lemma 3.7, ψ is immortal.

(2) ⇒ (1): We construct Ψ the generating family by induction. First, since L is
countable, there exists an enumeration {ϕi(x; yi) | i < ω} of the L-formulae with
x (where |x| = 1) as a free variable. Let Ψ0 = ∅ and suppose that we have Ψi a
finite directed set of immortal L-formulae constructed so that, for all j < i, each
instance of ϕj is T -equivalent to a boolean combination of instances of elements
from Ψj+1. Suppose further that Ψj ⊆ Ψj+1 for all j < i. Now consider ϕi(x; yi)
and let ψ(x; z) be given as in (2) (hence ψ is immortal and directed). Let ψ′(x; z′)
be the instance sum of Ψi, which is immortal and directed by Remark 3.6. By
Lemma 4.3, there exists δ(x;w) an immortal L-formula such that {δ, ψ′} is directed
and each instance of ψ is T -equivalent to a boolean combination of instances of
ψ′ and δ. Therefore, each instance of ϕ is T -equivalent to a boolean combination
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of instances of ψ′ and δ. Let Ψi+1 := Ψi ∪ {δ}, which is a finite directed set of
immortal L-formulae. Finally, let Ψ =

⋃
i Ψi. �

5. Stable VC-Minimal Theories

A formula ϕ(x; y) has the order property if there exists elements ai ∈ Ux for
i < ω and bj ∈ Uy for j < ω such that ϕ(ai; bj) if and only if i < j. A theory T is
stable if no formula has the order property.

Lemma 5.1. Suppose T is VC-minimal and stable. Then, there exists Ψ :=
{Ei(x, y) | i ∈ I} a directed set of equivalence relations (on x with |x| = 1) that is
a generating family for T .

Proof. Since T is VC-minimal, let Ψ′ be a generating family for T . Now fix ψ(x; y) ∈
Ψ′ and p(y) ∈ Sy(∅) (i.e., p is a maximally consistent set of L-formulae with free
variable y). Suppose, by means of contradiction, that the type

p(y0) ∪ p(y1) ∪ {ψ(U ; y0) ( ψ(U ; y1)}

is consistent. Take 〈b0, b1〉 a witness to this and take σ ∈ Aut(U) sending b0 to b1.
Let bn = σn(b0) (in particular, this is consistent with the naming of b1). Then,
〈bi : i < ω〉 and ψ is a witness to the (strict) order property, a contradiction to the
fact that T is stable. Therefore, there exists δ(y) ∈ p(y) such that, for all b0, b1 ∈ Uyi
with |= δ(b0)∧ δ(b1), either ψ(U ; b0) = ψ(U ; b1) or ψ(U ; b0)∩ψ(U ; b1) = ∅. In other
words, the formula

Eψ,p(x0, x1) := (∃y)(δ(y) ∧ ψ(x0; y) ∧ ψ(x1; y)) ∨ (x0 = x1)

is a ∅-definable equivalence relation. Now take

Ψ := {Eψ,p | ψ(x; y) ∈ Ψ′, p ∈ Sy(∅)}.

We claim that Ψ is a generating family for T . To show this, we simply show
CΨ = CΨ′ . For A ∈ CΨ′ , A = ψ(U ; b) for some ψ(x; y) ∈ Ψ′, b ∈ Uy. Then, for
any a ∈ A, one can check that A = Eψ,tp(b)(U ; a). Conversely, take A ∈ CΨ, so
A = Eψ,p(U , a) for some ψ(x; y) ∈ Ψ′, p ∈ S(∅), and a ∈ U . Let δ(y) ∈ p(y)
be the associated formula. If there exists b ∈ Uy such that |= δ(b) ∧ ψ(a; b), then
ψ(U ; b) = A, hence A ∈ CΨ′ . On the other hand, if there exists no such b, then
A = {a} so, since (x = y) ∈ Ψ′, A ∈ CΨ′ . �

So, without loss of generality, when dealing with a VC-minimal stable theory,
we may assume the generating family is a set of equivalence relations on the home
sort. As a corollary of Theorem 4.1, we get the following characterization of stable
VC-minimal theories.

