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ABSTRACT. Let <. be computable reducibility on ceers. We show that for every computably
enumerable equivalence relation (or ceer) R with infinitely many equivalence classes, the index sets
{i - R; <. R} (with R non-universal), {i : R; = R}, and {i : R; =. R} are £3 complete, whereas
in case R has only finitely many equivalence classes, we have that {i : R; <. R} is I3 complete,
and {i: R; =, R} (with R having at least two distinct equivalence classes) is £3 complete. Next,
solving an open problem from [I], we prove that the index set of the effectively inseparable ceers
is TI complete. Finally, we prove that the 1-reducibility pre-ordering on c.e. sets is a 9 complete
pre-ordering relation, a fact that is used to show that the pre-ordering relation <. on ceers is a X3
complete pre-ordering relation.

1. INTRODUCTION

Given equivalence relations R and S on the set w of natural numbers, we say that R is reducible
to S (in symbols: R <. 5), if there exists a computable function f such that

(Vz,y)[x Ry < f(x) S f(y)].

Given a class A of equivalence relations on w, one says that R is A complete, if R€ A, and S <. R,
for every S € A. This reducibility, and this notion of completeness, have turned out to be very
useful tools for measuring the complexity of equivalence relations naturally arising in mathematics,
and, in particular, in computable model theory and in computability theory (where equivalence
relations on structures can be viewed as relations on numbers via identification of structures with
numbers, thanks to suitable indexings). For instance, Fokina, S. Friedman, Harizanov, Knight,
McCoy, and Montalban [8] show ©1 completeness of the isomorphism relations for various familiar
classes of computable structures, including computable groups, computable torsion abelian groups,
computable torsion-free abelian groups, abelian p-groups. On the other hand, Fokina, S. Friedman,
and Nies [7] show that other familiar equivalence relations arising from computability are %9 com-
plete, including computable isomorphism of c.e. sets. (In Corollary we give another proof of
this result.) Other interesting mathematical applications of reducibility <. appear in [4], [10], [11].

The reducibility <., as well as the notion of A-completeness, can obviously be extended to pre-
ordering relations on w. Ianovski, R. Miller, Ng, and Nies [12] characterize the arithmetical com-
plexity of several pre-orders of interest to computability theory, for instance showing that almost
inclusion €*, and <t on c.e. sets, are Eg complete.
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There is already a non-trivial literature concerning the restriction of <. to computably enumerable
equivalence relations (abbreviated as ceers): pioneering papers in this regard include (in chrono-
logical order) Ershov [5], Bernardi and Sorbi [2], Montagna [14], Lachlan [I3], Gao and Gerdes [9],
Andrews, Lempp, Miller, Ng, San Mauro, and Sorbi [I]. These papers study %Y complete (also
called universal) ceers, and the degree structure of ceers under <.. We investigate and classify the
arithmetical complexity of some index sets of ceers. Throughout the paper, we refer to some fixed
universal computable numbering {R; : i € w} of all ceers (see [I]), where “computable” means that
the set {(i,z,y) : x R; y} is c.e., and “universal” means that for every such computable numbering
{S; : i € w} of all ceers, there exists a computable function f such that S; = Ry (), for all i. Extend-
ing results in [9], we give complete characterizations in the arithmetical hierarchy of the complexity
of the index sets {i : R; <. R} (with R non-universal), {i : R; =, R}, and {i : R; =. R}: if R has
infinitely many equivalence class then all these sets are £ complete, whereas if R has only finitely
many equivalence classes, we have that {i : R; <. R} is II3 complete, and {i : R; >, R} (with R
having at least two distinct equivalence classes) is X9 complete. Solving a problem in [I], we prove
that the index set of the effectively inseparable ceers is 11 complete.

In the last section of the paper we consider <. on pre-ordering relations on w. The literature
regarding the restriction of <. (as a reducibility on pre-orders) to computably enumerable pre-
orders, includes, among others, the papers Pour El and Kripke [I7], Montagna and Sorbi [15], and
Tanovski, R. Miller, Ng, and Nies [I2]: these papers are mainly dedicated to the investigation of 2(1)
complete pre-orders naturally arising in logic. We prove that the pre-ordering relation <. on ceers
(viewed as a pre-order on their indices) is a 23 complete pre-ordering relation. The proof goes by
first showing that the 1-reducibility pre-ordering on c.e. sets is a Eg complete pre-ordering relation.

1.1. Background. The reader is referred to [19] for all computability theoretic notions that are
used, but not explicitly introduced, in this paper. For more information on ceers, their structure
under <., bibliography, and even history, our basic reference is [I]. Given a ceer F, we say that
a sequence {FEjs : s € w} of equivalence relations on w is a computable approzimation to E, if the
following conditions hold: the set {{z,y,s): x E, y} is computable; Ey is the identity equivalence
relation; for all s, Es © FEsi1; the equivalence classes of E are finite; there exists at most one
pair [z]g,, [y]E, of equivalence classes, such that [z]g, N [y]p, = &, but [z]g,,, = [y]E,,, (we
say in this case that the equivalence relation E collapses = and y at stage s + 1); and finally F =
\U; E¢. Every ceer has computable approximations; in fact we can show (see [I]) that there exists
a uniform sequence {R; s : i,s € w} of equivalence relations such that the set {(i,z,y,s): x R; s y}
is computable, and for every i, the sequence {R; ; : s € w} is a computable approximation to R;.

2. COMPUTING THE COMPLEXITY OF INDEX SETS OF CEERS ABOVE, BELOW, OR EQUIVALENT
TO A GIVEN CEER

Index sets of classes of ceers of natural computability theoretic interest have been investigated
for the first time by Gao and Gerdes [9]. Index sets of the form {i : R; <. R}, {i : R <. R;},
{i : R; =. R}, for particular choices of R, are classified in [9] to be ¥ complete: for instance, this
is the case when R is the identity relation on the natural numbers. In this section we completely
classify all index sets of this type, thus showing for instance (see Corollary that if R is a ceer
with infinitely many equivalence classes then {i : R <. R;}, {i : R; =, R} are always X3 complete,
and if R has infinitely many classes and is not universal then {i : R; <. R} is always %9 complete.



INDEX SETS OF CEERS 3

Theorem 2.1. Let R be a non-universal ceer with infinitely many classes. Then (X9,119) <1 ({i |
Ri=.R},{i| Ri . R& R; . R}) (where ($3,113) <1 (A, B) means that for every %9 set C, there
is a computable function which reduces C' to A, and the complement of C to B: see [19, p. 66] for
this notation).

Proof. Fix a ¥ complete set S := {i | (3 [Wya1y = w]}, where g is a computable function (the
fact that every Eg set can be expressed in this way is an easy consequence of the proof of [19]
Corollary IV.3.7]). We construct a function which, on input 4, outputs an index of a ceer E so that
if i € S then F =, R, and if ¢ ¢ S then E and R are <.-incomparable.

Given i, we describe the enumeration of the ceer £ based on the enumeration of the sets Wy; ;) for
various [. It will be clear from the construction that an index for F can be uniformly found in .

Requirements and their strategies. Given i, we have three kinds of requirements:
Qu:Wyipn =w= FE=cR.
Nj = (VI < §)[W,
Py o (VI < k)[Wy() # w] = @r does not give a reduction witnessing R <. E.

