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Abstract

We describe strongly minimal theories 7;, with finite languages such that in the chain of
countable models of T;,, only the first n models have recursive presentations. Also, we
describe a strongly minimal theory with a finite language such that every non-saturated
model has a recursive presentation.

1. Introduction

Given an Nj-categorical non-Ng-categorical theory T in a countable language, the
Baldwin-Lachlan theorem [2] says that the countable models of T' form an w + 1-chain:
Mo <= M1 < ... < M,. We define the spectrum of recursive models of T to be
SRM(T) = {i|M, has a recursive presentation}. The spectrum problem asks “Which
subsets of w + 1 can occur as spectra of Xj-categorical theories?”, and of particular inter-
est is which subsets of w + 1 can occur as spectra of strongly minimal theories.

There have been various contributions to the spectrum problem over the years. Many
have been of the form “S is a possible spectrum achieved with a strongly minimal (or
simply Wj-categorical) theory”. In this paper, the goal is to achieve many of the same
spectra while using a theory in a finite language. This goal has its roots in Herwig,
Lempp, Ziegler [3], where it is shown that {0} is a possible spectrum using only a finite
language. In [1], we show that {w} is a possible spectrum using only a finite language.
Here we show that {0,...,n} for n € w are possible spectra with a finite language and
also that w is a possible spectrum in a finite language.

In section 3, we demonstrate a new variant of the Hrushovski amalgamation method.
The new content of section 3 is confined to the use of an fp(A) term in the bounding
function p. This allows us to code information into the type of a tuple depending upon
how independent the tuple is. As the Hrushovski method is very closely followed to ensure
a resulting strongly minimal theory, many of the lemmas and the general outline of the
proof are as in [4]. Nonetheless, they are repeated here along with many proofs so that
this paper may be read without having read [4].

2. Background

That {0,...,n} and w are possible spectra are results from [6] and [5]. In this section,
we will review the coding apparent in those constructions. In what follows, we use K to
refer to a complete Y1 set and use K, to refer to the part of K enumerated by stage s.

A theory where SRM(T') = {0,...,n}:

Let L = {R;|i € w} U{cj|j € w} where R; are all n 4 1-ary relation symbols. Let M
be a model with universe w where the element ! € w is named by the constant ¢;, and
Ri(z) + the z; are distinct and ¢ € K, where s = min{Z}. The model of dimension k
contains k elements that are not named by constants. In any model M with § C M being
n+ 1 elements not named by constants, we see that M |= R;(y) < ¢ € K. Since K is non-
recursive, this model cannot have a recursive presentation. Thus m >n — m ¢ SRM(T).
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If in a model N every distinct n 4+ 1-tuple contains an element named by a constant, then
we can recursively answer which of the R; should hold on which tuples, and thus the model
is recursive. Thus m <n —m € SRM(T).

A theory where SRM(T') = w:

Let L = {Ryslk,s € w} U {cj|j € w} where Ry ¢ is a k-ary relation. Fix a complete
Iy set S = {k|Vi3jo(k,l,j)}. Let M be a model with universe w where the element
| € w is named by the constant ¢; and Ry s(Z) holds if and only if the z; are distinct and
Vn < s35 < B¢(k,n,j) where B = min{z}.

Again we see that a model of dimension &k has k elements not named by constants. We
see similarly that any non-infinite dimensional model is recursive. Let M, be the model
of dimension w. Then we see that

k € S if and only if 3y(VsM,, = Ry s(y))

But then if M, were recursive, S would be a X9 set, which is it not.

The goal of this paper is to use an alteration of the Hrushovski construction to construct
a strongly minimal theory where we code sets into models in ways very similar to these
while using a finite language.

3. Altering the Hrushovski Construction

We fix L to be the language generated by a single ternary relation symbol. In generality,
the following construction will work for any language with a finite relational signature.
In the amalgamation that follows, the most natural form of amalgamation will be the
free-join.

