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A jump operator on the Weihrauch degrees
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Abstract

A partial order (P, ≤) admits a jump operator if there is a map j : P → P that is strictly
increasing and weakly monotone. Despite its name, the jump in the Weihrauch lattice fails
to satisfy both of these properties: it is not degree-theoretic and there are functions f such
that f ≡W f ′. This raises the question: is there a jump operator in the Weihrauch lattice? We
answer this question positively and provide an explicit definition for an operator on partial multi-
valued functions that, when lifted to the Weihrauch degrees, induces a jump operator. This
new operator, called the totalizing jump, can be characterized in terms of the total continuation,
a well-known operator on computational problems. The totalizing jump induces an injective
endomorphism of the Weihrauch degrees. We study some algebraic properties of the totalizing
jump and characterize its behavior on some pivotal problems in the Weihrauch lattice.
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1 Introduction

Weihrauch reducibility is a notion of reducibility between computational problems that calibrates
uniform computational strength. Despite growing interest in the Weihrauch degrees, their underlying
structure remains relatively unexplored. Early work showed that the Weihrauch degrees form a
distributive lattice with a bottom element; see [7] for an overview.
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In the context of classical computability theory, a central role is played by the Turing jump. It
is therefore natural to ask whether there is an analogous operation in the Weihrauch lattice. An
answer to this question requires a precise description of the desired properties of a jump operator.

Definition 1.1 ([11, Def. 1.1]). Let (P,≤) be a partial order. A jump operator on P is a function
j : P → P that is

(1) strictly increasing, i.e., for every p ∈ P , p < j(p), and

(2) (weakly) monotone, i.e., for every p, q ∈ P , if p ≤ q then j(p) ≤ j(q).

The structure (P,≤, j) is called a jump partial order .

This definition comes from Hinman and Slaman, who showed that every countable jump partial
order is embeddable in the Turing degrees [11, Thm. 1.8]. Later, Lerman [14, Theorem 10.1.2]
extended this result to every countable jump partial order with least element preserved under the
embedding; and Montalbán [16, Thm. 4.17] extended this result by showing that every countable
jump upper semilattice can be embedded in the Turing degrees preserving also the join operation.

Using the Axiom of Choice, it is not hard to show that every upper semilattice without maximum
(P,≤,⊕) admits a jump operator: given a well-ordering (pα)α of P , we can define j(p) := p⊕ pα,
where α is least such that pα 6≤ p. It is straightforward to check that this map is indeed a jump
operator on (P,≤,⊕). However, this argument heavily uses the Axiom of Choice, and most likely,
the defined jump operation will not be “natural”.

In the context of Weihrauch reducibility, Brattka, Gherardi and Marcone [6] defined the jump
of a partial multi-valued function (see Section 2 for the precise definition). While this operator
(that originally was also called the derivative) has some connections with the Turing jump, it fails
to satisfy both properties (1) and (2) in the definition of a jump operator.

In this paper, we explicitly define a jump operator on computational problems which we call
the totalizing jump. We show that, while the explicit definition may look technical, it has a natural
connection with the totalization operator T, a well-known operator on computational problems.

After recalling the necessary background notions in Section 2, we define and study the totalizing
jump in Section 3. In particular, we show that the degree of the totalizing jump tJ(f) of a problem f
is the maximum degree of Tg for g ≡W f (Theorem 3.3). We also show that the map tJ is injective
on the Weihrauch degrees (Theorem 3.7). This, in turn, implies that tJ is an injective (but not
surjective) endomorphism of the Weihrauch degrees into themselves. As a corollary, this induces
two new embeddings of the Medvedev degrees into the Weihrauch degrees. In Section 4, we explicitly
characterize the totalizing jump of specific well-known problems. We make some remarks on abstract
jump operators in Section 5, and finally, in Section 6, we highlight some open problems.

2 Background

In this section, we provide a short introduction to the Weihrauch degrees, focusing on what will be
needed in this paper. For a more thorough presentation, the reader is referred to [7].

We let NN and 2N denote Baire and Cantor space, respectively. Let N<N and 2<N denote the
sets of finite strings of natural numbers and of finite binary sequences, respectively. We write
(x0, . . . , xn−1) for the string σ := i 7→ xi of length n. The length of σ is denoted |σ|. If x is a
finite or infinite string, we write x[n] for the prefix of x of length n. We use σaτ to denote the
concatenation of σ and τ , and ⊑ for the prefix relation.

We will use the symbol 〈·〉 to denote a fixed computable bijection N<N → N. An explicit
definition for 〈·〉 can be found in any basic textbook on computability theory. We assume that this
map has all the standard computability-theoretic properties, e.g., that σ 7→ |σ| is computable. For
the sake of readability, we write 〈n0, . . . , nk〉 in place of 〈(n0, . . . , nk)〉.
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Often, the symbol 〈·〉 is used to denote the join between two (finite or infinite) strings with the
same length. The meaning of 〈·〉 will be clear from the context. Moreover, if (xi)i∈N is a sequence
of infinite strings, we define 〈x0, x1, . . .〉(〈i, j〉) := xi(j).

We write f :⊆ X ⇒ Y for a partial multi-valued function with domain contained in X and
codomain Y . For every f, g :⊆ NN

⇒ NN, we say that f is Weihrauch reducible to g, and write
f ≤W g, if there are two computable functionals Φ :⊆ NN → NN and Ψ :⊆ NN ×NN → NN such that,
for every p ∈ dom(f),

(1) Φ(p) ∈ dom(g), and

(2) for every q ∈ gΦ(p), Ψ(p, q) ∈ f(p).

The functionals Φ and Ψ are often called the forward functional and the backward functional,
respectively. Unless otherwise mentioned, we will assume that Φ is the name for the forward
functional and Ψ is the name for the backward functional.

If Ψ need not have access to the original input p, we say that f is strongly Weihrauch reducible
to g, and write f ≤sW g. Formally, f ≤sW g if there are two computable functionals Φ and Ψ such
that, for every p ∈ dom(f),

(1) Φ(p) ∈ dom(g), and

(2) for every q ∈ gΦ(p), Ψ(q) ∈ f(p).

Weihrauch reducibility is often formulated in the more general context of partial multi-valued
functions on represented spaces, also called computational problems. However, if we are interested in
the structure of the degrees, there is no loss of generality in assuming that computational problems
have domain and codomain NN. Indeed, for every computational problem on represented spaces,
there is a canonical choice for a Weihrauch equivalent problem on the Baire space (see, e.g., [7,
Lemma 3.8]). With a small abuse of notation, we can consider problems with other domains and
codomains (e.g., N, 2<N, and N<N). They can be identified with problems on NN using canonical
representations (e.g., n ∈ N is represented by any p ∈ NN with p(0) = n, and a tree is represented
by its characteristic function).

We say that f is a cylinder if for all g, g ≤W f if and only if g ≤sW f . The notion of cylinder
is often useful to prove separation results (as proving the non-existence of a strong Weihrauch
reduction can be easier).

As mentioned in the introduction, the Weihrauch degrees form a distributive lattice, where join ⊔
and meet ⊓ are obtained by lifting the following operators to the degrees:

• (f ⊔ g)(i, x) := {i} × f(x) if i = 0 and (f ⊔ g)(i, x) := {i} × g(x) if i = 1;

• (f ⊓ g)(x, z) := {0} × f(x) ∪ {1} × g(z).

There is a natural bottom element, which is the (degree of the) empty function. The existence
of a top element is equivalent to the failure of some relatively mild form of the Axiom of Choice
(see [8, §2.1]). In this paper, we work in ZFC, so we will assume that the Weihrauch degrees do not
have a maximum element.

There is a plethora of operators defined on computational problems, each of which captures a
specific (natural) way to combine or modify computational problems. Most (but not all) of them lift
to Weihrauch degrees. It is beyond the scope of this paper to list them all; we will instead mention
the ones that are relevant to this work.