O ka w]| = ¢; does not give a reduction witnessing E <. R.

Let us fix some computable priority ordering on the requirements. We first describe the action
taken by each requirement individually.

Q-requirements. A @Q-requirement acts as follows: When initialized, (); is given a finite set of dis-
tinct E-equivalence classes [b1]g, . .., [bn]E of elements created due to higher priority requirements.
Q) is also given a finite set of elements cy,...c,. @; works under the assumption that the classes
[bi]p are pairwise distinct, and the [¢;]g are pairwise distinct. If either of these assumptions be-
comes incorrect, @; will be re-initialized. @; collapses all remaining elements (those created for
lower priority requirements) into one class [d] g, and, beginning with that one class, copies R, using
a computable coding function z — a(z). At every stage wherein min(w~\ Wy(;;)) increases, @Q; again
FE-collapses every new element which is created due to a lower priority requirement, to d, and con-
tinues building its copy of R, E-collapsing codes of elements exactly as the corresponding elements
are collapsed by R. If no higher priority requirement acts ever again and in fact {ci,...,c,} are
non-equivalent in R, and @, acts infinitely often (as Wy(;;) = w), then we will argue that £ =. R.
Whenever @); acts, it restrains all elements created so far.

N -requirements. An N; requirement acts as follows: We fix a universal ceer T. When initialized,
Nj selects new elements a(0), a(1) € w, and E-collapses these elements if and only if 0 and 1 collapse
in T'. If at some stage, ¢;(a(0)) and ¢;(a(1)) converge, and

0T 1< ¢j(a(0)) R pj(a(l)),
then Nj; selects a new element a(2), E-collapsing (for m,n < 2) a(m) to a(n) if and only if m T n.
If at a later stage, ;(a(2)) converges and

(Vn,m < 2)[n T m < pj(a(n)) R j(a(m)))],

then N; selects a new element a(3). The construction proceeds as such. We will argue that if
no higher priority requirement re-initializes N;, then N; can choose only finitely many elements
{a(i) : © < k}, otherwise, we would have T' <. R via the map ¢ — ¢;(a(¢)), which contradicts non-
universality of R. Thus, ¢; can not be a reduction of E to R. Whenever N; chooses an element
a(k), by initialization it restrains all elements < a(k).
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P-requirements. A Py-requirement acts as follows: Py searches for elements x < y € w so that ¢y
converges on all inputs < y, ¢r(z) and g (y) are not restrained by higher priority requirements (so
that it is allowed to E-collapse @i (z) and ¢ (y)), and = B y. If such are found, then P collapses
vr(z) and pi(y) in E. If, at a later stage, * R y, then Py is injured and begins again. If, in fact,
there are only finitely many elements restrained by higher priority requirements, then some pair of
elements z,y will eventually be found so that x & y, and either already ¢p(x) E ©k(y), or oi(z)
and ¢k (y) are not restrained by higher priority requirements (since R has infinitely many classes).
But then we cause () E ¢i(y). This contradicts ¢y, being a reduction of R to E after all. As
Py never minds things collapsing, it places no restraints.

Environments for the requirements. A @Q-requirement uses a parameter 7;(s) = {c1,..., ¢y, and
values of a finite function, alQ(:c, s), which approximates the function z — a(z) described in the
above informal discussion for @-requirements. An NNj-requirement uses a parameter aé\] (x,s), which
approximates the numbers a(x) described in the above informal discussion for N-requirements. In
the following, we will often omit the superscripts @2, or N, when the exact choice will be clear from
the context. A Pj-requirement uses parameters x(s), yx(s), which approximate the numbers z, y,
described in the above informal discussion for P-requirements. If R is either a Q-requirement or an
N-requirement, the construction also uses a parameter p”*(s) to record the elements that R wants
to restrain.

Construction. To tackle N-requirements, we fix a universal ceer T', with computable approxima-
tions {Ts}sew- At stage s, to initialize a requirement R means one of the following:

e if R = @, then we set 7;(s), a;(, s) to be undefined for all z; and we set p%(s) = &;
e if R = Nj, then we set a;(, s) to be undefined, all z; and we set p™Vi (s) = ;
e if R = Py, then we set zx(s), yx(s) to be undefined.

At stage s > 0 we say that a requirement R requires attention if either R is initialized, or

e R =Q and s is (i, l)-expansionary, i.e., min(w ~ Wy o) > min(w ~ W s—1). Or
e R = N; and yjs(aj(z,s)) converges, where x is the greatest number in the domain of
a;(-,s), and
(Vn,m < z)[n Ts m < @js(a;(n, s)) Rs js(a;(m, s)))].
Or
e R = Py, and ¢y, s converges on all z < yi(s), and either z4(s) Bs yr(s) and g s(xk(s)) B
©k,s(Yk(s)), and both ¢ s(xk(s)) and ¢k s(yx(s)) have been E-collapsed to elements re-

strained by higher priority strategies; or at least one of the values ¢y, s(2(s)) and @i s(yr(s))
has not as yet been F-collapsed to any element restrained by higher priority strategies, and

wi(s) RS y(s) and @ s(vk(s)) B< @rs(yr(s)); or ai(s) Rs y(s).
At stage s > 0 a number x is said to have been created by a requirement R, if

e R = @, and z is Es-equivalent to some ¢;, where 7(t) = {c1,...,¢;,...cpn), Or to some
ai(z,t), for some t < s;
¢ R = Nj, and z is E,-equivalent to some a;(z,t), for some ¢ < s;

a number is new at s, if it is bigger than all numbers (that are Es-equivalent to numbers) so far
mentioned in the construction.
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We are now ready to give the construction.
Step 0. Initialize all requirements.

Step s + 1. Let R be the least requirement that requires attention at stage s + 1. We say that R
acts at s + 1. Notice that there always exists such a requirement, as at each stage infinitely many
requirements are initialized. We distinguish the following cases. (For simplicity, when describing
the various parameters, or the various approximations to the equivalence relations, or to partial
computable functions, we omit to mention the stage s: thus for instance, K y has to be read as

x R{y, and so on.)

(1) If R = Qy, then we take action as follows:

(a) if @ is initialized, then let n be the number of the distinct equivalence classes created
by E, up to s, as the result of the actions taken by the higher priority requirements,
and let {b1,...,b,} be representatives of these equivalence classes. Choose ~; to be the
least (by code) n-tuple of numbers that are currently pairwise non-equivalent in R;

(b) if there exist 1 < 4,j < n, i # j, such that ¢; R ¢; (where ¢; and ¢; are the i-th and
j-th components, respectively, of ;), then initialize Q;;

(c) if neither of the previous two cases holds then:

(i) take the least number x for which a;(x) is not defined, and define a;(x) to be a
new number;
(ii) for every z < a;(x) such that z & b;, every b;, and z E a;(y), every existing a;(y),
then E-collapse z and d, where d := q;(0);
(iii) E-collapse existing a;(y) and a;(z) if y R z;
put into p@ (s 4 1) all numbers b;, 1 < i < n, and q(y), y < z, where z is the greatest
number for which a;(_) is defined.
(2) If R = N; then we act as follows:

(a) if N; is initialized then we appoint new elements a;(0) and a;(1);

(b) otherwise, let x be the greatest number such that a;(_) is defined: for every y, z < =z,
E-collapse all a;(y),a;(z) if y T z; finally, appoint a new a;(z + 1);

put in p™i(s + 1) all numbers a;(i), i < x, where z is the greatest number for which a;(-)
is defined.
(3) If R = Py then we act as follows:

(a) if Py is initialized then appoint zj; and yi so that {(zy,yk) is the least pair (x,y) for
which » <y, z Ry, and {(z,y) > {(xi(t),yr(t)), for every t < s;

(b) if zx Ky and i () E @r(yr), but both ok () and ok (yx) are already E-equivalent
to restrained elements, (i.e., elements belonging to the set

S(s) := {z: (AR)[R has higher priority than P & z € p™*(s)])

then initialize Pg;

(c) if zx Ky and o (zr) E ©r(yr), and at least one of them has not as yet been FE-
collapsed to a restrained element, then E-collapse g (zx) and g (yx);

(d) if z R yy, then initialize Pj.