Definition 1. Let {B;}icr be a collection of finite L-structures whose pairwise intersection
is A. We say |J;c; Bi is a free-join over A if whenever R(a) and a C |J,c; B;, then a C B;
for some 1.

i€l

The core idea in Hrushovski’s amalgamation construction for building strongly minimal
sets is to use a pre-dimension function to give a coherent notion of what algebraicity should
be in the constructed theory. We fix the pre-dimension function §(A) = |A|—|R(A)| where
|R(A)| is the number of triples from A on which R holds. In general, a pre-dimension
function can be any function § from finite L-structures to Z U {—oo} with the following
properties.

1. For any finite L-structures A and B, (AU B) < §(A) +§(B) — (AN B)
2. For M any finite L-structure and By, Ba C M, §(B1UB2) = 0(B1)+3(B2)—d(B1NB2)
if and only if By U By is the free-join of By and By over By N By in M.

Note that our § satisfies these properties.
The following definition and combinatorial lemmas are standard for Hrushovski amal-
gamation constructions and can be found in [4].

Definition 2. For any finite L-structures A and B and infinite L-structure D, we define:
e §(B/A) =0(AUB) —0(A). This is the relative dimension of B over A.

o If AC B, we set 6(A,B) = min{é(C)|A C C C B}. This is the dimension of A in
B.

o If AC B, we say A is strong in B or A < B if §(A) = 0(A, B).
We say A is strong in D if A C D and A is strong in C for each finite A C C C D.



o We say B is simply algebraic over A if B#0, ANB=0, A< AUB, §(B/A) =0,
and there is no proper subset B' of B such that 6(B’'/A) = 0.

o We say that B is minimally simply algebraic over A if B is simply algebraic over A
and there is no proper subset A" of A such that B is simply algebraic over A'.

We verify that strongness forms a transitive reflexive relation, justifying the use of the
symbol <. Also, we verify that relative dimension acts as we expect.

Lemma 3. Let A C N be L-structures. Suppose A < N

1. (X NA) <§(X) whenever X C N.
2. (A, A) =6(A',N) whenever A" C A.
3. In particular, if A’ < A< N, then A’ <N

Proof. 3 is immediate from 2, which in turn is immediate from 1, so we will only prove 1.

S(X UA) < 8(X)+8(A) — 8(X NA). So,0<8(XUA) —5(A) <6(X)—6(XNA). O

Lemma 4. If X, A, and B are finite L-structures such that A C B, then §(X/AU (X N
B)) > §(X/B). In particular, if X N B =0, then §(X/A) > §(X/B).

Proof. 6((XUA)UB) <§(XUA)+B)— (X UA)N B), which simplifies to
I(XUB)—6(B)<d(XUA)—-I(AU (X NB)), as needed. O

Lemma 5. Let M be a finite L-structure. Let A C M and suppose Bj are simply algebraic
over A and A < (AUJ; Bj), (j € J). Then:

1. The Bj are pairwise equal or disjoint.

2. AU Uj Bj is a free join of the B; over A.

3. Suppose A C A" C M, A < AU By, and Bj is not a subset of A" (j=1,2). Then
any isomorphism of By with By over A extends to an isomorphism over A'. In fact,
A"U Bj is a free join of A" and Bj over A.

Proof. The proof follows via repeated use of the properties of pre-dimension functions,
and can be found as Lemma 2 in [4] O

Our amalgamation class will have two restrictions, one forcing hereditary positive
dimension and a second bounding the numbers of minimally simply algebraic extensions.
The first is seen in the definition of Cy.

Definition 6. Let Cy be the class of finite L-structures C such that if A C C € Cy, then
d(A) > 0.

Lemma 7. Suppose A, B1,Bs € Cy, A= B1 N By, and A < By. Let E be the free-join of
By with By over A. Suppose C',...C", F are disjoint substructures of E such that each
C' is minimally simply algebraic over F and the structures C* and C7 are isomorphic over
F for each 1 <1,5 <r. Then one of the following holds:

1. One of the C' is contained in By ~ A and F C A.

2. Either FUJ;_, C' is entirely contained in By or F'U Ui, C" is entirely contained
in By and one of the C" is contained in B ~\ A.

3.7 <4(F)

4. For one O, setting X = (FNA)U(C*N By), §(X/X NA) <0. Further, one of the
C7 is contained in By ~\ A. (Note that this cannot happen if A < By by Lemma 3).