Theorem 5.2. Suppose T is a stable theory in a countable language. The following
are equivalent:

(1) T is VC-minimal,
(2) For each formula ϕ(x; y), there exist finitely many refining definable equiv-

alence relations {Ej(x0, x1) | j < m}, each of which is immortal, such that,
for all b ∈ Uy, ϕ(U ; b) is a (finite) boolean combination of instances of the
Ej’s.



A LOCAL CHARACTERIZATION OF VC-MINIMALITY 7

Figure 1. Example construction where 1 enters Wg(i,j) at stage 3.
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6. Π0
4-completeness of VC-minimality

We now show that the characterization of VC-minimality given in Theorem 4.1
is the simplest possible.

Theorem 6.1. The index set of VC-minimal theories is Π0
4-hard.

Proof. We describe a recursive function f , which, on a given input i, outputs a
theory Ti so that Ti is always ℵ0-stable, and Ti is VC-minimal if and only if i ∈ S
for a Π0

4-complete set S. We have S written as ∀j(Wg(i,j) is co-finite) for a fixed
recursive function g.

Our theory will be in the language L := {Ej | j ∈ ω} ∪ {Uj | j ∈ ω} ∪ {V jk , Z
j
k |

j, k ∈ ω} where each Ej is binary and all other relations are unary.
Ti begins with the following axioms:

• The Uj ’s define disjoint infinite sets.
• Each Ej is an equivalence relation on Uj with infinitely many infinite

classes.
• The V jk ’s define disjoint subsets of Uj .

• If x ∈ V jk , y ∈ V jl for k 6= l, then ¬Ej(x, y).
• For each j, k ∈ ω: There are infinitely many Ej-classes which do not inter-

sect V jk .

• For each j, k ∈ ω: For each Ej-class A which intersects V jk , both A ∩ V jk
and Ar V jk are infinite.

• For each j, k ∈ ω: x ∈ Zjk if and only if x /∈ V jk and there is a y so that

Ej(x, y) ∧ y ∈ V jk .

At stage s, for each k ≤ s, we add the following axioms to Ti:

• If k /∈W s
g(i,j), then add an axiom stating that there are at least s Ej-classes

which intersect V jk .
• If k enters Wg(i,j) at stage s, add an axiom stating that there are exactly s

Ej-classes which intersect V jk .

See Figure 1 for details.

Lemma 6.2. For every i, Ti is a complete ℵ0-stable theory with quantifier elimi-
nation.
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Proof. For quantifier elimination, it suffices to show that we can eliminate (∃x)

from a conjunction of formulae of the form Uj(x), ±Ej(x, y`), ±V jk (x), and ±Zjk(x)

for some fixed j. As any Ej-class which intersects V jk is contained in V jk ∪ Z
j
k, this

is straightforward. Moreover, a simple type-counting argument shows that Ti is
ℵ0-stable. �

Lemma 6.3. If ∀j(Wg(i,j) is co-finite), then Ti is VC-minimal.

Proof. For each j, let Sj be the set ω rWg(i,j). Each Sj is finite, by assumption.

Define Xj to be the set of elements in Uj , but not in any V jk or Zjk for k ∈ Sj . Let
Φ be the family composed of the following families of definable sets:

• {Uj | j ∈ ω}
• {V jk , Z

j
k | k ∈ Sj , j ∈ ω}

• {Xj | j ∈ ω}
• {Ej(x, y) ∧ x ∈ V jk | k ∈ Sj}
• {Ej(x, y) ∧ x ∈ Zjk | k ∈ Sj}
• {Ej(x, y) ∧ x ∈ Xj}
• {Ej(x, y) ∧ V jl (x) | l /∈ Sj}
• {Ej(x, y) ∧ Zjl (x) | l /∈ Sj}

It is immediate that Φ is directed. For l /∈ Sj , V jl is a finite union of instances of

{Ej(x, y)∧ V jl (x)}. A similar condition holds for Zjl . Each Ej-class is the union of
elements of Φ given by the fourth, fifth, and sixth lines. By quantifier elimination,
every definable set is a boolean combination of instances from Φ. Thus Φ witnesses
VC-minimality of Ti. �

Lemma 6.4. If ∃j(Wg(i,j) is co-infinite), then Ti is non-VC-minimal.

