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Abstract. We review the literature on universal computably enumerable equivalence relations,
i.e. the computably enumerable equivalence relations (ceers) which are Σ0

1-complete with respect
to computable reducibility on equivalence relations. Special attention will be given to the so-
called uniformly effectively inseparable (u.e.i.) ceers, i.e. the nontrivial ceers yielding partitions
of the natural numbers in which each pair of distinct equivalence classes is effectively inseparable
(uniformly in their representatives). The u.e.i. ceers comprise infinitely many isomorphism types.
The relation of provable equivalence in Peano Arithmetic plays an important role in the study and
classification of the u.e.i. ceers.

1. Introduction

Recently there has been a growing interest in studying and classifying equivalence relations on the
set ω of natural numbers, by mean of the so-called computable reducibility, where, given equivalence
relations R and S on ω, we say that R is computably reducible (or simply, reducible) to S (in symbols:
R ¤ S), if there exists a computable function f such that

p@x, yqrx R y ô fpxq S fpyqs.

The first systematic study of this reducibility goes back perhaps to Ershov [13, 14], as an alternative
way of looking at monomorphisms in the category of numbered sets. An obvious related notion is
that of completeness: if A is a class of equivalence relations on ω, one says that R is A complete,
if R P A, and S ¤ R, for every S P A. This reducibility, and its related notion of completeness,
have been successfully applied to measure the complexity of equivalence relations naturally arising
in mathematics, and in particular in computable model theory and in computability theory. For
instance, the isomorphism relations for various familiar classes of computable structures (identified
with numbers via suitable numberings) are Σ1

1 complete: this includes computable groups, com-
putable torsion abelian groups, computable torsion-free abelian groups, abelian p-groups, see [17].
Other interesting mathematical applications of reducibility ¤ appear in [16, 11, 20, 21, 15].

This paper is a survey (far from being exhaustive) on Σ0
1-universal equivalence relations, henceforth

called universal ceers: we shall use the acronym “ceer” for “computably enumerable equivalence re-
lation”; ceers are called positive equivalence relations in the Russian literature. In section 2 we focus
our attention on some classes of universal ceers of particular importance in logic and computability
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theory. It is interesting to notice that the first example of a nontrivial and mathematically inter-
esting universal ceer appears in the book [24], where Miller III builds a finitely presented group G
for which the ceer provided by equality �G in G, is universal. If this example was most likely not
motivated by any specific interest in ceers and computable reducibility, Ershov [12] on the contrary,
in this case clearly motivated by studying ceers under ¤, pointed out another mathematically in-
teresting universal ceer, see Theorem 2.5. Another universal ceer of special interest, first pointed
out in [8], is the relation of provable equivalence in Peano Arithmetic, denoted by �PA, which
relates two numbers if the two sentences coded by these numbers are provably equivalent in PA.
The class of nontrivial ceers which are quotients of �PA (i.e. computably isomorphic to extensions
of �PA) form the class of the so-called uniformly finitely precomplete (u.f.p.) ceers, which are all
universal. Inside this class we find two special isomorphism types: the so-called e-complete ceers
(which turn out to be computably isomorphic to �PA), and the precomplete ceers (which turn out
to be computably isomorphic to the restriction of �PA to the Σ0

n-sentences, for any fixed n).

As in the case of universality with respect to m-, or 1-reducibility, for c.e. sets, or pairs of disjoint
c.e. sets (where the universal sets coincide with the creative sets, and the universal pairs of disjoint
c.e. sets coincide with the effectively inseparable pairs), the notions of creativeness and effective
inseparability play an important role in the investigation of universal ceers. Not only can one show
that a u.f.p. ceer R yields a partition of ω such that any disjoint pair prasR, rbsRq of equivalence
classes are effectively inseparable uniformly in a, b, but it turns out that this latter notion by itself
suffices to give universality: every uniformly effectively inseparable (u.e.i.) ceer R (i.e. a nontrivial
ceer yielding a uniformly effectively inseparable partition of ω) is universal.

Unlike classical isomorphism theorems (in particular, Myhill’s theorem on computable isomorphisms
of creative sets, and Smullyan’s theorem on computable isomorphisms of e.i. pairs), uniform ef-
fective inseparability for ceers does not imply computable isomorphism. Infinitely many distinct
computable isomorphism types for u.e.i. ceers appear already at the level of u.f.p. ceers. Moreover,
a recent result in [3] shows that there are u.e.i. ceers that are not u.f.p.

The class of u.f.p. ceers is however partitioned into infinitely many computable isomorphism types.

In section 5 we review a characterization (see [1]) of universal ceers in terms of a jump operation
on ceers, due to [19]: namely, a ceer is universal if and only if its jump is reducible to it.

In more than one occasion, we give new and simplified proofs of classical results, including for
instance universality of u.f.p. ceers, and isomorphism of e-complete ceers.

1.1. Terminology and notations. We use standard computability theoretic terminology and
notation, which can be found in the textbooks [28, 31, 10]. We often identify finite sets with their
canonical indices: so when for a function f we write fpDq where D is a finite set, then we in fact
mean fpuq, with F � Du.

Given any set X and any equivalence relation R, we write rXsR � ty : pDxqry R xsu; and rxsR �
rtxusR denotes the R-equivalence class of R.

The following category theoretic terminology is adapted from [13, 14], which study the category of
numberings.

Definition 1.1. Given equivalence relations R,S on ω, a morphism µ : R ÝÑ S is a function from
ω{R to ω{S (i.e. between the quotient sets), for which there exists a computable function f : ω Ñ ω
such that µprxsRq � rfpxqsS , for all x; we say in this case that f induces µ; a monomorphism is a
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1-1 morphism, an isomorphism is an onto monomorphism. An endomorphism for R is a morphism
µ : R ÝÑ R.

Remark 1.2. We observe that if µ : R ÝÑ S is an isomorphism, and all R- and S-equivalence
classes are infinite, then by a standard back and forth argument, it is easy to see that there is a
computable permutation of ω that induces µ. Since the special classes of ceers in which we will
be interested yield, as it turns out, partitions into infinite equivalence classes, henceforth for these
ceers we will be justified in taking “isomorphism” as synonym of “computable isomorphism”.

Lemma 1.3. If R,S are ceers then R ¤ S if and only if there is a monomorphism µ : R ÝÑ S.

Proof. Easy. �

In the same vein, we can define a partial morphism from R to S to be a partial function µ from ω{R
to ω{S for which there is a partial computable function ϕ such that: (1) if µprxsRq is defined, then

there is x1 such that x R x1 and µprxsRq � rϕpx
1qsS ; 2) rdomainpϕqsR � tx : rxsR P domainpµqu.

1.2. Indexing. Throughout the paper, we refer to the indexing tRe : e P ωu of all ceers, where Re
is the equivalence relation generated by We (viewed as a set of pairs).

We say that a sequence tRs : s P ωu of equivalence relations on ω is a computable approximation to
a ceer R, if

(1) the set txx, y, sy : x Rs yu is computable;
(2) R0 � Id;
(3) for all s, Rs � Rs�1; the equivalence classes of Rs are finite; there exists at most one pair

rxsRs , rysRs of equivalence classes, such that rxsRs X rysRs � H, but rxsRs�1 � rysRs�1 (we
say in this case that the equivalence relation R-collapses x and y at stage s� 1);

(4) R �
�
tR

t.

Lemma 1.4. There exists a sequence tRse : e, s P ωu of equivalence relations such that the set
txe, x, y, sy : x Rse yu is computable (in fact, we may even assume that one can effectively find the
canonical index of rxsRs, and we can decide, given e, s whether Rse � Rs�1

e ), and the sequence
tRse : s P ωu is a computable approximation to Re. Therefore an equivalence relation R is a ceer if
and only if R can be computably approximated. Moreover if R is a ceer and Rr txx, xy : x P ωu is
infinite, then one can find an approximating sequence tRs : s P ωu to R satisfying that for every s,
the relation Rs�1 is obtained from Rs by the R-collapse of exactly one pair of equivalence classes
of Rs.

Proof. Straightforward. �

One could alternatively consider the following numbering, suggested by Ershov [12]: let

x Se y ô pDm,nqrϕme pxqÓ� ϕne pyqÓs,

where, given a partial function ψ, ψnpxq denotes the n-th iterate of ψ on x, where ψ0pxq � x,
and of course ψnpxq converges if and only if both ψn�1pxq and ψpψn�1pxqq converge. We may also
write Sϕe for Se. Indeed, if R is a ceer, then R � Sϕ where ϕ is the partial computable function
ϕpxq � pµpxy, syq. rx Rs y& y   xsq0, where we refer to some computable approximation tRsu to
R.
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1.3. Some special classes of ceers. We now introduce some important classes of ceers, which
will be shown to be universal in next section.

Definition 1.5. Let R be an equivalence relation on ω.

(1) [23] R is precomplete if there exists a computable function fpe, xq (called a totalizer of R)
such that, for all e, x,

ϕepxq Óñ ϕepxq R fpe, xq.

Moreover, fpe, q is called an R-totalizer of ϕe, or alternatively we say that fpe, q makes
ϕe total modulo R.

(2) [25] R is uniformly finitely precomplete (or u.f.p. for short) if there exists a computable
function fpD, e, xq such that for every finite set D and every e, x,

ϕepxqÓP rDsR ñ ϕepxq R fpD, e, xq.

Moreover, fp , e, q is called an R-totalizer of ϕe, or alternatively we say that fp , e, q makes
ϕe total modulo R.

(3) [6, 1] We say that R is uniformly effectively inseparable (or u.e.i. for short) if there is a
uniform productive function, i.e., a partial computable function ppa, b, u, vq such that if
rasR X rbsR � H then

p@u, vqrrasR �Wu & rbsR �Wv &Wu XWv � Hñ ppa, b, u, vq ÓRWu YWvs.

Remark 1.6. We note that, as in the case of effective inseparability for pairs of c.e. sets, if R is a
u.e.i. ceer then we can in fact assume that ppa, b, u, vq be total. Indeed, if p is partial computable, we
can always assume that if a��R b then the function ppa, b, , q is total, as from any partial productive
function for a pair of disjoint c.e. sets, one can uniformly find a total productive function for that
pair: this is similar to showing that from any productive function for a productive set, one can
uniformly find a total productive function for that set, see [28]. Having such a function p, define a
total productive function q for R as follows:

qpa, b, u, vq �

#
0, if rasR X rbsR � H ¨ ppa, b, u, vq Ó

ppa, b, u, vq, otherwise,

where given two c.e. relations U :� pDxqApxq and V :� pDxqBpxq in Σ1-normal form, with A,B
decidable, we write as usual U ¨ V :� pDxqApxq& p@y ¤ xq Bpyq.