Proof. This proof contains most of the combinatorial difficulties of the amalgamation
construction and can be seen in the proof of Lemma 3 in [4]. O

In order to differentiate between various levels of algebraicity for our future coding pur-
poses, unlike the standard Hrushovski construction of a strongly minimal set, we provide
the following definition.

Definition 8. For L-structures A C B with A finite, we define fp(A) = min{|C||A C
C C B,(C) < |Al}, where we say the min of an empty set is co.

Lemma 9. If AC BC C and B < C, then fg(A) = fc(A)

Proof. Take X C C of minimal size with 6(X) < |A|. Then 6(X NB) < §(X) < |A|. Thus
X C B by minimality. O

One can think of fp(A) as a measure of how much A looks independent to the set B.
We define the bounding p function similarly to its analog in [4], though we incorporate f
into our definition of u.

Definition 10. Let u(A, B,n) be a function from quantifier-free types of finite L-structures
A,B and an n € wU {oo} to w so that for all but finitely many n € w, u(A, B,n) =
(A, B,oo). Furthermore, we demand that u(A, B,n) > 6(A) for all triples A, B, n.
Given a pair A, B of finite L-structures, set h(A, B) to be the least n > |A| so that
w(A, B,m) is constant for allm > n. Fork € w, we set g(k) = maz{h(A, B)||A|,|B| < k}.

From any such g function, we define the following amalgamation class:

Definition 11. Let C be the class of finite L-structures C' such that the following hold:

1. 6(A) >0 forall ACC.
2. Suppose X;, i = 1,...,n, Y are disjoint subsets of C so that the X; are mini-
mally simply algebraic over Y and the X; are isomorphic over Y. Then n <

IU’(Y7 Xl; fC(Y))

Unlike in the original construction, x depends on fo(Y'), which means that it is possible
that B C C € C, but B ¢ C. The analog here will be that if B < C' € C, then B € C.
Despite this difference, we will show that C leads us to a strongly minimal amalgam.

Definition 12. Let A C B be L-structures. We say A is n-strong in B if S(AUX) > 6(A)
for all X C B with | X| <n.

Lemma 13. If B< C €C, then B € C. In fact, if B is g(|B|)-strong in C, then B € C.

Proof. The first condition holds as any subset A of B is a subset of C. Suppose X;,
i=1,...,n, Y are disjoint subsets of B so that the X; are minimally simply algebraic over
Y, and the X; are isomorphic over Y. Then n < u(Y, X1, fo(Y)). Since fp(Y) > fo(Y),
if fo(Y) > (Y, X1), then (Y, X1, fo(Y)) = p(Y, X1, f(Y)). So, we may assume there
exists a Z of minimal size so that Y C Z and 6(Z) < |Y| with |Z] < h(Y, X1). Since
B < BU Z by assumption, 6(B N Z) < §(Z) showing that Z C B by minimality, and so
fo(Y) = fa(¥). O

Lemma 14. (Algebraic Amalgamation Lemma) Suppose A = BN By, A, B1,Bs € C, and
By~ A is simply algebraic over A. Let E be the free-join of By with By over A. Then
E € C unless one of the following holds:



e B~ A is minimally simply algebraic over F' C A, and there are p(F, B\ A, fB,(F))
disjoint copies of By \ A in Bs.

o There is a set X C By such that X N A £ X, and X is isomorphic to a subset of
B;.

e There are sets F' C By and C C By minimally simply algebraic over F so that
:U(Fa C, fBl(F)) > M(Fa C, fE(F))

Proof. f X C E, then §(X) =§(XNB1)+6(XNBy)—d(XNA) >§XNDBg) >0. If
there are disjoint C?, F C E so that each of the C? are minimally simply algebraic over F
and each (C?, F) is isomorphic, then by Lemma 7, we need to consider only four cases:

e One of the C% is By ~ A. As the ¢V and F are disjoint, each of the other C7 and
F are contained in By. If r > pu(F,C*, fg(F)) then there must be u(F,Ct, fr(F))
of them contained in By. Since By < E, fg(F) = fp,(F), showing that the first
exception in this lemma holds.

