A SURVEY ON UNIVERSAL COMPUTABLY ENUMERABLE EQUIVALENCE
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ABSTRACT. We review the literature on universal computably enumerable equivalence relations,
i.e. the computably enumerable equivalence relations (ceers) which are ¥9-complete with respect
to computable reducibility on equivalence relations. Special attention will be given to the so-
called uniformly effectively inseparable (u.e.i.) ceers, i.e. the nontrivial ceers yielding partitions
of the natural numbers in which each pair of distinct equivalence classes is effectively inseparable
(uniformly in their representatives). The u.e.i. ceers comprise infinitely many isomorphism types.
The relation of provable equivalence in Peano Arithmetic plays an important role in the study and
classification of the u.e.i. ceers.

1. INTRODUCTION

Recently there has been a growing interest in studying and classifying equivalence relations on the
set w of natural numbers, by mean of the so-called computable reducibility, where, given equivalence
relations R and S on w, we say that R is computably reducible (or simply, reducible) to S (in symbols:
R < S), if there exists a computable function f such that

(Vz,y)lz Ry < f(z) S f(y)]-

The first systematic study of this reducibility goes back perhaps to Ershov [13,[14], as an alternative
way of looking at monomorphisms in the category of numbered sets. An obvious related notion is
that of completeness: if A is a class of equivalence relations on w, one says that R is A complete,
if Re A, and S < R, for every S € A. This reducibility, and its related notion of completeness,
have been successfully applied to measure the complexity of equivalence relations naturally arising
in mathematics, and in particular in computable model theory and in computability theory. For
instance, the isomorphism relations for various familiar classes of computable structures (identified
with numbers via suitable numberings) are i complete: this includes computable groups, com-
putable torsion abelian groups, computable torsion-free abelian groups, abelian p-groups, see [17].
Other interesting mathematical applications of reducibility < appear in [16, 1], 20} 211 [15].

This paper is a survey (far from being exhaustive) on Y0-universal equivalence relations, henceforth
called universal ceers: we shall use the acronym “ceer” for “computably enumerable equivalence re-
lation”; ceers are called positive equivalence relations in the Russian literature. In section[2]we focus
our attention on some classes of universal ceers of particular importance in logic and computability
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theory. It is interesting to notice that the first example of a nontrivial and mathematically inter-
esting universal ceer appears in the book [24], where Miller III builds a finitely presented group G
for which the ceer provided by equality =g in G, is universal. If this example was most likely not
motivated by any specific interest in ceers and computable reducibility, Ershov [12] on the contrary,
in this case clearly motivated by studying ceers under <, pointed out another mathematically in-
teresting universal ceer, see Theorem Another universal ceer of special interest, first pointed
out in [§], is the relation of provable equivalence in Peano Arithmetic, denoted by ~p4, which
relates two numbers if the two sentences coded by these numbers are provably equivalent in PA.
The class of nontrivial ceers which are quotients of ~p4 (i.e. computably isomorphic to extensions
of ~p4) form the class of the so-called uniformly finitely precomplete (u.f.p.) ceers, which are all
universal. Inside this class we find two special isomorphism types: the so-called e-complete ceers
(which turn out to be computably isomorphic to ~p,4), and the precomplete ceers (which turn out
to be computably isomorphic to the restriction of ~p4 to the X0-sentences, for any fixed n).

As in the case of universality with respect to m-, or 1-reducibility, for c.e. sets, or pairs of disjoint
c.e. sets (where the universal sets coincide with the creative sets, and the universal pairs of disjoint
c.e. sets coincide with the effectively inseparable pairs), the notions of creativeness and effective
inseparability play an important role in the investigation of universal ceers. Not only can one show
that a u.f.p. ceer R yields a partition of w such that any disjoint pair ([a]g, [b]r) of equivalence
classes are effectively inseparable uniformly in a, b, but it turns out that this latter notion by itself
suffices to give universality: every uniformly effectively inseparable (u.e.i.) ceer R (i.e. a nontrivial
ceer yielding a uniformly effectively inseparable partition of w) is universal.

Unlike classical isomorphism theorems (in particular, Myhill’s theorem on computable isomorphisms
of creative sets, and Smullyan’s theorem on computable isomorphisms of e.i. pairs), uniform ef-
fective inseparability for ceers does not imply computable isomorphism. Infinitely many distinct
computable isomorphism types for u.e.i. ceers appear already at the level of u.f.p. ceers. Moreover,
a recent result in [3] shows that there are u.e.i. ceers that are not u.f.p.

The class of u.f.p. ceers is however partitioned into infinitely many computable isomorphism types.

In section [5| we review a characterization (see [I]) of universal ceers in terms of a jump operation
on ceers, due to [19]: namely, a ceer is universal if and only if its jump is reducible to it.

In more than one occasion, we give new and simplified proofs of classical results, including for
instance universality of u.f.p. ceers, and isomorphism of e-complete ceers.

1.1. Terminology and notations. We use standard computability theoretic terminology and
notation, which can be found in the textbooks [28, BI [10]. We often identify finite sets with their
canonical indices: so when for a function f we write f(D) where D is a finite set, then we in fact
mean f(u), with F' = D,,.

Given any set X and any equivalence relation R, we write [X|r = {y : (3z)[y R z|}; and [z|r =
[{x}]r denotes the R-equivalence class of R.

The following category theoretic terminology is adapted from [13] [14], which study the category of
numberings.

Definition 1.1. Given equivalence relations R, .S on w, a morphism p: R — S is a function from
w/R to w/g (i.e. between the quotient sets), for which there exists a computable function f : w — w
such that u([z]gr) = [f(x)]s, for all x; we say in this case that f induces p; a monomorphism is a
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1-1 morphism, an isomorphism is an onto monomorphism. An endomorphism for R is a morphism

u:R— R.

Remark 1.2. We observe that if p : R — S is an isomorphism, and all R- and S-equivalence
classes are infinite, then by a standard back and forth argument, it is easy to see that there is a
computable permutation of w that induces p. Since the special classes of ceers in which we will
be interested yield, as it turns out, partitions into infinite equivalence classes, henceforth for these
ceers we will be justified in taking “isomorphism” as synonym of “computable isomorphism”.

Lemma 1.3. If R, S are ceers then R < S if and only if there is a monomorphism u: R — S.
Proof. Easy. O

In the same vein, we can define a partial morphism from R to S to be a partial function y from w/g
to wyg for which there is a partial computable function ¢ such that: (1) if u([z]r) is defined, then
there is 2’ such that = R 2’ and u([z]g) = [¢(2')]s; 2) [domain(p)]r = {z : [x]r € domain(u)}.

1.2. Indexing. Throughout the paper, we refer to the indexing {R. : e € w} of all ceers, where R,
is the equivalence relation generated by W, (viewed as a set of pairs).

We say that a sequence {R® : s € w} of equivalence relations on w is a computable approximation to
a ceer R, if

(1) the set {{z,y,s): x R® y} is computable;

(2) R =1d;

(3) for all s, R® € R**!; the equivalence classes of R are finite; there exists at most one pair
[z]rs, [y]rs of equivalence classes, such that [z|rs N [y]rs = &, but [x]gs+1 = [y]gs+1 (we
say in this case that the equivalence relation R-collapses z and y at stage s + 1);

(4) R=J, R

Lemma 1.4. There exists a sequence {R: : e,s € w} of equivalence relations such that the set
{(e,x,y,s): x RS y} is computable (in fact, we may even assume that one can effectively find the
canonical index of [z]gs, and we can decide, given e,s whether RS = R:*1), and the sequence
{R: : s € w} is a computable approximation to R.. Therefore an equivalence relation R is a ceer if
and only if R can be computably approximated. Moreover if R is a ceer and R~ {{x,z) : x € w} is
infinite, then one can find an approximating sequence {R* : s € w} to R satisfying that for every s,
the relation R5T! is obtained from R® by the R-collapse of exactly one pair of equivalence classes

of R°.
Proof. Straightforward. O

One could alternatively consider the following numbering, suggested by Ershov [12]: let

T Se y < (Am, )¢ (z) = ¢r (y) ],

where, given a partial function 1, 1" (z) denotes the n-th iterate of ¥ on z, where ¥°(z) = z,
and of course 1" (z) converges if and only if both ¢" () and (4" !(z)) converge. We may also
write Sy, for Se. Indeed, if R is a ceer, then R = S, where ¢ is the partial computable function
o) = (uy,s)). [z Rs y&y < x])o, where we refer to some computable approximation {Rs} to
R.
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1.3. Some special classes of ceers. We now introduce some important classes of ceers, which
will be shown to be universal in next section.

Definition 1.5. Let R be an equivalence relation on w.

(1) [23] R is precomplete if there exists a computable function f(e,z) (called a totalizer of R)
such that, for all e, x,

pe(z) = pe(z) R f(e, ).
Moreover, f(e,_) is called an R-totalizer of ., or alternatively we say that f(e,_) makes
e total modulo R.

(2) [25] R is uniformly finitely precomplete (or wu.f.p. for short) if there exists a computable
function f(D,e,x) such that for every finite set D and every e, x,

ve(z) € [Dlr = ¢e(x) R f(D,e,x).

Moreover, f(_, e, ) is called an R-totalizer of p., or alternatively we say that f(_, e, ) makes
e total modulo R.

(3) [6, 1] We say that R is uniformly effectively inseparable (or wu.e.i. for short) if there is a
uniform productive function, i.e., a partial computable function p(a,b,u,v) such that if

[alr m [b]r = & then
(Vu,v)[[a]lr € Wy & [b]r € Wy & Wy n W, = & = p(a, b, u,v) |¢ W, U W,].

Remark 1.6. We note that, as in the case of effective inseparability for pairs of c.e. sets, if R is a
u.e.i. ceer then we can in fact assume that p(a, b, u, v) be total. Indeed, if p is partial computable, we
can always assume that if a & b then the function p(a, b, _, _) is total, as from any partial productive
function for a pair of disjoint c.e. sets, one can uniformly find a total productive function for that
pair: this is similar to showing that from any productive function for a productive set, one can
uniformly find a total productive function for that set, see [28]. Having such a function p, define a
total productive function ¢ for R as follows:

0, if [a]gr N [b]r # & < p(a,b,u,v) |
p(a,b,u,v), otherwise,

q(a,b,u,v) = {

where given two c.e. relations U := (3z)A(x) and V := (3z)B(x) in ¥i-normal form, with A, B
decidable, we write as usual U <V := (Jz)A(z) & (Vy < z)—B(y).