Proof. Fix j so Wg(i,j) is co-infinite. Let ψ be a directed formula so that every
instance of Ej is a boolean combination of instances of ψ. By Lemma 5.1, ψ can
be assumed to be comprised of equivalence relations. By quantifier elimination,
instances of ψ are Ej-classes away from finitely many exceptional V jk and Zjk. Let

k /∈ Wg(i,j) not be one of those finitely many exceptional k. Thus V jk intersects

infinitely many Ej-classes. This shows that V jk devastates ψ. Thus ψ cannot be
contained in any family witnessing VC-minimality of Ti by Lemma 3.7, and thus
Ti is non-VC-minimal. �

�

Corollary 6.5. The index set of VC-minimal theories is Π0
4-complete.

Remark 6.6. One should note that all the theories Ti constructed in Theorem 6.1
are, in fact, convexly orderable. This gives us a large list of examples of theories
that are ℵ0-stable and convexly orderable but not VC-minimal.

7. Complexity of dp-smallness

Definition 7.1. We say a theory T is dp-small if there does not exist an L-formula
ϕ(x; y), a sequence 〈bi : i < ω〉, and L(U)-formulae ψj(x) (where |x| = 1) such that,
for all i, j < ω, the following partial type is consistent with T :

{ϕ(x; bi), ψj(x)} ∪ {¬ϕ(x; bi′) | i′ 6= i} ∪ {¬ψj′(x) | j′ 6= j}.
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Figure 2. Example construction of a particular tree.

E

U<>
U<0>

U<1>

...
...<>

<0> <1>

U<1,2>

<1,2>

...

By Proposition 1.5 of [6], if a theory is convexly orderable, then it is dp-small.
In particular, all VC-minimal theories are dp-small.

A theory being not dp-small is clearly a Σ1
1 condition, hence the index of dp-small

theories is Π1
1.

Theorem 7.2. The index set of dp-small theories is Π1
1-complete.

Proof. We use the fact that {T ⊂ ω<ω | T is a recursive tree with no path} is Π1
1-

complete (see Theorem 5.14 of [3]). Given a (recursive index for a) tree T ⊆ ω<ω,
we produce a theory so that the tree T has a path if and only if the theory is not
dp-small. We fix the language L := {E} ∪ {Uσ | σ ∈ ω<ω} where E is binary and
each Uσ is unary.

The theory is axiomatized as follows:

• E is an equivalence relation with infinitely many infinite classes.
• ∀xU∅(x)
• If σ and τ are incomparable, then x ∈ Uσ and y ∈ Uτ implies ¬E(x, y).
• If σ ≺ τ , then Uτ ⊆ Uσ.
• If τ /∈ T , then Uτ = ∅
• If τ = σ_〈i〉, and τ ∈ T , then there is an infinite set S of E-equivalence

classes so that for each E-equivalence class A ∈ S, Uτ ∩A is an infinite co-
infinite subset of Uσ ∩A. Further, there are infinitely many E-equivalence
classes which intersect Uσ which do not intersect Uτ .

See Figure 2 for an example.
It is straightforward to verify that the theory produced is complete for any T

and is dp-small if and only if T has no infinite path.
For example, if there is an infinite path, say ∅ ≺ σ0 ≺ σ1 ≺ ..., take ϕ(x; y) :=

E(x, y), ψj(x) := Uσj
(x) ∧ ¬Uσj+1

(x) for j ∈ ω, and pairwise non-E-related bi’s
outside of Uσ0

, each E-related to elements in Uσj
for all j. This is a witness to the

non-dp-smallness of the theory. �

To conclude this section, we use the ideas behind the construction in Theorem
6.1 to provide an answer to a question from [6].

Example 7.3. We give an example of a theory in a countable language that is
dp-small but not convexly orderable, answering a question from [6]. This theory
happens to be ℵ0-stable. Let L = {E} ∪ {Ui,j | j ≤ i < ω}, where E is a binary
relation and each Ui,j is a unary relation. Let T be the L-theory which says
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• E is an equivalence relation with infinitely many infinite classes;
• the Ui,j are pairwise disjoint;
• for all i < ω, Ui,0 ∪ ... ∪ Ui,i is a union of infinitely many E-classes;
• if an E-class intersects Ui,j , it does so with infinitely many points and it

intersects each Ui,j′ for j′ ≤ i; and
• if an E-class intersects Ui,j , it does not intersect Ui′,j for i′ 6= i.