Lemma 1.7. The classes of Definition 1.5 are closed under isomorphisms, and are upwards �-
closed.

Proof. Straightforward. �

Remark 1.8. Throughout the paper, when we refer to an equivalence relation R as lying in any
of the three classes of Definition 1.5, we will also always assume that R is not trivial (i.e. there are
two numbers which are non-R-equivalent).

2. Precomplete and uniformly finitely precomplete ceers

As promised, in this section we show that the special ceers introduced in Section 1.3 are all universal.
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2.1. Precomplete ceers. Let us begin our trip through the land of universal ceers by looking
at precomplete ceers. First let us recall some important properties of precomplete equivalence
relations. The following theorem is in fact a characterization of all precomplete equivalence relations
(including in this case the trivial one), not only the computably enumerable ones.

Theorem 2.1 (Ershov’s Fixed Point Theorem). An equivalence relation R is precomplete if and
only if there is a computable function fix such that, for every n,

ϕnpfixpnqq Óñ ϕnpfixpnqq R fixpnq.

Proof. ñ. If R is precomplete then let ûpxq be a computable function that makes ϕxpxq total
modulo R. Let ϕspnq � ϕn � û, and define fix � û � s. Then if ϕnpfixpnqq Ó, then ϕnpfixpnqq �
ϕnpû � spnqq � ϕn � û � spnq � ϕspnqpspnqq R û � spnq � fixpnq.

ð. Given fix and a partial computable ϕ, let ϕfpxqpyq � ϕpxq. Then we claim that g � fix �f
makes ϕ total modulo R. If ϕpxq Ó, then ϕpxq � ϕfpxqpfix �fpxqq R fix �fpxq � gpxq. �

Another important property of precomplete equivalence relations is the Padding Lemma.

Theorem 2.2 (Padding Lemma). For every precomplete R there exists a 1-1 total computable
ppx, yq such that, for all x,m, ppx,mq R x. Hence, all R-equivalence classes contain infinite c.e.
sets, and R has an injective totalizer.

Proof. Let R be a precomplete equivalence relation. We show that there is a computable p with
the desired properties which is injective in the second argument; we leave it as an exercise to show
that one can get an injective totalizer. We need to show that from any finite set F � tn1, . . . , nku
of numbers such that n1 R � � � R nk we can uniformly find n R F such that n R n1. Let Gpe, xq be
a totalizer for R. Then by the Recursion Theorem, let e be such that

ϕepxq �

#
n1 if Gpe, 0q R F ,

maxF � 1 otherwise.

Then the number

n �

#
Gpe, 0q if Gpe, 0q R F ,

maxF � 1 otherwise.

is the desired number. Indeed, n R F since either n � maxF � 1 or n � Gpe, 0q if Gpe, 0q R F . In
the former case, n � maxF � 1 � ϕep0q R Gpe, 0q P F . So, n is R-equivalent to an element of F ,
so to n1. In the latter case, n � Gpe, 0q R ϕep0q � n1. �

Notice that the usual padding lemma for the standard numbering tϕeu of the partial computable
functions is a corollary of the previous result, as the equivalence relation, in x, y, ϕx � ϕy is easily
seen to be precomplete, see [23].

2.2. Examples of precomplete ceers. Recall that a partial computable function u is called
universal, if there exists a computable function fpe, xq such that ϕepxq � upfpe, xqq. By the
Padding Lemma for the numbering tϕeu, we can also assume that f is 1-1.

The following result is attributed in [12] to Lachlan.

Lemma 2.3. If u is a universal unary partial computable function then Su is precomplete.



6 U. ANDREWS, S. BADAEV, AND A. SORBI

Proof. If f witnesses that u is universal, and ϕepxq Ó, then u1pϕepxqq � upfpe, sqq, hence ϕepxq Su
fpe, xq, which shows that fpe, q is a totalizer for ϕe. �

Assume that first order Peano Arithmetic PA is Σ1-sound, and for every n ¥ 1 let Tnpvq, be a
Σn-truth predicate, i.e., for all Σn-sentences σ,

PA $ σ Ø Tnpxσyq

where x y is a suitable Gödel numbering for all sentences in the language of PA, and m denotes the
numeral term for the number m.

For every number x there is a Σ1-formula Fxpu, vq (in fact, Fxpu, vq :� F px, u, vq for some Σ1-
formula F ) representing ϕx in PA, i.e. such that

ϕxpnq � mô PA $ Fxpn,mq.

We may assume that for every number m, PA $ Fxpm, vq ^ Fxpm, v
1q Ñ v � v1.)

Define �n on ω by

xσyn �n xτ yn ô T $ σ Ø τ

where x yn is a suitable Gödel numbering identifying Σn sentences (which form an infinite c.e. set,
and therefore is a set computably isomorphic to ω) with numbers: notice that we use here x yn
instead of x y, as otherwise the domain of �n would be a proper subset of ω. Then �n is a
precomplete ceer. Given the relevance of this example, we sketch the proof of why�n is precomplete.

Theorem 2.4. �n is a precomplete ceer.

Proof. We limit ourselves to the case n � 1. Given a partial computable function ϕ, let F be a
representing Σ1 formula for the partial computable function ψ, where

ψpxσy1q �

#
xτ y, if ϕpxσy1qÓ� xτ y1,

Ò, if ϕpxσy1qÒ.

Define

fpmq � xpDvqrF pm, vq ^ T1pvqsy1.

(Notice that the formula pDvqrF pm, vq ^ T1pvqs is Σ1.) Assume now that ϕpxσy1qÓ� xτ y1, where σ
and τ are Σ1-sentences. Then

PA $ pDvqrF pxσy1, vq ^ T1pvqs Ø F pxσy1, xτ yq ^ T1pxτ yq.

But PA $ F pxσy1, xτ yq ^ T1pxτ yq Ø T1pxτ yq, and PA $ T1pxτ yq Ø τ , which implies that ϕpxσy1q �1

fpxσy1q. Thus, f is the desired computable function that makes ϕ total modulo �1. �

Other examples of precomplete ceers can be found in [32].

2.3. The first universality result. As already remarked in the introduction, one of the earliest
nontrivial universality results for ceers was pointed out by Ershov [12].

Theorem 2.5. If u is a universal unary partial computable function, then Su is universal.
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Proof. Let u be a universal function and let ϕ be a partial computable function. As we have
observed, we may suppose that there exists a 1-1 computable function g such that ϕepxq � gpxe, xyq.
Thus it is easy to see that there is a computable sequence fn of computable 1-1 functions such that
ϕn � u � fn. So, by the Recursion Theorem, let e be such that u � fe � fe � ϕ (take a fixed
point of a computable h, such that ϕhpeq � fe � ϕ). Let f � fe: then f � ϕ � u � f . Next, by
induction on n it is easy to see that for every n, f � ϕn � un � f . It follows that for every m,n, if
ϕmpxq Ó� ϕnpyq Ó then fpϕmpxqq Ó� fpϕnpyqqq Ó, thus umpfpxq Ó� unpfpyq Ó. On the other hand,
if umpfpxqq Ó� unpfpyqq Ó then fpϕmpxqq Ó� fpϕnpyqq Ó, and by injectivity, ϕmpxq Ó� ϕnpyq Ó.
This shows that f reduces Sϕ to Su. Since for every ceer R, there is a partial computable ϕ such
that R � Sϕ, we have proved that Su is universal. �

2.4. Precomplete ceers are isomorphic. The precomplete ceers form a single isomorphism
type, as shown by Lachlan [22].

Theorem 2.6 ([22]). If R,S are precomplete ceers then R is computably isomorphic to S, i.e.,
there exists a permutation h of ω which reduces R to S.

Proof. We can assume that every ceer R has approximations tRsu and tR̂su satisfying Lemma 1.4
and in addition:

Rs�1 �Rs � Hñ s� 1 odd

Ss�1 � Ss � Hñ s� 1 even.

Let R,S be precomplete ceers, with corresponding computable approximations tRsu and tSsu, as
above: R may change only at odd stages, and S may change only at even stages. (Although not
necessary, these additional properties of the approximations simplify the construction, since they
make sure that changes for R (respectively, S) may appear only at stages when we really deal with
R (respectively, S). In fact since all R- and S-equivalence classes are infinite, by Lemma 1.4 we
could even assume in this case that at each stage exactly one change happens when we deal with
the corresponding ceer.) Let F and G be injective totalizers for R and S respectively.

We will define two computable sequences a0, a1, . . . , as, . . . and b0, b1, . . . , bs, . . ., such that the as-
signment as ÞÑ bs (we say in this case that as and bs match) satisfies, for all i, j,

ai R aj ô bi S bj ,

and ω � tas : s P ωu � tbs : s P ωu. We start up with four numbers c0, c1, d0, d1 such that c0 ��R c1
and d0 �S d1.

By the Double Recursion Theorem, we will assume that we control indices e, z of partial computable
functions ϕe and ϕz. At the beginning of each stage s� 1, we assume that, for all i, j   s,

ai Rs aj ô bi Ss bj .

We use in the following the symbols e1, z1, e2, z2 to represent suitable new indices of ϕe and ϕz, by the
Padding Lemma. At stage s� 1 we say, for i   s, that raisRs is right available if there is a P raisRs
such that ϕe,spaq is undefined, and a already matches with a number chosen as b � Gpe1, aq P rbisSs ,
with ϕe � ϕe1 ; similarly, we say that rbisRs is left available if there is b P rbisRs such that ϕz,spbq is
undefined, and b already matches with some number chosen as a � F pz1, bq P raisRs , with ϕz � ϕz1 .
At the end of the stage, we define a new pair pas, bsq.

If ai and bi match, we assume by induction that either raisRs is right available or rbisRs is left
available.
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Step 0. ϕe,0piq and ϕz,0piq are undefined for all i.