e FUJ_, C! is entirely contained in either By or By. Here, r < u(F, C’l,fBj(F))
as By, By € C. Since By < E, if FUJ,_; C" C By, then r < u(F,Cl, fg(F)) as
fe(F) = fp,(F). Thus we only need to consider the case where F U (JI_; C* C By
and u(F,CY, fg(F)) < u(F,CY, fg,(F)). In this case, the third exception of this
lemma holds.

e 7 < §(F). In this case r < §(F) < u(F,CH, f(F)).

e For one C7, setting X = (FNA)U(C’ N By), we see that §(X/X N A) < 0. Further,
one of the (7 is contained in By ~ A. This yields the second exception in this lemma.

O]

Lemma 15. (Strong Amalgamation Lemma) Suppose A, B1, By € C and A < B;. Then
there exist D € C so that By < D and g : By — D an embedding so that g(B1) < D and

g(A) =id|4.

Proof. We may assume there is no B’ such that A < B’ < By. Thus either By = AU {z}
where z is unrelated to A by R or By \ A is simply algebraic over A. In the first case,
the free-join suffices. In the second case, the free-join fails only if one of the conditions
of the last lemma holds. The second and third conditions cannot hold as A < By. Let
F C A be so that By \ A is minimally simply algebraic over F. As A < By and A < B,
fB,(F) = fa(F) = fB,(F). If condition 1 holds, then we have u(F, By \ A, fp,(F)) copies
of By \ A in By. There must be no more than p(F, By \ A, fB,(F)) — 1 contained in A,
as By € C and fp,(F) = fa(F) = fp,(F). As no copy of By \ A in By can be partially
in A (as A < By), we have one contained in By . A with which to identify By ~ A. This
gives us the required amalgamation. O

The above lemma guarantees that there is a generic amalgamation of the class C, which
we call M. M is characterized by three properties:

1. M is countable.

2. For any finite A < M, A € C.

3. Suppose A < M, A < B, and B € C. Then there is an embedding g : B — M so
that g|4 = ida and g(B) < M.



By a standard back-and-forth on strong substructures, and since each finite A C M is a
subset of a finite B such that B < M, we see that these three properties fully characterize
M up to isomorphism. Showing that M is strongly minimal will follow a path analogous
to the one in [4]. The new content to the proof will be in the change to 3” and the necessity
of 2/.

We would like to show that M is saturated by showing that any elementary extension
of M satisfies properties (1,2,3), but properties 2 and 3 are not first order. To handle
this problem, we replace 2 and 3 by 2/, 3’,and 3":

2’: For any finite A C M, if A is g(|A])-strong in M, then A € C.

3’: There is an infinite set I with R not holding on any tuple in I such that A < M
for all finite A C I.

3”: Suppose A € M, A < B, and B \ A is minimally simply algebraic over F' C A.
Further, suppose that A is g(|B|)-strong in M. Then there are u(F,B; \ A, fm(F))
distinct realizations of tp, ¢ (B/F') over F in M.

Note that 2/, 3’, 3" are first order conditions. Note that if A is g(|B|)-strong in M,
then pu(F, By N A, fm(F)) = w(F, By~ A, fo(F)) as in the proof of Lemma 13.

Claim 16. The conditions (1,2,3) are equivalent to the conditions (1,2',3',3").

Proof. Assume (1,2,3). To see 2/ from 2, let B be least so that A C B < M. By 2,
B € C, and applying lemma 13 to the pair (A, B) we see that A € C. 3’ follows trivially
from 3. 3" is a consequence of the algebraic amalgamation lemma employed for any A, B,
and set C so that A C C < M. If the free-join of B with C' over A is in C, then 3 implies
that we can amalgamate the free-join into M over C. Otherwise, one of the conditions
in the algebraic amalgamation lemma holds. Since A is g(|B|)-strong in M, the second
and third conditions cannot hold, and if the first condition holds, then there are already
w(B~ A, F, fpm(F)) many copies of B\ A over F in C.