After acting, end the stage, and initialize all lower priority requirements.

Verification. We now check that the construction works.
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Lemma 2.2. If every higher priority requirement acts only finitely often, then Pj acts only finitely
often.

Proof. Assume that every higher-priority requirement acts only finitely often, and suppose, towards
a contradiction, that Py acts infinitely often. Let s be the last stage at which a higher-priority
requirement acts. Let S be the set of all elements E-equivalent to some element in S(s) which is
the finite set restrained by higher priority actions by stage s, as in (3b) of step s+ 1. Thus S is the
union of finitely many E-equivalence classes. For Py to act infinitely often, we must have ;. total,
and by (3a) and (3d), we test all possible choices of z,yr, with 2, < y, and x;, K yi: for each
one of these pairs (by definition of Py requiring attention) we have that o (zk), pr(yx) € S and
or(zr) E or(y). But this would imply that there exists a 1-1 function from the infinitely many
distinct equivalence classes of R to the finitely many equivalence classes in S. Therefore, we must
have that either P, eventually does not require attention because ¢y is not total; or we find g, yx

such that zx R yk, or(xr), pr(yr) € S, and pr(xx) E pg(xy); or (3c) applies. O

Lemma 2.3. If every higher priority requirement acts only finitely often, then N; acts only finitely
often.

Proof. Suppose, towards a contradiction, that N; acts infinitely often. Let s be the last stage at
which a higher priority requirement acts, i.e. N; is initialized for the last time at stage s. We
consider the assignments of a;(k) after stage s. Then for each n,m,

nTm < pj(a;(n)) R ¢j(a;(m)).

Thus the function i — ¢;(a;(i)) gives a reduction of T' to R. This yields a contradiction since R is
non-universal, showing that N; acts only finitely often. O

Lemma 2.4. Suppose that Wy ) is finite for each l. Then E is <.-incomparable to R.

Proof. By assumption, each @ acts only finitely often, so by Lemmas[2.2]and [2.3] every requirement
acts only finitely often.

We now argue that since each requirement acts only finitely often, each succeeds. Since every re-
quirement acts only finitely often, we can consider the final assignments of a;(k) for the requirement
N;. Either ¢; is not total or for some a;(n),a;(m),

aj(n) E aj(m) < nTm,
but not
nTm< gj(a;j(n) R gjla;(m)).
Thus ¢; is not a reduction of £ to R, and Nj is satisfied. Since P}, acts only finitely often and R has

infinitely many classes, either ¢y, is not total or there are xy, y so that zy K v but o (z1) E @ (yr).
Thus ¢y, is not a reduction of R to F, and Py is satisfied. ]

Lemma 2.5. Suppose that for some I, Wy ) = w. Then E = R.

Proof. Let @ be of highest priority so that Wy ;) = w. By Lemmas and every higher
priority requirement acts only finitely often. Consider the least stage t at which every higher
priority action stops acting, giving n distinct equivalence classes. Further, consider a stage s > ¢
where @ has found (through (1a) and (1d)) the appropriate choice of n R-non-equivalent elements,
thus choosing the final ~;. After this stage s, every time ) picks a number q;(z), then this is
the final value of a;(z,s), and @Q; creates a class [d], with d = @;(0), which contains all elements
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previously created for all lower priority requirements, and it will also contain all elements later
created for lower priority requirements (when @ acts again, it will E-collapse them to d). We now
provide reductions witnessing that £ =, R.

To see E <. R, consider the function f constructed as follows: We begin with the finitely many
elements created for higher priority requirements, which are grouped into finitely many finite F-
equivalence classes, as created at stage s: [bilg = [bi]E.,---s[bn]E = [bn]E.. We have found
C1,-..,Cp so that b; E b; if and only if ¢; R ¢j, so that the assignment by, — c;, satisfies

(V1 < h,k <n)[by, E b, < cp R cxl.

Let T be the set of elements a € w created on a @Q-stage after s (i.e., a stage > s where min(w ~\
Wy(i,) increases). Note that d € T. For any a € T, a is created to copy R on some number,
i.e. a = ai(x) for some x. So, consider the function f,

ci, if x €[b]p,, some 1 <i<n,

fa)={y, ifzeT, sayz—any),
0, otherwise.

(Notice that 0 = f(ag(0)) = f(d).) The numbers x not created on ;-stages, are either in some
[bi]E., or are created for lower priority requirements: in this latter case, z E d, for which we have
defined f(z) = f(d). This function f is computable and witnesses that F <. R.

For the converse, the mapping x — ay(x) provides a reduction from R to E. O

This concludes the proof of the theorem.

Corollary 2.6. The following hold:

(1) If R is any ceer with infinitely many classes, then {i | R; =. R} is X3 complete.

(2) If R is any ceer with infinitely many classes, then {i | R; = R} is X3 complete.

(3) If R is any non-universal ceer with infinitely many classes, then {i | R; <. R} is X3
complete.

(4) If R is universal, then {i | R; <. R} = w, thus is decidable.

5) If R has only finitely many classes, then {i | R; <. R} is 11 complete.

(5) y y many 2 comp

(6) If R has finitely many, but at least 2, classes, then {i | R; >. R} is X9 complete.

(7) If R has only one class, then {i | R; >, R} = w, thus is decidable.

(8) If R has finitely many, but at least 2, classes, then {i | R; =. R} is d-XY complete.

Proof. 1t is straightforward to check that the proposed sets lie in the appropriate level of the
arithmetical hierarchy. To how hardness, we prove the items one by one.

(1) There are two cases. If R is universal, this is exactly Theorem 5.1 in [I]. If R is non-
universal, this follows directly from the previous theorem.

(2) If R is universal, then the claim follows from . If not, then it follows from the previous
theorem.

(3) This follows from the previous theorem.

(4) Trivial.
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(5) Note that if R has k classes, then E < R if and only if F has < k classes. It is easy to show
that having < k classes is a I1J complete property: E has < k classes if and only if

(V:L’o, .. ,.Cvk)(ﬂl,] < k)[l # j&w, E JIj].

Let us now show that this property is II3 hard. It is known that Inf = {i | W; infinite} is
I19 complete: it is easy to see that there is a computable function f such that, for every i,
Ey(;) is a ceer satisfying:

i€Inf=[0]g,, =w,
i¢ Inf = (32)(Vy > @) [[y],,,, = {v}]-

(6) If R has k > 2 classes, then E >, R holds if and only if E €. S, where S has k — 1 classes.
Thus, by , this is X9 complete.