The parallel product f × g is defined as (f × g)(x, y) := f(x) × g(y) and captures the idea of
using f and g in parallel. Its infinite generalization is called parallelization, and can be defined as
the problem f̂ := (xi)i∈N 7→ {(yi)i∈N : (∀i ∈ N)(yi ∈ f(xi))}. In other words, given a countable

sequence of f -instances, f̂ produces an f -solution for every f -instance.
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To capture the idea of using f and g in series, we introduce the compositional product: Let
(Γp)p∈NN be an effective enumeration of all partial continuous functionals with Gδ domain. We
define f ∗ g as the problem that takes as input an element of the set

{(p, x) ∈ N
N × N

N : x ∈ dom(g) and (∀q ∈ g(x)) Γp(q) ∈ dom(f)},

and produces a pair (y, w) with w ∈ g(x) and y ∈ f(Γp(w)). Historically, the compositional
product is defined as a map on a pair of computational problems or Weihrauch degrees (see [6])
that corresponds to max≤W

{f0 ◦ g0 : f0 ≤W f and g0 ≤W g}. However, it is convenient to fix a
specific representative of such degree (see [18] for a short proof of the fact that f ∗ g as defined
above works). Recalling that the compositional product is associative ([7, Prop. 11.5.6]), we denote
by f [n] the n-fold compositional product of f with itself (i.e., f [1] := f , f [2] := f ∗ f , and so on).

All the operators mentioned so far are degree-theoretic. We now introduce a few operators that,
despite not being degree-theoretic, still play an important role in the theory.

The jump f ′ of f :⊆ X ⇒ Y is the problem that takes as input a convergent sequence (pn)n∈N

in NN and is defined as
f ′((pn)n∈N) := f

(
lim
n→∞

pn

)
.

Observe that, letting lim :⊆ (NN)N → NN be the computational problem that computes the limit
in the Baire space, f ′ ≤W f ∗ lim. The converse reduction does not hold in general (take, e.g., a
function f that only has computable outputs).

As anticipated, this jump operation fails to be a jump in the abstract sense: A simple counterex-
ample is the constant function c := p 7→ 0N that maps every p ∈ NN to the constant 0 string. Indeed,
given that the input plays no role, it is apparent that c′ ≡W c. This shows that the operator ′ is
not strictly increasing. At the same, letting id be the identity on the Baire space, we have

c′ ≡W c ≡W id <W id′ ≡W lim,

where id′ ≡W lim is straightforward from the definition (see also [6, Ex. 5.3(5)]).
One may think that the constant function is a somewhat weird exception, but this is not the case.

For example, as mentioned, f ′ intuitively corresponds to using lim once, and then applying f to the
result. For any computational problem strong enough to be closed under compositional product
with lim, the jump is not strictly increasing.

As a side note, we mention that, even though the jump is not weakly monotone on the Weihrauch
degrees, it is weakly monotone on the strong Weihrauch degrees. It still fails to be a jump, as it is
not strictly increasing on the strong Weihrauch degrees.

In the definition of the totalizing jump, a central role is played by the total continuation or
totalization operator. For every partial multi-valued f :⊆ NN

⇒ NN, its totalization is the total
multi-valued function Tf : NN

⇒ NN defined as

Tf(x) :=

{
f(x) if x ∈ dom(f),

NN otherwise.

Again, the totalization is not a degree-theoretic operation: as a simple counterexample, it is enough
to consider a total computable function and a partial computable function with no total computable
extension.

We conclude this section by listing a few computational problems that will be useful in the rest

of the paper. We already introduced the identity problem id and the problem lim :⊆ (NN)
N

→ NN

that maps a convergent sequence in NN to its limit. It is well-known that lim ≡sW L̂PO, where
LPO : NN → 2 is defined as LPO(p) := 1 iff (∃n ∈ N) p(n) 6= 0. It is convenient to think of LPO(p)
as the answer to a single Σ0,p

1 - (or Π0,p
1 -)question.
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Some benchmark examples in the Weihrauch lattice are choice problems. The choice problem CX

can be intuitively described as the problem of finding elements of non-empty subsets of X given
an enumeration of the complement of the subset. Their formal definition is usually given in the
more general context of represented spaces, but for the sake of this paper, we can define them in a
(strongly Weihrauch) equivalent way as problems on Baire space as follows:

• Ck: Given p ∈ (k+1)N such that (∃n < k) n+1 /∈ ran(p), find n < k such that n+1 /∈ ran(p).

• CN: Given p ∈ NN such that (∃n) n+ 1 /∈ ran(p), find n such that n+ 1 /∈ ran(p).

• C2N : Given (the characteristic function of) an infinite subtree of 2<N, find a path through it.

• CNN : Given (the characteristic function of) an ill-founded subtree of N<N, find a path through
it.

The restrictions of the choice problems to instances with a unique solution are denoted with the
symbol UCX . It is known that UCN ≡W CN ([6, Thm. 3.8]), UCk ≡W UC2N ≡W id (where the
second equivalence follows from the fact that 2N is computably compact, see, e.g., [3, Cor. 6.4]), and
UCNN <W CNN ([12, Cor. 3.7]).

3 The totalizing jump

We fix a computable enumeration (Φe)e∈N of partial computable functionals from NN to NN. We
now introduce the following new operator on computational problems:

Definition 3.1. Let f :⊆ NN
⇒ NN be a partial multi-valued function. We define the totalizing

jump (or tot-jump for brevity) of f as follows: For every e, i ∈ N and every p ∈ NN,

tJ(f)(e, i, p) :=





{Φi(p, q) : q ∈ fΦe(p)} if Φe(p) ∈ dom(f) and

(∀q ∈ fΦe(p)) Φi(p, q) ↓,

NN otherwise.

Remark 3.2. For some proofs, it may be convenient to use the following (strongly Weihrauch
equivalent) definition for the tot-jump: For every partial multi-valued function f :⊆ NN

⇒ NN and
every x = (e, i)ap ∈ NN, we define

tJ(f)(x) :=





{Φi(x, q) : q ∈ fΦe(x)} if Φe(x) ∈ dom(f) and

(∀q ∈ fΦe(x)) Φi(x, q) ↓,

NN otherwise.

To show that tJ(f) ≡sW tJ(f), observe that the only difference between the two problems is that
in tJ(f), the functionals Φe and Φi receive as input their own indices. In particular, to prove that
tJ(f) ≤sW tJ(f), it suffices to notice that, given e, i, p, we can uniformly compute e′, i′ ∈ N so that
Φe′(p) = Φe((e, i)

ap) and Φi′(p, q) = Φi((e, i)
ap, q). The other reduction is proved analogously.

Intuitively, we can think of the tot-jump tJ(f) of f as a problem that “collects all possible
Weihrauch reductions to f and totalizes”. In particular, the name “totalizing jump” is motivated
by the following characterization of the Weihrauch degree of tJ.

Theorem 3.3. For every problem f ,

• if g ≤W f , then Tg ≤W tJ(f);

• there is a g ≡W f such that tJ(f) = Tg.
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In other words, the Weihrauch degree of tJ(f) is the maximum of the Weihrauch degrees of the
totalizations of the g’s which are Weihrauch equivalent (equivalently, reducible) to f .

Proof. Fix a problem f . Assume that g ≤W f via Φe,Φi. It is straightforward to see that Tg ≤W

tJ(f) is witnessed by the maps p 7→ (e, i, p) and (p, q) 7→ q. Indeed, if p ∈ dom(g) then Φe(p) ∈
dom(f) and, for every q ∈ fΦe(p), Φi(p, q) ∈ g(p). In particular, tJ(f)(e, i, p) ⊆ g(p). On the other
hand, if p /∈ dom(g) then tJ(f)(e, i, p) ⊆ Tg(p) = NN.

To conclude the proof, let us define

g(e, i, p) := {Φi(p, q) : q ∈ fΦe(p)}

with dom(g) := {(e, i, p) ∈ N × N × NN : Φe(p) ∈ dom(f) and (∀q ∈ fΦe(p)) Φi(p, q) ↓}. It is
immediate from the definition of g that g ≡W f and tJ(f) = Tg.

We now show that the tot-jump is a degree-theoretic operator that induces a jump operator on
the Weihrauch degrees.

Theorem 3.4. For every f , f <W tJ(f). Moreover, for every f, g, if f ≤W g then tJ(f) ≤W tJ(g).

Proof. The reduction f ≤W tJ(f) is straightforward (just map x to (e, i, x), where e, i are indices
for the identity function and the projection on the second component respectively), so we only need
to show that tJ(f) 6≤W f .

Let d : NN → NN be the function defined as d(p)(0) := p(0) + 1 and d(p)(n + 1) := p(n + 1).
Observe first of all that tJ(f) (and hence tJ(f)) is strongly Weihrauch equivalent to the multi-valued
function fd that, on input x = (e, i)ap, is defined as

fd(x) :=





{d ◦ Φi(x, q) : q ∈ fΦe(x)} if Φe(x) ∈ dom(f) and

(∀q ∈ fΦe(x)) Φi(x, q) ↓,

NN otherwise.