Lemma 1.7. The classes of Definition are closed under isomorphisms, and are upwards -
closed.

Proof. Straightforward. O

Remark 1.8. Throughout the paper, when we refer to an equivalence relation R as lying in any
of the three classes of Definition we will also always assume that R is not trivial (i.e. there are
two numbers which are non- R-equivalent).

2. PRECOMPLETE AND UNIFORMLY FINITELY PRECOMPLETE CEERS

As promised, in this section we show that the special ceers introduced in Section[I.3|are all universal.
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2.1. Precomplete ceers. Let us begin our trip through the land of universal ceers by looking
at precomplete ceers. First let us recall some important properties of precomplete equivalence
relations. The following theorem is in fact a characterization of all precomplete equivalence relations
(including in this case the trivial one), not only the computably enumerable ones.

Theorem 2.1 (Ershov’s Fixed Point Theorem). An equivalence relation R is precomplete if and
only if there is a computable function fix such that, for every n,

pn(fix(n)) = ¢n(fix(n)) R fix(n).

Proof. =. If R is precomplete then let @(z) be a computable function that makes ¢, (x) total
modulo R. Let ¢y = ¢n o 4, and define fix = 4o s. Then if g, (fix(n)) |, then @, (fix(n)) =
(10 5(1)) = 9 000 5(1) = Py (5(1)) R 40 5(n) = fix(n).

<. Given fix and a partial computable ¢, let p;,y(y) = ¢(x). Then we claim that g = fixof
makes ¢ total modulo R. If p(z) |, then ¢(x) = ¢y, (fixof(z)) R fixof(z) = g(z). O

Another important property of precomplete equivalence relations is the Padding Lemma.

Theorem 2.2 (Padding Lemma). For every precomplete R there exists a 1-1 total computable
p(x,y) such that, for all x,m, p(xz,m) R x. Hence, all R-equivalence classes contain infinite c.e.
sets, and R has an injective totalizer.

Proof. Let R be a precomplete equivalence relation. We show that there is a computable p with
the desired properties which is injective in the second argument; we leave it as an exercise to show
that one can get an injective totalizer. We need to show that from any finite set F' = {nq,...,ng}
of numbers such that ny R -+ R ng we can uniformly find n ¢ F such that n R n;. Let G(e,x) be
a totalizer for R. Then by the Recursion Theorem, let e be such that

¢4xy—{n1 if G(e,0) ¢ F,

"~ )maxF +1 otherwise.

Then the number

max F +1 otherwise.

n:{mam if G(e,0) ¢ F,

is the desired number. Indeed, n ¢ F' since either n = max F' + 1 or n = G(e,0) if G(e,0) ¢ F. In
the former case, n = max F' + 1 = ¢.(0) R G(e,0) € F. So, n is R-equivalent to an element of F
so to ny. In the latter case, n = G(e,0) R ¢e(0) = ny. O

Notice that the usual padding lemma for the standard numbering {p.} of the partial computable
functions is a corollary of the previous result, as the equivalence relation, in x,y, ¢, = ¢, is easily
seen to be precomplete, see [23].

2.2. Examples of precomplete ceers. Recall that a partial computable function u is called
universal, if there exists a computable function f(e,x) such that ¢.(z) = u(f(e,x)). By the
Padding Lemma for the numbering {¢.}, we can also assume that f is 1-1.

The following result is attributed in [I2] to Lachlan.

Lemma 2.3. If u is a universal unary partial computable function then S, is precomplete.
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Proof. If f witnesses that u is universal, and @ (z) |, then u!(p.(z)) = u(f(e,s)), hence pc(z) S,
f(e,z), which shows that f(e,_) is a totalizer for pe. O

Assume that first order Peano Arithmetic PA is Xj-sound, and for every n > 1 let T,,(v), be a
Yn-truth predicate, i.e., for all ¥,,-sentences o,

PARF oo T,('0"

where " is a suitable Godel numbering for all sentences in the language of PA, and m denotes the
numeral term for the number m.

For every number z there is a ¥;-formula F,(u,v) (in fact, Fy(u,v) := F(Z,u,v) for some ;-
formula F) representing ¢, in PA, i.e. such that

vz(n) =m < PA - Fy(n,m).
We may assume that for every number m, PA + F,(m,v) A Fy(m,v") > v ="1".)
Define ~, on w by

r_1
oc,~n T,&TkFoeT

where "' is a suitable Gédel numbering identifying ¥,, sentences (which form an infinite c.e. set,
and therefore is a set computably isomorphic to w) with numbers: notice that we use here "',
instead of "', as otherwise the domain of ~, would be a proper subset of w. Then ~, is a
precomplete ceer. Given the relevance of this example, we sketch the proof of why ~,, is precomplete.

Theorem 2.4. ~,, is a precomplete ceer.

Proof. We limit ourselves to the case n = 1. Given a partial computable function ¢, let F' be a
representing >; formula for the partial computable function ¢, where

r_a rT17 lfQD ra:ll wL: F7_117
w(oy =1 7 A
T, if (o).
Define
f(m) ="@Ev)[F(m, v) A Ty(v)]'1-
(Notice that the formula (Jv)[F(m,v) A T1(v)] is £1.) Assume now that ¢("o'1) |= "7"1, where o
and 7 are Xj-sentences. Then

PA - () [F(o'1,v) ATi(v)] < F("o', ") A To (1.

But PAF F("o'," ") A Th("1") < Ty ("1"), and PA |~ T1("7") <> 7, which implies that ¢("0"1) ~1
f("o'1). Thus, f is the desired computable function that makes ¢ total modulo ~. O

Other examples of precomplete ceers can be found in [32].

2.3. The first universality result. As already remarked in the introduction, one of the earliest
nontrivial universality results for ceers was pointed out by Ershov [12].

Theorem 2.5. If u is a universal unary partial computable function, then S, is universal.
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Proof. Let u be a universal function and let ¢ be a partial computable function. As we have
observed, we may suppose that there exists a 1-1 computable function g such that p.(x) = g({e, z)).
Thus it is easy to see that there is a computable sequence f,, of computable 1-1 functions such that
on = uo fn. So, by the Recursion Theorem, let e be such that uwo f. = f. o ¢ (take a fixed
point of a computable h, such that ) = feop). Let f = fe: then fop = uo f. Next, by
induction on n it is easy to see that for every n, f oo™ = u™ o f. It follows that for every m,n, if
#"() L= ¢"(y) | then f(™ (x)) 1= f(¢"(4))) L. thus w™(f(x) L= u"(f(y) |. On the other hand,
if w(£(2)) L= w"(F() | then f(p™(@)) L= F(¢"(y)) L, and by injectivity, ¢™(z) 1= ©"(y) |.
This shows that f reduces S, to S,. Since for every ceer R, there is a partial computable ¢ such
that R = S, we have proved that S, is universal. O

2.4. Precomplete ceers are isomorphic. The precomplete ceers form a single isomorphism
type, as shown by Lachlan [22].

Theorem 2.6 ([22]). If R, S are precomplete ceers then R is computably isomorphic to S, i.e.,
there exists a permutation h of w which reduces R to S.

Proof. We can assume that every ceer R has approximations { R} and {R,} satisfying Lemma
and in addition:

Rsy1 — Rs # = s+ 1 odd
Ssi1—Ss # F = s+ 1 even.

Let R, S be precomplete ceers, with corresponding computable approximations {Rs} and {Ss}, as
above: R may change only at odd stages, and S may change only at even stages. (Although not
necessary, these additional properties of the approximations simplify the construction, since they
make sure that changes for R (respectively, S) may appear only at stages when we really deal with
R (respectively, S). In fact since all R- and S-equivalence classes are infinite, by Lemma we
could even assume in this case that at each stage exactly one change happens when we deal with
the corresponding ceer.) Let F' and G be injective totalizers for R and S respectively.

We will define two computable sequences ag, ai,...,as,... and by, b1, ...,bs, ..., such that the as-
signment as — bs (we say in this case that as and by match) satisfies, for all 4, 7,

aiRaj@)biSbj,

and w = {as: s € w} = {bs : s € w}. We start up with four numbers cg, 1, do, d; such that cy & ¢
and d(] ,g dl.

By the Double Recursion Theorem, we will assume that we control indices e, z of partial computable
functions ¢, and ¢,. At the beginning of each stage s + 1, we assume that, for all 7,5 < s,

a; RS a; < bz Ss bj.
We use in the following the symbols ¢/, 2/, €”, 2" to represent suitable new indices of . and ¢, by the
Padding Lemma. At stage s+ 1 we say, for ¢ < s, that [a;]g, is right available if there is a € |a;] g,
such that ¢ s(a) is undefined, and a already matches with a number chosen as b = G(€’, a) € [b;]s,,
with ¢ = p.; similarly, we say that [b;|g, is left available if there is b € [b;| g, such that ¢, (b) is
undefined, and b already matches with some number chosen as a = F(2',b) € [a;|r,, with ¢, = p./.
At the end of the stage, we define a new pair (as, bs).

If a; and b; match, we assume by induction that either [a;]g, is right available or [b;]g, is left
available.
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Step 0. @e0(i) and ¢, () are undefined for all 1.

Step s + 1. Distinguish whether s 4+ 1 is odd or even:

s+ 1 odd. Perform in the order the following actions:

(1) Suppose there are i < j such that a; and a; are R-collapsed at s+ 1. There are two subcases:

(a) at least one among [a;]r, and [a;]gr, is right available, say a € [a;]r, is such that
@e.s(a) is undefined, and matches with b € [b;]s,, of the form b = G(¢’, a): then define
@e(a) = b;. This has the effect that

b Sb=G(e,a) S pula) = pela) = by

(b) neither [a;]r, nor [a;]g, is right available: then [b;]s, and [b;]s, are both left available.
Say b € [bi]s,, ' € [bj]s, are such that ¢, s(b) and ¢, 4(b') are still undefined and
match with a = F(2',b) € [a;]r, and o' = F(2",V) € [a;]r,, respectively: then define
©.(b) = cg, and ¢,(b') = ¢1. Using the fact that ¢, = @, = @.», this has the effect
that

co=¢,(b) RF(z,b) =a R a;
c1 = (V) RF(z,V) =d Raj,

giving ¢g R c1: this case cannot happen.