(7) Trivial.

(8) By combining the arguments in and @ Note that if R has exactly one class, then
{i | R = R} = {i | R; <. R} is I complete by .

0

3. THE INDEX SET OF THE EFFECTIVELY INSEPARABLE CEERS

A pair of disjoint sets A, B is effectively inseparable (shortly, e.i.) if there exists a partial computable
function 1 (called a productive function for the pair) such that, for every pair of c.e. indices u, v,

AW, &BS W, &Wy n Wy, = = Y(u,v) | &(u,v) ¢ W, uW,.
It is not difficult to see:

Lemma 3.1. Every e.i. pair of c.e. sets, has a total productive function.

Proof. The proof is similar to the one showing that every productive set has a total productive
function, see e.g. [19, p. 41]. O

A ceer R is called effectively inseparable (shortly, e.i.), see [I], if every pair of distinct equivalent
classes [a]g, [b]g is e.d.. If indices for productive functions for the various pairs of equivalence
classes can be found uniformly (i.e., there exists a computable function g such that, for every pair
a,b, if a K b then ¢y, is a productive function for the pair [a]g, [b]r), then R is said to be
uniformly effectively inseparable (or, shortly, u.e.i.), [1]. It is proved in [I] that the index set of the
u.e.i. ceers is Eg complete, and is posed as an open question whether the index set of the e.i. ceers
is Hg complete. In the following theorem we answer this question.

Theorem 3.2. The index set of the e.i. ceers is 11 complete.

Proof. Tt is straightforward to check that the index set of the e.i. ceers is I13. Now, every I1J set
S can be described as S = {i: (Vj)[Wy ;) is cofinite]}: this is an easy consequence of the fact
that the index set {i : W; is cofinite} is 33 complete (see e.g., [I9, p. 66]). Therefore, we can fix
a recursive function g(4, j) so that S := {i | (Vj)[Wy; ) is cofinite]} is a II} complete set. We now
produce a function which, on input 4, uniformly produces a ceer E so that F is e.i. if and only if
i € S. In what follows, we describe the enumeration of E for a given 1.
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Given a set X let X2 denote the collections of all subsets of X consisting of exactly two elements.
We fix a pair of recursive bijections m : wl?! — w and ng : (2w)[?! — w. We then define n : wl? — w
so that n(z) = ng(z) if z € (2w)[?!, and n(z) = m(z) otherwise.

Requirements and strategies. We have the following requirements, where a < b, i.e., {a,b} €

w2,

Pj‘.l’b :[7,0) € Wyiima) O Wetin(an) & a E b= f;’b is a productive function for [a]g, [b]E,
N;’b 1[,0) € Wotmap) O Wyin(ap) & a,be (2w)? = ¢; is not productive for [a]g, [b]E.

The requirements are partitioned, in the obvious way, into P-requirements and N -requirements.

Remark 3.3. If i € S then for every r, W,y is cofinite, and thus for every a # b there is jq
such that [jab, 0) S Wy m(ap) N We(in(ap)): hence if a ¥'b, and we satisfy P where o and b’

ja’,b/ ’
are the least elements in the E-equivalence classes of a and b, respectively, then we guarantee that

fi I,’Z, is a productive function for the pair [a]g, [b]g.

Viceversa, if ¢ ¢ S, then there is r such that Wy ; ;) is not cofinite, nor is any Wy .y 0 Wy(; ), and
thus if a,b € 2w, a # b, are such that n(a,b) = r, then for every j, one has [j,0) & Wy map) N

W,

[a]g, [b] g is not effectively inseparable.

(in(ap))- In this case, if we satisfy all N; ’b—requirements, then we guarantee that the pair

We will never cause non-equal even elements a,b to become E-equivalent, and in fact each even
number will be the least element in its equivalence class. NV Ja ’b—requirements will only pose restraints
asking that two elements not become equivalent, but will never cause E-collapse.

We fix a priority ordering in which if j < j’ then P]‘-l’b < Pﬁ’b.

We first describe the actions of each requirement separately. The reader should think of a, b as the
least numbers in their respective equivalence classes, and a # b.

P-Requirements. A P]q’b—requirement performs the standard effective inseparability strategy: it

builds a computable function f = fg , as follows. For the least (by code) pair u, v, on which f(u,v)
is still undefined, define f(u,v) to be an odd number y larger than any number considered so
far: if y is observed to be enumerated into Wy, cause y F b; if y is observed to be enumerated
into W, then cause y E a. The strategy for Pja’b acts every time the least element of [j,0) \
Woim(ap) O Wytin(ap)) €nters Wyi map) N Wyiin(ap))s 1-6. when there is evidence that eventually

,0) S Wy N Wi . we say that in this case the strategy P™" takes the infinite
Js g(i,m(a,b)) g(i,n(a,b)) y gy j
outcome; otherwise P;l’b takes the finite outcome. 1t is clear that either P;-z’b takes the infinite
outcome infinitely many times (we say that in this case that P]‘-l’b has outcome ), or from some

oint on, P*® always takes the finite outcome (we say that in this case that P*" has outcome f
p : y y f
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We summarize as follows:
outcome o0 : [§,00) & Wtim(ap) O Wytin(ab);
outcome f: [j,00) & Wiim(ab)) © Wytin(ab))-

N -Requirements. An N Ja ’b—requirement acts only if, and immediately after, ij’b has taken the finite
outcome, and its action is as follows: Choose a pair u,v so that we (via the Recursion Theorem)
control the enumeration of W,, and W,,. Let W, enumerate [a]p and W, enumerate [b]g, and wait
for a stage when ¢;(u, v) converges to a value, say y. If y € [a]g U [b] g, then the requirement does
nothing further. Otherwise, we distinguish:

Case 1: y is an odd number chosen as fja, b (u’, ") for some j';a’, b’ with o, b’ least numbers in their
equivalence classes, and o’ # a (if @’ = a and b’ # b, the requirement acts symmetrically). In this
case, we enumerate y into W,. We place a restraint for y to never enter [a].

Case 2: Not case 1. In this case, we enumerate y into W, and place a restraint for y to never enter
[b]-

Every time the least element of [4,00) N W map)) N Wygin(ap)) enters Woamap) O Wein(ab))s
N;’b will be injured, so if [j,0) S Wi mp) N Wy(in(ap)), then N will not prevent effective

inseparability of the pair [a], [b].

The Recursion Theorem. In carrying on the strategies for the N-requirements, we use indices that
we control by the Recursion Theorem, or, more precisely, we make use of a computable sequence of
fixed points. Since a computable sequence of indices can be viewed as the range of a computable
function f, a formal justification to this argument is provided by the Case Functional Recursion
Theorem, see [3]: see also [16] for useful comments about this theorem.

Lemma 3.4 (Case Functional Recursion Theorem). Given a partial computable functional F, there
s a total computable function f such that, for every e, x,

F(f,e,x) = pfe)(T).

The tree of strategies. We organize the construction on a tree T', which is a set of strings on the
alphabet {g, o0, f}. With respect to the above discussion of requirements and their outcomes, it is
convenient to use also an additional outcome g, which for a requirement Pja’b or N ]a ’b, will record
the fact that at least one among a, b is not the least number in its equivalence class.