Indeed, the reduction fd ≤sW tJ(f) follows from the fact that, for every x ∈ NN and every q ∈
tJ(f)(x), d(q) ∈ fd(x). The converse reduction is witnessed by the maps id and

q 7→

{
q if q(0) = 0,

d−1(q) if q(0) > 0.

It is therefore enough to show that fd 6≤W f . Assume towards a contradiction that fd ≤W f is
witnessed by the functionals Φe and Φi. Fix p ∈ NN and let y := (e, i)ap. Since fd is total,
y ∈ dom(fd). Moreover, by definition of Weihrauch reduction, Φe(y) ∈ dom(f) and for every
q ∈ fΦe(y), Φi(y, q) ↓.

We have now reached a contradiction, as for every non-empty X ⊆ NN, X 6⊆ d(X) (consider
p ∈ X such that p(0) is minimal). In particular, taking X = {Φi(y, t) : t ∈ fΦe(y)} 6= ∅, there is
q ∈ fΦe(y) such that

Φi(y, q) /∈ d(X) = {d ◦ Φi(y, t) : t ∈ fΦe(y)} = fd(y),

contradicting the definition of Weihrauch reducibility.1

To prove the last part of the statement, assume that f ≤W g via the functionals Φe,Φi. Let
(a, b, p) be an input for tJ(f). We can uniformly compute c, d ∈ N so that Φc(p) = Φe(Φa(p))
and Φd(p, q) = Φb(p,Φi(Φa(p), q)). The reduction tJ(f) ≤W tJ(g) is witnessed by the functionals
(a, b, p) 7→ (c, d, p) and (p, q) 7→ q.

1Without sufficiently strong choice axioms, we cannot prove the existence of q ∈ fΦe(y) witnessing the contradic-
tion.
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Indeed, if Φa(p) ∈ dom(f) and, for every q ∈ fΦa(p), Φb(p, q) ↓, then tJ(f)(a, b, p) = {Φb(p, q) :
q ∈ fΦa(p)}. In this case, by the definition of Weihrauch reducibility, Φc(p) = Φe(Φa(p)) ∈ dom(g)
and for every t ∈ gΦc(p), Φi(Φa(p), t) ∈ fΦa(p). In particular, Φb(p,Φi(Φa(p), t)) ↓∈ tJ(f)(a, b, p).
In other words, tJ(g)(c, d, p) ⊆ tJ(f)(a, b, p). The other case (i.e., if Φa(p) /∈ dom(f) or if there is
q ∈ fΦa(p) such that Φb(p, q) ↑) is trivial as tJ(g)(c, d, p) ⊆ tJ(f)(a, b, p) = NN.

Remark 3.5. Notice that the same proof shows that tJ induces a jump operator on the strong
Weihrauch degrees. Indeed, the reductions f ≤W tJ(f) and tJ(f) ≤W tJ(g) (when f ≤W g) are both
strong Weihrauch reductions. Moreover, as noticed, fd ≡sW tJ(f) ≡sW tJ(f), hence f <sW tJ(f).

Observe that the definition of tJ(f) is ∆1,f
2 in the language of third-order arithmetic, i.e., there

is a ∆1
2-formula with parameter f that says “t ∈ tJ(f)(e, i, p)”. Indeed,

• αf (p) := Φe(p) ↓∈ dom(f) is equivalent to (∃r, q)[ r = Φe(p) ∧ (r, q) ∈ f ], which is Σ1,f
1 ;

• βf (p) := (∀q)[ (Φe(p), q) ∈ f → Φi(p, q) ↓ ] is Π1,f
1 ;

hence the formula t ∈ tJ(f)(e, i, p) can be written as

(αf (p) ∧ βf (p)) → (∃q ∈ fΦe(p)) t = Φi(p, q).

Remark 3.6. No jump operator on partial multi-valued functions can be defined by a Σ1,f
1 formula.

To show this, we use the fact that CNN ≡W Σ1
1-C

NN (essentially proved in [12, Thm. 3.11]), where

Σ1
1-C

NN is the problem of finding elements in non-empty analytic subsets of NN. Assume that j

is an operator defined by a Σ1,f
1 -formula. In particular, q ∈ j(CNN)(p) is a Σ1

1-formula ϕ(p, q)
where CNN may appear. Since “x ∈ CNN(A)” is arithmetic in x,A (in fact, CNN(A) is Π0

1 relative
to A), any arithmetic formula involving it is arithmetic as well. This implies that ϕ(p, q) is actually
Σ1

1 uniformly in p, q and hence we can use Σ1
1-C

NN to pick a point in {q ∈ NN : ϕ(p, q)}. In other

words, j(CNN) ≤W Σ1
1-C

NN ≡W CNN , so j is not strictly increasing.

It is straightforward to see that the map tJ is injective. More interestingly, it is injective on the
Weihrauch degrees.

Theorem 3.7. For every f, g, if tJ(f) ≤W tJ(g) then f ≤W g. This implies that the map tJ is an
injective endomorphism on the Weihrauch degrees.

Proof. Let f, g be two partial multi-valued functions and assume that tJ(f) ≤W tJ(g) via the
functionals Φ and Ψ. Consider a pair (e, i) such that e is an index for id and Φi(p, q) is defined as
follows: Let m ∈ N be the first number found such that (∃z ∈ NN) Ψ((e, i, p), z)(0) ↓= m. Then

Φi(p, q)(n) :=

{
q(0) +m+ 1 if n = 0,

q(n) otherwise.

To show that f ≤W g, let p ∈ dom(f) and consider the input (e, i, p) for tJ(f). Let (a, b, t) =
Φ(e, i, p) be an input for tJ(g). Observe that Φa(t) ∈ dom(g) and for every r ∈ gΦa(t), Φb(t, r) ↓.
Indeed, if not, then any z ∈ NN is a valid solution for tJ(g)(a, b, t). In particular, we could take z
so that Ψ((e, i, p), z)(0) ↓= m. This would lead to a contradiction as, by definition of Φi, for every
y ∈ tJ(f)(e, i, p) we have y(0) > m. In other words,

tJ(g)(Φ(e, i, p)) = {Φb(t, r) : (a, b, t) = Φ(e, i, p) and r ∈ gΦa(t)}.

Hence, a solution for tJ(f)(e, i, p), and in turn for f(p), can be uniformly obtained from g(Φa(t)).
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As we will discuss extensively later, tJ is not surjective, even on the cone above tJ(∅). The
previous theorem implies that there is a proper substructure of the Weihrauch degrees that is
isomorphic to the Weihrauch degrees. Note that, using this endomorphism, we obtain two (and,
by iterating, infinitely many) new embeddings of the Medvedev degrees into the Weihrauch degrees
(see [10] for a survey on Medvedev reducibility, and see [7, Thm. 9.1] for the two known embeddings
of the Medvedev degrees into the Weihrauch degrees).

Observe that, as a corollary of Theorem 3.3, we obtain that tJ(f) is never a cylinder. Indeed,
we can prove something slightly stronger:

Proposition 3.8. For every f :⊆ NN
⇒ NN such that f <sW Tf , Tf is not a cylinder.

Proof. It is well-known that g is a cylinder iff id ×g ≤sW g ([4, Cor. 3.6]). Assume towards a
contradiction that id ×Tf ≤sW Tf is witnessed by the functionals Φ,Ψ. Notice that, for some
computable p ∈ NN and some x ∈ NN, Φ(p, x) = z for some z /∈ dom(f). Indeed, if this were not
the case, then we would obtain Tf ≤sW f , contradicting the hypothesis.

Since Tf(z) = NN, for every q ∈ NN we obtain Ψ(q) = (p, y) for some y ∈ Tf(x). If we
consider (p′, x) with p′ 6= p and q ∈ TfΦ(p′, x), we reach a contradiction, as Ψ(q) = (p, y) /∈
(id ×Tf)(p′, x).

Since, as proved in Theorem 3.3, for every f there is g ≡W f such that tJ(g) ≡W tJ(f) = Tg,
the previous proposition implies that tJ(f) is not a cylinder.

In the rest of the section, we prove several properties of the tot-jump, including various results
that better describe the range of tJ. We first provide an alternative characterization of tJ(f). For
this, we introduce the following computational problem:

Definition 3.9. Let us define WΠ0
2

→Π0
1

:⊆ NN
⇒ NN as

WΠ0
2

→Π0
1
(p) := {q ∈ N

N : (∀i) q(i+ 1) > q(i) and p ◦ q = 0N}.