Step s� 1. Distinguish whether s� 1 is odd or even:

s� 1 odd . Perform in the order the following actions:

(1) Suppose there are i   j such that ai and aj are R-collapsed at s�1. There are two subcases:
(a) at least one among raisRs and rajsRs is right available, say a P raisRs is such that

ϕe,spaq is undefined, and matches with b P rbisSs , of the form b � Gpe1, aq: then define
ϕepaq � bj . This has the effect that

bi S b � Gpe1, aq S ϕe1paq � ϕepaq � bj ;

(b) neither raisRs nor rajsRs is right available: then rbisSs and rbjsSs are both left available.
Say b P rbisSs , b

1 P rbjsSs are such that ϕz,spbq and ϕz,spb
1q are still undefined and

match with a � F pz1, bq P raisRs and a1 � F pz2, b1q P rajsRs , respectively: then define
ϕzpbq � c0, and ϕzpb

1q � c1. Using the fact that ϕz � ϕz1 � ϕz2 , this has the effect
that

c0 � ϕzpbq R F pz, bq � a R ai

c1 � ϕzpb
1q R F pz, b1q � a1 R aj ,

giving c0 R c1: this case cannot happen.
(2) Finally we define pas, bsq. Let as be the least number not in tai : i   su. Let e1 be an index

of ϕe chosen by the Padding Lemma and the injectivity of G to be such that

Gpe1, asq R
¤
i s

rbisSs ;

and define bs � Gpe1, asq. Now we check that the inductive assumption on availability still
holds: suppose we see that ai and aj are R-equivalent, and bi and bj need to be made S-
equivalent, thus we act by making ϕepaq � bj (where a P raisRs which is right available). If
the class raisRs�1YraisRs�1 fails to be right available, then rajsRs was not right available, so
rbjsSs was left available by the inductive hypothesis. Therefore, rbjsSs�1 is still left available.

Lastly, we check the inductive assumption for the new pair as, bs. Since we only define
ϕe in the operation above, since as is not in tai : i   su, we have ϕe,s�1pasq Ò. We chose bs
to make as right available.

s� 1 even. Perform the same steps, inverting the roles between the a’s and the b’s, and between F
and G.

It is easy to see that for every pair of numbers i, j,

ai R aj ô bi S bj

and ω � tai : i P ωu � tbi : i P ωu.

Finally, note that we always maintain injectivity when we add a new pair as, bs, and since at odd
stages, we enter the least missing number into the domain of the reduction, and at even stages we
enter the least missing number into the range of the reduction that this reduction is a permutation
of ω. �

Corollary 2.7 ([8]). Every precomplete ceer is universal.



SURVEY ON UNIVERSAL CEERS 9

Proof. By Lemma 2.3, Theorem 2.5, Theorem 2.6 and the fact that for ceers the property of being
universal is preserved by isomorphisms. �

The following is an interesting characterization of precomplete ceers.

Corollary 2.8. Every precomplete ceer R is equal to Sv for some universal function v.

Proof. Let R be a precomplete ceer and let Su be the precomplete ceer determined by a universal
function u. Then by Theorem 2.6, R and Su are isomorphic. So, let π be a permutation of ω
witnessing the isomorphism of R and Su. It is straightforward to check that v � π � u � π�1 is also
universal and that R � Sv. �

There are interesting extensions of Theorem 2.6, and of Corollary 2.7, due to Shavrukov [29].

Theorem 2.9 ([29]). The following hold:

(1) Any partial, and not onto monomorphism, induced by some partial computable function,
from a ceer R to a precomplete ceer S can be extended to a monomorphism.

(2) Any strictly partial, and not onto monomorphism, induced by some partial computable func-
tion, between precomplete ceers R can be extended to an isomorphism.

Proof. We briefly sketch only a proof for item (1), i.e. how to show that every partial, and not onto
monomorphism, from a ceer to a precomplete ceer, which is induced by some partial computable
function, can be extended to a monomorphism. To prove the second item, combine this extension
argument, with a back-and-forth argument in the style of Theorem 2.6, inserting, at odd stages,
pairs that guarantee surjectivity.

Let R,S be ceers so that S is precomplete. Let ϕ be a partial computable function inducing a partial
monomorphism from R to S. Suppose we are working with suitable computable approximations
tRsu and tSsu (as in Theorem 2.6) to R and S, respectively. Let F be an S-totalizer. We define
an assignment i ÞÑ bi, such that i R j if and only if bi S bj , and the corresponding monomorphism
extends the given partial one. By the Recursion Theorem we also assume that we control the partial
computable function ϕe. In the construction, at each stage s� 1, if i is least in its Rs-equivalence
class, then we assume by induction that ϕepiq is still undefined by the end of stage s, unless it has
been already defined as ϕepiq � ϕpiq, for the sake of extending ϕ; to this regard, note that if at
some stage we set ϕepiq � ϕpiq then we regard ϕepiq as already defined, even if ϕpiq does not as yet
converge, as we do so only for numbers i for which eventually i P domainpϕq.

Pick numbers b �S b1, with b, b1 R rrangepϕqsS . Such a pair of numbers exists, because we assume
that rrangepϕqsS � ω but, on the other hand, the complement of rrangepϕqsS can not be c.e. (see
for instance Lemma2.13 below which shows that each pair of distinct equivalence classes of a u.f.p.
ceer, and a fortiori of a precomplete ceer, is effectively inseparable).

Take bi � F pe, iq.

Step 0. Do nothing; ϕe,0piq is undefined for all i.

Step s� 1. We distinguish Cases 1. and 2., depending on whether s� 1 is odd or even:

(1) (s � 1 odd.) There are i   j such that i and j R-collapse at stage s � 1; assume i, j are
least in their Rs-equivalence classes:



10 U. ANDREWS, S. BADAEV, AND A. SORBI

(a) if ϕepjq is still undefined, then set ϕepjq � bi: since F is an S-totalizer, this will give
bi S bj , as bj � F pe, jq S ϕepjq � bi;

(b) otherwise already ϕepjq � ϕpjq: set ϕepiq � ϕpiq, unless it has been already defined
so; since ϕ induces a partial monomorphism, this fulfils the desired goal (notice that
ϕpiq may be still undefined, but eventually it will converge).

(2) (s � 1 even) There are i   j such that i and j are not as yet R-equivalent, but matching
bi, bj S-collapse:
(a) if ϕepiq and ϕepjq are still undefined, then let ϕepiq � b and ϕepiq � b1: this case cannot

happen, since F is an S-totalizer, and otherwise we would get b S bi S bj S b
1;

(b) if exactly one of ϕepiq and ϕepjq has been already defined, say ϕepiq � ϕpiq, then take
the other one and set it equal to b: in our example, set ϕepjq � b; again this case
cannot happen, since b R rrangepϕqsS ;

(c) if already ϕepiq � ϕpiq and ϕepjq � ϕpjq have been defined, then do nothing, as ϕ
induces a partial monomorphism.

Before leaving stage s � 1, we consider i such that ϕpiq converges for the first time, if any exists:
if ϕepiq has not already been defined, (otherwise it has been already stipulated that ϕepiq � ϕpiq),
then set ϕepiq � ϕpiq.

Notice that the induction assumption is being preserved. This ends the construction. We skip the
remaining details of the verification. �

Remark 2.10. By taking ϕ � H, the first item of Theorem 2.9 gives yet another proof of univer-
sality of precomplete ceers.

2.4.1. Historical remark. Universality of precomplete ceers was first proved by Bernardi and Sorbi
in [8] and appeared before [22]. The proof in [8] used the so-called Anti Diagonal Normalization
Theorem by Visser [32].

2.5. Uniformly finitely precomplete ceers. The ceer �PA is not precomplete because it has
a (total) diagonal function, for instance the function induced by the connective  : we denote this
function with the same symbol, namely  xσy � x σy. Therefore �PA does not satisfy the Ershov
Fixed Point Theorem, and thus it is not precomplete. However, although not precomplete, �PA
is “locally” precomplete, i.e., every partial computable function with finite range can be totalized
modulo �PA since there is some effectively found n ¥ 1 such that all sentences in the range of ϕ
are Σn, and thus we can totalize modulo �n. This is exactly what led Montagna to introduce the
u.f.p. ceers, see Definition 1.5(2).

Corollary 2.11. Every precomplete ceer is u.f.p. The relation �PA is u.f.p., so there are u.f.p.
ceers that are not precomplete.

Proof. The first statement is immediate from the definitions. In order to prove that �PA is u.f.p. use
the fact that, given a finite D and a sentence x, all sentences in DYtxu fall into some finite level Σn,
so that we can use a precompleteness totalizer Fnpe, xq of �n, using the fact that a totalizer for �n
can be found uniformly in n. Some caution should be taken, since �PA and �n refer to different
Gödel numbers. �

Lemma 2.12 (Fixed Point Theorem for u.f.p. equivalence relations). If R is u.f.p. then there
exists a computable function fixpD, eq such that, for all D, e,

ϕepfixpD, eqq ÓP rDsR ñ ϕepfixpD, eqq R fixpD, eq.
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Proof. Let fpD, e, xq be a totalizer of R, and let ϕu be so that for all x ϕupxq � ϕxpxq. Let spD, eq
be a computable function such that

ϕspD,eqpzq � ϕepfpD,u, zqq,

and let fixpD, eq � fpD,u, spD, eqq.

Suppose that ϕepfixpD, eqq ÓP rDsR. Then

ϕepfixpD, eqq � ϕepfpD,u, spD, eqqqq � ϕspD,eqpspD, eqq ÓP rDsR,

and ϕupspD, eqq R fpD,u, spD, eqq � fixpD, eq. �

Lemma 2.13. Every u.f.p. ceer is u.e.i.

Proof. Let R be a u.f.p. ceer, and let rasR, rbsR be two distinct equivalence classes. Given c.e. sets
Wu,Wv, define

ψpxq �

$&
%

b, if px PWuq ¨ px PWvq;
a, if px PWuq   px PWvq;
Ò otherwise

and let n � fixpta, bu, eq be a fixed point for ψ, given by u.f.p.-ness of R where e is an index of ψ.
It is clear that n R Wu YWv, if rasR � Wu, rbsR � Wv and Wu XWv � H. Since ψ is defined
uniformly in the tuple pa, b, u, vq, it is also clear that n � ppa, b, u, vq for some computable function
p. �

The following theorem will be superseded by Theorem 2.32 (via Lemma 2.13). However, in order
to become more acquainted with a useful proof technique, we include an outline of a direct proof
here, different from the original proof given by Montagna [25].

Theorem 2.14 ([25]). Every u.f.p. ceer is universal.

Proof. Let S be u.f.p. with totalizer f . As usual, we are assuming that S is nontrivial, and thus
fix a and b with a �S b. In order to show that S is universal, we fix an arbitrary ceer R with
0 ��R 1 and demonstrate that R ¤ S. By the Fixed Point Theorem, we assume that we control
the partial computable function ϕe. Define the computable sequence yi by y0 � a, y1 � b and
yi � fptyj | j   iu, e, iq for each i ¥ 2. By our choice of whether to make ϕepiq converge, we can
control whether yi and yj are S-equivalent. We show that R ¤ S via the function i ÞÑ yi. We will
ensure in the construction that if a number k is the least number in its R-equivalence class at stage
s, then ϕe,spkqÒ.