The tree T', and the function
R : T — Requirements,
assigning requirements to the nodes of T', are defined as follows, where A denotes the empty string.

Definition 3.5. A € T, and R(\) is the highest priority P-requirement.

e IfoeT, and R(o) = P;-l’b is a P-requirement, then o (o) € T, for o € {g, 0, f}:
— all requirements P]‘.l,’b for j/ > j are declared to be cancelled by o"(0). (Since if
[7:0) € Woim(a) 0 Woin(ap)), then [5',00) € WyGim(a,)) 0 Wy(in(ap)) for all j* = j,
thus the requirement chf’b need not be considered again below o07(00).) R(c"(0)) is
the highest priority P-requirement not assigned to any 7 € ¢ and not cancelled by any

T < 0 {0).



INDEX SETS OF CEERS 11

— If a,b are both even, then R(c"(f)) = N} . otherwise R(o7(f)) is the highest priority
P-requirement not assigned to any 7 € ¢ and not cancelled by any 7 € o.

— R(07(g)) is the highest priority P-requirement not assigned to any 7 < ¢ and not
cancelled by any 7 € 0.

e If 0 € T, and R(o) is an N-requirement, then ¢"(f) € T' (by construction, a,b will be the
least elements in their respective equivalence classes, so we do not consider the g outcome);
R(o7(f)) is the highest priority P-requirement not assigned to any 7 € ¢ and not cancelled
by any 7 € o.

e No other string on {oo, f, g} lies in 7.

The elements of T are ordered by the lexicographical order <, generated by the ordering on the
alphabet, for which g < o0 < f: thus ¢ < 7 if 0 € 7 or, for the least ¢ such that 0,7 are both
defined on 4, and o(i) # 7(i), we have that o(i) < 7(¢): in this latter case we also write o <r, 7.

The environments of the strategies. Notice that the function R, assigning requirements to nodes,
is computable. For every o, we also call R(o) a strategy. Each strategy has several parameters: if
R(o) = Pja’b then it uses the parameter f, s (approximating the function f;  of the above informal
description), whereas if R(c) is an N-requirement, then it uses the parameters u,(s), v, (s), and
Yo (8) (approximating u, v,y of the above informal description).

The construction. At stage s we define a finite string d5 of length |d5| < s, which approximates
the true path at stage s. The string J, is defined by substages: at substage n, we define o,, = 05 n.
A number is new at any substage of stage s > 0 if it is bigger than all numbers already FE-collapsed
to numbers so far mentioned in the construction. If R(o) = Pg’b is a P-strategy, then a stage s is
o-ezpansionary if for no t < s did we have o < §,, or min ([, 20) \ (Wy(im(ab)),s O Wg(m(a,b)’s))
has increased since the last stage t < s which was o-true, i.e., at which ¢ < §;. A number z is
created by R(o) at s, if y is in the range of f,; or, z is appointed as uq(s) or v,(s), or y(s). At
stage s, we initialize a strategy R(o) if we set fr s = & and we set uy(s),v,(s), and y,(s) to be
undefined. If y has been created by R (o) = P;L’b, by stage s, then y is active at s if R(o) has not
been initialized after y has been created, and R(o) has not as yet E-collapsed y to either a or b.

Stage 0. Initialize all strategies R(o).

Stage s + 1. Proceed according to the following substages (as in the proof of Theorem when
describing the various parameters, or the various approximations to c.e. sets, partial computable
functions, or E, we omit mentioning the stage s):

Substage 0. Let 654110 = A.

Substage n+ 1. If n = s then go to next stage. Otherwise, take the first relevant case that applies
below:

(1) Suppose that R(c,) = Pj“’b.

(a) If one among a,b is not the least element of its F-equivalence class, then let 0,11 =
on <g)-
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(b) If s is a o,-expansionary stage, let 0,41 = 05,{00). Then extend f,, by considering
the least (by code) pair (u,v) on which f, is not defined, and define f,, (u,v) = v,
for some new odd y > a,b. Also, if f,, (u/,v") =y’ has been already defined, and up
to now 3’ has been active, but currently v’ € W,, u W/, then

(i) if y' € W then E-collapse y" and b;
(ii) if y' € W,y then E-collapse y' and a.

(c) Otherwise, let 41 = oy, (f).

(2) I R(0n) = N ® then let 0,41 = o7 (f). We act according to the first applicable case among
the following:

(a) R(oy) is initialized: assume by the Recursion Theorem that v and v are indices that
we control, such that u and v are new numbers; let uy(s + 1) = u, v,(s + 1) =

(b) ¢j(u,v) converges to some number y (where u = us(s), v = vs(s), and we define
Yo(s+1) = y);

i) if s + 1 is the first o,-true stage at which ¢;(u,v) converges, then end the stage
J
(thus initializing all strategies of lower priority);
ii) if y is E-equivalent to some active f,(u/,v') created by R(r) = P2, with
J
77{0) C oy, and {a’, '} # {a,b}, then if a’ # a, enumerate y into W,,; otherwise
(i.e., ' = a, but b/ # b), enumerate y into W,; (notice that by the way require-
ments are assigned to strings in T, there is no 77(0) € 0, with R(7) = P;ﬁ’b,
any j';). Also, enumerate [a]g into W, and [b]g into W,,.
(iii) if y € [a]g U [b] g then enumerate [a]g into W,,, and enumerate [b]g into Wy;
(iv) otherwise, enumerate [a|g U {y} in Wy, and [b]g in W,,.

At the end of the stage, initialize all strategies R(7), with 7 = d541. Define Es;1 to be the least
equivalence relation generated by Es plus the pairs E-collapsed at stage s + 1. This ends Stage
s+ 1.

Finally, let
E:&:U&.
S

The verification. The following holds:

Lemma 3.6. There exists an infinite path tp through the tree T such that, for every n,
tpIn = liminf é4 In,
S

(where the iminf is taken with respect to the lexicographical order of strings of T), and tpln
eventually does not end the stage.

Proof. The proof is by induction on n. Suppose that the claim is true of n, and let sy be the least
stage such that there is no o-true stage s = sg for any o <y, tpIn, and tpn does not end the stage
at s: thus so > n. If there is a stage s1 = sg such that tp[n~{g) € Js,, then for every tp|n-true
s = s1 we have tpn~(g) € ds, and if s > n + 1 then tp[n~{g) does not end the stage, and clearly
tpln 4+ 1 = tpn~(g). If for almost all true tpln-true stages s = sy we have tpn~(f) € s, then
tpln 4+ 1 = tpn~{f), and tpln + 1 ends at most twice, at any such s: namely, if s = n + 1, and
when we act through (2bi) of the construction. Otherw1se there exist infinitely many true tp [n—true
stages s = sg at which tpn~(w0) € ds: thus tpfn + 1 = tpn~(w0) and tpIn + 1 does not end the
stage at any such s > n + 1. ([l
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Lemma 3.7. Let o be so that o < tp and 0~ {g) ¢ tp. If o is an Nf’b or P;-l’b strategy, then a and
b are the least numbers in their respective equivalence classes.