(2) Finally we define (as, bs). Let as be the least number not in {a; : i < s}. Let ¢’ be an index

of ¢, chosen by the Padding Lemma and the injectivity of G to be such that

G(e,as) ¢ | Jbils.,;
1<s

and define bs = G(¢’, as). Now we check that the inductive assumption on availability still
holds: suppose we see that a; and a; are R-equivalent, and b; and b; need to be made S-
equivalent, thus we act by making ¢.(a) = b; (where a € |a;|r, which is right available). If
the class [a;|r, ., Ulai|r,,, fails to be right available, then [a;]|r, was not right available, so
[bj]s, was left available by the inductive hypothesis. Therefore, [b;]s,,, is still left available.

Lastly, we check the inductive assumption for the new pair as, bs. Since we only define
¢ in the operation above, since a, is not in {a; : i < s}, we have ¢ s11(as) 7. We chose by
to make ag right available.

s+ 1 even. Perform the same steps, inverting the roles between the a’s and the b’s, and between F'

and G.

It is easy to see that for every pair of numbers i, j,

aiRaj(:)biSbj

and w = {a; i e w} = {b; 1 i € w}.

Finally, note that we always maintain injectivity when we add a new pair ag, bs, and since at odd
stages, we enter the least missing number into the domain of the reduction, and at even stages we
enter the least missing number into the range of the reduction that this reduction is a permutation

of w.

O

Corollary 2.7 ([8]). Every precomplete ceer is universal.



SURVEY ON UNIVERSAL CEERS 9

Proof. By Lemma, Theorem Theorem [2.6| and the fact that for ceers the property of being
universal is preserved by isomorphisms. O

The following is an interesting characterization of precomplete ceers.

Corollary 2.8. FEwvery precomplete ceer R is equal to S, for some universal function v.

Proof. Let R be a precomplete ceer and let S, be the precomplete ceer determined by a universal
function w. Then by Theorem R and S, are isomorphic. So, let m be a permutation of w
witnessing the isomorphism of R and S,. It is straightforward to check that v = Touon ™! is also
universal and that R = S,,. ]

There are interesting extensions of Theorem and of Corollary due to Shavrukov [29].
Theorem 2.9 ([29]). The following hold:

(1) Any partial, and not onto monomorphism, induced by some partial computable function,
from a ceer R to a precomplete ceer S can be extended to a monomorphism.

(2) Any strictly partial, and not onto monomorphism, induced by some partial computable func-
tion, between precomplete ceers R can be extended to an isomorphism.

Proof. We briefly sketch only a proof for item (1), i.e. how to show that every partial, and not onto
monomorphism, from a ceer to a precomplete ceer, which is induced by some partial computable
function, can be extended to a monomorphism. To prove the second item, combine this extension
argument, with a back-and-forth argument in the style of Theorem inserting, at odd stages,
pairs that guarantee surjectivity.

Let R, S be ceers so that S is precomplete. Let ¢ be a partial computable function inducing a partial
monomorphism from R to S. Suppose we are working with suitable computable approximations
{Rs} and {S;} (as in Theorem to R and S, respectively. Let F' be an S-totalizer. We define
an assignment ¢ — b;, such that ¢ R j if and only if b; S b;, and the corresponding monomorphism
extends the given partial one. By the Recursion Theorem we also assume that we control the partial
computable function ¢.. In the construction, at each stage s + 1, if 7 is least in its Rs-equivalence
class, then we assume by induction that ¢ (i) is still undefined by the end of stage s, unless it has
been already defined as (i) = (i), for the sake of extending ¢; to this regard, note that if at
some stage we set (i) = (i) then we regard . (i) as already defined, even if ¢(i) does not as yet
converge, as we do so only for numbers ¢ for which eventually i € domain(yp).

Pick numbers b 8 V', with b, b’ ¢ [range(¢)]|s. Such a pair of numbers exists, because we assume
that [range(¢)]s # w but, on the other hand, the complement of [range(y)]|s can not be c.e. (see
for instance Lemma2.13] below which shows that each pair of distinct equivalence classes of a u.f.p.
ceer, and a fortiori of a precomplete ceer, is effectively inseparable).

Take b; = F(e,1).
Step 0. Do nothing; ¢, o(7) is undefined for all i.
Step s + 1. We distinguish Cases 1. and 2., depending on whether s + 1 is odd or even:

(1) (s + 1 odd.) There are i < j such that ¢ and j R-collapse at stage s + 1; assume i, j are
least in their Rs-equivalence classes:
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(a) if pe(7) is still undefined, then set p.(j) = b;: since F' is an S-totalizer, this will give
bi S bj, as bj = F(e,]) S g@e(j) = bi;

(b) otherwise already p.(j) = ¢(j): set @e(i) = ¢(i), unless it has been already defined
so; since ¢ induces a partial monomorphism, this fulfils the desired goal (notice that
©(i) may be still undefined, but eventually it will converge).

(2) (s +1 even) There are i < j such that ¢ and j are not as yet R-equivalent, but matching
bi, bj S-collapse:

(a) if @e(i) and p(j) are still undefined, then let (i) = b and ¢ (i) = b’: this case cannot
happen, since F' is an S-totalizer, and otherwise we would get b S b; S b; S V';

(b) if exactly one of ¢.(i) and .(j) has been already defined, say . (i) = (i), then take
the other one and set it equal to b: in our example, set p.(j) = b; again this case
cannot happen, since b ¢ [range(p)]s;

(c) if already @e(i) = (i) and p.(j) = ©(j) have been defined, then do nothing, as ¢
induces a partial monomorphism.

Before leaving stage s + 1, we consider i such that (i) converges for the first time, if any exists:
if (i) has not already been defined, (otherwise it has been already stipulated that (i) = (7)),
then set ¢e(i) = (7).

Notice that the induction assumption is being preserved. This ends the construction. We skip the
remaining details of the verification. O

Remark 2.10. By taking ¢ = ¢J, the first item of Theorem [2.9] gives yet another proof of univer-
sality of precomplete ceers.

2.4.1. Historical remark. Universality of precomplete ceers was first proved by Bernardi and Sorbi
in [8] and appeared before [22]. The proof in [§] used the so-called Anti Diagonal Normalization
Theorem by Visser [32].

2.5. Uniformly finitely precomplete ceers. The ceer ~p4 is not precomplete because it has
a (total) diagonal function, for instance the function induced by the connective —: we denote this
function with the same symbol, namely —¢' = "—=¢'. Therefore ~p4 does not satisfy the Ershov
Fixed Point Theorem, and thus it is not precomplete. However, although not precomplete, ~p4
is “locally” precomplete, i.e., every partial computable function with finite range can be totalized
modulo ~py since there is some effectively found n = 1 such that all sentences in the range of ¢
are Y,, and thus we can totalize modulo ~,,. This is exactly what led Montagna to introduce the
w.f.p. ceers, see Definition [L.5)(2).

Corollary 2.11. Every precomplete ceer is u.f.p. The relation ~pa is u.f.p., so there are u.f.p.
ceers that are not precomplete.

Proof. The first statement is immediate from the definitions. In order to prove that ~p 4 is u.f.p. use
the fact that, given a finite D and a sentence z, all sentences in D u {z} fall into some finite level 3,,,
so that we can use a precompleteness totalizer Fy, (e, x) of ~,, using the fact that a totalizer for ~,
can be found uniformly in n. Some caution should be taken, since ~p4 and ~, refer to different
Godel numbers. O

Lemma 2.12 (Fixed Point Theorem for u.f.p. equivalence relations). If R is u.f.p. then there
exists a computable function fix(D,e) such that, for all D, e,

ve(fix(D, €)) le [D]r = we(fix(D,e)) R fix(D,e).
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Proof. Let f(D,e,x) be a totalizer of R, and let ¢,, be so that for all z ¢, (x) = @ (z). Let s(D,e)
be a computable function such that

@S(D,e) (Z) = Qpe(f(D7 u, Z))?
and let fix(D,e) = f(D,u,s(D,e)).
Suppose that . (fix(D,e)) |€ [D]r. Then

pe(fix(D, €)) = @e(f(D,u,s(D,€)))) = @s(n,e)(s(D,e€)) L€ [D]r,
and ¢, (s(D,e)) R f(D,u,s(D,e)) = fix(D,e). O

Lemma 2.13. Every u.f.p. ceer is u.e.i.

Proof. Let R be a u.f.p. ceer, and let [a]g, [b]r be two distinct equivalence classes. Given c.e. sets
W, Wy, define

b, if (xeW,) < (xeW,);

Y(x) =< a, if (xeW,) < (zeW,);

1T otherwise
and let n = fix({a, b}, e) be a fixed point for v, given by u.f.p.-ness of R where e is an index of ).
It is clear that n ¢ W, u W,, if [a]lg S Wy, [b]lr € W, and W, n W, = . Since 1 is defined
uniformly in the tuple (a, b, u,v), it is also clear that n = p(a, b, u,v) for some computable function
p. ]

The following theorem will be superseded by Theorem (via Lemma [2.13)). However, in order
to become more acquainted with a useful proof technique, we include an outline of a direct proof
here, different from the original proof given by Montagna [25].

Theorem 2.14 ([25]). Every u.f.p. ceer is universal.

Proof. Let S be u.f.p. with totalizer f. As usual, we are assuming that S is nontrivial, and thus
fix @ and b with a 8 b. In order to show that S is universal, we fix an arbitrary ceer R with
0 B 1 and demonstrate that R < S. By the Fixed Point Theorem, we assume that we control
the partial computable function ¢.. Define the computable sequence y; by yo = a, y1 = b and
vi = f({yj|j < i},e,i) for each i > 2. By our choice of whether to make ¢, (i) converge, we can
control whether y; and y; are S-equivalent. We show that R < .S via the function ¢ — y;. We will

ensure in the construction that if a number k£ is the least number in its R-equivalence class at stage
s, then @, s(k) 1.