When we witness at an odd stage s� 1 (we assume that R and S are approximated as in the proof
of Theorem 2.6) that i R j for i � j with i and j being least in their respective Rs-equivalence
classes, and, say i   j, then we define ϕe,spjq � yi. As fp , e, q is a totalizer of ϕe, it must
occur that yj becomes S-equivalent to yi. Notice that i becomes the least number in the combined
Rs�1-equivalence class and, as promised, that we have not yet caused ϕepiq to converge.

At even stages s� 1, we ensure that S does not collapse yi to yj unless already i Rs j. We do this
by threat of forcing a contradiction via the Fixed Point Theorem. Suppose i and j are the least
numbers in their R-equivalence classes at an even stage s�1, and the S-classes of yi and yj become
S-equivalent at s� 1. Thus ϕe,spiqÒ and similarly ϕe,spjqÒ. We then will cause ϕe,s�1piqÓ� a and
ϕe,s�1pjqÓ� b, thus forcing that a S yi S yj R b contradicting that a �S b. Simply the threat of this
action ensures that at no stage will it happen that yi S yj but i��R j. �
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Definition 2.15. An extended diagonal function for an equivalence relation R is a computable
function d such that for every finite set D, we have that x��R dpDq for every x P D, i.e. dpDq R rDsR.

We observe:

Corollary 2.16 ([7]). Every u.f.p. ceer R with a diagonal function has an extended diagonal
function.

Proof. Let R be a u.f.p. ceer, with a diagonal function d, and let fpD, e, xq be a totalizer witnessing
that R is u.f.p. By the Recursion Theorem with parameters, let npDq be a computable function
such that

ϕnpDqpxq � dpfpD,npDq, xqq :

then gpDq � dpfpD,npDq, 0qq is total, and gpDq R rDsR: if dpfpD,npDq, 0qq P rDsR then ϕnpDqp0q P
rDsR, hence fpD,npDq, 0q R dpfpD,npDq, 0qq, contradiction. �

2.6. e-complete ceers. The ceer �PA has an interesting additional property which is captured by
the following definition, due to Montagna [25], and later independently rediscovered by Lachlan [22].
The equivalence relations described by this definition were called uniformly finitely m-complete by
Montagna [25], and extension complete (or, simply, e-complete) by Lachlan [22]. We adopt here
Lachlan’s terminology.

Definition 2.17. ([25],[22]) An equivalence relation S is e-complete if for every ceer R and every
pair of m-tuples pa1, . . . , amq, pb1, . . . , bmq such that the assignment ai ÞÑ bi induces a partial
monomorphism from R to S, one can extend the assignment (uniformly from the two tuples and an
index for R) to a computable function inducing a monomorphism. (Notice that uniformity extends
also to the case in which the assignment does not provide a partial monomorphism.)

Corollary 2.18. Every e-complete ceer is universal.

Proof. Obvious. �

2.7. e-complete ceers are isomorphic. Finally we show that alle e-complete ceers are isomor-
phic.

Theorem 2.19 ([25],[22]). The e-complete ceers are all isomorphic with each other.

Proof. Let R,S be e-complete ceers. To show isomorphism, one uses a straightforward back-and-
forth argument. We define an assignment as ÞÑ bs at stages as follows.

Step 0. Do nothing.

Step 2s� 1. Assume that we have already defined pai, biq for all i ¤ 2s� 1, so that ai R aj if and
only if bi S bj . Let a2s be the least such that a2s R tai : i ¤ 2s � 1u. By the uniform extension
property due to the fact that S is e-complete, we can uniformly extend the finite assignment which
has been defined so far, to a monomorphism, induced, say, by the computable function f . Then,
let b2s � fpa2sq.
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Step 2s � 2. Assume that we have already defined pai, biq for all i ¤ 2s, so that ai R aj if and
only if bi S bj . Let b2s�1 be the least such that b2s�1 R tbi : i ¤ 2su. By the uniform extension
property due to the fact that R is e-complete, we can uniformly extend the finite assignment which
has been defined so far, to a monomorphism, induced say, by the computable function g. Then, let
a2s�1 � gpb2s�1q. �

Theorem 2.20 ([25], [7]). A ceer R is e-complete if and only if R is u.f.p. and R has a diagonal
function.

Proof. Given the fact that all e-complete ceers are isomorphic, and that there exists a ceer that is
u.f.p. and with a diagonal function (namely, �PA), it is enough to show that every u.f.p. ceer R with
a total diagonal function, is e-complete as the property of being u.f.p. and having a total diagonal
function is invariant under computable isomorphisms. Now, by Corollary 2.16 this amounts to
show that every u.f.p. ceer R with an extended diagonal function, is e-complete.

To see this, let us see that if S is any ceer, and ai ÞÑ yi, for i   m induces a monomorphism from S
to R, then this assignment can be extended to a monomorphism. We can assume that ai � i. We
argue almost as in the proof of universality of u.f.p. ceers. We suppose to control, by the Recursion
Theorem, a partial computable function ϕe, and define (for i ¥ m),

yi � fptyj : j   iu Y tdptyj : j   iuqu, e, iq

where f is an R-totalizer, and by Corollary 2.16, d is an extended diagonal function. A distin-
guishing difference with the proof of Theorem 2.14 is how we prevent that yi R yj before we see
that i S j. If we see this happen at some stage, we simply define (assume i   j, and j is least in
its S-equivalence class at the stage, so that we assume by induction that ϕepjq is undefined at the
given stage) ϕepjq � dptyk : k   juq. Thus, as ϕepjq ÓP tyk : k   iu Y tdptyk : k   juqu,

dptyk : k   juq � ϕepjq R fptyk : k   ju Y tdptyk : k   juqu, e, jq � yj

giving a contradiction as now dptyk : k   juq R yi. �

Lemma 2.21. The ceer �PA is e-complete.

Proof. By Corollary 2.11 and the presence of a diagonal function. �

Notice that Peano Arithmetic provides examples of each one of the fundamental isomorphism types
we have seen so far: in fact �PA is e-complete, whereas for instance �1 is precomplete.

In contrast with the extension property for precomplete ceers pointed out in Theorem 2.9, and with
the purpose of better distinguishing precomplete ceers from e-complete ceers, Shavrukov [29] shows

Theorem 2.22 ([29]). For every e-complete E, there is a partial non-onto monomorphism that
can not be extended to an endomorphism of E.

Proof. Let E be e-complete, and P precomplete. We use Greek letters to denote morphisms. Let
κ : Id ÝÑ P , λ : P ÝÑ E be monomorphisms, and let η � λ � κ. Let θ : Id ÝÑ E be given,
induced by

tpxq � dpttp0q, tp1q, . . . , tpx� 1q, xuq

where d is an extended diagonal function for E.
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We claim that there is no endomorphism µ of E extending θ � η�1. Otherwise, if µ is such, let h
be a computable function inducing µ � λ. Then

δpxq � first y.rhpyqE tphpxqqs

is total and diagonal for P . For totality, notice that since µ extends θ � η�1, we have

θ � µ � η � µ � λ � κ,

thus rangeptq � rrangephqsE . The remaining claim, i.e., δpxq��P x follows easily. Indeed, given x,
first notice that tpxq��E x by definition of t; on the other hand, hpδpxqq E tphpxqq, by definition of
δ; but if x E δpxq then also hpxq E hpδpxqq, as h induces a morphism: contradiction. �

Corollary 2.23. If R is a u.f.p. ceer with a diagonal function then R has an automorphism without
fixed points.

Proof. Trivial since in this case R isomorphic to �PA, for which  induces an automorphism
without fixed points. �

About fixed points of endomorphisms, Shavrukov [29] has shown that every u.f.p. ceer possesses
endomorphisms with as many fixed points as we wish:

Theorem 2.24 ([29]). Let E be a u.f.p. ceer, and A a nonempty E-closed c.e. set. Then there is
a computable function h, inducing and endomorphism of E such that A � tx : x E hpxqu.

Proof. We may suppose without loss of generality that 0 P A. We define a computable function
hpiq � yi that induces an endomorphism whose fixed points are exactly the equivalence classes of
elements of A. In the rest of the proof, we say that a number is a fixed point if its equivalence class
is a fixed point for the endomorphism induced by h.

The number yi will be of the form

yi � fptyj : j   iu Y t0, iu, e, iq,

where f is an E-totalizer, and e is an index such that by the Recursion Theorem we control ϕe.
Since (by Lemma 2.13) the equivalence classes of E are infinite, we may suppose fpD, z, iq R t0, iu
for every D, z, i, and thus yi � 0, i for every i. At each stage, if i is least in its equivalence class and
we have not previously defined ϕepiq to be 0 or i, then assume by induction that ϕepiq is undefined.

We use approximations tEsu to E as in Lemma 1.4, with the additional feature that if Es�1rEs � H
then s � 1 � 3t � 1 for some t; and we use a computable approximation tAsu to A such that if
As�1 r As � H then s � 1 � 3t for some t, and As�1 r As � H is at most a singleton, and the
approximation starts from the empty set.

The construction is by stages: at stages of the form 3t we make sure that all numbers in A are
fixed points; at stages 3t� 1 we make sure that h eventually induces an endomorphism; at stages
3t� 2 we make sure that all fixed points are in A. At stage s ¡ 0 we act as follows:

Stage s � 3t. If i P As rAs�1, and ϕepiq is still undefined, define ϕepiq � i.

Stage s � 3t� 1. If i   j were least in their equivalence classes at stage s� 1 and they E-collapse
at stage s, then we act as follows: if ϕepjq is still undefined, define ϕepjq � yi; if ϕepjq has been
already defined (with ϕepjq P t0, ju), and if ϕepiq is still undefined, define ϕepiq � i.

Stage s � 3t � 2. If i and yi have become E-equivalent at the previous stage, and ϕepiq is still
undefined, then define ϕepiq � 0.
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Notice that our action at each stage preserves the inductive assumption that ϕepiq is still undefined
if i is least in its equivalence class, unless we define ϕepiq P t0, iu. When we define ϕepiq we make
ϕepiq P tyj : j   iu Y t0, iu so that ϕepiq E yi as f is a totalizer for E. We further observe that if
ϕepiq is defined and ϕepiq P t0, iu, then i P A and i is a fixed point: this is trivial if ϕepiq � 0; if
ϕepiq � i then either ϕepiq has been defined at a stage 3t, in which case the claim is trivial; or it
has been defined through the second clause of a stage 3t� 1. In this latter case, as f is a totalizer,
our definition ϕepiq � i makes i E yi; but ϕepjq P t0, ju (where j E i is the other number of the
pair on which we act at the stage) and thus by induction on the stage we may assume that j P A
which implies i P A as A is E-closed.