This is ℵ0-stable and has quantifier elimination.
Suppose, by means of contradiction, that it were convexly orderable, say with

C on M |= T . Then, there exists k < ω such that, for all a ∈ M , E(M ; a) is a
union of at most k C-convex sets. Look at U2k,j for j ≤ 2k. Again, by convex
orderability, there exists ` < ω such that each U2k,j(M) is a union of a most `
C-convex sets. Let Bj,m for m < ` be the mth C-convex component of U2k,j(M)
(some may be empty). By the pigeonhole principle, there exists m0, ...,mk < ` and
an infinite collection of E-classes A0, A1, ... such that Bj,mj ∩ At 6= ∅ for all j ≤ k
and t < ω. As the Bj,mj

are C-convex and pairwise disjoint, and each intersect A0

and M \A0, we must have that A0 is a union of at least k+ 1 C-convex sets. This
is a contradiction.

However, this theory is dp-small. Suppose, by means of contradiction, that
ϕ(x; y) together with ψ`(x) for ` < ω is a witness to non-dp-smallness. That is,
there exists 〈bi : i < ω〉 such that, for all i, ` < ω, the partial type

{ϕ(x; bi), ψ`(x)} ∪ {¬ϕ(x; bi′) | i′ 6= i} ∪ {¬ψ`′(x) | `′ 6= `}
is consistent. By quantifier elimination, we may assume ϕ is E with perhaps a re-
striction to some Ui,j and that the ψ`(x) are of the form Ui,j perhaps restricted to an
E-class. One checks such formulae cannot make the above partial type consistent.

8. The Main Construction Lemma

Suppose M is a countable model of a theory T in a countable language. In this
section, for simplicity of exposition, for a formula ϕ(x; y) and b ∈My, we will write
ϕb to mean ϕ(M ; b).

Lemma 8.1 (Unions and Intersections of chains). Suppose ρ(x; y) and τ(x; z) are
so that for any y, z, ρy 6⊥ τz. Let χ be any union of a chain of instances of ρ or
intersection of a chain of instances of ρ. Then for every z, τz 6⊥ χ.

Proof. We first suppose χ is a union of a chain of instances of ρ. Suppose z is so
that τz ⊥ χ. Let a be in the intersection and b be in χr τz. Let ρw be in the chain
so that it contains a and b. Then ρw ⊥ τz, which is a contradiction.

Now suppose χ is an intersection of a chain of instances of ρ. Suppose z is so
that τz ⊥ χ. Let a be any element of τz r χ and choose w so ρw does not contain
a. Then ρw ⊥ τz, which is a contradiction. �

Lemma 8.2 (Main Construction Lemma). If ϕ(x; y) and ψ(x; z) are each a directed
immortal formula (not assuming {ϕ,ψ} is directed), then there exists δ(x;w) an
immortal formula such that

• {ψ, δ} is directed, and
• each instance of ϕ is a finite boolean combination of instances of ψ and δ.

Proof. We begin by defining the following formulae:

• θ0
a := {x ∈ ϕa | ∀z(x ∈ ψz → ψz 6⊥ ϕa)}



A LOCAL CHARACTERIZATION OF VC-MINIMALITY 11

Figure 3. Example of θ0, θ1, θ2, and θ3.
φa

θa 

0

θa,z 

1

ψz

 

ψz'

θa,z' 

2

ψz'' θa,z'' 

3

• If ϕa ⊥ ψz, then define θ1
a,z :=

⋃
{ψy | ψy r ϕa = ψz r ϕa}.

Otherwise, θ1
a,z := ∅.

• If ϕa ⊥ ψz, then define θ2
a,z :=

⋂
{ψy | ψy r ϕa = ψz r ϕa}.

Otherwise, θ2
a,z := ∅.

• θ3
a,z := (θ2

a,z ∩ ϕa) r
⋃
{ψz′ | (ψz′ ⊥ ϕa) ∧ ψz′ ∩ ϕa ( θ2

a,z ∩ ϕa}
See Figure 3 for an example.

We intend to show that {ψ(x; y), θ0(x; a), θ1(x; a, z), θ2(x; a, z), θ3(x; a, z)} is di-
rected, each θi is immortal, and that each instance of ϕ is a boolean combination
of instances from this family.