In other words, WΠ0
2

→Π0
1
(p) lists the addresses of infinitely many zeroes of p.

Notice that WΠ0
2

→Π0
1

is uniformly computable (it can be solved by unbounded search) and partial,

as dom(WΠ0
2

→Π0
1
) = {p ∈ NN : (∃∞i) p(i) = 0}. An important property of WΠ0

2
→Π0

1
is that, for any

given p ∈ dom(WΠ0
2

→Π0
1
) and any q ∈ NN, it is c.e. to check if q /∈ WΠ0

2
→Π0

1
(p). This also motivates

the choice of the notation, as WΠ0
2

→Π0
1

is “translating a Π0
2-question into a Π0

1-question”.2

Theorem 3.10. For every f , tJ(f) ≡W T(WΠ0
2
→Π0

1
∗ f ∗ WΠ0

2
→Π0

1
).

Proof. Since WΠ0
2
→Π0

1
is uniformly computable, WΠ0

2
→Π0

1
∗ f ∗ WΠ0

2
→Π0

1
≤W f , so, in light of

Theorem 3.3, we only need to show that tJ(f) ≤W T(WΠ0
2

→Π0
1

∗ f ∗ WΠ0
2

→Π0
1
). For every input

(e, i, p) for tJ(f), let t ∈ NN be such that t has infinitely many zeroes iff Φe(p) ↓. Let also v ∈ NN

be such that Γv(q) = Φe(p) for every q and w ∈ NN be such that Γw(q) has infinitely many zeroes
iff Φi(p, q) ↓. It is clear that t, v, w are uniformly computable from e, i, p. The forward functional Φ
of the reduction tJ(f) ≤W T(WΠ0

2
→Π0

1
∗ f ∗ WΠ0

2
→Π0

1
) is the map (e, i, p) 7→ (w, v, t). We define the

backward functional Ψ as follows: A solution for T(WΠ0
2

→Π0
1

∗ f ∗ WΠ0
2

→Π0
1
) is a string of the form

〈y1, y2, y3〉. Given (e, i, p) and 〈y1, y2, y3〉, we compute Φ(e, i, p) = (w, v, t) and do the following
operations in parallel:

• check whether y3 ∈ WΠ0
2

→Π0
1
(t);

• check whether y1 ∈ WΠ0
2

→Π0
1
(Γw(y2));

2It is probably more correct to say that T(W
Π0

2
→Π0

1
) translates a Π0

2
-question into a Π0

1
-question. We discuss this

computational problem in Section 4.
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• compute Φi(p, y2).

Since it is c.e. to check if y3 /∈ WΠ0
2

→Π0
1
(t) or y1 /∈ WΠ0

2
→Π0

1
(Γw(y2)), as long as y1 and y3 “appear

to be correct”, the backward functional produces Φi(p, y2). If we see that y3 /∈ WΠ0
2

→Π0
1
(t) or

y1 /∈ WΠ0
2

→Π0
1
(Γw(y2)), we extend the partial output with 0N.

Recall that, if Φe(p) ∈ dom(f) and, for every q ∈ fΦe(p), Φi(p, q) ↓, then tJ(f)(e, i, p) =
{Φi(p, q) : q ∈ fΦe(p)}. It is straightforward to check that, in this case, t ∈ dom(WΠ0

2
→Π0

1
),

Γv(y) = Φe(p) ∈ dom(f) for every y, and for every q ∈ fΦe(p), Γw(q) has infinitely many zeroes.
In particular, every solution 〈y1, y2, y3〉 of T(WΠ0

2
→Π0

1
∗ f ∗ WΠ0

2
→Π0

1
)(Φ(e, i, p)) is such that y1 ∈

WΠ0
2

→Π0
1
(Γw(y2)), y2 ∈ fΦe(p), and y3 ∈ WΠ0

2
→Π0

1
(t). By definition, the backward functional will

therefore compute Φi(p, y2) ∈ tJ(f)(e, i, p).
On the other hand, if Φe(p) /∈ dom(f) or if there is q ∈ fΦe(p) such that Φi(p, q) ↑, then

tJ(f)(e, i, p) = NN. Since T(WΠ0
2

→Π0
1

∗ f ∗ WΠ0
2

→Π0
1
) and Ψ are total, the claim follows.

The following proposition shows that, in general, the compositions with WΠ0
2

→Π0
1

on both sides
are necessary.

Proposition 3.11. There is f such that tJ(f) 6≤W T(WΠ0
2
→Π0

1
∗ f) and tJ(f) 6≤W T(f ∗ WΠ0

2
→Π0

1
).

Proof. Let A ∈ 2N be such that ∅ <T A <T ∅′. Let f be the function with dom(f) := {A} that
maps A to ∅′.

We first show that tJ(f) 6≤W T(WΠ0
2
→Π0

1
∗f). Assume towards a contradiction that the reduction

is witnessed by the maps Φ,Ψ. Let i be an index for the projection on the second coordinate. Let
also e be such that Φe(x) searches for k ∈ N such that x = 0k1ap for some p ∈ NN and then outputs p.
Since (e, i, 0N) ∈ dom(tJ(f)) and A is not computable, there is k such that Φ(e, i, 0k) = 〈σ, τ〉 and
τ 6= A[|τ |]. In particular, for every p ∈ NN, y := Φ(e, i, 0kap) /∈ dom(WΠ0

2
→Π0

1
∗ f), and therefore

0N ∈ T(WΠ0
2

→Π0
1

∗ f)(y). On the other hand, it is immediate to check that tJ(f)(e, i, 0k1aA) = ∅′.

We have reached a contradiction, as Ψ((e, i, 0k1aA), 0N) = ∅′ would imply that ∅′ ≤T A, against
the hypothesis on A.

Let us now show that tJ(f) 6≤W T(f ∗ WΠ0
2

→Π0
1
). To this end, assume towards a contradiction

that the reduction is witnessed by the functionals Φ and Ψ. The idea is to diagonalize by choosing
an input (e, i, x) for tJ(f) so that the output of Φi is different from any output of Ψ. Let e be an
index for the identity functional and let x = A.

To find i ∈ N we use the recursion theorem. First we define Φi(p, q)(0): In parallel, we compute
Ψ((e, i, p), 〈σ1, σ2〉) for all possible σ1, σ2 ∈ N<N until we find a pair (σ1, σ2) such that

Ψ((e, i, p), 〈σ1, σ2〉)(0) ↓= m,

for some m ∈ N and then set Φi(p, q)(0) := m + 1. At least one such pair exists, otherwise Ψ is
never defined when the first input is (e, i, p), contradicting the definition of Weihrauch reducibility.

Since we are interested in defining the behavior of Φi(p, q) only when p = x = A and q = ∅′,
we describe a procedure for computing Φi(x, ∅′)(1) which on different inputs may not converge,
or converge to an arbitrary string. Start from 〈w, z〉 = Φ(e, i, x) and use ∅′ to check if there is a
τ ∈ N<N that satisfies all the following properties:

• (∀j < |τ | − 1)(τ(j + 1) > τ(j)),

• (∀j < |τ |)(z ◦ τ(j) = 0),

• Ψ((e, i, x), 〈∅′[|τ |], τ〉)(1) ↓.

Intuitively, we are searching for an initial segment τ of a solution of WΠ0
2

→Π0
1
(z). A solution for

f∗WΠ0
2
→Π0

1
(w, z) is of the form (r, s), where s ∈ WΠ0

2
→Π0

1
(z) and r ∈ f(Γw(s)). Since f is constant ∅′,

to obtain a prefix of a solution we only need to search for a prefix τ of s. To diagonalize, we require
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that τ is sufficiently long so that Ψ((e, i, x), 〈τ, ∅′[|τ |]〉)(1) ↓. Such a τ need not exist, as we do not
know if z has infinitely many zeroes. This is the reason why we use the oracle to check if such a
search terminates.

If τ exists, then we can search for it and define Φi(x, ∅′)(1) := Ψ((e, i, x), 〈∅′[|τ |], τ〉)(1) + 1.
Otherwise, define Φi(x, ∅′)(1) := 0.