When we witness at an odd stage s + 1 (we assume that R and S are approximated as in the proof
of Theorem that ¢ R j for ¢ # j with ¢ and j being least in their respective Rs-equivalence
classes, and, say i < j, then we define ¢.s(j) = vi. As f(_,e,_) is a totalizer of ¢., it must
occur that y; becomes S-equivalent to y;. Notice that ¢ becomes the least number in the combined
Rs.1-equivalence class and, as promised, that we have not yet caused (i) to converge.

At even stages s + 1, we ensure that S does not collapse y; to y; unless already i Rs j. We do this
by threat of forcing a contradiction via the Fixed Point Theorem. Suppose ¢ and j are the least
numbers in their R-equivalence classes at an even stage s +1, and the S-classes of y; and y; become
S-equivalent at s + 1. Thus ¢, ¢(7) T and similarly ¢, s(j) 1. We then will cause ¢¢ s+1(i) J= a and
¢e,s+1(j) = b, thus forcing that a S y; S y; R b contradicting that a § b. Simply the threat of this
action ensures that at no stage will it happen that y; S y; but ¢ K. O
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Definition 2.15. An extended diagonal function for an equivalence relation R is a computable
function d such that for every finite set D, we have that 2 & d(D) for every z € D, i.e. d(D) ¢ [D]g.

We observe:

Corollary 2.16 ([7]). Every u.f.p. ceer R with a diagonal function has an extended diagonal
function.

Proof. Let R be a u.f.p. ceer, with a diagonal function d, and let f(D, e, x) be a totalizer witnessing
that R is u.f.p. By the Recursion Theorem with parameters, let n(D) be a computable function
such that

(Pn(D)(x) = d(f(D,n(D),x)) :

then g(D) = d(f(D,n(D),0)) is total, and g(D) ¢ [D]g: if d(f(D,n(D),0)) € [D]r then ¢, p)(0) €
[D]g, hence f(D ( ),0) Rd(f(D,n(D),0)), contradiction. O

2.6. e-complete ceers. The ceer ~p4 has an interesting additional property which is captured by
the following definition, due to Montagna [25], and later independently rediscovered by Lachlan [22].
The equivalence relations described by this definition were called uniformly finitely m-complete by
Montagna [25], and extension complete (or, simply, e-complete) by Lachlan [22]. We adopt here
Lachlan’s terminology.

Definition 2.17. ([25],[22]) An equivalence relation S is e-complete if for every ceer R and every
pair of m-tuples (ai,...,am), (b1,...,by) such that the assignment a; — b; induces a partial
monomorphism from R to S, one can extend the assignment (uniformly from the two tuples and an
index for R) to a computable function inducing a monomorphism. (Notice that uniformity extends
also to the case in which the assignment does not provide a partial monomorphism.)

Corollary 2.18. FEvery e-complete ceer is universal.

Proof. Obvious. O

2.7. e-complete ceers are isomorphic. Finally we show that alle e-complete ceers are isomor-
phic.

Theorem 2.19 ([25],[22]). The e-complete ceers are all isomorphic with each other.

Proof. Let R, S be e-complete ceers. To show isomorphism, one uses a straightforward back-and-
forth argument. We define an assignment as — bs at stages as follows.

Step 0. Do nothing.

Step 2s + 1. Assume that we have already defined (a;, b;) for all i < 2s — 1, so that a; R a; if and
only if b; S bj. Let ags be the least such that ass ¢ {a; : ¢ < 2s — 1}. By the uniform extension
property due to the fact that S is e-complete, we can uniformly extend the finite assignment which
has been defined so far, to a monomorphism, induced, say, by the computable function f. Then,

let bog = f(ags).
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Step 2s + 2. Assume that we have already defined (a;,b;) for all i < 2s, so that a; R a; if and
only if b; S bj. Let bagy1 be the least such that basi1 ¢ {b; : i < 2s}. By the uniform extension
property due to the fact that R is e-complete, we can uniformly extend the finite assignment which
has been defined so far, to a monomorphism, induced say, by the computable function g. Then, let

a2s+1 = g(b2s41)- O

Theorem 2.20 ([25], [7]). A ceer R is e-complete if and only if R is u.f.p. and R has a diagonal
function.

Proof. Given the fact that all e-complete ceers are isomorphic, and that there exists a ceer that is
u.f.p. and with a diagonal function (namely, ~p4), it is enough to show that every u.f.p. ceer R with
a total diagonal function, is e-complete as the property of being u.f.p. and having a total diagonal
function is invariant under computable isomorphisms. Now, by Corollary this amounts to
show that every u.f.p. ceer R with an extended diagonal function, is e-complete.

To see this, let us see that if S is any ceer, and a; — y;, for ¢ < m induces a monomorphism from S
to R, then this assignment can be extended to a monomorphism. We can assume that a; = i. We
argue almost as in the proof of universality of u.f.p. ceers. We suppose to control, by the Recursion
Theorem, a partial computable function ., and define (for i > m),

yi=f{yj:J<ipo{d{y;:J <ih}e i)

where f is an R-totalizer, and by Corollary d is an extended diagonal function. A distin-
guishing difference with the proof of Theorem is how we prevent that y; R y; before we see
that ¢ S j. If we see this happen at some stage, we simply define (assume i < j, and j is least in
its S-equivalence class at the stage, so that we assume by induction that ¢.(j) is undefined at the

given stage) @e(j) = d({yx : k < j}). Thus, as e(j) L€ {yx : k < i} v {d({yx : k < j}},
d{yr : k <j}) = ee(d) R f{yr : k <t o{d{ye : k <jh}e,j) =y;
giving a contradiction as now d({yx : k < j}) R y;. O

Lemma 2.21. The ceer ~py is e-complete.
Proof. By Corollary and the presence of a diagonal function. O

Notice that Peano Arithmetic provides examples of each one of the fundamental isomorphism types
we have seen so far: in fact ~p4 is e-complete, whereas for instance ~1 is precomplete.

In contrast with the extension property for precomplete ceers pointed out in Theorem and with
the purpose of better distinguishing precomplete ceers from e-complete ceers, Shavrukov [29] shows

Theorem 2.22 ([29]). For every e-complete E, there is a partial non-onto monomorphism that
can not be extended to an endomorphism of E.

Proof. Let E be e-complete, and P precomplete. We use Greek letters to denote morphisms. Let
k:Id — P, A : P — FE be monomorphisms, and let n = Ao k. Let 6§ : Id — E be given,
induced by

t(z) = d({t(0), t(1), ..., t(x — 1),2})

where d is an extended diagonal function for F.
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We claim that there is no endomorphism p of E extending 0 o 7!

be a computable function inducing o A. Then
0(x) = first y.[h(y) Et(h(x))]

is total and diagonal for P. For totality, notice that since p extends 6 o n—

. Otherwise, if u is such, let h

1 we have

O=pon=poAor,
thus range(t) € [range(h)]g. The remaining claim, i.e., §(x) Z z follows easily. Indeed, given z,

first notice that ¢(z) £ x by definition of ¢; on the other hand, h(5(z)) E t(h(z)), by definition of
J; but if z E 6(x) then also h(z) E h(d(x)), as h induces a morphism: contradiction. O

Corollary 2.23. If R is a u.f.p. ceer with a diagonal function then R has an automorphism without
fixed points.

Proof. Trivial since in this case R isomorphic to ~p4, for which — induces an automorphism
without fixed points. O

About fixed points of endomorphisms, Shavrukov [29] has shown that every u.f.p. ceer possesses
endomorphisms with as many fixed points as we wish:

Theorem 2.24 ([29]). Let E be a u.f.p. ceer, and A a nonempty E-closed c.e. set. Then there is
a computable function h, inducing and endomorphism of E such that A = {z : © E h(zx)}.

Proof. We may suppose without loss of generality that 0 € A. We define a computable function
h(i) = y; that induces an endomorphism whose fixed points are exactly the equivalence classes of
elements of A. In the rest of the proof, we say that a number is a fixed point if its equivalence class
is a fixed point for the endomorphism induced by h.

The number y; will be of the form

vi = f({y; 1 J <i} u{0,i},e, i),
where f is an FE-totalizer, and e is an index such that by the Recursion Theorem we control ..
Since (by Lemma the equivalence classes of F are infinite, we may suppose f(D, z,1) ¢ {0,1}
for every D, z,4, and thus y; # 0,17 for every . At each stage, if 7 is least in its equivalence class and
we have not previously defined ¢, (7) to be 0 or ¢, then assume by induction that ¢, (7) is undefined.

We use approximations { Es} to E as in Lemma with the additional feature that if Es 1\ FEs # &
then s + 1 = 3t + 1 for some t; and we use a computable approximation {A;} to A such that if
Asi1 N Ag # J then s + 1 = 3t for some ¢, and As11 \ As # F is at most a singleton, and the
approximation starts from the empty set.

The construction is by stages: at stages of the form 3¢t we make sure that all numbers in A are
fixed points; at stages 3t + 1 we make sure that h eventually induces an endomorphism; at stages
3t + 2 we make sure that all fixed points are in A. At stage s > 0 we act as follows:

Stage s = 3t. If i € As \ As_1, and ¢.(7) is still undefined, define @, (i) = i.

Stage s = 3t + 1. If ¢ < j were least in their equivalence classes at stage s — 1 and they E-collapse
at stage s, then we act as follows: if @.(j) is still undefined, define w.(j) = v;; if pe(j) has been
already defined (with ¢.(j) € {0, j}), and if ¢.(7) is still undefined, define @, (i) = i.