Proof. Immediate. 0

Lemma 3.8. At every stage s, in any equivalence class [c|g, there is at most one element which
is even or active. If, at some stage s where ¢ is not new, the class [c|g, contains no even or active
element, then for all t > s, [c]g, contains no even or active element. Similarly, if at some stage

) . . . b
s where ¢ is not new, [c]g, contains no element active for requirement P; , then at no stage does

) ) . b
[c]g contain an element active for requirement P]g’ .

Proof. We prove the first claim by induction. This is clearly true at stage 0 where every equivalence
class has size 1. When we activate a new number, we choose it to be a new odd element, thus is
inequivalent to any even or active number. When we collapse classes [a] and [y], it is because some
element ¢ in [y] is active and equals f,(a’,b") for some a’ € [a] and some b (or symmetrically, it
equals f,(c,a’) for some a’ € [a] and some ¢). We then make 3 inactive and collapse [y] to [a].
Thus there is still at most one even or active element in the class [a]. The second statement is
proved analogously: Any element which becomes active is new, thus is not F-equivalent to ¢, and
the property of not containing an even or active element is preserved when a second class collapses
with [c]. The last statement is similar. O

Lemma 3.9. Fvery even number is the least number in its E-equivalence class.

Proof. By the previous lemma, no two even numbers are ever equivalent.

We now show that if a is even, then a is the least number in its equivalence class. By the previous
conclusion, it is enough to show that for every s, and odd number y, if y is E-collapsed to a at s,
then y > a. Assume that the claim is true of all odd numbers 3/ already E-collapsed to a at stages
s’ < s. An odd number y can be be moved to [a]g, at s, either because (1bi) or (1bii) for some
P]q’b, but then y > a, by choice of y > a,b in (2); or y is E-collapsed, through (1bi) or (1bii) for
some Py,/’bl, to some some odd number y’ previously E-collapsed to a, but then by induction and,
again, choice of y by (1b) of the construction, we have y > ¢’ > a. O

Lemma 3.10. Ifi € S then for every a,b, if a E'b, the pair [a]g, [b]E is e.i.. On the other hand,
ifi ¢ S then there are a,b even numbers such that W(; n(ap) s co-infinite, and the pair [a]g, [b]g
18 not e.i.

Proof. If i € S, then (see Remark |3.3) for every a,b there exists a minimal j, such that [j, ) <

Wi m(ap) O Wyiin(ap))- Now, if a £ b, and a, b are the least numbers in their respective equivalence

classes, then there exists n such that R(tp|n) = Pf’b and tpl(n + 1) = tpIn~(w0). (Notice that,

under these assumptions, for every j' < j there is a node 7 such that R(r;/) = P]‘.f’b, and T;<f> C tp,

and for every j’ > j there is no node 7  tp such that R(7) = chf’b.) It is clear by the construction
that fippn is @ computable function witnessing that the pair [a]g, [b]g is e.i.. Thus every pair of
distinct F-equivalence classes is e.i., as on the true path the corresponding requirement relative to

the least numbers in the classes, is satisfied.

Assume now that i ¢ S. Then, by surjectivity of the function ng, there exists a pair a, b of distinct
even numbers such that, for every j, [j,0) &€ Wi m(ap) ™ Wy(in(ap))- By Lemma for every
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Jj there is a (unique) node 7; < tp such that R(7;) = P]‘»l’b and 7, <f) = tp. We show that, for
every j, ¢; can not be a total productive function for the disjoint pair [a]g, [b]r. Let so be the
least stage such that there is no 7-true stage s > so for any 7 <p 7; (), and no 7 < 7; ends the
stage after so. At the least 7; (f)-stage following sy we appoint the last choice of u = U <f>(s),
and v = UT;<f>(S). If we do not find y as in (2b) of the construction, then ¢; is not total. So
assume that ¢;(u,v) converges to y, which is the final value of yTjA <f>(s). We claim that [a]g € Wy,

bl € Wy, Wy n Wy = &, but y € W, u W, which implies that ¢; is not a productive function.
Now, it is clear that [a]g © Wy, [b]g & W, since there are infinitely many stages s at which we
enumerate [a]g, into W, and [b]g, into W,. It is also clear that y € W,, U W,,. It remains to see

that W, n Wy, = J. Assume that R(7; (f)) enumerates y into Wy: the case in which R(7; (f))

enumerates y into W), is similar.

By initialization in (2a) and Lemma the number y will never be equivalent to an element active
fora 7> 7 (f).

For y to eventually become F-equivalent to a or b, it must be equivalent at stage sg to some active
element d for some R(7) = P]'.l/,’b/ with 7°(c0) < 7j. By our use of the outcome g, a’,b" are the
least numbers in their equivalence classes (and so are a and b), and since there is no such 7 with
77(0) < 7; and R(1) = P;l,’b, any j', we may conclude that {a’,b'} # {a,b}. If ' # a, then
R(7; {f)) enumerates y € W,, contrary to assumption. Therefore a = a: we can exclude the sub-

case b = I/, because otherwise Pib would be cancelled along the true path, by the way requirements
are assigned to nodes of the tree, and the fact that in this case we would have j' < j. Thus we are
left to consider the case a = a’ and b # V. If d remains active at all future stages, then y cannot
be equivalent to any even number by Lemma Otherwise, y collapses with @’ or ¥’. In either
case, it cannot in the future collapse with b, since all three of a/, V', b are the least elements of their
equivalence classes and b ¢ {a’,V'}. O

This concludes the proof of the theorem. O

It is proved in [I] that the class of u.e.i. ceers is properly contained in the class of e.i. ceers (by
showing that there is an e.i. ceer that is not universal, whereas all u.e.i. ceers are universal). This
conclusion is also a consequence of the previous theorem:

Corollary 3.11. The u.e.i. ceers form a proper subclass of the e.i. ceers.

Proof. The claim follows immediately by the fact that the index set of the u.e.i. ceers is ¥, whereas
the index set of the e.i. ceers is 11 complete. O

4. THE COMPLEXITY OF <. ITSELF

An obvious generalization of computable reducibility from equivalence relations to pre-orders is the
following: Given pre-orders R,S on the natural numbers, we say that R is computably reducible
(or, simply, reducible) to S (notation: R <. S) if there is a computable function f such that, for
all z,y, * Ry if and only if f(z) S f(y). Recently Ianovski, Miller, Nies and Ng [12] have used
this reducibility to classify the complexity of several pre-orders which appear in mathematics and
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computability theory. For instance they show that the pre-order <, where i < j if W; < Wj, is
¥9 complete.

In this section we prove that the reducibility <. on ceers induces a Zg complete pre-order on
numbers, where we write ¢ <. j if R; <. R;. This will follow from the next result, which in turn
shows that the pre-ordering relation <; on numbers induced by 1-reducibility on c.e. sets (for
which we write ¢ <; j if W; <y Wj) is Eg complete.

Theorem 4.1. < is a Eg complete pre-order: in fact, for any given Eg pre-order <, there is a
computable function f so that Wy is infinite for all i and

(Vi, j)[i < j = Wiauy <1 Wi

Proof. 1t is straightforward to check that < is Zg. Let < bea Eg complete pre-order. We construct
a uniform enumeration of W, for each a as follows. Since < is 39, as in the proof of Theorem
we can fix a recursive g so that

a <b< (3K)[Wyapr = wl

Requirements and their strategies. We have requirements:

k. _ )
Qij : Wyt =@ = W) <1 Wi
Pi’;- t (VI < k) [Wyg s # w] = [¢r does not m-reduce Wiy to Wy ];

IF - the set Wy (;) contains at least k elements.