For every n > 1 and every p and q, define Φi(p, q)(n) := 0.
Notice that tJ(f)(e, i, A) = Φi(A, ∅′). If the input z for WΠ0

2
→Π0

1
has finitely many 0’s or, for some

s ∈ WΠ0
2

→Π0
1
(z), Γw(s) 6= A, then 〈σ1, σ2〉 is the initial segment of a solution for T(f∗WΠ0

2
→Π0

1
)(w, z),

hence Φi(A, ∅′)(0) 6= Ψ((e, i, A), 〈σ1, σ2〉a0N)(0). Otherwise, 〈∅′[|τ |], τ〉 is the prefix of a solution
f ∗ WΠ0

2
→Π0

1
(w, z), and therefore Φi(A, ∅′)(1) 6= Ψ((e, i, A), 〈τ, ∅′[|τ |]〉)(1).

The previous result shows that, in general, the use of WΠ0
2

→Π0
1

cannot be avoided on either side
of f . There are, however, many f such that tJ(f) ≡W Tf . We now provide a sufficient condition
for this to happen.

Theorem 3.12. Fix a problem f . If there are two total computable functions ϕ, ψ : N × N → N

such that

• for every e, i, ϕ(e, i) and ψ(e, i) are indices of total functionals and

• whenever g ≤W f via Φe,Φi (which might be partial), then g ≤W f via Φϕ(e,i) and Φψ(e,i),

then tJ(f) ≡W Tf .

Proof. By Theorem 3.3, we only need to show that tJ(f) ≤W Tf . We let the forward functional
of the reduction be defined by Φ(e, i, p) = Φϕ(e,i)(p). Similarly, we let the backward functional
be defined by Ψ((e, i, p), q) = Φψ(e,i)(p, q). The proof is then straightforward: Notice indeed that
if (e, i, p) is an input for tJ(f) such that Φe(p) ∈ dom(f) and for every q ∈ fΦe(p), Φi(p, q) ↓,
then the functionals Φe,Φi are witnessing the reduction g ≤W f for some problem g (e.g., we can
take g to be the problem that maps p to the set {Φi(p, q) : q ∈ fΦe(p)}). In particular, the second
item in the hypotheses implies that Φ(e, i, p) = Φϕ(e,i)(p) ∈ dom(f) and, for every q ∈ fΦ(e, i, p),
Ψ(p, q) = Φψ(e,i)(p, q) ∈ g(p) = tJ(f)(e, i, p).

On the other hand, if Φe(p) /∈ dom(f) or if there is q ∈ fΦe(p) such that Φi(p, q) ↑, then
tJ(f)(e, i, p) = NN, hence the claim follows by the totality of Φ,Ψ (guaranteed by the first item in
the hypotheses).

Intuitively, the hypotheses of the previous result require that any reduction g ≤W f witnessed
by Φe,Φi is, in fact, witnessed by total functionals, and the indices for such functionals can be found
uniformly in e, i. Theorem 3.12 can be rephrased as follows:

Corollary 3.13. Fix a partial multi-valued function f . Assume there are total computable func-
tionals Φ and Ψ such that for every e, i ∈ N and every p ∈ NN, if Φe(p) ∈ dom(f) and for every
q ∈ fΦe(p), Φi(p, q) ↓, then we have Φ(e, i, p) ∈ dom(f) and Ψ((e, i, p), fΦ(e, i, p)) ⊆ {Φi(p, q) :
q ∈ fΦe(p)}.

Then tJ(f) ≡W Tf .

This rewording, on top of showing a closer connection with the definition of the tot-jump, allows
us to draw a connection with the notion of transparent functions, introduced in [6]. More precisely,
a function H :⊆ NN → NN is called transparent if for every computable F :⊆ NN → NN there is a
computable G :⊆ NN → NN such that F ◦H = H ◦G.

This notion can be naturally generalized to computational problems by requiring that given
two (indices for) functionals Φe,Φi witnessing g ≤W f , we can uniformly compute the index of a
total function Φ: NN → NN such that the reduction g ≤W f is witnessed by the functionals Φ and
(p, q) 7→ q.
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This assumption implies that tJ(f) ≡W Tf . Indeed, these conditions are equivalent to requiring
that there is a total computable Φ such that, for every e, i ∈ N and every p ∈ NN, if Φe(p) ∈ dom(f)
and for every q ∈ fΦe(p), Φi(p, q) ↓, then

fΦ(e, i, p) 6= ∅ and fΦ(e, i, p) ⊆ {Φi(p, q) : q ∈ fΦe(p)}.

While many problems (including lim and its iterations) satisfy the above conditions, the assump-
tion that the backward functional is exactly the projection on the second component is unnecessarily
strong. In fact, any total computable functional would serve the same purpose. Thus we have the
hypotheses of Corollary 3.13.

In Section 4, we will use Corollary 3.13 to describe the tot-jump of some natural problems.

Lemma 3.14. There are ē, ı̄ ∈ N such that for every f and every k ∈ N, tJ(f) is Weihrauch
equivalent to its restriction to Xk := {(ē, ı̄)a0kax : x ∈ NN}.

Proof. We let ē, ı̄ be the indices of two universal functionals such that Φē(p) = Φn(p) and Φı̄(p, q) =
Φm(p, q) where 〈n,m〉 is least such that p(〈n,m〉) = 1. It is obvious that any restriction of tJ(f) is
Weihrauch reducible to tJ(f). To prove that tJ(f) ≤W tJ(f)|Xk

, we let the forward functional be

the map Φ(e, i, p) := (ē, ı̄)a0〈n,m〉1ap, where n,m > k are such that, for every t,

Φn(0t1ap) = Φe(p), and

Φm(0t1ap, q) = Φi(p, q).

Clearly such n,m can be uniformly computed from e, i, k. The backward functional is the projection
on the second coordinate. Note that Φē(0

〈n,m〉1ap) = Φn(0〈n,m〉1ap) = Φe(p), and similarly
Φı̄(0

〈n,m〉1ap, q) = Φm(0〈n,m〉1ap, q) = Φi(p, q). Thus tJ(f)(e, i, p) = tJ(f)(ē, ı̄, 0〈n,m〉1ap), which
concludes the proof.

Theorem 3.15. For every f , tJ(f) is total and join-irreducible.

Proof. The fact that tJ(f) is total is apparent by definition. We show that if tJ(f) ≡W g0 ⊔ g1

then there is b < 2 such that tJ(f) ≤W gb, and thus g1−b ≤W gb. Assume that the reduction
tJ(f) ≤W g0 ⊔ g1 is witnessed by the functionals Φ and Ψ and let ē and ı̄ be as in Lemma 3.14.
By the continuity of the forward functional, there exist k and b < 2 such that Φ(ē, ı̄, 0k)(0) ↓= b.
In particular, for every x ⊒ 0k, the functional Φ produces an input for gb. Since, by Lemma 3.14,
tJ(f) is equivalent to its restriction to {(ē, ı̄)a0kax : x ∈ NN}, the claim follows.

We will show in Corollary 4.9 that the range of tJ is a proper subset of the total, join-irreducible
degrees.

Corollary 3.16. For every f, g, tJ(f) ⊔ tJ(g) ≤W tJ(f ⊔ g). Moreover, the reduction is strict iff
f |W g.

Proof. The fact that tJ(f) ⊔ tJ(g) ≤W tJ(f ⊔ g) follows by the monotonicity of tJ and the fact
that ⊔ is the join in the Weihrauch degrees. Clearly, if f ≤W g then f ⊔ g ≡W g, hence tJ(f) ⊔
tJ(g) ≡W tJ(g) ≡W tJ(f ⊔ g). Conversely, if f |W g then tJ(f) |W tJ(g) by Theorem 3.7, and hence
tJ(f ⊔ g) 6≡W tJ(f) ⊔ tJ(g) (by Theorem 3.15), which implies that tJ(f) ⊔ tJ(g) <W tJ(f ⊔ g).

Theorem 3.17. For every f , there is h such that f <W h <W tJ(f).

Proof. We distinguish three cases: If id ≤W f , then the claim immediately follows from the fact
that the Weihrauch degrees are dense above id (see [13]).

If id |W f , then f <W f ⊔ id =: h. Moreover, id ≤W tJ(f) (as tJ(f) is total), hence f ⊔ id ≤W

tJ(f). The fact that the reduction is strict follows from the fact that tJ(f) is join-irreducible
(Theorem 3.15).
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If ∅ <W f <W id, then we have f <W id <W tJ(f) by tJ(∅) ≡W id (Theorem 4.1 below) and the
injectivity of the tot-jump proved in Theorem 3.7. Finally, if f = ∅ then tJ(f) ≡W id by Theorem
4.1, and the existence of h with ∅ <W h <W id is well-known.