Stage s = 3t + 2. If i and y; have become E-equivalent at the previous stage, and @.(i) is still
undefined, then define (i) = 0.
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Notice that our action at each stage preserves the inductive assumption that ¢, (7) is still undefined
if ¢ is least in its equivalence class, unless we define ¢ (i) € {0,7}. When we define ¢, (i) we make
we(t) € {y; : J < i} u{0,i} so that p.(i) E y; as f is a totalizer for E. We further observe that if
@e(i) is defined and (i) € {0,i}, then i € A and ¢ is a fixed point: this is trivial if ¢.(i) = 0; if
©e(i) = i then either ¢.(i) has been defined at a stage 3¢, in which case the claim is trivial; or it
has been defined through the second clause of a stage 3t + 1. In this latter case, as f is a totalizer,
our definition ¢.(i) = i makes i E y;; but ¢.(j) € {0,7} (where j E i is the other number of the
pair on which we act at the stage) and thus by induction on the stage we may assume that j € A
which implies ¢ € A as A is E-closed.

Let us now show that h induces a morphism. Assume that ¢ E j, with ¢ < j. Using that f is a
totalizer, we get y; E y; if we act on 4, j at the stage s at which they are E-collapsed (we may again
assume that they were least in their E-equivalence classes immediately before E-collapse); if we do
not act on 7, j , then both ¢, () and ¢, (i) have been already defined, and ¢.(j) € {0, 7}, ve(i) € {0,1},
which, as argued above, gives y; ' j E i E y;.

Finally we show that j € A if and only if j is a fixed point. If we ever define p.(j) € {0, j}, then
we have already seen that j € A and j is a fixed point. Suppose towards a contradiction that j
is least so that j € A but j is not a fixed point, or vice versa. So suppose that j € A (j E v,
respectively) but we never get to define ¢.(j) = j (pe(j) = 0, respectively). This happens only if
at the appropriate stage 3t (3t + 2, respectively), when we would like to act correspondingly, we
see that ¢e(j) has already been defined through the first clause of some step 3t + 1, say ¢.(j) = y;
for some ¢ < j with ¢ F j. Since ¢ FE j, we have that i € A if and only if j € A and 4 is a fixed point
if and only if j is a fixed point. So, ¢ < j contradicts the minimality of j. 0

2.8. Uniformly effectively inseparable ceers. The main result of this section shows that every
u.e.i. ceer is universal. To this end, we introduce a class of ceers, the strongly uniformly m-complete
(strongly u.m.c.) ceers, and show, for any ceer R,

R u.e.i = R strongly u.m.c. = R universal.

Here is the definition of a strongly u.m.c. ceer. It is a strengthening of the definition of a uniformly
m-complete ceer given by Bernardi and Sorbi [§]. Namely, a nontrivial ceer R is uniformly m-
complete (abbreviated as u.m.c.) if for every ceer S and every assignment ag — by, a; — by (also
denoted by (ag,a1) — (bg,b1)) of numbers such that ag 8 a1 and by K by, there exists a computable
function extending the assignment and reducing S to R. It is shown in [I, Proposition 3.13] that
not every u.m.c. is strongly u.m.c.

Definition 2.25. We say that a nontrivial ceer R is strongly u.m.c. if for every ceer S, every
assignment (ag,a1) — (b, b1) can be extended uniformly (in ag,a1,bp,b1) to a total computable
function f reducing S to R, provided that ag 8 a1 and by K b;. (Note that the uniformity extends
also to the cases ag S a; or by R by; however, then no claim is made as to f reducing S to R.)

It immediately follows:

Corollary 2.26. Fvery strongly u.m.c. ceer is universal.
Proof. Straightforward. O

Now we aim to prove that
R u.ei= R strongly um.c..
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For this we introduce yet another class of ceers, the weakly u.f.p. ceers, and show

R u.ei= R is weakly u.f.p. = R strongly u.m.c..

Definition 2.27. We say that a nontrivial ceer R is weakly u.f.p. if there exists a total computable
function f(D,e, ) such that for every finite set D, where i K j for every i,j € D, and every e, x,

pe(z) € [Dlr = we(r) R f(D,e,x).

Note that the definition differs from that of a u.f.p. ceer in that f need only satisfy the condition
when i K j for every i,j € D. Clearly

Corollary 2.28. Fvery u.f.p. ceer is weakly u.f.p.
Proof. Immediate. O

A restriction of the definition is the following:

Definition 2.29. We call a nontrivial ceer weakly n-u.f.p. if in the definition for weakly u.f.p., we
replace “finite set D” with “finite set D where |D| < n”.

Lemma 2.30. Fach u.e.i. ceer is weakly u.f.p.

Proof. Let R be a u.e.i. ceer. We first prove that R is weakly 2-u.f.p. To this end, assume that R
is u.e.i. via the uniform productive function p(a,b, u,v) as in Definition [1.5(3). We argue that R
is weakly 2-u.f.p. Given any a # b, and e, we uniformly build a function f(z) = f({a,b},e, z)
witnessing that R is 2-u.f.p. Note that if a = b then we can let f be the constant function with
output a. By the Double Recursion Theorem with parameters we build W, , W} for computable
sequences of indices {az}zew, {0z} rew, Where the sequence is known to us during the construction.

Let f(x) = p(ag,b;), where for simplicity we denote p(a,b,_, ) by p(_,_). Clearly f is a total
computable function. Fix x, and let

~ lalg, if po(z) Kb
Wa, = {[a]R u {plaz,by)}, if gc(x) RD,

W [b] R, if g@e(ﬂs),}{a
by = .
[blr U {p(az,bs)}, if pe(x) R a.
Now assume that a & b, and fix e,z such that p.(x) |€ [a]g U [b]g. Without loss of generality
suppose @.(z) R a. If f(x) B a then W,, nW,, = & and p(a,, b,) € W,, uW,,_, which contradicts p

being a productive function.

Next, we show that if R is weakly 2-u.f.p. then R is weakly u.f.p. To this end, let f; be a computable
function witnessing that R is weakly i-u.f.p., for 2 < i < n. We describe how to effectively get a
function f,4+1 witnessing that R is weakly n + 1-u.f.p. Let e, D be given, with |D| =i. If i >n+1
or i <0 then f,+1(D,e,x) outputs 0 for every x; if 1 < i < n then f,11(D,e,x) = fi(D,e,x) for
every x. We assume now D = {dy,...,d,}. By the Double Recursion Theorem, assume that we
build ¢, and ¢, for some a,b. Let E, = {f,(D ~ {dn},a,2),d,}, and fn11(D,e,z) = fo(E,, b, x).

Here is how we compute ¢, (x) and ¢p(x). Initially both values are undefined. Step by step, we see
which of the following cases happens first:

b SDE(x) \LR dn: deﬁne gOb({I;) — dn
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e p.(x) R d; for some i < n: define py(z) = fr(D ~ {dn},a,z) and @, () = pe(z).
° fn(D N {dn},a,x) R dnl define (pa(x) = dO-

Clearly f,4+1 is a total computable function, whose index can be found effectively in the indices
for fo,..., fn, using the fact that the fixed points in the Double Recursion Theorem can be found
effectively from the parameters.

In order to see that f,,+1 witnesses that R is weakly n+1-u.f.p., fix e, D, x such that D = {dy, ..., d,}
where d; K d; for every pair i # j, and @.(z) | R d; for some i < n. First we claim that f,(D \
{d.},a,z) R dy: otherwise, by construction we would set ¢,(x) = do unless it has previously been
defined to be () R d;, for some i < n. In either case we have ¢,(z) R d; for some i < n, which
implies that d,, R fn(D \ {dn},a,z) R d;, a contradiction.

We have thus that E, consists of two elements that are not R-equivalent. Since gy(z) is defined
only when ¢ (z) converges, it is straightforward to see that f,+1(D,e,z) R p.(x). O

In the proof of Lemma below we will use a computable infinite sequence of fixed points. This
means that we wish to have an infinite sequence {e;}e,, so that we control each ¢, simultaneously.
This can be done by the usual fixed point theorem, which gives us a single . which we control.
We simply let e; be an index so that ¢, (x) = ¢c({i,z)). Then by constructing the single function
e which we control, we simultaneously construct the infinite sequence of functions {¢e, }icw. Of
course, given the single index e we can computably list the infinite sequence {e;}ew.

Lemma 2.31. Fach weakly u.f.p. ceer is strongly u.m.c.

Proof. We only sketch the proof, which is rather difficult. For a full and rigorous proof see [1].

Assume that R is a weakly u.f.p. ceer, as witnessed by the computable function f. In order to show
that R is strongly u.m.c., we show in fact that for every ceer S, every assignment (0,1) — (ag,a1)
can be extended, uniformly in ag, a1, to a total computable function inducing a reduction from S
to R, provided that 0 8 1 and ag & a;. (Uniformity extends also to the cases in which 0 S 1, or
ap R ay.)

Notice that it is no loss of generality considering an assignment (0,1) — (ag,a1), instead of
(af,a}) — (ap,a1): indeed, given S and (af,a}) — (ap,a1), one can consider the ceer S’ and
the new assignment (0, 1) — (ag, a1), where we have picked a computable permutation g of w with
g(i) = al, for all i < 1, and we have defined S’ y if and only if g(z) S g(y). Clearly, we can extend
the new assignment to a reduction of S’ to R if and only if we can extend the original assignment
to a reduction of S to R.

Our goal (under the assumption that 0 8 1, and ay & a1) is to extend this assighment to a
total computable function yielding a reduction, by specifying a computable sequence of points
(y2,y3,...) (we let yo = ap, y1 = a1) where for every pair i < k such that k£ > 1, we can force y;, to
R-collapse to y;, i.e., to have y; R y;. The idea would be of course to mimic the proof that every
u.f.p. is universal, and just define y; = f({y; : j < i}, e, 1), where e is some index that we control
by the Recursion Theorem. But, totalizers for R work only if the elements of D are pairwise R-
inequivalent. Thus, if we defined y; = f({y; : j < i},e,%), and then we see 0 S 2 so we force y2 R yo
by making ¢.(2) |= 0, then we would no longer be able to cause y; to collapse to y; (i < k) for
any k > 2, because the set {y; : j < k} is no longer comprised of pairwise R-inequivalent elements.
So the proof and the definition of y; become more complicated.
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By the Recursion Theorem we assume that we control ., for a computable sequence {e;}ic, of
indices.

We define computable arrays {zF, Yn}iknew, in the following way:

* 33‘8 = f({aoval}aelvk);
oy = f({zf, . o} o gt} e, 0);
* xf = f({yia$(2)z+1},€2¢+1, k) (for i > 0).