Lemma 8.3. {ψ(x; y), θ0(x; a), θ1(x; a, z), θ2(x; a, z), θ3(x; a, z)} is directed

Proof. For each pair of formulae from {ψ(x; y), θ0(x; a), θ1(x; a, z), θ2(x; a, z), θ3(x; a, z)},
we argue that no two instances can be ⊥.

ψ, θ0: If x ∈ ψy ∩ θ0
a, then ψy 6⊥ ϕa. If ψy ⊃ ϕa, then θ0

a ⊆ ϕa ⊆ ψy. So we
suppose ψy ⊆ ϕa. Take any x′ ∈ ψy. If x were in some ψy′ where ψy′ ⊥ ϕa,
then x ∈ ψy ⊆ ψy′ , contradicting x ∈ θ0

a. Thus ψy ⊆ θ0
a.

ψ, θ1: This follows from Lemma 8.1 since any instance of θ1 is a union of a chain
of instances of ψ and ψ is directed.

ψ, θ2: This follows from Lemma 8.1 since any instance of θ2 is an intersection of
a chain of instances of ψ and ψ is directed.

ψ, θ3: Let ψy intersect θ3
a,z. If ψy ⊇ ψz r ϕa, then ψy ⊇ θ2

a,z ⊇ θ3
a,z. So, we may

assume ψy r ϕa ( ψz r ϕa. If for some w, ψw ⊥ ϕa and ψw ⊇ ψy and
ψw ⊂ θ2

a,z, then ψy is explicitly excluded from θ3
a,z and the intersection is

empty. Otherwise, ψy ⊆ θ2
a,z ∩ ϕa and it is contained in θ3

a,z.

θ0, θ0: We may assume ϕa′ ⊆ ϕa. If there is no x ∈ θ0
a′ and y so x ∈ ψy and ψy ⊥

ϕa, then θ0
a′ ⊆ θ0

a. Otherwise, this ψy must contain ϕa′ , since ψy 6⊥ ϕa′ .
Thus θ0

a′ ⊆ ϕa′ and ϕa′ ∩ θ0
a = ∅.

θ0, θ3: Let x ∈ θ0
a ∩ θ3

a′,v. Let S be the set of v′ so that ψv r ϕa′ = ψv′ r ϕa′ .

Then x ∈ ψv′ for every v′ ∈ S. So ψv′ 6⊥ ϕa for each v′ ∈ S. If ψv′ ⊆ ϕa
for any v′ ∈ S, then ψv′ ⊆ θ0

a (see ψ, θ0), so θ3
a′,v ⊆ ψv ⊆ θ0

a. So we assume
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ϕa ⊆ ψv′ for each such v′. Thus ϕa ⊆ θ2
a′,v. Thus ϕa ⊂ ϕa′ . If there is a z

so that θ0
a ⊆ ψz and ψz ⊥ ϕa′ and ψz∩ϕa′ ( θ2

a′,v∩ϕa′ , then θ0
a∩θ3

a′,v = ∅.
Otherwise, θ0

a ⊆ θ3
a′,v.

θ1, anything: Since no instance of ψ is ⊥ to any instance of a θi, this follows by Lemma
8.1.

θ2, anything: Since no instance of ψ is ⊥ to any instance of a θi, this follows by Lemma
8.1.

θ3
a,z, θ

3
a′,z′ : As θ3

a,z ⊆ ϕa, we may assume ϕa ⊇ ϕa′ . Similarly, we may assume either

θ2
a,z ⊆ θ2

a′,z′ or vice versa. We start with the first case: θ2
a,z ⊆ θ2

a′,z′ . Let S
be the set of w so that ψw r ϕa = ψz r ϕa. Then for every w ∈ S, since
ψw ⊥ ϕa, it follows that ψw ⊥ ϕa′ . Since {ψ, θ2} is directed, either ψw
is a proper subset of θ2

a′,z′ and is thus excluded from θ3
a′,z′ or ψw contains

θ2
a′,z′ . In the first case, θ3

a,z is disjoint from θ3
a′,z′ , so we suppose the second

case holds for every w ∈ S. Thus θ2
a,z ⊇ θ2

a′,z′ . It remains to check that

any ψy contained in θ2
a,z excluded from θ3

a,z is also excluded from θ3
a′,z′ . If

ψy ⊥ ϕa, then ψy ⊥ ϕa′ and if it defines a proper subset of θ2
a′,z′ ∩ϕa′ , then

it defines a proper subset of θ2
a,z ∩ ϕa, as needed.