Let us now show that h induces a morphism. Assume that i E j, with i   j. Using that f is a
totalizer, we get yi E yj if we act on i, j at the stage s at which they are E-collapsed (we may again
assume that they were least in their E-equivalence classes immediately before E-collapse); if we do
not act on i, j , then both ϕepjq and ϕepiq have been already defined, and ϕepjq P t0, ju, ϕepiq P t0, iu,
which, as argued above, gives yj E j E i E yi.

Finally we show that j P A if and only if j is a fixed point. If we ever define ϕepjq P t0, ju, then
we have already seen that j P A and j is a fixed point. Suppose towards a contradiction that j
is least so that j P A but j is not a fixed point, or vice versa. So suppose that j P A (j E yi,
respectively) but we never get to define ϕepjq � j (ϕepjq � 0, respectively). This happens only if
at the appropriate stage 3t (3t � 2, respectively), when we would like to act correspondingly, we
see that ϕepjq has already been defined through the first clause of some step 3t� 1, say ϕepjq � yi
for some i   j with i E j. Since i E j, we have that i P A if and only if j P A and i is a fixed point
if and only if j is a fixed point. So, i   j contradicts the minimality of j. �

2.8. Uniformly effectively inseparable ceers. The main result of this section shows that every
u.e.i. ceer is universal. To this end, we introduce a class of ceers, the strongly uniformly m-complete
(strongly u.m.c.) ceers, and show, for any ceer R,

R u.e.i ñ R strongly u.m.c. ñ R universal.

Here is the definition of a strongly u.m.c. ceer. It is a strengthening of the definition of a uniformly
m-complete ceer given by Bernardi and Sorbi [8]. Namely, a nontrivial ceer R is uniformly m-
complete (abbreviated as u.m.c.) if for every ceer S and every assignment a0 ÞÑ b0, a1 ÞÑ b1 (also
denoted by pa0, a1q ÞÑ pb0, b1q) of numbers such that a0 �S a1 and b0 ��R b1, there exists a computable
function extending the assignment and reducing S to R. It is shown in [1, Proposition 3.13] that
not every u.m.c. is strongly u.m.c.

Definition 2.25. We say that a nontrivial ceer R is strongly u.m.c. if for every ceer S, every
assignment pa0, a1q ÞÑ pb0, b1q can be extended uniformly (in a0, a1, b0, b1q to a total computable
function f reducing S to R, provided that a0 �S a1 and b0 ��R b1. (Note that the uniformity extends
also to the cases a0 S a1 or b0 R b1; however, then no claim is made as to f reducing S to R.)

It immediately follows:

Corollary 2.26. Every strongly u.m.c. ceer is universal.

Proof. Straightforward. �

Now we aim to prove that
R u.e.i ñ R strongly u.m.c..
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For this we introduce yet another class of ceers, the weakly u.f.p. ceers, and show

R u.e.i ñ R is weakly u.f.p. ñ R strongly u.m.c..

Definition 2.27. We say that a nontrivial ceer R is weakly u.f.p. if there exists a total computable
function fpD, e, xq such that for every finite set D, where i��R j for every i, j P D, and every e, x,

ϕepxqÓP rDsR ñ ϕepxq R fpD, e, xq.

Note that the definition differs from that of a u.f.p. ceer in that f need only satisfy the condition
when i��R j for every i, j P D. Clearly

Corollary 2.28. Every u.f.p. ceer is weakly u.f.p.

Proof. Immediate. �

A restriction of the definition is the following:

Definition 2.29. We call a nontrivial ceer weakly n-u.f.p. if in the definition for weakly u.f.p., we
replace “finite set D” with “finite set D where |D| ¤ n”.

Lemma 2.30. Each u.e.i. ceer is weakly u.f.p.

Proof. Let R be a u.e.i. ceer. We first prove that R is weakly 2-u.f.p. To this end, assume that R
is u.e.i. via the uniform productive function ppa, b, u, vq as in Definition 1.5(3). We argue that R
is weakly 2-u.f.p. Given any a � b, and e, we uniformly build a function fpxq � fpta, bu, e, xq
witnessing that R is 2-u.f.p. Note that if a � b then we can let f be the constant function with
output a. By the Double Recursion Theorem with parameters we build Wax ,Wbx for computable
sequences of indices taxuxPω, tbxuxPω, where the sequence is known to us during the construction.

Let fpxq � ppax, bxq, where for simplicity we denote ppa, b, , q by pp , q. Clearly f is a total
computable function. Fix x, and let

Wax �

#
rasR, if ϕepxq��R b

rasR Y tppax, bxqu, if ϕepxq R b,

Wbx �

#
rbsR, if ϕepxq��R a

rbsR Y tppax, bxqu, if ϕepxq R a.

Now assume that a ��R b, and fix e, x such that ϕepxq ÓP rasR Y rbsR. Without loss of generality
suppose ϕepxq R a. If fpxq��R a then WaxXWbx � H and ppax, bxq PWaxYWbx , which contradicts p
being a productive function.

Next, we show that if R is weakly 2-u.f.p. then R is weakly u.f.p. To this end, let fi be a computable
function witnessing that R is weakly i-u.f.p., for 2 ¤ i ¤ n. We describe how to effectively get a
function fn�1 witnessing that R is weakly n� 1-u.f.p. Let e,D be given, with |D| � i. If i ¡ n� 1
or i ¤ 0 then fn�1pD, e, xq outputs 0 for every x; if 1 ¤ i ¤ n then fn�1pD, e, xq � fipD, e, xq for
every x. We assume now D � td0, . . . , dnu. By the Double Recursion Theorem, assume that we
build ϕa and ϕb for some a, b. Let Ex � tfnpD r tdnu, a, xq, dnu, and fn�1pD, e, xq � f2pEx, b, xq.

Here is how we compute ϕapxq and ϕbpxq. Initially both values are undefined. Step by step, we see
which of the following cases happens first:


 ϕepxqÓR dn: define ϕbpxq � dn.



SURVEY ON UNIVERSAL CEERS 17


 ϕepxqÓR di for some i   n: define ϕbpxq � fnpD r tdnu, a, xq and ϕapxq � ϕepxq.

 fnpD r tdnu, a, xq R dn: define ϕapxq � d0.

Clearly fn�1 is a total computable function, whose index can be found effectively in the indices
for f2, . . . , fn, using the fact that the fixed points in the Double Recursion Theorem can be found
effectively from the parameters.

In order to see that fn�1 witnesses that R is weakly n�1-u.f.p., fix e,D, x such that D � td0, . . . , dnu
where di ��R dj for every pair i � j, and ϕepxq ÓR di for some i ¤ n. First we claim that fnpD r
tdnu, a, xq��R dn: otherwise, by construction we would set ϕapxq � d0 unless it has previously been
defined to be ϕepxq R di, for some i   n. In either case we have ϕapxq R di for some i   n, which
implies that dn R fnpD r tdnu, a, xq R di, a contradiction.

We have thus that Ex consists of two elements that are not R-equivalent. Since ϕbpxq is defined
only when ϕepxq converges, it is straightforward to see that fn�1pD, e, xq R ϕepxq. �

In the proof of Lemma 2.31 below we will use a computable infinite sequence of fixed points. This
means that we wish to have an infinite sequence teiuiPω so that we control each ϕei simultaneously.
This can be done by the usual fixed point theorem, which gives us a single ϕe which we control.
We simply let ei be an index so that ϕeipxq � ϕepxi, xyq. Then by constructing the single function
ϕe which we control, we simultaneously construct the infinite sequence of functions tϕeiuiPω. Of
course, given the single index e we can computably list the infinite sequence teiuiPω.

Lemma 2.31. Each weakly u.f.p. ceer is strongly u.m.c.

Proof. We only sketch the proof, which is rather difficult. For a full and rigorous proof see [1].

Assume that R is a weakly u.f.p. ceer, as witnessed by the computable function f . In order to show
that R is strongly u.m.c., we show in fact that for every ceer S, every assignment p0, 1q ÞÑ pa0, a1q
can be extended, uniformly in a0, a1, to a total computable function inducing a reduction from S
to R, provided that 0 �S 1 and a0 ��R a1. (Uniformity extends also to the cases in which 0 S 1, or
a0 R a1.)

Notice that it is no loss of generality considering an assignment p0, 1q ÞÑ pa0, a1q, instead of
pa10, a

1
1q ÞÑ pa0, a1q: indeed, given S and pa10, a

1
1q ÞÑ pa0, a1q, one can consider the ceer S1 and

the new assignment p0, 1q ÞÑ pa0, a1q, where we have picked a computable permutation g of ω with
gpiq � a1i, for all i ¤ 1, and we have defined x S1 y if and only if gpxq S gpyq. Clearly, we can extend
the new assignment to a reduction of S1 to R if and only if we can extend the original assignment
to a reduction of S to R.

Our goal (under the assumption that 0 �S 1, and a0 ��R a1) is to extend this assignment to a
total computable function yielding a reduction, by specifying a computable sequence of points
py2, y3, . . . q (we let y0 � a0, y1 � a1) where for every pair i   k such that k ¡ 1, we can force yk to
R-collapse to yi, i.e., to have yk R yi. The idea would be of course to mimic the proof that every
u.f.p. is universal, and just define yi � fptyj : j   iu, e, iq, where e is some index that we control
by the Recursion Theorem. But, totalizers for R work only if the elements of D are pairwise R-
inequivalent. Thus, if we defined yi � fptyj : j   iu, e, iq, and then we see 0 S 2 so we force y2 R y0
by making ϕep2q Ó� 0, then we would no longer be able to cause yk to collapse to yi (i   k) for
any k ¡ 2, because the set tyj : j   ku is no longer comprised of pairwise R-inequivalent elements.
So the proof and the definition of yi become more complicated.
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By the Recursion Theorem we assume that we control ϕei for a computable sequence teiuiPω of
indices.

We define computable arrays txki , ynui,k,nPω, in the following way:


 xk0 � fpta0, a1u, e1, kq;

 yk � fptxk1, . . . , x

k
k�1u Y tx

2k
0 u, e2k, 0q;


 xki � fptyi, x
2i�1
0 u, e2i�1, kq (for i ¡ 0).

There are three possible problems which could occur, and make it impossible to use the properties
of the totalizer: we call them Problem a1, Problem a2, Problem b, abbreviated as Pa1, Pa2, Pb
respectively:

Pa1: we will get x2k0 R xki , for some 1 ¤ i ¤ k � 1;
Pa2: we will get xkr R xkj , for some distinct r, j, 1 ¤ r, j ¤ k � 1;

Pb: we will get yi R x2k�1
0 .