There are three possible problems which could occur, and make it impossible to use the properties
of the totalizer: we call them Problem al, Problem a2, Problem b, abbreviated as P,1, Py, P
respectively:

P,1: we will get :):(z)k R :):f, forsome 1 <i<k—1;

Pyo: we will get zF R x?, for some distinct r,j, 1 < 7,7 <k —1;
Py we will get y; R x%kﬂ.

Even if we define ¢e,, (0) € {z¥,...,2% |} U {23F}, P,; and P,» make it impossible to guarantee

that ¢, (0) R yi, as the finite set in the totalizer contains R-equivalent elements. Likewise, P

makes it impossible to guarantee that @e,, , (k) R 2 even if we define ¢.,, ., (k) € {y;, 25" "'}

Identifications. We now explain how to get y; R yir, when we see ¢ S k. Suppose we want to
R-collapse yi, to y;, with ¢ < k, because we see 7 S k; we may also assume that ¢ and k are least
in their current S-equivalence classes, and for all j/,j < k, we currently have j° S j if and only if

Yjr R y;:

(1) if i < 1, then identify yx with 23* by defining ¢.,, (0) = x3*: if all the elements in the set
{xk, ... 2% |} U {22*} are pairwise R-non-equivalent, then from the totalizer we get

'r(%k = 9062k(0) R f({xlf7 cee 733];71} Y {w(Q)k}veWmO) = Yk

(possible problems for this are of type P, or P,o: we will see how to prevent them); and
then identify x%k with a;, by defining ¢., (2k) = a;; as f is a totalizer and problems do not
occur, this guarantees m%k R a;;

(2) if i > 1, then identify yy with z¥ by defining ¢.,, (0) = z¥ (possible problems are again of
type P,1 or P,o: we will see how to prevent them) and then identify :c,’f with y;, by defining
Pesii1 (k) = yi, (with possible problem P,: we will see how to prevent it): if problems do
not occur, then we achieve the desired R-collapses, using the fact that f is a totalizer.

We summarize the above actions with the following schemes: a—b denotes that we identify a with
b; a - b denotes that in the identification we encounter a problem of type P. So (1) and (2)

above are schematized as

1 <1 — 2k — a;

( ) yk Pe{Paly-PaQ} 0 ’

1> 1 — zF — ;.

( ) yk? Pe{PahPaQ} 7 Pb yl
Problems and their solutions. We indicate how to prevent problems from occurring. For this, we
need more dientifications:
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P, x%k R xf Solution:
xf: ‘,E(Q)i—i-l
B,

x2k — ay;

> ag

The actions for the identifications are the following:

k 2i+1, _ 201,
xy —> xp" define ey, (K) = 25
23— ag: define e, (2i + 1) = ap;

22k —s ay: define ¢, (2k) = ay;

P,o: x’f R :Uf Solution:

Ty —sx — ag
P,
o
x§ — 1T — ag;
P
b

The actions for the identifications are the following

af — 2T define ¢, (k) =

23" — ag: define @, (2r + 1) = ag;
k 2j+1, 2541,

xi —> xy ¢ define ey, (k) = 2"
2j+1

Zo

2r+1,
CCO 3

—> ay: define ¢, (25 + 1) = ay.

Py, R $(2)2+1. Solution:
yi  — xp— ag
PE{Pal,PQQ}
x%’“ — aq.

The actions for the identifications are the following

by 7 deine g, (0) = o3
xg" — ag: define @, (2i) = ap;

xg”l —> ay: define ¢, (2 + 1) = ay.

19

What really happens? When we see some collapse which prevents us from using the properties of
the totalizer, we threaten to start two parallel lines of successive identifications which propagate
R and end respectively with ag and a;: since the two starting elements of these two lines are
(against our wishes) R-equivalent, we could conclude that ag R a1, a contradiction. So, in fact, the
unwanted collapse does not happen. We call threatening action, any identification in these virtual
lines of identifications. Therefore we can conclude that we are able to R-collapse y; to y;, when we
see that ¢ .S k. The difficult part of the verification consists in showing that we are always able to
identify when we want to do so, i.e. the relevant values p.(j) of the involved partial computable
functions are still undefined. To show this, one can use the following facts:

i. we are always able to make new definitions when we work with a k least in its current
S-equivalence class: we assume by induction at the beginning of the stage, that the values

Qe (k); Ve (0), Qe ., (k) are still undefined;

ii. problems alternate, i.e. the sequence of problems is such that P,, or P,, is either the last
problem to occur, or it is followed by Py; and P, is either the last problem to occur, or it is

followed by P, or Pg,;
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iii. when we face problem P,, we introduce a y; with smaller j; notice that j need not be
the least in its current equivalence class: in this case we continue with y;; with j' least in
its current S-equivalence class (as, j/,j < k, we currently have that j° S j if and only if
yir Ry;);

iv. no threatening action does in fact take place, so no problem does in fact take place, so no
new definitions of values ¢¢(j) involved in threatening actions do in fact take place; hence
the inductive assumptions relative to values of various ¢, being undefined at the beginning
of the current stage is preserved;

v. no new definitions are in fact ever made for the elements corresponding to y; in the array,
so we are always virtually able, once we bump into y; in a threatening action, to end the
threatening line with ag or a; as we wish.

With the same trick, i.e. of threatening to force a contradiction via suitable identifications, we
argue that there is never any unwanted R-collapse between some y; and yg, in fact we never see yy,
to R-collapse to y;, before we see k and i S-collapse. O

It is now possible to close the circle, and show:

Theorem 2.32. The following properties are equivalent for ceers:

(i) w.e.i.
(ii) weakly u.f.p.
(iii) strongly u.m.c.

Proof. For the proof, we just need the following lemma. O

Lemma 2.33. Every strongly u.m.c. ceer is u.e.i.

Proof. Let R be a strongly u.m.c. ceer. Let U,V be a fixed pair of e.i. sets, and define S to be
the ceer in which U and V are the only two nontrivial equivalence classes. Fix u e U, v € V, and
given a, b, consider the assignment (u,v) — (a,b). Using the fact that R is strongly u.m.c., one
can uniformly extend this assignment to a computable function f, 5. If [a]r N [b]r = &, then fq,
uniformly m-reduces the e.i. pair (U, V) to the pair ([a]g, [b]r), showing that the latter is e.i. (for
this property of e.i. pairs, see, e.g., [28]). The fact that R is u.e.i. follows from the uniformity in
this argument. O

Remark 2.34. Uniformity plays a crucial role in the proof of universality for the u.e.i. ceers.
Recent work has in fact shown ([I]) that there exist ceers yielding a partition of w into effectively
inseparable equivalence classes but they are not u.e.i. In fact the index set of the u.e.i. ceers is
9-complete ([1]), but the index set of the effectively inseparable ceers is I1}-complete ([2]).

2.9. Summarizing. Corollary below subsumes all universality results known in the literature,
including: every creative set is m-complete (Myhill [26]); every pair of effectively inseparable sets
is m-complete (Smullyan [30]); all creative sequences are m-complete (Cleave [9]).

Corollary 2.35. Fvery u.e.i. ceer is universal.
Proof. Immediate by Theorem as every strongly u.m.c. (or even u.m.c.) ceer is clearly univer-

sal: if R is a u.m.c. ceer, and S is any ceer with two distinct equivalence classes, then start off with
an assignment (af,a}) — (ag, a1) with afy 8 a} and ag K a1, and extend it to a full reduction.  [J
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Corollary 2.36. A ceer R is universal if and only if there exists a u.e.i. ceer S with S < R.

Proof. If R is universal and S is u.e.i., then trivially S < R. Conversely, if S is u.e.i. and § < R,
then R is universal, since so is S, by Corollary g

Corollary 2.37. A ceer R is universal if and only if there is a c.e. set X € w which is R-closed
(i.e. so that x Ry and x € X implies y € X ) and X is u.e.i. where X = {(i,7) : x; R x;} for a
computable enumeration X = {x; : i € w}.

Proof. If R is universal, then let S be u.e.i. with S < R via a reduction f. Then let X =
{z : (y,0)]lr R y&y = f(c)]}. Then X is chosen to have the property that + R y and x € X
implies y € X. We now show that X% is u.e.i. Given any two numbers 17, j, let ci,cj be so that
f(ci) R z; and f(c;) R xj. For any r.e. set U, let Uy be the set {z : (Jy)[f(z) R y&y € Ul}.
If p is a uniform productive function for S, then the function P(i,j, U, V) = i, where i is so that
x; = f(p(es, ¢j,Up, Vo)), is a uniform productive function for XE,

Conversely, it is clear that X < R via the function f(i) = x;. Thus if X is u.e.i., it is universal,
and thus R is universal. O

3. U.F.P. CEERS WHICH ARE NEITHER PRECOMPLETE NOR e-COMPLETE

Precomplete ceers and e-complete ceers are not however the only ceers in the class of u.f.p. ceers.

Definition 3.1. [4] An equivalence relation E is weakly precomplete if there exists a partial com-
putable function fix such that, for all e,

we total = [fix(e)| & @e(fix(e)) E fix(e)].

Clearly, a ceer E is weakly precomplete if and only if F has no computable diagonal function.

The following theorem and its corollary showing that there are infinitely many non-isomorphic
u.f.p. ceers are taken from [5].

Theorem 3.2. If E is a ceer, such that E has an extended diagonal function, then there exist
infinitely many ceers {E; : i € w} such that, for everyi,j,

ECE&|i#j= FE; # Ej],

where ~ denotes isomorphism.

Proof. Let E be a given ceer, such that E has an extended diagonal function d.

We want to construct a countable set {E; : i € w} of ceers such that for every i, E € E;, satisfying
the following requirement for each i, j, k, with i # 7,

P 1 : o is total = ¢, does not induce an isomorphism from FE; onto Ej;.

Satisfaction of all requirements implies our claim, as for every isomorphism there is a total com-
putable function inducing it.