Now we consider the second case: θ2
a′,z′ ( θ2

a,z. If θ2
a′,z′ ∩ϕa ( θ2

a,z ∩ϕa,
then using a small enough instance of ψw′ where ψw′rϕa′ = ψz′rϕa′ , we see
that θ2

a′,z′ is excluded from θ3
a,z. Thus we may assume θ2

a′,z′∩ϕa = θ2
a,z∩ϕa.

It remains to see that any instance of ψy omitted from θ3
a,z is also omitted

from θ3
a′,z′ . Since ϕa′ ⊆ ϕa, if ψy intersects θ2

a′,z′ and ψy ⊥ ϕa, then

ψy ⊥ ϕa′ . Thus if ψy is omitted in the definition of θ3
a,z, it is also omitted

in the definition of θ3
a′,z′ . Thus θ3

a,z ⊆ θ3
a′,z′ .

�

Lemma 8.4. Suppose ρ(x; y) is an immortal formula, and that each instance of
χ(x; z) is a union of a chain of instances of ρ. Then χ is immortal.

Suppose ρ(x; y) is an immortal formula, and that each instance of χ(x; z) is an
intersection of a chain of instances of ρ. Then χ is immortal.

Proof. First we consider the case where every instance of χ(x; z) is a union of a
chain of instances of ρ. Suppose towards a contradiction that γ(x) devastates χ
witnessed by the indiscernible 〈ci : i < ω〉. For all i < j < ω, χci r χcj intersects
both γ and ¬γ. Since each χ instance is a union of a chain of instances of ρ, there
exists di for each i < ω so that ρdi ⊆ χci and for all i < j, ρdi rχcj intersects both
γ and ¬γ. This witnesses that γ devastates ρ, contrary to the assumption of ρ’s
immortality.

Now we consider the case where every instance of χ(x; z) is an intersection of
a chain of instances of ρ. Suppose towards a contradiction that γ(x) devastates χ
witnessed by the indiscernible 〈ci : i < ω〉. For all i < j < ω, χci r χcj intersects
both γ and ¬γ. Since each χ instance is an intersection of a chain of instances
of ρ, there exists di for each i < ω so that χci ⊆ ρdi and for all i < j, ρdi r ρdj
intersects both γ and ¬γ. This witnesses again that γ devastates ρ, contrary to the
assumption of ρ’s immortality.

�

Lemma 8.5. θ0 is immortal.



A LOCAL CHARACTERIZATION OF VC-MINIMALITY 13

Proof. Towards a contradiction, suppose γ devastates θ0 and consider the indis-
cernible sequence 〈ai : i < ω〉 witnessing this as in Lemma 3.3. If ϕa0 ∩ ϕa1 = ∅,
then γ devastates ϕ by indiscernibility, contradicting the immortality of ϕ. If
ϕa0 ⊆ ϕa1 , then one of two cases holds:

(i) There exists z such that ϕa0 ⊆ ψz and ψz ⊥ ϕa1 . In this case, θ0
a1 ∩ ϕa0 =

∅, hence θ0
a0 and θ0

a1 are disjoint and θ0
a1 ⊆ (ϕa1 \ ϕa0). Therefore, by

indiscernibility, γ devastates ϕ, contrary to assumption.
(ii) There exists no such z. Then ϕa0 ⊆ θ0

a1 , hence θ0
a0 ⊆ θ0

a1 , but this contra-
dicts the choice of the ai’s in Lemma 3.3.

Similarly, if ϕa1 ⊆ ϕa0 and there exists z such that ϕa1 ⊆ ψz and ψz ⊥ ϕa0 , then
this contradicts the immortality of ϕ. Therefore, we must have that ϕa1 ⊆ ϕa0 and
no such z exists. Hence θ0

a1 ⊆ θ
0
a0 .