Theorem 3.18. The range of tJ is not dense, i.e., there exist f and g such that f <W g, the set
X := {h : tJ(f) <W h <W tJ(g)} is non-empty and, for every h ∈ X, h /∈ ran(tJ).

Proof. The claim follows immediately from the fact that the Weihrauch degrees are dense above id
and that there are (strong) minimal covers in the Weihrauch lattice (see [13]). Indeed, it is enough
to choose f and g such that g is a minimal cover of f . Since the tot-jump is always total, ran(tJ) is
contained in the cone above id and there exists h such that tJ(f) <W h <W tJ(g). By Theorem 3.7,
if h ≡W tJ(h0) then f <W h0 <W g, contradicting the fact that g is a minimal cover of f .

Proposition 3.19. For every f, g, tJ(f ⊓ g) ≤W tJ(f) ⊓ tJ(g). There exist f and g such that
tJ(f ⊓ g) <W tJ(f) ⊓ tJ(g).

Proof. The first part of the statement is straightforward using the fact that tJ is monotone and that
⊓ is the meet in the Weihrauch lattice.

To prove the second part of the statement, let X,Y ⊆ NN be two incomparable Turing degrees
(i.e., for some Turing-incomparable x, y ⊆ N, X and Y are, respectively, the equivalence classes of
x and y under ≡T ), and let f := id|X and g := id|Y . Assume towards a contradiction that the
reduction tJ(f) ⊓ tJ(g) ≤W tJ(f ⊓ g) is witnessed by the functionals Φ and Ψ. We claim that one
of tJ(f) or tJ(g) is uniformly computable. This contradicts Theorem 4.1 below, which implies that
tJ(∅) is the only uniformly computable tot-jump.

Let ē, ı̄ be as in Lemma 3.14. Observe that, for every k and every x ∈ X ,

0N ∈ tJ(f ⊓ g)(Φ((ē, ı̄, 0kax), (ē, ı̄, 0kax))).

Indeed, if we let (e, i, z) be the input for tJ(f ⊓ g) given by the value Φ((ē, ı̄, 0kax), (ē, ı̄, 0kax)),
then Φe(z) /∈ dom(f ⊓ g) as, by hypothesis, X and Y are Turing-incomparable (in particular x does
not compute any y ∈ Y ). Analogously, by swapping the roles of X and Y in the above argument,
for every k ∈ N and y ∈ Y , 0N ∈ tJ(f ⊓ g)(Φ((ē, ı̄, 0kay), (ē, ı̄, 0kay))).

By continuity, there is k ∈ N such that Ψ(((ē, ı̄, 0k), (ē, ı̄, 0k)), 0N)(0) commits to some b < 2.
Without loss of generality, we can assume that b = 0, i.e., the backward functional commits to
producing a solution for tJ(f). We therefore obtain that

Ψ(((ē, ı̄, 0kax), (ē, ı̄, 0kax)), 0N) ∈ tJ(f)(ē, ı̄, 0kax),

i.e., we can uniformly compute a solution for tJ(f)(ē, ı̄, 0kax) which, in turn, implies that tJ(f) is
uniformly computable.

The previous proof can be generalized by letting X,Y be two incomparable Muchnik degrees
(see [10] for the definition of Muchnik reducibility).

Definition 3.20 ([5, Def. 4.13]). We call a partial multi-valued function f co-total if, for every
problem g,

f ≤W Tg ⇐⇒ f ≤W g.

We observe that a problem is co-total exactly when the tot-jump “cannot help” to solve it.

Theorem 3.21. For every f , f is co-total iff for every g,

f ≤W tJ(g) ⇐⇒ f ≤W g.

In particular, if f is co-total, then f /∈ ran(tJ).
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Proof. The proof is straightforward using Theorem 3.3. Indeed, assume that f is co-total and let g
be such that f ≤W tJ(g). Since tJ(g) ≡W Tg0 for some g0 ≡W g, we obtain f ≤W Tg0 and hence
f ≤W g0 ≡W g.

The converse implication is similar: Assume that for every g, f ≤W tJ(g) implies f ≤W g, and
let h be such that f ≤W Th. Since Th ≤W tJ(h), we immediately obtain f ≤W h.

Finally, if f is co-total and f ≡W tJ(h), for some h, then f ≤W h, contradicting tJ(h) 6≤W h.

In [5], several problems are proved to be co-total, including CN and C2N , hence we immediately
have the following result:

Corollary 3.22. The problems CN and C2N are not in ran(tJ).

The next theorem leads to a sufficient condition for a function to be co-total. Let U :⊆ NN → NN

be a fixed universal Turing functional. Let DIS : NN
⇒ NN be the problem defined as

DIS(p) := {q ∈ N
N : U(p) 6= q}.

It is immediate from the definition that DIS is total. In fact, for every p ∈ NN, DIS(p) is either NN

(if U(p) ↑) or NN \ {U(p)}. The problem DIS was studied extensively in [2] and is one of the weakest
discontinuous problems.3 In particular, DIS ≤W C2 (see, e.g., [1, Prop. 5.10]).

Theorem 3.23 (with Arno Pauly). If DIS × g ≤W tJ(f), then g ≤W f .

Proof. Let Φ and Ψ witness the reduction DIS × g ≤W tJ(f). Let U :⊆ NN → NN be the universal
computable functional used in the definition of DIS. By the recursion theorem, there is a computable
p ∈ NN such that U(〈p, x〉) is the first component of Ψ((〈p, x〉, x), 0N). Consider the reduction
g ≤W tJ(f) where the forward functional is given by x 7→ Φ(〈p, x〉, x) and the backward functional
maps (x, y) to the second component of Ψ((〈p, x〉, x), y).

We claim that if x ∈ dom(g), then tJ(f)(Φ(〈p, x〉, x)) 6= NN and so it does not fall in the
“otherwise” case. This implies that our reduction of g to tJ(f) actually is a Weihrauch reduction
of g to f . To prove the claim, note that if x ∈ dom(g), then (〈p, x〉, x) ∈ dom(DIS × g). If 0N ∈
tJ(f)(Φ(〈p, x〉, x)), then Ψ((〈p, x〉, x), 0N) must converge to an element (q, z) ∈ DIS(〈p, x〉) × g(x).
But DIS(〈p, x〉) must be different from q, the first component of Ψ((〈p, x〉, x), 0N).

Corollary 3.24. If DIS × g ≤W g, then g is co-total and hence it is not in the range of tJ.

As mentioned, DIS is quite weak and hence being closed under parallel product with DIS is a
rather weak condition satisfied by many natural problems, like CN, C2N , lim, UCNN , and CNN .

Proposition 3.25. DIS is not co-total.

Proof. Observe that DIS = T(DIS|X), where X := {p ∈ NN : U(p) ↓}. To show that DIS is not
co-total, it is enough to show that DIS 6≤W DIS|X . This follows from the fact that DIS|X ≤W id:
indeed, for every p such that U(p) ↓, it is enough to consider q := n 7→ U(p)(n) + 1.

Combining this result with Corollary 3.24, we immediately obtain:

Corollary 3.26. DIS × DIS 6≤W DIS.

Proposition 3.27. DIS is join-irreducible.

3In [2], it was shown that, under ZF + DC + AD, DIS is a strong minimal cover of id in the topological version of
Weihrauch reducibility. Such a result cannot be transferred to the (plain) Weihrauch degrees, as the cone above id is
dense in the Weihrauch degrees under ZFC [13].
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Proof. Without loss of generality, we can assume that U((e)ap) = Φe(p). Let e be such that
Φe(0

j1ap) = Φj(p) and Φe(0
N) ↑. Notice that DIS ≤W DIS|X , where X := {x ∈ NN : x(0) = e} (it

is enough to map p to (e)a0i1ap, where i is an index of U).
We show that if DIS|X ≤W f0 ⊔ f1, then DIS|X ≤W f0 or DIS|X ≤W f1. If Φ,Ψ witness the

reduction DIS|X ≤W f0 ⊔ f1 (in particular, for every input q for DIS, Φ(q) produces a pair (b, x)
with x ∈ dom(fb)), then by continuity, there is k such that Φ((e)a0k)(0) = b < 2. Observe that
we can uniformly map any x ∈ X of the form (e)a0j1ap to (e)a0h1ap for some h > k such that
Φj(p) = Φh(p). The reduction DIS|X ≤W fb is therefore witnessed by the maps (e)a0j1ap 7→
Φ((e)a0h1ap)(1) and Ψ.