We outline the strategy to meet P; ;. in isolation, which is of course implemented at certain stages
s: hence E; and E; have to be understood as their approximations E; and E7, respectively, and in
particular at each such stage, [ao]g, is a finite set:
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(1) choose a witness by using the extended diagonal function to be E-inequivalent to every
number mentioned so far;

(2) wait for a number ag such that ¢y (ag)| E; bo;

(3) let a1 = d(|ao]k,), and wait for yi(a1)l;

(4) if, say, gr(a1) = by then Ej-collapse by and by, and restrain ag B a;.

Outcomes for the strategy to meet P ;. Here are the outcomes of the strategy:

i) if we wait forever a , then we meet P; ;. since ¢y, even if total, does not induce an onto

i) if it f t(2), th t Pi iy si if total, does not ind ¢
morphism;

(ii) if we wait forever at (3), then we win P, ; since ¢y, is not total;

iii) if we act in (4), then we win P; ; ;, since ¢}, even if total, does not induce a monomorphism.

iii) if we act in (4), th in P, ; ;, since ¢ if total, does not ind hi

The strategies can be combined by a finite priority argument. The critical part of the verification
is that since by is always chosen to be E-inequivalent to any number mentioned so far, and since
each requirement is re-initialized if a higher-priority requirement acts, any collapse caused by the
requirement R; ;; cannot collapse together the elements ag and a1 of a higher priority requirement.

O

Corollary 3.3. There exist infinitely many weakly precomplete non-isomorphic u.f.p. ceers.

Proof. Take E =~p4 in the previous theorem, and use the fact that the u.f.p. ceers coincide with
the nontrivial quotients of any e-complete ceer. O

4. SEPARATING U.E.I. CEERS FROM U.F.P. CEERS
The u.f.p. ceers are properly contained in the class of u.e.i. ceers, as shown by Andrews and
Sorbi [3]:

Theorem 4.1. [3] There is a u.e.i. ceer which is not u.f.p.
Proof. See [3]. O

In the same paper they show that in a sense, little is missing for a u.e.i. ceer to be u.f.p.

Theorem 4.2. [3] If a u.e.i. ceer has an extended diagonal function then it is u.f.p.
Proof. See [3]. O

The following picture summarizes the inclusion relationships between the classes of universal ceers,
which we have introduced so far. The u.m.c. ceers have been defined at the beginning of Subsec-

tion 2.8

All the inclusions shown by the picture are proper, by the above results. Not all universal ceers of
course appear in one of these classes. For instance if R is a universal ceer then clearly R ® Id; is
universal but not u.m.c., where R@®Id; is the ceer which collapses all odd numbers, and 2x R @ Id;
2y if and only if z R y.

The following result by Nies and Sorbi [27] shows that the class of u.e.i. contains interesting
mathematical objects.

Theorem 4.3 ([27]). There is a finitely presented group D such that =p is a u.e.i. ceer.
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precomplete

single isomorphism types

e-complete

u.f.p.=quotients of ~p[

u.e.i.=weakly u.f.p.=strongly u.m.c.

u.m.c

FIGURE 1. Some classes of universal ceers

Proof. See [27]. O

5. A CHARACTERIZATION OF THE UNIVERSAL CEERS THROUGH A JUMP OPERATION

In this section, we look at a jump operation on ceers (due to [19]), and show that the universal
ceers are exactly the ceers which are fixed points (modulo the equivalence) for this operation.

Definition 5.1. [I9] For any ceer R, we define the jump of R to be the ceer R' so that x R’ y if
and only if x =y or px(x) |, ©y(y) |, and pz(x) R @y(y).

Notice that (Id;)’ = Rk, that is the equivalence relation having the halting set K as its unique
nontrivial equivalence class, and (Id)’ is the ceer yielding the partition {K; : i € w}u {{z} : z ¢ K},
where K; = {z : p,(z) |=i}.

Lemma 5.2. The following properties hold:

(1) R< R';
(2) R<S< R'<S';
(3) If R is not universal then R’ is not universal.

Proof. (1) For every i, we can effectively find a number x; so that ¢, (x;) = i. By the Padding
Lemma we may assume that the sequence (x;) is injective. Then the map i — x; is a reduction of

R to R'.

(2) Suppose R < S via the function f. Given an index i, we can effectively find an index z; so that
if ;(7) |, then ¢z, (z;) = f(pi(i)): as before we may assume that the sequence (z;) is injective.
Then the map i — x; gives a reduction of R’ to S’.
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Suppose R' < S’ via g. We first claim that for each z, if p,(x) | then ¢g,y(g(z)) |. Otherwise,
we would have that the S’-class of g(z) consists of a single element. But then the R’-class of
would be computable. But this is the set K, for ¢, (z) = r. It is a standard result that the set
K, is a complete c.e. set for any r. Thus we conclude that if p.(x) | then ¢4,y(g(z)) |. Now,
consider the map i + y; given by taking z; so that ¢, (7;) = i and letting y; = ¢g(,,)(g(x:)). This
is well-defined and gives a reduction of R to S.

(3) Suppose R’ is universal. Then for any X, we have that X’ < R’. Thus, we have that X < R.
Thus R is universal as well. ]

Note that shows that the jump is an operation on degrees of ceers (where the degree of an
equivalence relation is the equivalence class of the relation under the equivalence relation = given
by R= S if and only if R < S and S < R). Also, unlike most things called a jump, we can have
R’ = R, for example if R is universal. Gao and Gerdes posed the question (Problem 10.2 of [19])
of whether there are non-universal ceers R so that R’ = R.

Theorem 5.3. For every ceer E, if E' < E then E is universal.

Proof. We sketch the proof. The reader interested in details is invited to read the paper [IJ.

Assume that h is a computable function that reduces E’ to E. Let R be any ceer, with computable
approximations {Rs : s € w} to R and {E® : s € w} to E, as in Theorem {Rs} may collapse
equivalence classes only at odd stages, and {E,} may collapse equivalence classes only at even
stages, and they both collapse at most two equivalence class at any stage when they do so. We aim
to show that R < F.

We first outline the idea of the proof through a particular example. We use an infinite computable
sequence of indices eq, €1, ..., which we control. Eventually we define g(i) = h(e;), and show
1 Rj < €; E' 6j(<:> h(ez) E h(ej))

i.e., g reduces R to E. Our choice of these indices will make us able to E’-collapse any pair of them
as needed. Suppose for instance that we want to make eqg E’ e; because we see at some point that
0 R 1. The basic module for this is the following:

(1) Keep e, (€0) and ¢, (e1) undefined until we see 0 R 1.
(2) Define ¢, (o) = @e,(€1) = h(€') for another suitably chosen fixed point €’ (while keeping

Pe’ (6,) T) .

Suppose that even later we want to E’-collapse e; and es:

(1) Keep ¢e (€') and @, (e2) undefined, until 1 R 2.
(2) Define @.,(e2) = h(e") and o (e') = per(e”) = h(e") (while keeping pen(€”) 1), where e”
and €” are further suitably chosen fixed points.

But this implies e; E' es, as follows from the sequence of implications

(€)= e (") |= e E' " = h(') E h(e") = e1 E’ es.
Care must be taken (by carefully controlling convergence of the various computations ¢e(e)), to
collapse only what we need to collapse. In particular, if we were to see an E-collapse of say, h(e;)

and h(e;), without having i R j, then we would stop the construction leaving certain computations
divergent, thus forcing a contradiction (exploiting the fact that if u # v and ¢, (u) and ¢,(v) do
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not converge, then u B’ v, and thus h(u) £ h(v)): therefore E cannot cause this collapse before
seeing ¢ R j.

If D is a finite set, and n is a number, then (D, n) denotes the code {u,n) where u is the canonical
index of D. A pair a = {(D,n), with D # &, will be called a node: We sometimes denote the
components of a node a by D, and n,. As in the proof of Lemma [2.31] we will use an infinite
computable sequence of indices {e, : @ node} which we control.

It might be instructive to see how the two-step example above is formally implemented.

El; Keep @e o 0, (€toy,09) and @e, o (€¢(1y,0y) undefined, until we see 0 R 1.
2) Define

Pecior.05 (€C(01,0)) = Pecpuy.or (€c0)) = Mecgo1,1y);

still keeping e,y ;15 ((€fo,1y,1y) undefined (notice that {0} and {1} merge into {0,1}) so
that, in the two-step example above, we take ey = e(o},0y, €1 = €¢{1},0y, and e = €¢{0,1},1)-

Suppose that even later we want to E'-collapse e; and ey = €({2},05

(1) Keep @e 1.1 (€¢io,13,1) and Qe ,, o, (€¢f2},0y) undefined, until 1 R 2.
(2) Define Pe 21,05 (€<{2},0>) = h(€<{2}71>), and set

Peiay . (€21,1)) = Pecionyn (€cto,13,1)) = Pleqo,1,2),2))-

Thus, taking €” = e¢(9) 1y, and €” = e((g.1,9,2y We have that e, (e2) = h(e”) and e (e') =
wer(€") = h{e") (still keeping pen(e”)1). (Notice, since we want to merge {2} and {0, 1}
into {0, 1,2}, and since the node o = ({0, 1}, 1) has level 1, i.e., no = 1, we first transform
{{2},0) into a node {{2},1) with level 1: this transformation procedure is an instance of
what is later called synchronization procedure).

We see that the desired numbers e; are taken to be e; = ey 0y-

We now try to be more formal. We say that a node (3 is a parent at stage s of a node «, if
na =ng + 1, and at s pe,(ep) is defined, and ¢.,(es) |= h(eq). The construction will make sure
that every node has at most two parents. A node « has only one parent [ if « is the result of a
definition due to the synchronization procedure, described in more detail below, in which case we
have a = (Dg,ng + 1) and pe,(eg) = h(ea).

Given a node «, let T, be the finite tree (depending on the stage), defined as the smallest set of
nodes such that: (1) o € Ty; (2) if § € T, and 7 is a parent of 3, then v € T,.