As γ does not devastate ϕ, we must have that (ϕa0 \ ϕa1) is contained in ei-
ther γ or ¬γ. Without loss of generality, suppose it is contained in γ. Then, by
indiscernibility, (ϕai \ ϕai+1

) ⊆ γ for all i < ω.
Notice that ¬γ ∩ (θ0

a0 \ θ
0
a1) 6= ∅ by assumption, so choose x in this set. As

x /∈ θ0
a1 , there exists z such that x ∈ ψz and ψz ⊥ ϕa1 , hence ψz ∩ θ0

a1 = ∅.
However, since x ∈ θ0

a0 and {ψ, θ0} is directed, we must have that ψz ⊆ θ0
a0 .

Therefore, ψz ⊆ (θ0
a0 \ θ

0
a1). Moreover, as ψz ⊥ ϕa1 and ψz ⊆ ϕa0 , we have that

ψz ∩ (ϕa0 \ ϕa1) 6= ∅. Hence, ψz ∩ γ 6= ∅. By indiscernibility, there are zi such that

• ψzi ∩ ¬γ 6= ∅,
• ψzi ∩ γ 6= ∅, and
• ψzi ⊆ (θ0

ai \ θ
0
ai+1

).

In particular, the ψzi ’s are disjoint. Hence, γ devastates ψ, contrary to immortality
of ψ.

�

Lemma 8.6. θ1 is immortal

Proof. This follows from Lemma 8.4. �

Lemma 8.7. θ2 is immortal

Proof. This follows from Lemma 8.4. �

Lemma 8.8. θ3 is immortal.

Proof. For this proof, let

θ4
a,b,z := (θ2

a,z ∩ ϕb) r
⋃
{ψz′ | (ψz′ ⊥ ϕb) ∧ ψz′ ∩ ϕb ( θ2

a,z ∩ ϕb}.

In particular, θ4
a,a,z = θ3

a,z, so it suffices to show θ4 is immortal.

By means of contradiction, suppose γ devastates θ4, and consider the indis-
cernible sequence 〈〈ai, bi, zi〉 : i < ω〉 witnessing this as in Lemma 3.3. Fix any
i 6= j. Since θ2 is directed, we have three cases:

(i) θ2
ai,zi ∩ θ

2
aj ,zj = ∅,

(ii) θ2
ai,zi ⊆ θ

2
aj ,zj , or

(iii) θ2
aj ,zj ⊆ θ

2
ai,zi .

For Case (i), since γ devastates θ4 and θ4
ai,bi,zi

⊆ θ2
ai,zi , we have that γ devastates

θ2 by indiscernibility. Case (ii) and (iii) are symmetric, so let us suppose that Case
(ii) holds. In almost the exact same way as one shows that ψy 6⊥ θ3

a,z for any
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a, y, z, one can show that ψy 6⊥ θ4
a,b,z for any a, b, y, z. Hence, θ2

c,y 6⊥ θ4
a,b,z for any

a, b, c, y, z by Lemma 8.1. Thus, there are three subcases:

(a) θ2
ai,zi ∩ θ

4
aj ,bj ,zj

= ∅,
(b) θ2

ai,zi ⊆ θ
4
aj ,bj ,zj

, or

(c) θ4
aj ,bj ,zj

⊆ θ2
ai,zi .

In Case (a), (θ4
aj ,bj ,zj

\ θ4
ai,bi,zi

) ⊆ (θ2
aj ,zj \ θ

2
ai,zi), therefore γ devastates θ2 by

indiscernibility. In Case (b), fix k < i < j or k > i > j. Then, by indiscernibility,
θ2
ak,dk

⊆ θ4
ai,bi,zi

and, by definition, θ4
aj ,bj ,zj

⊆ θ2
aj ,zj . Hence,

(θ4
aj ,bj ,zj \ θ

4
ai,bi,zi) ⊆ (θ2

aj ,zj \ θ
2
ak,dk

).

Therefore, γ devastates θ2 by indiscernibility. Hence Case (c) must hold. Together,
(ii) and (c) imply θ4

ai,bj ,zi
= θ4

aj ,bj ,zj
. Hence, by indiscernibility, we may assume

there are a and z such that, for all i < ω, θ4
a,bi,z

= θ4
ai,bi,zi

. We now consider the

sequence 〈〈a, bi, z〉 : i < ω〉 which witnesses that θ4 is devastated by γ.
If ϕb0 ∩ ϕb1 = ∅, then, as θ4

a,bi,z
⊆ ϕbi for all i, γ devastates ϕ. So we may

assume that ϕb1 ⊆ ϕb0 (note that, if ϕb0 ⊆ ϕb1 , then θ4
a,b0,z

⊆ θ4
a,b1,z

, contrary to

this sequence witnessing devastation of θ4). If both γ and ¬γ intersect ϕb0 \ ϕb1 ,
then γ devastates ϕ. So, without loss of generality (and by indiscernibility), we
may assume ϕbi \ϕbi+1

⊆ γ for all i < ω. In particular, note that ¬γ must intersect⋂
i<ω ϕbi .