Assume (1,2',3',3"). 2 is formally weaker than 2/, so it follows immediately. We show
3: Suppose A < M, A < B. We may assume that there is no B’ such that A < B’ < B.
Thus, B is either simply algebraic over A, or B = AU{x} where z is a singleton unrelated
to A. In the latter case, 3’ gives us an infinite independent sequence from which to choose
an embedding of B over A. In the former case, 3" guarantees that there is an embedding
of B over A exactly as in the strong amalgamation lemma. O

Corollary 17. M is saturated.

Proof. Let N be any countable model elementarily containing M. Then since N satisfies
(1,2,3,3") and hence (1,2,3), N is isomorphic to M. Thus there are only countably
many types realized in elementary extensions of M, so there is a countable saturated
model elementarily containing M, which M must be isomorphic to. O

Next we will characterize algebraicity in M and will thereby establish strong minimal-
ity of M. We define d(A) = min{dé(C)|A C C C M, C finite}. Clearly for any A and z,
either d(zA) = d(A) or d(zA) = d(A) + 1.

Lemma 18. Ifd(zA) = d(A) +1 and d(yA) = d(A) + 1, then (M, Az) = (M, Ay).

Proof. Let B be such that A C B and §(B) = d(A). Then B < M and d(zB) =
d(zA) = d(A) + 1. Thus zB < M, and similarly yB < M. Using property 3 and a
standard back-and forth along strong substructures, we see that (M,zB) and (M, yB)
are isomorphic. O



Lemma 19. If d(zA) = d(A) then x € aclp(A).

Proof. Suppose d(xA) = d(A). First, let B be a minimal set such that A C B and
d(B) = d(A). This B is referred to in the literature as the intrinsic closure of A. We
show that B is algebraic over A in M. Suppose there were two realizations of the positive
quantifier-free type of B over A. Call the second realization B’. Then §(B U B') <
d(B)+ d(B') —6(BNB') < §B') = d(A). The strict inequality is due to B being a
minimal set with the properties that A C B and 0(B) = d(A). This inequality is a
contradiction to the definition of d(A).

Fix E to be a set such that A C E and §(F) = d(A). Then 6(EUB) < §(E)+4d(B) —
d(E N B). If E does not contain B, then §(E N B) > d(A) by minimality of B. Then
J(EUB) <d(A)+d(A) —§(E N B) < d(A), again a contradiction. Thus E contains B
and d(zB) = d(B).

Take a sequence of extensions By, B, Bs, ... By, such that By = B, B, = E, and B;;1
is a minimal set such that B; € B;41 C E and §(Bjt+1) = d(A). Then B;i; is simply
algebraic over B;, say minimally simply algebraic over F;. Thus B,y is algebraic over B;
(any two extensions of B; satisfying the atomic type of B;11 ~\ B; over B; must be disjoint
and isomorphic to B;y1 \ B; over B; since B; < M, so we explicitly forced there to be no
more than p(F;, Biy1 \ Bj, fp,(F;)) of these). We conclude that E is algebraic over A. In
particular, z € aclp(A). O

Corollary 20. M is strongly minimal.

Proof. In the previous lemma, we showed that over any set there is a unique non-algebraic
1-type realized in M. Since M is saturated, this shows that T'h(M) is strongly minimal.
O

4. SRM(T) = {0,...,m}

Fix an integer m. We will construct a theory T so that SRM (T) = {0, ..., m}. Recall
that we defined K to be the standard complete 31 set, ie: the halting problem. We set K,
to be the part of K enumerated by stage s. We set K, = K. Fix a recursive enumeration
of all the quantifier free types of minimally simply algebraic extensions over all sets of size
m + 1. We will refer to these as A;, and will say A;(A, B) to mean that B is a minimally
simply algebraic extension of A of type enumerated as A;. To construct a model, we use
the results of the previous section, and we need only define p.

Definition 21.
|A|+ 1 if for all i, =A;(A, B)(ie: |[A| #m+1)
,U,(A,B,k)z |A’—|—1 ifAZ'(A,B), and i € Ky,
|Al+2 if Ai(A,B), andi ¢ K

We employ the previous section, and we thus get a generic model M, which is saturated
and strongly minimal. Let T'= Th(M). Now, we verify that SRM (T') is as required.