A node « is realized at stage s if D, is a singleton, or « has a parent: the idea is that if « is
realized, but ¢, (eq) is still undefined, then D, is an Rs-equivalence class: if at some later stage,
R collapses D,, with another block Dg, relative to a similarly already realized 3, with e, (es) still
undefined, then we will define

(1) ealCa) = $es(€s) = MeDyunsnt1))s

so that (Do U Dg,n + 1) becomes realized. To facilitate the construction and the verification of
the two following lemmas, we do this only if n, = ng: for this, we may employ at the stage the
synchronization procedure: if, say, no < ng, then for every ¢ with n, < < ng — 1, define,

‘P6<Da,i>(€<Da,z‘>) = h(e(n, i+1y)-



26 U. ANDREWS, S. BADAEV, AND A. SORBI

The two basic lemmas (which refer to the current stage s, at which computations and approxima-
tions are taken), are:

Lemma 5.4. Let a be a realized node, with n, = n. For every i < n, for every B,v € Ty, if
ng = n, =i then hieg) E h(e,).

Proof. We may assume n > 0, otherwise the claim is trivial. We will prove the claim by reverse
induction. Assume ¢ = n: the only node 8 € T;, with ng = n is @. Thus the claim trivially holds
for i = n.

Suppose that the claim is true of ¢, with 0 < ¢, and let us show it for ¢ — 1: For every node v € Ty,
with n, = 4 — 1, there is a node 8 € T, with ng = i such that ¢, (e,) = h(eg). But by the
inductive assumption, all the nodes 8 with ng = i are such that the corresponding values h(eg) are
all E-equivalent, hence if 7, § are nodes such that n, = ns = i — 1, we have that e, E' e5 and thus
h(ey) E h(es). O

Lemma 5.5. If o and  are distinct realized nodes, with no, = ng = n such that @, (e.) and
Yes(ep) are undefined, then, for every v € Ty, and 0 € Ty such that n, = ns, we have that eyE’/e(s.

Proof. By hypothesis we have ¢, (€a) 1 and ¢e,(eg)T. So the claim is true of i = n since e, E/eﬁ.
Suppose now that the claim is true of 0 < i < n, and let v € T, and 0 € T be such that
ny = ng =i — 1. Then there are 7' € T, and ¢’ € Tp such that n = ng =i, and @ (e,) = h(ey),
and ., (e5) = h(es). By induction, e, B es, so h(e,) E h(es), and thus we may conclude that
e,yE’/e(;. ]

Construction. The construction can be sketched as follows:

(1) code R into E through suitable convergent computations, as described in the equation :
if we see for the first time ¢ R j, then pick «, 8 so that ({i},0) € Ty, {{j},0) € T3, 0, § are
realized, and e, (€a) and @e4(eg) are still undefined (via synchronization, we may assume
that n, = ng), and define ¢, (ea) = pes(ep) = hle(p,opsnt1y)- This is implemented at
odd stages, the only ones at which R can collapse. Use Lemma to show that the values
9(i) = h({egy0y) and g(i) = h({egy,0y) satisfy that g(i) E g(j);

(2) prevent bad situations, at any stage, of the form h(e¢qy05) £ hlecy0y) but a K b, by
threatening to leave certain computations undefined: this is implemented at even stages,
the only ones at which E can collapse. In particular, if we see h(e¢(qy,05) E h(e¢py ), but
a R b, then we pick a, 3 so that ({a},0) € Ty, {{b},0) € Tp, a, 3 are realized, and ¢, (eq)
and (e, (eg) are still undefined (via synchronization, we may assume that n, = ng). We
then stop the construction and ensure that e, (€a) and ¢, (eg) remain undefined forever.
By Lemma this would cause a contradiction. Thus we never see this bad situation.

O
6. CHARACTERIZATIONS OF SOME CLASSES OF UNIVERSAL CEERS
Bernardi and Montagna ([7]) use the notion of a quotient object to characterize u.f.p. ceers and

precomplete ceers. Given equivalence relations R, S, we say that R is a quotient of S, if there is
an onto morphism from S to R.
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Lemma 6.1. Let R, S be ceers with no finite classes. Then R is a quotient of S if and only if
there is a ceer S ~ R such that 8" 2 5’.

Proof. Easy: if f induces an onto morphism from S to R, then define z S’ y if and only if
f(x) R f(y). O

Theorem 6.2. [7] The following hold:

(1) A ceer R is u.f.p. if and only if R is a nontrivial quotient of ~p4.
(2) A ceer R is precomplete if and only if R is a nontrivial quotient of every universal ceer.

Proof. The two implications from right to left follow from Lemma [1.7

We now show the implications from left to right. We begin with the first item. Let R be a u.f.p.
ceer. Construct an onto morphism p :~ps— R, by defining a computable h by stages. Suppose
that f(D,e, ) is a totalizer for R. We assume that by the Recursion Theorem we control the index
e. Also, assume that we work with computable approximations {R,} to R, and ~ps s to ~pa, as
in Lemma without loss of generality we may assume that ~p4 , changes only at odd stages.

At the end of stage s, suppose that we have defined a finite set of pairs (ag, bg),. ., (as—1,bs—1)
approximating a computable function A that we build and that will induce the desired onto mor-
phism. At each stage s + 1 we assume by induction that if i is least such that a; € [a;]~p, , then
©e,s() is still undefined.

Stage 0. Let ¢ (x) be undefined for all z.

Stage s +1 odd. See if there are i < j such that a;,a; become ~ p-equivalent. If, so, pick such a
pair i, j: we may assume that j is least such that a; € [aj]~p, . Define ¢(j) = b;.

Let now as = px.[z ¢ {a; : i < s}], and let bg = f({b; : i < s},e,s).

Stage s+1 even. Let by = px.[z ¢ {b; : i < s}], and let as; be a number which is not ~ p 4-equivalent
to any number which is already in {a; : i < s}. We use here that ~p4 has an extended diagonal
function.

At each step the inductive assumption is preserved. It is not difficult to see that the assignment
as — bg, defines a computable function h with the desired properties.

We now turn to the second item of the statement. Let R be a precomplete ceer, and S a universal
ceer: so there is a computable function f which induces a monomorphism from R to S. We want to
show that there is a computable function h that induces an onto morphism from S to R. Suppose
that we have already defined h(i) for all i < n, and let e, be a uniformly found index such that

h(i) if ((3i <n)[n e [i]ls]) < (By)[n S f(y)]) and i is first,

e(@) =y (@IS FW]) < ((Fi < m)[ne [i]s]) and y is first,
1 otherwise;

let f(e, z) be a totalizer for R, and define h(n) = f(en,0). For the verification, let us inductively
assume that if ¢,j < n and ¢ S j then h(i) R h(j), and let i < n be such that ¢ S n. We want
to show that h(i) R h(n): by the inductive assumption, we may assume that i is least with this
property. Then ¢, (0) is defined: if it is defined through the first clause, then by the totalizer f,
h(n) R h(i); otherwise, let h(n) = y where f(y) S n; but then ¢, (0) is defined, and by minimality
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of i, it is defined through the second clause, so that h(i) = z for some z such that f(z) S i. It
follows that f(y) S f(z), and thus y R z, as f induces a monomorphism. Therefore h induces a
morphism: it is easy to see that this morphism is also onto. O

6.1. Extensional formulae of Peano Arithmetic. In this section we consider ceers defined by
extensional formulae of Peano Arithmetic.

Definition 6.3. Given a formula F(v) in the language of PA, let ~p be the ceer
x~py<s PAR F(T) & F(7).

A formula F(v) of PA is extensional if for every z,y,
r ~pay= PAF F(T) o F(y)
Theorem 6.4. The u.f.p. ceers coincide with the ceers that are computably isomorphic to the ones
induced by extensional formulas of PA.
Proof. If R is given by an extensional formula, then R 2~ py, thus it is u.f.p. by Theorem

Conversely, if R is u.f.p., then R ~ S for some ceer S 2~py, by Theorem[6.2] Then, by Lemma [6.5
below, there is a formula F'(v) such that S =~p. Since S 2~py4, F is extensional. O

Lemma 6.5. For every ceer S there exists a ¥1 formula F(v), such that

rSy<e PA- F(z) o F(7).

Proof. Let S be a ceer. Since ~1 is precomplete, there exists a computable function f such that
v 8y < PAE pa) © piy)

and f(r) is the "1-code of a X; sentence py(,), for all x. Define g(z) = "o’ where f(z) = "a'y,

and let G(u,v) a X1 formula representing g. By an argument similar to the one in the proof of
Theorem it is easy to see that can take F(u) to be (Fv)(G(u,v) A T1(v)). O

An important example of an extensional formula is the provability predicate Prpa(v), a X1 formula
representing the set of theorems, and satisfying the Hilbert-Bernays Derivability Conditions.

Lemma 6.6. Let F(v) be a X, extensional formula such that there exists q € ¥,,, for which
[{TFm) inewl] ,, =[{p": PAFq—-pil -

Then ~p is precomplete.

Proof. Let ¥ be a partial computable function and let

(z) = the first y such that "F(y)' ~pa , if there is any such y;
L otherwise.

Let U(u,v) be a formula that represents ¢ in PA, and define
(x) = (T (T, v) A Fv) v ¢

Clearly, 1& is total. Let now h = ¢ o @@ We claim that also h is total. Indeed, let x be given, and
observe that

PAF q— Qu(¥(z,v) A F(v)) v q)
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hence by the hypothesis there exists some z such that
@U@, 0) A F©) v ) ~pa 'F(E)"
This shows that o(¢(z)) is defined, hence h is total.

Notice, that by the hypothesis, for every z, since F(Z) is provably equivalent to some sentence
which is implied by ¢, we have PA ¢ — F(z), and thus

(1) 'F(Z)vq ~pa 'F(Z)"
We now claim that h makes 1 total modulo ~p. Suppose that ¢(x) |=y. Then
$(x) ~pa "F@) v ¢ ~pa "F(y)’

(where the last equivalence is justified by ) Hence if o(¢)(x)) = z with "F(2)" ~pa (), then
we see that "F'(Z)" ~pa "F(y)', and thus

h(z) = p($(z)) ~r y.

Theorem 6.7. Prp4(v) is precomplete.

Proof. We verify that Prp4(v) satisfies the hypotheses of Lemmawith the sentence ¢ = =Conp 4
and n = 1. As independently proved by Goldfarb and Friedman, see [18], for every ¥; sentence p

such that PA - —Conpy — p there is a 3 sentence p’ such that PA + p & Prpa('p’"). The other
inclusion follows from the fact that for every n, PA + —=Conpa — Prpa(m). d
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