Since ¬γ intersects θ4
a,b0,z

\ θ4
a,b1,z

, there exists w such that

• ψw intersects ¬γ,
• ψw ⊆ θ2

a,z,
• ψw ⊥ ϕb1 , and
• ψw ⊆ ϕb0 .

In particular, ψw intersects (ϕb0 \ ϕb1), hence also γ. For all i < ω, ψw does not
contain (ϕbi \ϕbi+1

) as otherwise θ4
a,bi,z

= θ4
a,bi+1,z

, contrary to the choice of bi. On

the other hand, for all but finitely many i, ψw does not intersect (ϕbi \ ϕbi+1
), as

otherwise ψw would devastate ϕ. By removing finitely many and reindexing, we
may assume ψw is disjoint from (ϕbi \ ϕbi+1) for all i > 1.

By indiscernibility, for each i < ω, there exists wi such that

• ψwi intersects γ and ¬γ,
• ψwi

intersects (ϕb2i \ ϕb2i+1
), and

• ψwi
is disjoint from (ϕb2k \ ϕb2k+1

) for all k 6= i

(the last condition is clear for k > i and, for k < i, note that ψwi
⊆ ϕb2i , hence

ψwi
is disjoint from (ϕb2k \ ϕb2k+1

)). In particular, since ψ is directed, the last
two conditions imply that the ψwi

’s are disjoint. Hence, by the first condition, γ
devastates ψ, contrary to immortality of ψ.

�

Lemma 8.9. For any c, ϕc is a boolean combination of instances from {ψ, θ0, θ1, θ2, θ3}.

Proof. Every element in ϕc is either in θ0
c or is in some θ1

c,z. We first note that

there is a finite set of instances of θ1
c,z which suffices to cover (ϕcr θ0

c ). Otherwise,

we could choose more and more instances of θ1
c,z which would witness that ϕc

devastates θ1.
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We now define a sequence of sets whose union will be ϕc. Set Y0 = θ0
c . Suppose

we have defined the sets Yj for j < i. Suppose further that there is a finite set Si−1

of elements so that (
⋃
w∈Si−1

θ1
c,w ∩ ϕc) = (ϕc r

⋃
j<i Yj). Now we define

Yi :=
⋃

w∈Si−1

((θ1
c,w r θ2

c,w) ∪ θ3
c,w).

To complete the recursive definition of the sequence of sets Yi for i < ω, we need
to see that there is a finite set Si so that (

⋃
w∈Si

θ1
c,w ∩ ϕc) = (ϕc r

⋃
j≤i Yj). We

build Si as follows: Having selected elements a0, . . . ak−1 so that (
⋃
j<k θ

1
c,aj ∩ϕc) (

(ϕcr
⋃
j≤i Yj), we need to select an element ak. Fix an element x ∈ ϕcr(

⋃
j≤i Yj∪⋃

j<k θ
1
c,aj ) and let ak be an element so x ∈ θ1

c,ak
. By directedness of {θ0, θ1, θ3},

θ1
c,ak
⊆ ϕcr (

⋃
j≤i Yj ∪

⋃
j<k θ

1
c,aj ). This process must stop, yielding a finite set Si,

as otherwise ϕc devastates θ1.
It remains to see that for some i,

⋃
j≤i Yj = ϕc. Otherwise there is an infinite

sequence of bi for i ∈ ω so that bi ∈ Si for each i and θ1
c,bi+1

⊆ θ1
c,bi

, and this

sequence witnesses that ϕ devastates θ1.
As each Yj is a boolean combination of instances from {ψ, θ0, θ1, θ2, θ3}, ϕc is a

boolean combination of instances from {ψ, θ0, θ1, θ2, θ3}. �

�
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