Even if we define ϕe2kp0q P tx
k
1, . . . , x

k
k�1u Y tx

2k
0 u, Pa1 and Pa2 make it impossible to guarantee

that ϕe2kp0q R yk, as the finite set in the totalizer contains R-equivalent elements. Likewise, Pb
makes it impossible to guarantee that ϕe2i�1pkq R xki even if we define ϕe2i�1pkq P tyi, x

2i�1
0 u.

Identifications. We now explain how to get yi R yk, when we see i S k. Suppose we want to
R-collapse yk to yi, with i   k, because we see i S k; we may also assume that i and k are least
in their current S-equivalence classes, and for all j1, j   k, we currently have j1 S j if and only if
yj1 R yj :

(1) if i ¤ 1, then identify yk with x2k0 by defining ϕe2kp0q � x2k0 : if all the elements in the set
txk1, . . . , x

k
k�1u Y tx

2k
0 u are pairwise R-non-equivalent, then from the totalizer we get

x2k0 � ϕe2kp0q R fptxk1, . . . , x
k
k�1u Y tx

2k
0 u, e2k, 0q � yk

(possible problems for this are of type Pa1 or Pa2: we will see how to prevent them); and
then identify x2k0 with ai, by defining ϕe1p2kq � ai; as f is a totalizer and problems do not
occur, this guarantees x2k0 R ai;

(2) if i ¡ 1, then identify yk with xki by defining ϕe2kp0q � xki (possible problems are again of
type Pa1 or Pa2: we will see how to prevent them) and then identify xki with yi, by defining
ϕe2i�1pkq � yi, (with possible problem Pb: we will see how to prevent it): if problems do
not occur, then we achieve the desired R-collapses, using the fact that f is a totalizer.

We summarize the above actions with the following schemes: aÝÑb denotes that we identify a with
b; a ÝÑ

P
b denotes that in the identification we encounter a problem of type P . So (1) and (2)

above are schematized as

pi ¤ 1q yk ÝÑ
PPtPa1,Pa2u

x2k0 ÝÑ ai

pi ¡ 1q yk ÝÑ
PPtPa1,Pa2u

xki ÝÑ
Pb

yi.

Problems and their solutions. We indicate how to prevent problems from occurring. For this, we
need more dientifications:
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Pa1: x
2k
0 R xki . Solution:

xki ÝÑ
Pb

x2i�1
0 ÝÑ a0

x2k0 ÝÑ a1;

The actions for the identifications are the following:

xki ÝÑ x2i�1
0 : define ϕe2i�1pkq � x2i�1

0 ;

x2i�1
0 ÝÑ a0: define ϕe1p2i� 1q � a0;
x2k0 ÝÑ a1: define ϕe1p2kq � a1;

Pa2: x
k
r R xkj . Solution:

xkr ÝÑ
Pb

x2r�1
0 ÝÑ a0

xkj ÝÑ
Pb

x2j�1
0 ÝÑ a1;

The actions for the identifications are the following

xkr ÝÑ x2r�1
0 : define ϕe2r�1pkq � x2r�1

0 ;

x2r�1
0 ÝÑ a0: define ϕe1p2r � 1q � a0;

xkj ÝÑ x2j�1
0 : define ϕe2j�1pkq � x2j�1

0 ;

x2j�1
0 ÝÑ a1: define ϕe1p2j � 1q � a1.

Pb: yi R x2i�1
0 . Solution:

yi ÝÑ
PPtPa1,Pa2u

x2i0 ÝÑ a0

x2i�1
0 ÝÑ a1.

The actions for the identifications are the following

yi ÝÑ x2i�1
0 : define ϕe2ip0q � x2i0 ;

x2i0 ÝÑ a0: define ϕe1p2iq � a0;

x2i�1
0 ÝÑ a1: define ϕe1p2i� 1q � a1.

What really happens? When we see some collapse which prevents us from using the properties of
the totalizer, we threaten to start two parallel lines of successive identifications which propagate
R and end respectively with a0 and a1: since the two starting elements of these two lines are
(against our wishes) R-equivalent, we could conclude that a0 R a1, a contradiction. So, in fact, the
unwanted collapse does not happen. We call threatening action, any identification in these virtual
lines of identifications. Therefore we can conclude that we are able to R-collapse yk to yi, when we
see that i S k. The difficult part of the verification consists in showing that we are always able to
identify when we want to do so, i.e. the relevant values ϕepjq of the involved partial computable
functions are still undefined. To show this, one can use the following facts:

i. we are always able to make new definitions when we work with a k least in its current
S-equivalence class: we assume by induction at the beginning of the stage, that the values
ϕe1pkq, ϕe2kp0q, ϕe2i�1pkq are still undefined;

ii. problems alternate, i.e. the sequence of problems is such that Pa1 or Pa2 is either the last
problem to occur, or it is followed by Pb; and Pb is either the last problem to occur, or it is
followed by Pa1 or Pa2 ;
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iii. when we face problem Pb, we introduce a yj with smaller j; notice that j need not be
the least in its current equivalence class: in this case we continue with yj1 with j1 least in
its current S-equivalence class (as, j1, j   k, we currently have that j1 S j if and only if
yj1 R yj);

iv. no threatening action does in fact take place, so no problem does in fact take place, so no
new definitions of values ϕepjq involved in threatening actions do in fact take place; hence
the inductive assumptions relative to values of various ϕe being undefined at the beginning
of the current stage is preserved;

v. no new definitions are in fact ever made for the elements corresponding to y1 in the array,
so we are always virtually able, once we bump into y1 in a threatening action, to end the
threatening line with a0 or a1 as we wish.

With the same trick, i.e. of threatening to force a contradiction via suitable identifications, we
argue that there is never any unwanted R-collapse between some yi and yk, in fact we never see yk
to R-collapse to yi, before we see k and i S-collapse. �

It is now possible to close the circle, and show:

Theorem 2.32. The following properties are equivalent for ceers:

(i) u.e.i.
(ii) weakly u.f.p.

(iii) strongly u.m.c.

Proof. For the proof, we just need the following lemma. �

Lemma 2.33. Every strongly u.m.c. ceer is u.e.i.

Proof. Let R be a strongly u.m.c. ceer. Let U, V be a fixed pair of e.i. sets, and define S to be
the ceer in which U and V are the only two nontrivial equivalence classes. Fix u P U , v P V , and
given a, b, consider the assignment pu, vq ÞÑ pa, bq. Using the fact that R is strongly u.m.c., one
can uniformly extend this assignment to a computable function fa,b. If rasR X rbsR � H, then fa,b
uniformly m-reduces the e.i. pair pU, V q to the pair prasR, rbsRq, showing that the latter is e.i. (for
this property of e.i. pairs, see, e.g., [28]). The fact that R is u.e.i. follows from the uniformity in
this argument. �

Remark 2.34. Uniformity plays a crucial role in the proof of universality for the u.e.i. ceers.
Recent work has in fact shown ([1]) that there exist ceers yielding a partition of ω into effectively
inseparable equivalence classes but they are not u.e.i. In fact the index set of the u.e.i. ceers is
Σ0
3-complete ([1]), but the index set of the effectively inseparable ceers is Π0

4-complete ([2]).

2.9. Summarizing. Corollary 2.35 below subsumes all universality results known in the literature,
including: every creative set is m-complete (Myhill [26]); every pair of effectively inseparable sets
is m-complete (Smullyan [30]); all creative sequences are m-complete (Cleave [9]).

Corollary 2.35. Every u.e.i. ceer is universal.

Proof. Immediate by Theorem 2.32, as every strongly u.m.c. (or even u.m.c.) ceer is clearly univer-
sal: if R is a u.m.c. ceer, and S is any ceer with two distinct equivalence classes, then start off with
an assignment pa10, a

1
1q ÞÑ pa0, a1q with a10 �S a11 and a0 ��R a1, and extend it to a full reduction. �
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Corollary 2.36. A ceer R is universal if and only if there exists a u.e.i. ceer S with S ¤ R.

Proof. If R is universal and S is u.e.i., then trivially S ¤ R. Conversely, if S is u.e.i. and S ¤ R,
then R is universal, since so is S, by Corollary 2.35. �

Corollary 2.37. A ceer R is universal if and only if there is a c.e. set X � ω which is R-closed
(i.e. so that x R y and x P X implies y P X) and XR is u.e.i. where XR � tpi, jq : xi R xju for a
computable enumeration X � txi : i P ωu.

Proof. If R is universal, then let S be u.e.i. with S ¤ R via a reduction f . Then let X �
tx : pDy, cqrx R y& y � fpcqsu. Then X is chosen to have the property that x R y and x P X
implies y P X. We now show that XR is u.e.i. Given any two numbers i, j, let ci, cj be so that
fpciq R xi and fpcjq R xj . For any r.e. set U , let U0 be the set tx : pDyqrfpxq R y& y P U su.
If p is a uniform productive function for S, then the function P pi, j, U, V q � i, where i is so that
xi � fpppci, cj , U0, V0qq, is a uniform productive function for XR.

Conversely, it is clear that XR ¤ R via the function fpiq � xi. Thus if XR is u.e.i., it is universal,
and thus R is universal. �

3. u.f.p. ceers which are neither precomplete nor e-complete

Precomplete ceers and e-complete ceers are not however the only ceers in the class of u.f.p. ceers.

Definition 3.1. [4] An equivalence relation E is weakly precomplete if there exists a partial com-
putable function fix such that, for all e,

ϕe total ñ rfixpeqÓ &ϕepfixpeqq E fixpeqs.

Clearly, a ceer E is weakly precomplete if and only if E has no computable diagonal function.

The following theorem and its corollary showing that there are infinitely many non-isomorphic
u.f.p. ceers are taken from [5].

Theorem 3.2. If E is a ceer, such that E has an extended diagonal function, then there exist
infinitely many ceers tEi : i P ωu such that, for every i, j,

E � Ei & ri � j ñ Ei � Ejs,

where � denotes isomorphism.

Proof. Let E be a given ceer, such that E has an extended diagonal function d.

We want to construct a countable set tEi : i P ωu of ceers such that for every i, E � Ei, satisfying
the following requirement for each i, j, k, with i � j,

Pi,j,k : ϕk is total ñ ϕk does not induce an isomorphism from Ei onto Ej .

Satisfaction of all requirements implies our claim, as for every isomorphism there is a total com-
putable function inducing it.

We outline the strategy to meet Pi,j,k in isolation, which is of course implemented at certain stages
s: hence Ei and Ej have to be understood as their approximations Esi and Esj , respectively, and in

particular at each such stage, ra0sEi is a finite set:
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(1) choose a witness b0 using the extended diagonal function to be E-inequivalent to every
number mentioned so far;

(2) wait for a number a0 such that ϕkpa0qÓEj b0;
(3) let a1 � dpra0sEiq, and wait for ϕkpa1qÓ;
(4) if, say, ϕkpa1q � b1 then Ej-collapse b0 and b1, and restrain a0 ��Ei a1.