While being join-irreducible and not being co-total are necessary conditions for a Weihrauch
degree to be in the range of tJ, we will show in Corollary 4.8 that they are not sufficient, as DIS

is not equivalent to the tot-jump of any problem. In other words, the range of the tot-jump is a
proper subset of the set of total, non-co-total, join-irreducible degrees.

4 The jump of specific problems

In this section, we explicitly characterize the tot-jump of various well-known problems. Let us start
with a straightforward example.

Theorem 4.1. tJ(∅) ≡W id.

Proof. The proof is trivial as for every e, i, p, tJ(∅)(e, i, p) = NN, as there are no e, p such that
Φe(p) ∈ dom(∅). Therefore, tJ(∅) is total and uniformly computable, and hence equivalent to id.

To characterize tJ(id), we first introduce the following problem.

Definition 4.2. Let us define χΠ0
2

→Π0
1
: NN

⇒ NN as

χΠ0
2
→Π0

1
(p) := {q ∈ N

N : (∃∞n)(p(n) = 0) ⇐⇒ (∀n)(q(n) = 0)}.

Intuitively, χΠ0
2

→Π0
1

transforms a Π0
2-question into a Π0

1-question. An alternate form of χΠ0
2
→Π0

1

was introduced by Neumann and Pauly [17], who defined

isFiniteS(p) := {q ∈ N
N : (∃∞n)(p(n) = 1) ⇐⇒ (∀n)(q(n) = 0)}.

It is immediate that χΠ0
2
→Π0

1
≡W isFiniteS.

Proposition 4.3. χΠ0
2

→Π0
1

≡W T(WΠ0
2

→Π0
1
).

Proof. For the left-to-right reduction, recall that, given p, q ∈ NN, it is c.e. to check whether q /∈
WΠ0

2
→Π0

1
(p). In particular, given p and q ∈ T(WΠ0

2
→Π0

1
)(p), we can uniformly compute t ∈ NN

defined as t(n) := 0 if q(n+ 1) > q(n) and p ◦ q(n) = 0, and t(n) := 1 otherwise. It is apparent that
t ∈ χΠ0

2
→Π0

1
(p).

Similarly, for the right-to-left reduction, given p ∈ NN and q ∈ χΠ0
2
→Π0

1
(p), we can compute a

solution for T(WΠ0
2

→Π0
1
)(p) as follows: Let σ0 := (). For every n, if q(i) = 0 for all i < n we check

if p(n) = 0. If it is, we define σn+1 := σn
a(n), otherwise we let σn+1 := σn. If instead q(i) > 0

for some i < n, we let σn+1 := σn
a(0). It is straightforward to check that r :=

⋃
n σn ∈ NN is

uniformly computable from p and q and that r ∈ T(WΠ0
2

→Π0
1
)(p).

Theorem 4.4. tJ(id) ≡W χΠ0
2

→Π0
1
.
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Proof. For the left-to-right reduction, observe that tJ(id) can be written as follows:

tJ(id)(e, i, x) =

{
Φi(x,Φe(x)) if Φe(x) ↓ ∧ Φi(x,Φe(x)) ↓,

NN otherwise.

Since the domain of a computable functional is a Π0
2-set, we can uniformly compute p ∈ NN such

that
(∃∞n) p(n) = 0 ⇐⇒ Φe(x) ↓ ∧ Φi(x,Φe(x)) ↓ .

Given q ∈ χΠ0
2

→Π0
1
(p), we are able to uniformly compute a solution for tJ(f)(e, i, x) as follows: In

parallel, run Φi(x,Φe(x)) and check whether there is n such that q(n) 6= 0. If no such n is found
then we are producing Φi(x,Φe(x)), which is the correct solution for tJ(f)(e, i, x). Otherwise, it
means that tJ(f)(e, i, x) = NN, hence we can stop simulating Φi(x,Φe(x)) and continue the output
with 0N.

For the right-to-left reduction, note that WΠ0
2

→Π0
1

≤W id, so Theorem 3.3 and Proposition 4.3
give us χΠ0

2
→Π0

1
≡W T(WΠ0

2
→Π0

1
) ≤W tJ(id).

With a more careful analysis, we can characterize the n-th tot-jump of id. Intuitively, we can
think of tJ

n(id) as a problem capturing the following: You are allowed to ask n many Σ0
2-questions

serially. For every j < n, you can see in finite time if the answer to the j-th question is “yes” and
then you can ask the next question. However, if the j-th answer is “no”, then the procedure hangs
and it is impossible to see the answers of the remaining questions.

Theorem 4.5. For every p ∈ NN, let Apn := {k < n : (∃∞j) p(j) = k}. For every n > 0, let
gn : NN

⇒ NN be defined as

gn(p) :=

{{
0σ(0)1σ(1) . . . (m− 1)σ(m−1)mN : σ ∈ Nm

}
if Apn 6= ∅ and m := minApn,{

0σ(0)1σ(1) . . . (n− 1)σ(n−1)nN : σ ∈ Nn
}

if Apn = ∅.

Then tJ
n(id) ≡W gn.

Proof. By induction on n: The base case n = 1 is Theorem 4.4, as it is straightforward to see that
g1 ≡W χΠ0

2
→Π0

1
. For the induction step, it suffices to show that tJ(gn) ≡W gn+1.

Let us first prove that tJ(gn) ≤W gn+1. Let (e, i, x) be an input for tJ(gn). For every k < n, we
can uniformly compute yk so that ran(yk) ⊆ {k, n+ 1} and k occurs infinitely many times in yk if
and only if

Φe(x)↓ ∧ k ∈ AΦe(x)
n ∧ (∀σ ∈ N

k) Φi(x, 0
σ(0)1σ(1) . . . (k − 1)σ(k−1)kN) ↓ .

This can be done because the displayed formula is uniformly Π0
2 in (e, i, x). Similarly, we can

uniformly compute yn so that ran(yn) ⊆ {n, n+ 1} and n occurs infinitely many times in yn if and
only if

Φe(x)↓ ∧ (∃∞j)(Φe(x)(j) ≥ n) ∧ (∀σ ∈ N
n) Φi(x, 0

σ(0)1σ(1) . . . (n− 1)σ(n−1)nN) ↓ .

Let y := 〈y0, . . . , yn〉. We now claim that a solution for tJ(gn)(e, i, x) can be uniformly computed
from any z ∈ gn+1(y) as follows: We compute Φi(x, z) as long as z(j) ≤ n. If z(j) = n + 1 for
some j, we stop the computation and continue the output with 0N.

Let us now show that this procedure correctly produces a solution for tJ(gn)(e, i, x).

• If Φe(x) ↑, then for every k ≤ n, yk only has finitely many k’s. This implies that (∀∞j) y(j) =
n + 1, hence n + 1 ∈ ran(z). The procedure produces an eventually null string, which is clearly a
valid solution as tJ(gn)(e, i, x) = NN.
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• If Φe(x) ↓ and A
Φe(x)
n = ∅ then for every k < n and for almost all j, yk(j) = n+1; moreover, n

occurs infinitely many times in yn if and only if, for all σ ∈ Nn, Φi(x, 0
σ(0)1σ(1) . . . (n−1)σ(n−1)nN) ↓.

This, in turn, implies that if z ∈ gn+1(x) and n + 1 /∈ ran(z) then Φi(x, z) ↓∈ tJ(gn)(e, i, x), while
otherwise tJ(gn)(e, i, x) = NN and the procedure computes an eventually null string.

• Finally, assume that Φe(x) ↓ and A
Φe(x)
n 6= ∅. Let k := minA

Φe(x)
n and notice that for every

k′ < k we have (∀∞j) yk′(j) = n + 1. Moreover, yk has infinitely many k if and only if, for all
σ ∈ Nn, Φi(x, 0

σ(0)1σ(1) . . . (k − 1)σ(k−1)kN) ↓. If yk has infinitely many k, then we can just run
the computation Φi(x, z) for any z ∈ gn+1(y). Otherwise, tJ(gn)(e, i, x) = NN and the described
procedure is guaranteed to produce an infinite string (and therefore a valid solution).