Claim 22. k > m — k ¢ SRM(T)

Proof. Let N be any model of dimension > m. Let & be any tuple of size m 4+ 1 with &
an independent set in N. Then i € K <+ =3™135 (N = A4(z,7)). Thus a complete ¥; set
can be represented as a II; set using an oracle for quantifier-free statements true about
N. Thus N cannot be recursive. O



Claim 23. k <m — k € SRM(T).

Proof. If X is a finite L-structure and §(X) < m, then whether X € C is a recursive
question. This is simply because fx(Y) is finite for any m + 1 element set Y C X, so we
can compute p(A, B, fx(A)) for any A, B C X. To construct the k-dimensional model,
we start with My as k elements unrelated by R. At stage s, we take My and we list
off the first s possible simply algebraic extensions over subsets of M,_1. Then we check if
the associated free-join keeps us in C. If it does, we pass to the free-join. After doing this
for these s possible extensions, we call the result M. This yields a model where we have
amalgamated every simply algebraic extension possible, in particular we amalgamate B
over A for any strong enough A. Thus we get a model of 1,2',3"”. By compactness, there
is an elementary superstructure satisfying 2’, 3/, 3”, and by downward Lowenheim-Skolem,
there is an elementary superstructure satisfying 1,2’,3’,3"”. Thus |J, M, is a model of T'.
Since §(M;) = k for each M; and My < M; for each M;, |J, M, is the k-dimensional model
of T. O

Thus we have proved the following;:

Theorem 24. There exists a strongly minimal theory in a language with a single ternary
relation symbol such that SRM(T) ={0,...,m}.

5. SRM(T) = w

We will be employing the same construction as above, so we need only define a new p
function. In order to work with the more complicated recursion theoretic necessities of this
proof, we will be using a complete IIs set. We fix one now: S = {k|ViFjp(k,l,j)}. Fix a
recursive enumeration of all quantifier-free types of minimally simply algebraic extensions
(over any set) Ay s so that each extension Ay s is over a set of size k. Now we can define
the bounding function p:

Definition 25.

|A|+ 1 if Apo(A, B) and VI < s3j < no(k, 1, §)

M(Avan) = . . .
|A| +2 if Aps(A, B) and =V < s35 < no(k, 1, j)

Note that p satisfies the required property that all but finitely many integers agree
with the value outputted at oc.

We employ the construction above, and we thus get a generic model M, which is
saturated and strongly minimal. Let T'= Th(M). Now, we need only verify that SRM (T')
is as required.

Claim 26. w ¢ SRM(T).

Proof. Let N be any particular presentation of the saturated model. For any k,
keSS« dz <(Vs—|3k+2@7]\f = Aks(Z,9)) A (T is strong in N))

Then, we see that a complete Iy set is Yo (being strong in N is a II;-condition) in a
presentation of the quantifier-free diagram of N. Thus N has no recursive presentation. [J]

Claim 27. n € w - n € SRM(T).

Proof. Fix n € w.



Claim 28. The set of finite L-structures X such that 6(X) <n and X € C is a recursive
set.

Proof. Non-uniformly, fix a finite set of information detailing for each i < n, whether
i€ S, and if 7 ¢ S which is the first s so that =3j¢(i, s, ).

Given any A C X, either |A| < n or fx(A) is finite. In the latter case, computing p
is recursive, since all the quantifiers are bounded. In the former case, the information we
specified tells us how to compute p when fx(A) = oco. O

To construct the n-dimensional model, we start with My as n elements unrelated by
R. At stage s, we take M;_1 and we list off the first s possible simply algebraic extensions
over subsets of My_1. Then we check if the associated free-join keeps us in C. If it does,
we pass to the free-join. After doing this for these s possible extensions, we call the result
M. This yields a model where we have amalgamated every simply algebraic extension
possible, in particular we amalgamate B over A for any strong enough A. Thus J, M,
is a model of 1,2',3"”. By compactness and Lowenheim-Skolem, there is an elementary
superstructure satisfying 1,2',3',3", so |J, M; is a model of T'. Since 6(M;) = n for each
M; and My < M; for each M;, |, M, is the n-dimensional model of 7. ]

Thus we have proved the following;:

Theorem 29. There exists a strongly minimal theory in a language with a single ternary
relation symbol such that SRM(T') = w.
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