Outcomes for the strategy to meet Pi,j,k. Here are the outcomes of the strategy:

(i) if we wait forever at (2), then we meet Pi,j,k since ϕk, even if total, does not induce an onto
morphism;

(ii) if we wait forever at (3), then we win Pi,j,k since ϕk is not total;
(iii) if we act in (4), then we win Pi,j,k since ϕk, even if total, does not induce a monomorphism.

The strategies can be combined by a finite priority argument. The critical part of the verification
is that since b0 is always chosen to be E-inequivalent to any number mentioned so far, and since
each requirement is re-initialized if a higher-priority requirement acts, any collapse caused by the
requirement Ri,j,k cannot collapse together the elements a0 and a1 of a higher priority requirement.

�

Corollary 3.3. There exist infinitely many weakly precomplete non-isomorphic u.f.p. ceers.

Proof. Take E ��PA in the previous theorem, and use the fact that the u.f.p. ceers coincide with
the nontrivial quotients of any e-complete ceer. �

4. Separating u.e.i. ceers from u.f.p. ceers

The u.f.p. ceers are properly contained in the class of u.e.i. ceers, as shown by Andrews and
Sorbi [3]:

Theorem 4.1. [3] There is a u.e.i. ceer which is not u.f.p.

Proof. See [3]. �

In the same paper they show that in a sense, little is missing for a u.e.i. ceer to be u.f.p.

Theorem 4.2. [3] If a u.e.i. ceer has an extended diagonal function then it is u.f.p.

Proof. See [3]. �

The following picture summarizes the inclusion relationships between the classes of universal ceers,
which we have introduced so far. The u.m.c. ceers have been defined at the beginning of Subsec-
tion 2.8.

All the inclusions shown by the picture are proper, by the above results. Not all universal ceers of
course appear in one of these classes. For instance if R is a universal ceer then clearly R ` Id1 is
universal but not u.m.c., where R` Id1 is the ceer which collapses all odd numbers, and 2x R` Id1

2y if and only if x R y.

The following result by Nies and Sorbi [27] shows that the class of u.e.i. contains interesting
mathematical objects.

Theorem 4.3 ([27]). There is a finitely presented group D such that �D is a u.e.i. ceer.
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u.e.i.=weakly u.f.p.=strongly u.m.c.

u.f.p.=quotients of ∼PA

e-complete

u.m.c

single isomorphism types

precomplete

Figure 1. Some classes of universal ceers

Proof. See [27]. �

5. A characterization of the universal ceers through a jump operation

In this section, we look at a jump operation on ceers (due to [19]), and show that the universal
ceers are exactly the ceers which are fixed points (modulo the equivalence) for this operation.

Definition 5.1. [19] For any ceer R, we define the jump of R to be the ceer R 1 so that x R 1 y if
and only if x � y or ϕxpxq Ó, ϕypyq Ó, and ϕxpxq R ϕypyq.

Notice that pId1q
1 � RK , that is the equivalence relation having the halting set K as its unique

nontrivial equivalence class, and pIdq 1 is the ceer yielding the partition tKi : i P ωuYttxu : x R Ku,
where Ki � tx : ϕxpxqÓ� iu.

Lemma 5.2. The following properties hold:

(1) R ¤ R 1;
(2) R ¤ S ô R 1 ¤ S 1;
(3) If R is not universal then R 1 is not universal.

Proof. (1) For every i, we can effectively find a number xi so that ϕxipxiq � i. By the Padding
Lemma we may assume that the sequence pxiq is injective. Then the map i ÞÑ xi is a reduction of
R to R 1.

(2) Suppose R ¤ S via the function f . Given an index i, we can effectively find an index xi so that
if ϕipiq Ó, then ϕxipxiq Ó� fpϕipiqq: as before we may assume that the sequence pxiq is injective.
Then the map i ÞÑ xi gives a reduction of R 1 to S 1.
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Suppose R 1 ¤ S 1 via g. We first claim that for each x, if ϕxpxq Ó then ϕgpxqpgpxqq Ó. Otherwise,

we would have that the S 1-class of gpxq consists of a single element. But then the R 1-class of x
would be computable. But this is the set Kr, for ϕxpxq � r. It is a standard result that the set
Kr is a complete c.e. set for any r. Thus we conclude that if ϕxpxq Ó then ϕgpxqpgpxqq Ó. Now,
consider the map i ÞÑ yi given by taking xi so that ϕxipxiq � i and letting yi � ϕgpxiqpgpxiqq. This
is well-defined and gives a reduction of R to S.

(3) Suppose R 1 is universal. Then for any X, we have that X 1 ¤ R 1. Thus, we have that X ¤ R.
Thus R is universal as well. �

Note that (2) shows that the jump is an operation on degrees of ceers (where the degree of an
equivalence relation is the equivalence class of the relation under the equivalence relation � given
by R � S if and only if R ¤ S and S ¤ R). Also, unlike most things called a jump, we can have
R 1 � R, for example if R is universal. Gao and Gerdes posed the question (Problem 10.2 of [19])
of whether there are non-universal ceers R so that R 1 � R.

Theorem 5.3. For every ceer E, if E 1 ¤ E then E is universal.

Proof. We sketch the proof. The reader interested in details is invited to read the paper [1].

Assume that h is a computable function that reduces E 1 to E. Let R be any ceer, with computable
approximations tRs : s P ωu to R and tEs : s P ωu to E, as in Theorem 2.6: tRsu may collapse
equivalence classes only at odd stages, and tEsu may collapse equivalence classes only at even
stages, and they both collapse at most two equivalence class at any stage when they do so. We aim
to show that R ¤ E.

We first outline the idea of the proof through a particular example. We use an infinite computable
sequence of indices e0, e1, . . ., which we control. Eventually we define gpiq � hpeiq, and show

i R j ô ei E
1 ejpô hpeiq E hpejqq

i.e., g reduces R to E. Our choice of these indices will make us able to E 1-collapse any pair of them
as needed. Suppose for instance that we want to make e0 E

1 e1 because we see at some point that
0 R 1. The basic module for this is the following:

(1) Keep ϕe0pe0q and ϕe1pe1q undefined until we see 0 R 1.
(2) Define ϕe0pe0q � ϕe1pe1q � hpe1q for another suitably chosen fixed point e1 (while keeping

ϕe1pe
1qÒ).

Suppose that even later we want to E 1-collapse e1 and e2:

(1) Keep ϕe1pe
1q and ϕe2pe2q undefined, until 1 R 2.

(2) Define ϕe2pe2q � hpe2q and ϕe1pe
1q � ϕe2pe

2q � hpe3q (while keeping ϕe3pe
3q Ò), where e2

and e3 are further suitably chosen fixed points.

But this implies e1 E
1 e2, as follows from the sequence of implications

ϕe1pe
1qÓ� ϕe2pe

2qÓñ e1 E 1 e2 ñ hpe1q E hpe2q ñ e1 E
1 e2.

Care must be taken (by carefully controlling convergence of the various computations ϕepeq), to
collapse only what we need to collapse. In particular, if we were to see an E-collapse of say, hpeiq
and hpejq, without having i R j, then we would stop the construction leaving certain computations
divergent, thus forcing a contradiction (exploiting the fact that if u � v and ϕupuq and ϕvpvq do
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not converge, then u��E 1 v, and thus hpuq��E hpvq): therefore E cannot cause this collapse before
seeing i R j.

If D is a finite set, and n is a number, then xD,ny denotes the code xu, ny where u is the canonical
index of D. A pair α � xD,ny, with D � H, will be called a node: We sometimes denote the
components of a node α by Dα and nα. As in the proof of Lemma 2.31, we will use an infinite
computable sequence of indices teα : α nodeu which we control.

It might be instructive to see how the two-step example above is formally implemented.

(1) Keep ϕext0u,0ypext0u,0yq and ϕext1u,0ypext1u,0yq undefined, until we see 0 R 1.

(2) Define

ϕext0u,0ypext0u,0yq � ϕext1u,0ypext1u,0yq � hpext0,1u,1yq,

still keeping ϕext0,1u,1yppext0,1u,1yq undefined (notice that t0u and t1u merge into t0, 1u) so

that, in the two-step example above, we take e0 � ext0u,0y, e1 � ext1u,0y, and e1 � ext0,1u,1y.

Suppose that even later we want to E 1-collapse e1 and e2 � ext2u,0y:

(1) Keep ϕext0,1u,1ypext0,1u,1yq and ϕext2u,0ypext2u,0yq undefined, until 1 R 2.

(2) Define ϕext2u,0ypext2u,0yq � hpext2u,1yq, and set

ϕext2u,1ypext2u,1yq � ϕext0,1u,1ypext0,1u,1yq � hpet0,1,2u,2yq.

Thus, taking e2 � ext2u,1y, and e3 � ext0,1,2u,2y we have that ϕe2pe2q � hpe2q and ϕe1pe
1q �

ϕe2pe
2q � hpe3q (still keeping ϕe3pe

3q Ò). (Notice, since we want to merge t2u and t0, 1u
into t0, 1, 2u, and since the node α � xt0, 1u, 1y has level 1, i.e., nα � 1, we first transform
xt2u, 0y into a node xt2u, 1y with level 1: this transformation procedure is an instance of
what is later called synchronization procedure).

We see that the desired numbers ei are taken to be ei � extiu,0y.

We now try to be more formal. We say that a node β is a parent at stage s of a node α, if
nα � nβ � 1, and at s ϕeβ peβq is defined, and ϕeβ peβq Ó� hpeαq. The construction will make sure
that every node has at most two parents. A node α has only one parent β if α is the result of a
definition due to the synchronization procedure, described in more detail below, in which case we
have α � xDβ, nβ � 1y and ϕeβ peβq � hpeαq.

Given a node α, let Tα be the finite tree (depending on the stage), defined as the smallest set of
nodes such that: (1) α P Tα; (2) if β P Tα and γ is a parent of β, then γ P Tα.

A node α is realized at stage s if Dα is a singleton, or α has a parent: the idea is that if α is
realized, but ϕeαpeαq is still undefined, then Dα is an Rs-equivalence class: if at some later stage,
R collapses Dα with another block Dβ, relative to a similarly already realized β, with ϕeβ peβq still
undefined, then we will define

(:) ϕeαpeαq � ϕeβ peβq � hpexDαYDβ ,n�1yq,

so that xDα Y Dβ, n � 1y becomes realized. To facilitate the construction and the verification of
the two following lemmas, we do this only if nα � nβ: for this, we may employ at the stage the
synchronization procedure: if, say, nα   nβ, then for every i with nα ¤ i   nβ � 1, define,

ϕexDα,iypexDα,iyq � hpexDα,i�1yq.
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The two basic lemmas (which refer to the current stage s, at which computations and approxima-
tions are taken), are:

Lemma 5.4. Let α be a realized node, with nα � n. For every i ¤ n, for every β, γ P Tα, if
nβ � nγ � i then hpeβq E hpeγq.