Let us fix a priority ordering on the requirements. We now outline the strategies to meet the
requirements.

Q-requirements. A ij—requirement builds a computable set Aﬁ ; as follows: whenever min(w

Wi jk)) increases, it adds a new element a to Aﬁ ;- At such stages, if this is the m' element

(i.e., a = a¥ ;(m), where we write aﬁj

i (n) for the n*® element of A% ;), and some n < m is enumerated

into Wy(;), then the strategy enumerates aﬁ j (n) into Wy(;). As such, if there are infinitely many
stages where min(w Wg(i,j,k)) increases (and no higher priority requirement ruins the coding),
then n — aﬁj (n) is a 1-reduction of Wy(;) into Wy;.

P-requirements. A Pilz—requirement acts as follows: to diagonalize and ensure that ;. is not an m-
reduction, we pick x larger than any element mentioned before. We wait for ¢ (z) to converge. If it
converges to an element which lies already in W ;), then we restrain z out of Wy;). If it converges to
an element not restrained out of Wy ;) by any higher priority requirement, we enumerate oy, (z) into
W (;) and do not enumerate x into Wy(;) (again, we place a restraint against this). We now suppose
that g () is restrained out of W ;) for a higher-priority requirement: suppose it is restrained due
to being a witness chosen for a higher priority P-requirement. Then PZ’?‘] simply enumerates x into
Wy If, later, ¢ (z) is enumerated into Wy(;), then that higher-priority P-requirement will have
injured Pl’;, which we allow. Now suppose @ (z) is restrained due to being in the set Aiﬁi j for a
i

higher-priority Qf,/ j-requirement. Suppose it is the n'* element of the set Aiﬁ/j, ie., op(z) = Wir (n),

and n # x or ¢/ # i. We then put p(x) into Wy and n into Wy, and we restrain  out of
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Wi(). In a subsequent paragraph we will analyze in more detail how le; interacts with several

higher priority requirements, and how to deal with the case n = x and i’ = i.

I-requirements. An [ Zk requirement simply selects new unrestrained elements and enumerates them
into Wy(;) to ensure Wy(;) has size at least k.

The environments. At stage s of the construction, we use several parameters. A @Q-requirement
Q uses the parameters A¥ ( ), aF J( s), approximating respectively the set A% ; and the witness,

codlng whether or not n is in Wy;), as in the informal description of the Strategy for Ql ;3 in other

words, the mapping n — ak o (n,s) approximates a computable function that 1-reduces Wy to

Wy(jy. After the last initialization of Q« - (if eventually it stops being re-initialized), whenever we

k
define a; j

without loss of generality we may assume

:(m, s), for some m, then this w1ll be also the last value afj (m) = afj( m, s). Notice that

n<ak i(n, 5).

A P-requirement P.k ~uses the parameter z¥ J( s), which approximates the witness x, as described
in the above descrlptlon of the strategy for P.. For each i, j, k, PZ ’; also uses a parameter Sfj(s),
which is a finite set of numbers representing the restraint that these numbers not enter Wy ;. For

every 4, we also define a finite approximation V; s to Wp(;), such that {Vis| s €w} is a computable
approximation to Wy .

Interaction of P, k- with more than one requirement. We now need to analyze in detail what happens

when we want to act for P’c at a stage when ¢y, (7), with x = o¥ 'j» has not as yet been enumerated
into Wy (;), and in fact is restramed out of Wp(;) for a higher-priority requlrement R. Assume that

vr(z) converges to, say, y. If R = Py ZO, for some ig, kg, and we have that y = xj },» then, as already
observed, the conflict is just solved by priority: we enumerate = in Wy(;), and if R acts, then R
initializes P);.

The problematic case is when there are ji, k), and y, such that R = Q Pt and y = affﬂ j (y1): then
we are able to act as desired, i.e. enumerate y into Wy ;), but at the same time keeping correctness

of a?f}h (y1), only if there is no restraint in enumerating also y; into Wy;,).

Now in turn, a restraint on y; can have been put either by a higher priority P, ]1 L iy = xfl i
but then again the conflict is solved, as above, by priority; or, y; is restrained by a higher priority

k/
iajye if Y1 is of the form y1 = ay)  (y2).
This suggests the following definition:
Definition 4.2. Define the sequence yg,y1, .-, ¥Yn, ... Dy steps:

Step 0: Let yo = y, and jo = j.

Step 1: If there is no restraint on yg, or there are unique g, kg such that yy = a:JO io» then yy is
undefined; otherwise there exist unique ji, k(, y1 such that yo = a?l o (y1);
Step h + 1: If there is no restraint on yy, or there are unique iy, kp, such that y, = zf: in then yp11

. . . . . K
is undefined; otherwise there exist unique jp1, k), yn+1 such that y, = aj:+17jh (Yn+1)-
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Notice that at each step of the above inductive definition, the various disjuncts are exclusive: this
claim (and the claims on uniqueness of jp, iy, kp, kj,) are justified (see Lemma [4.4]) by the fact that
strategies for different requirements use disjoint sets of witnesses and numbers.

Lemma 4.3. The sequence yo,Y1,---,Yn,--- 1S finite.

Proof. For every r, if

/

YUr = ;] g (Ure1)

then y,41 < y. Thus the sequence must terminate. O

As currentl V;, and assuming correctness of the various functions a* . () relative to higher
Yy J g g

Jrybr
priority requirements, we have that, for every r, y,. ¢ V;.. So the strategy for Pk . in relation to

restraints posed by higher priority requirements is the following:

(1) if the last entry of the sequence is y; with y;, € S’k/ ) Where Pk,/ » has higher priority, then

enumerate a: i; into Vi; we have 3: ;€ Vi, but y = ka( ) ¢ Vj, unless P h , acts and places

yp, into V}, , but in this case all requlrements of lower prlorlty than P i 1nclud1ng
initialized;

g ], are
K, . .
(2) if the last entry of the sequence is yj, 1 with y;, = a]h+1 n (ynh+1) where yp, 11 is not restrained

by higher priority requirements and either jj 1 # i or yp41 # 2, then enumerate each y,

INE
with » < h + 1 into Vj,. We have, as desired, y = pp(x Zj) e Vj, but xfj ¢ V;; our action
has not injured the higher priority requirements (in this case, only @Q-requirements) since

all relative 1-reductions have been corrected, having (for all r» < h)
Ky
Yr41 € Vi < A5 1gn (Yrs1) =yr € Wi,.

In this case, we keep J:f - in Sk to restrain lower priority requirements from ever causing
mﬁj to enter Wy ;).

(3) if the last entry of the sequence is yp.1 with y, = a?};ﬂ j» (Wn+1) where jpi1 = i and
Yh+1 = T; ], then we cannot keep :1: ; out of V; while enumerating y into Vj, due to higher
priority Q- requlrements In this case, Pk adds wk to S”C and then unassigns a:k i (and will

thus choose a new mz when acting next) We w111 argue below, using the fact that < is a

J
pre-order, that if Pf] is injured infinitely often in this way, then ¢ < j.