Proof. We may assume n ¡ 0, otherwise the claim is trivial. We will prove the claim by reverse
induction. Assume i � n: the only node β P Tα with nβ � n is α. Thus the claim trivially holds
for i � n.

Suppose that the claim is true of i, with 0   i, and let us show it for i� 1: For every node γ P Tα
with nγ � i � 1, there is a node β P Tα with nβ � i such that ϕeγ peγq � hpeβq. But by the
inductive assumption, all the nodes β with nβ � i are such that the corresponding values hpeβq are
all E-equivalent, hence if γ, δ are nodes such that nγ � nδ � i� 1, we have that eγ E

1 eδ and thus
hpeγq E hpeδq. �

Lemma 5.5. If α and β are distinct realized nodes, with nα � nβ � n such that ϕeαpeαq and

ϕeβ peβq are undefined, then, for every γ P Tα, and δ P Tβ such that nγ � nδ, we have that eγ ��E
1 eδ.

Proof. By hypothesis we have ϕeαpeαqÒ and ϕeβ peβqÒ. So the claim is true of i � n since eα��E 1 eβ.
Suppose now that the claim is true of 0   i ¤ n, and let γ P Tα and δ P Tβ be such that
nγ � nδ � i� 1. Then there are γ1 P Tα and δ1 P Tβ such that nγ1 � nδ1 � i, and ϕeγ peγq � hpeγ1q,

and ϕeδpeδq � hpeδ1q. By induction, eγ1 ��E
1 eδ1 , so hpeγ1q��E hpeδ1q, and thus we may conclude that

eγ ��E
1 eδ. �

Construction. The construction can be sketched as follows:

(1) code R into E through suitable convergent computations, as described in the equation (:):
if we see for the first time i R j, then pick α, β so that xtiu, 0y P Tα, xtju, 0y P Tβ, α, β are
realized, and ϕeαpeαq and ϕeβ peβq are still undefined (via synchronization, we may assume
that nα � nβ), and define ϕeαpeαq � ϕeβ peβq � hpexDαYDβ ,n�1y). This is implemented at
odd stages, the only ones at which R can collapse. Use Lemma 5.4 to show that the values
gpiq � hpxetiu,0yq and gpiq � hpxetiu,0yq satisfy that gpiq E gpjq;

(2) prevent bad situations, at any stage, of the form hpextau,0yq E hpextbu,0yq but a ��R b, by
threatening to leave certain computations undefined: this is implemented at even stages,
the only ones at which E can collapse. In particular, if we see hpextau,0yq E hpextbu,0yq, but

a��R b, then we pick α, β so that xtau, 0y P Tα, xtbu, 0y P Tβ, α, β are realized, and ϕeαpeαq
and ϕeβ peβq are still undefined (via synchronization, we may assume that nα � nβ). We
then stop the construction and ensure that ϕeαpeαq and ϕeβ peβq remain undefined forever.
By Lemma 5.5, this would cause a contradiction. Thus we never see this bad situation.

�

6. Characterizations of some classes of universal ceers

Bernardi and Montagna ([7]) use the notion of a quotient object to characterize u.f.p. ceers and
precomplete ceers. Given equivalence relations R,S, we say that R is a quotient of S, if there is
an onto morphism from S to R.
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Lemma 6.1. Let R, S be ceers with no finite classes. Then R is a quotient of S if and only if
there is a ceer S1 � R such that S1 � S1.

Proof. Easy: if f induces an onto morphism from S to R, then define x S1 y if and only if
fpxq R fpyq. �

Theorem 6.2. [7] The following hold:

(1) A ceer R is u.f.p. if and only if R is a nontrivial quotient of �PA.
(2) A ceer R is precomplete if and only if R is a nontrivial quotient of every universal ceer.

Proof. The two implications from right to left follow from Lemma 1.7.

We now show the implications from left to right. We begin with the first item. Let R be a u.f.p.
ceer. Construct an onto morphism µ :�PAÝÑ R, by defining a computable h by stages. Suppose
that fpD, e, xq is a totalizer for R. We assume that by the Recursion Theorem we control the index
e. Also, assume that we work with computable approximations tRsu to R, and �PA,s to �PA, as
in Lemma 1.4: without loss of generality we may assume that �PA,s changes only at odd stages.

At the end of stage s, suppose that we have defined a finite set of pairs pa0, b0q, . . . , pas�1, bs�1q
approximating a computable function h that we build and that will induce the desired onto mor-
phism. At each stage s � 1 we assume by induction that if i is least such that ai P rais�PA,s then
ϕe,spiq is still undefined.

Stage 0. Let ϕe,0pxq be undefined for all x.

Stage s � 1 odd . See if there are i   j such that ai, aj become �PA-equivalent. If, so, pick such a
pair i, j: we may assume that j is least such that aj P rajs�PA,s . Define ϕepjq � bi.

Let now as � µx.rx R tai : i   sus, and let bs � fptbi : i   su, e, sq.

Stage s�1 even. Let bs � µx.rx R tbi : i   sus, and let as be a number which is not �PA-equivalent
to any number which is already in tai : i   su. We use here that �PA has an extended diagonal
function.

At each step the inductive assumption is preserved. It is not difficult to see that the assignment
as ÞÑ bs, defines a computable function h with the desired properties.

We now turn to the second item of the statement. Let R be a precomplete ceer, and S a universal
ceer: so there is a computable function f which induces a monomorphism from R to S. We want to
show that there is a computable function h that induces an onto morphism from S to R. Suppose
that we have already defined hpiq for all i   n, and let en be a uniformly found index such that

ϕenpxq �

$'&
'%
hpiq if ppDi   nqrn P risSsq ¨ ppDyqrn S fpyqsq and i is first,

y if ppDyqrn S fpyqsq   ppDi   nqrn P risSsq and y is first,

Ò otherwise;

let fpe, zq be a totalizer for R, and define hpnq � fpen, 0q. For the verification, let us inductively
assume that if i, j   n and i S j then hpiq R hpjq, and let i   n be such that i S n. We want
to show that hpiq R hpnq: by the inductive assumption, we may assume that i is least with this
property. Then ϕenp0q is defined: if it is defined through the first clause, then by the totalizer f ,
hpnq R hpiq; otherwise, let hpnq � y where fpyq S n; but then ϕeip0q is defined, and by minimality
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of i, it is defined through the second clause, so that hpiq � z for some z such that fpzq S i. It
follows that fpyq S fpzq, and thus y R z, as f induces a monomorphism. Therefore h induces a
morphism: it is easy to see that this morphism is also onto. �

6.1. Extensional formulae of Peano Arithmetic. In this section we consider ceers defined by
extensional formulae of Peano Arithmetic.

Definition 6.3. Given a formula F pvq in the language of PA, let �F be the ceer

x �F y ô PA $ F pxq Ø F pyq.

A formula F pvq of PA is extensional if for every x, y,

x �PA y ñ PA $ F pxq Ø F pyq

Theorem 6.4. The u.f.p. ceers coincide with the ceers that are computably isomorphic to the ones
induced by extensional formulas of PA.

Proof. If R is given by an extensional formula, then R ��PA, thus it is u.f.p. by Theorem 6.2.

Conversely, if R is u.f.p., then R � S for some ceer S ��PA, by Theorem 6.2. Then, by Lemma 6.5
below, there is a formula F pvq such that S ��F . Since S ��PA, F is extensional. �

Lemma 6.5. For every ceer S there exists a Σ1 formula F pvq, such that

x S y ô PA $ F pxq Ø F pyq.

Proof. Let S be a ceer. Since �1 is precomplete, there exists a computable function f such that

x S y ô PA $ ρfpxq Ø ρfpyq,

and fpxq is the xy1-code of a Σ1 sentence ρfpxq, for all x. Define gpxq � xαy where fpxq � xαy1,
and let Gpu, vq a Σ1 formula representing g. By an argument similar to the one in the proof of
Theorem 2.4, it is easy to see that can take F puq to be pDvqpGpu, vq ^ T1pvqq. �

An important example of an extensional formula is the provability predicate PrPApvq, a Σ1 formula
representing the set of theorems, and satisfying the Hilbert-Bernays Derivability Conditions.

Lemma 6.6. Let F pvq be a Σn extensional formula such that there exists q P Σn, for which

rtxF pnqy : n P ωus�PA � rtxpy : PA $ q Ñ pus�PA .

Then �F is precomplete.

Proof. Let ψ be a partial computable function and let

ϕpxq �

"
the first y such that xF pyqy �PA x, if there is any such y;
Ò, otherwise.

Let Ψpu, vq be a formula that represents ψ in PA, and define

ψ̂pxq � xDvpΨpx, vq ^ F pvqq _ qy.

Clearly, ψ̂ is total. Let now h � ϕ � ψ̂. We claim that also h is total. Indeed, let x be given, and
observe that

PA $ q Ñ pDvpΨpx, vq ^ F pvqq _ qq
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hence by the hypothesis there exists some z such that

xpDvpΨpx, vq ^ F pvqq _ qqy �PA xF pzqy.

This shows that ϕpψ̂pxqq is defined, hence h is total.

Notice, that by the hypothesis, for every z, since F pzq is provably equivalent to some sentence
which is implied by q, we have PA $ q Ñ F pzq, and thus

(1) xF pzq _ qy �PA xF pzqy.

We now claim that h makes ψ total modulo �F . Suppose that ψpxq Ó� y. Then

ψ̂pxq �PA xF pyq _ qy �PA xF pyqy

(where the last equivalence is justified by (1)). Hence if ϕpψ̂pxqq � z with xF pzqy �PA ψ̂pxq, then
we see that xF pzqy �PA xF pyqy, and thus

hpxq � ϕpψ̂pxqq �F y.

�

Theorem 6.7. PrPApvq is precomplete.

Proof. We verify that PrPApvq satisfies the hypotheses of Lemma 6.6 with the sentence q �  ConPA
and n � 1. As independently proved by Goldfarb and Friedman, see [18], for every Σ1 sentence p

such that PA $  ConPA Ñ p there is a Σ1 sentence p1 such that PA $ pØ PrPApxp1yq. The other
inclusion follows from the fact that for every n, PA $  ConPA Ñ PrPApnq. �
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