Construction. At stage s+ 1 we may enumerate new elements into some of the sets {V; ; : i € w},
thus obtaining their new approximations {V; ;1 :4 € w}. We may also update the definition of
some of the parameters. It is understood that if V;, or a parameter, is not updated then its value
is the same as at the previous stage.

At the end of a given stage s, we may initialize a requirement R: For this, if R QZ i then we set
Aﬁj( s) = J, and each a¥ j(n,5) to be undefined; if R = Pfj, then we set z¥ ;(s) to be undefined
and Sl’f]( s)=(.

We say that a requirement R requires attention at stage s > 0, if R has not acted since last being
initialized, or
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(1) R = Q’f and s is {7, j, k)-expansionary, i.e., min(w\Wy jr).s) > min(w ~ Wy jr)¢) where
{ is the last stage Where Q acted; or
(2) R = PF, and either z¥ ;(s) is not defined or gohs(a:ﬁj(s)) converges and

i,J
xﬁj(s) €Vis < SOk,s(ﬂcﬁj(s)) €V,

At odd stages, we take care of P-requirements and Q-requirements. At nonzero even stages, we
take care of the I-requirements.

Stage 0. Initialize all requirements.

Stage 2s+1. Let R be the least P- or Q-requirement that requires attention. (Notice that cofinitely
many such requirements have never acted.) We say that R acts at 2s + 1. For simplicity in the
following, when writing down the various parameters, we do not explicitly mention the stage s.

(1) f R = Q¥ 'j» then pick a new element a and place it into Aﬁ ;i if a is the m-th element of
Ak in order of magnitude then define a = a¥ i;(m). For alln < m, if n € V;, then enumerate
aﬁj( ) into V.

(2) If R = P}, then

(a) if :cfj is not defined, then define it to be a new element and add azk to Sl"“],
(b) if pi(x m) converges and g (x m) ¢ V;, then consider the sequence yo, y1,...,Yn, ... of

Definition (approximated at stage 2s + 1):

(i) if the last entry of the sequence is y, = z¥ ., with y, € S j where P¥ ; has

Tir J i,

into V;, remove xk from 5’

i) and 1n1tlalize

higher priority, then enumerate xl
all lower priority requirements;

J

(ii) if the last entry of the sequence is yp,1 with y, = aj}”+1 n (Yn+1) where jpi1 # @
O Ypt1 # :L‘Z j» then enumerate each y, with r < h + 1 into Vj, and initialize all
lower priority requirements;

(iii) if the last entry of the sequence is yj,,1 with y, = a?:H,jh (Yn+1) where jpiq1 =i

k

then unassign z7 ;.

a‘nd yh"rl - x@j’

Go to Stage 2s + 2.

Stage 2s+2. If s = (i, k), and V; has less than k elements, then choose new numbers and enumerate
them into V;, so that the set has at least k elements.

This ends the construction.

Verification. It is left to verify that the construction works.
The following Lemma observes that in case (2bi), there is never any injury to enumerating x ; into
Vi and in case (2bii), there is never any injury to enumerating the y, into Vj,.

Lemma 4.4. For any i,j,7 k. k', if (4,k) # (5, k'), then a:fj is mever in Sf;,. There is never an

element aﬁj(y) in S;?’j, for any i,5,5' kK.
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. . o, . /
Proof. Each time z¥ ij 18 chosen it is chosen to be a new number, and a number enters Sk J only

k

after it has already been :1: . Each time a! ](y) is chosen and each time ¥, is chosen, they are

)

chosen to be new numbers, and no number enters Sk , unless it has already been a:éC J O

Lemma 4.5. No P-requirement initializes lower-priority requirements infinitely often.

Proof. Let R be a P-requirement. Suppose, by induction, none of the higher-priority P-requirement
initializes lower-priority requirements infinitely often. Let s then be a stage after which R is
never initialized by a higher-priority requirement. If, after stage s, R ever initializes lower-priority
requirements, it is through case (2bi) or (2bii). In either case, then R never acts again, so it can
initialize lower-priority requirements at most once after stage s. O

Lemma 4.6. Ifi X j then Pi]‘fj s satisfied.

Proof. Let s be a stage when Pi’fj is never initialized by a higher-priority requirement after stage
s. We first argue that R cannot be initialized via (2biii) infinitely many times. Suppose oth-
erwise. Then, each time it is initialized, consider the sequence jo, j1,...,Jnr1 Where jpi1 = 1.
Let ag,azy,...,a, be a simple sub-path (i.e., if j,, and j, are equal, then we replace the sequence
3055 Jmy---sdny-- -5 Jre1 Dy the sequence jo, ..., Jm, Jn+l, - - - Jht1, and repeat this algorithm un-
til all the elements of the sequence are distinct). By the pigeonhole principle, for infinitely many
initializations, this sequence ay, . .., a, is the same. But then, the requirements Qam+ Lam are acting
infinitely often. Thus, using that <isa preorder7 Am+1 < am for each m < n, and thus i < j.

k
0
some stage after ¢. This is the final value of x¥ Subsequently, either oy (zF ;) diverges, in which

Thus, we can consider a stage t > s such that P”. is never initialized after Stage t. Let x = z¥_ at
case Pk does not act anymore, and is Satlsﬁed as @y is not total; or, @y (¥ ) converges. In this
latter case, it either never acts, in which case @i (x w) € Wy(;, but since x ;€ Sf], we have that
xf j ¢ Wy, so PZkJ is satisfied; or it acts once more through (2b1) in Wthh case a: ;€ W), but

or (¥ ;) & Wy(j); or it acts through (2bii): in this case we get 3: ; & Wy, and o (¥ ) € Wy(j). In

all cases, Pfj is satisfied. O

Lemma 4.7. Ifi £ j, then Wy ;) does not m-reduce to Wy ;).

Proof. By Lemma every Pk» is satisfied. O
Lemma 4.8. Ifi < j, then Wy <1 Wy(j).

Proof. Let k be least number such that Wy ;) = w. By Lemma every P-requirement of
priority higher than Qk- initializes Q’?- only finitely often. After the last time QIIC i; is initialized,
every time Qf’ acts, it defines more and more values of the coding function a¥ ]( ), and keeps it

correct as a l-reducibility, by putting a; j( n) into Wy(;) if and only if n € Wy;. O

Lemma 4.9. For every pair i, k, the requirement Il-k 1$ satisfied.

Proof. The proof is trivial. O

We are now ready to show that the pre-order <. on indices of ceers is ¥ complete.
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Corollary 4.10. <. is a Eg complete pre-order.

Proof. 1t is straightforward to check that <. is Eg. Since for infinite c.e. sets X,Y, Rx <. Ry if
and only if X <1 Y (where Rx is the ceer where aRxb if and only if a = b or a,b € X. See e.g.
[T, 14, (18], [6, @]) the above reduction allows us to reduce < into <. as well. O

The following corollaries are immediate consequence of Theorem the first of which appears in

[7:

Corollary 4.11 ([7]). The equivalence relation =1 is a ¥ complete equivalence relation.

Proof. Trivial by Theorem [£.1] since an equivalence relation is a symmetric pre-ordering relation.

O
Corollary 4.12. =, is a Zg complete equivalence relation.
Proof. Trivial by Corollary 0
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