Let us now show gn+1 ≤W tJ(gn). Intuitively, the reduction works as follows: The forward
functional maps an input p for gn+1 to (e, i, p), where e is an index for the identity functional and i
is an index for the functional that, given (p, q), tries to produce a list of positions witnessing the fact
that q ∈ gn(p). More precisely, if q is of the form 0σ(0)1σ(1) . . . (k−1)σ(k−1)kN for some σ ∈ N<N and
some k ≤ n, then Φi(p, q) produces a strictly increasing string such that for some strictly increasing
sequence (vj)j∈N and for every j,

p(Φi(p, q)(j)) = q(vj).

This can be done iteratively as follows: At stage 0, search for u0, v0 such that p(u0) = q(v0). At
stage j + 1, we search for uj+1 > uj and vj+1 > vj such that p(uj+1) = q(vj+1). The sequence
(uj)j∈N is the output of Φi(p, q).

If instead q is not of the form 0σ(0)1σ(1) . . . (k − 1)σ(k−1)kN for any σ ∈ N<N and any k ≤ n, we
let Φi(p, q) ↑.

Given z ∈ tJ(gn)(e, i, p), the backward functional Ψ is defined as Ψ(p, z)(0) := min{p(z(0)), n}
and Ψ(p, z)(j+1) := p(z(j+1)) if p(z(j)) ≤ p(z(j+1)) ≤ n and z(j+1) > z(j), and Ψ(p, z)(j+1) :=
n+ 1 otherwise.

To conclude the proof we show that, for every z ∈ tJ(gn)(e, i, p), Ψ(p, z) correctly produces a
solution for gn+1(p). Observe that if Apn+1 6= ∅, then gn+1(p) = gn(p). In particular, for every j,

Ψ(p, z)(j) = p(z(j)) = p(Φi(p, q)(j)) = q(vj)

for some q ∈ gn(p) and some strictly increasing (vj)j∈N, and hence Ψ(p, z) is a correct solution for
gn+1(p). On the other hand, if Apn+1 = ∅ then, for every t ∈ gn(p), Φi(p, t) ↑. This implies that

Ψ(p, z) is of the form 0σ(0)1σ(1) . . . nσ(n)(n + 1)N for some σ, and therefore is a valid solution for
gn+1(p).

We now show that the set {tJ(f) : f ≤W id} is a proper subset of {h : tJ(∅) ≤W h ≤W tJ(id)}.

Theorem 4.6. Let f <W tJ(id) and let X := {p ∈ dom(f) : p is computable}. If id <W f |X , then
there is no h such that f ≡W tJ(h).

Proof. By Theorem 3.7, if tJ(h) ≡W f <W tJ(id) then h <W id, i.e., h ≡W id|A for some A ⊆ NN

(as the lower cone of id is isomorphic to the dual of the Medvedev degrees, see, e.g., [9, Sec. 5]).
Notice that A (and therefore dom(h)) does not have any computable point, as otherwise h ≡W id.

Assume f |X ≤W tJ(h) via Φ,Ψ. Let p ∈ X be a computable input for f and let Φ(p) = (e, i, x).
Observe that, since A has no computable point, Φe(x) /∈ A, hence tJ(h)(e, i, x) = NN. This implies
that a reduction f |X ≤W tJ(h) would yield a reduction of f |X to the (uniformly computable)
constant map p 7→ NN, contradicting f |X 6≤W id.

Theorem 4.7. LPO <W tJ(id) <W t̂J(id) ≡W lim.

Proof. Let p ∈ NN be an input for LPO. By Theorem 4.4, we can use tJ(id) to compute q ∈ NN such
that (∀n) q(n) = 0 if and only if (∃n) p(n) > 0. It is then straightforward to see that we can find
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an answer for LPO(p) by unbounded search (either there is a non-zero element in q or a non-zero
element in p). The fact that the reduction is strict follows from Theorem 4.6.

The second reduction is immediate and the reduction lim ≤W t̂J(id) follows from the fact that

L̂PO ≡W lim.

Given that lim is parallelizable, to prove that t̂J(id) ≤W lim it suffices to show that tJ(id) ≤W lim.
To this end, we prove that χΠ0

2
→Π0

1
≤W lim, and the claim will follow from Theorem 4.4. Given

p ∈ NN, we can uniformly compute the converging sequence (qn)n∈N defined as qn(m) := 0 if there
is j such that m ≤ j ≤ n such that p(j) = 0, and qn(m) := 1 otherwise. Clearly, for each m,
limn→∞ qn(m) = 0 if and only if there is some 0 in p after position m. Therefore, limn→∞ qn ∈
χΠ0

2
→Π0

1
(p).

Finally the fact that tJ(id) <W t̂J(id) follows from the fact that every computable input for
tJ(id) ≡W T(WΠ0

2
→Π0

1
) has a computable solution, while this is not the case for lim.

Given that DIS ≤W LPO, combining Theorem 4.6 and Theorem 4.7 we obtain:

Corollary 4.8. The problems DIS and LPO are not Weihrauch-equivalent to any problem in the
range of tJ.

Since we showed that DIS is total, non-co-total, and join-irreducible, we also obtain the following
corollary:

Corollary 4.9. The map tJ does not induce a surjective operator onto the total, non-co-total,
join-irreducible degrees.

Next we show that no lower cone is closed under tot-jump, i.e., there are no tot-jump principal
ideals in the Weihrauch lattice.

Theorem 4.10. For every g 6= ∅, there exists an f <W g such that tJ(f) 6≤W g.

Proof. If id 6≤W g, then f := ∅ has the desired properties, while if g ≡W id we can set f := id|X
for any X without computable elements (in this case, ∅ <W f <W id and we can use Theorem 3.7).
We can now assume that id <W g and distinguish two cases.

The first one is when there exists g0 with finite domain such that g ≡W g0. In this case, we
claim that LPO 6≤W g. Granting the claim, f := id has the desired property by Theorem 4.7. To
prove the claim, assume that Φ and Ψ witness LPO ≤W g0. Then, since every point in dom(g0) is
isolated, there are z ∈ dom(g0) and k0 such that for every x ⊒ 0k0 , Φ(x) = z. Besides, there is
k1 ≥ k0 such that for some y ∈ g0(z), Ψ(0k1 , y)(0) ↓= 0. In particular, the string 0k11N witnesses
the fact that Φ and Ψ do not witness the Weihrauch reduction.

Assume now that g is not Weihrauch equivalent to any problem with finite domain. We want
to define f such that f <W g and tJ(f) 6≤W g. To this end, we define a scrambling function
ξ :⊆ dom(g) → N. The desired f will be defined as f(x, ξ(x)) := g(x), with dom(f) := {(x, n) ∈
dom(g) × N : ξ(x) = n}. Notice that, no matter which ξ we choose, f ≤W g.

To define ξ we define a sequence (ξs)s∈N of functions with finite domain, starting with ξ0 := ∅.
At stage s+ 1 = 2〈e, i〉 + 1, we satisfy the requirement “g 6≤W f via Φe,Φi”. To do so, we choose

(in a noneffective way) some x ∈ dom(g) such that one of the following conditions holds:

• Φe(x) ↑;

• Φe(x) produces the pair (y, n) with y /∈ dom(g) or ξs(y) ↓6= n;

• Φe(x) produces the pair (y, n) and there is q ∈ g(y) such that Φi(x, q) /∈ g(x);

• Φe(x) produces the pair (y, n) with ξs(y) ↑.
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Such an x must exist, as otherwise Φe and Φi witness g ≡W fs, where fs(x, ξ(x)) := g(x) with
dom(fs) := {(x, n) : ξs(x) ↓= n}, contradicting the fact that g is not Weihrauch equivalent to
any problem with finite domain. In the first three cases, there is nothing to do, and we just define
ξs+1 := ξs. In the last case, we let ξs+1 := ξs ∪ {(y, n+ 1)}.

At stage s + 1 = 2〈e, i〉 + 2, we satisfy the requirement “tJ(f) 6≤W g via Φe,Φi”. Let ξ̃ be
an arbitrary computable extension of ξs and let f̃ := (x, ξ̃(x)) 7→ g(x). Clearly f̃ ≡W g, hence
tJ(f̃) ≡W tJ(g) 6≤W g. In particular, there are ẽ, ı̃, x̃ witnessing tJ(f̃) 6≤W g via Φe,Φi, i.e., if
Φẽ(x̃) ↓∈ dom(f̃) and, letting (ỹ, ñ) be the pair produced by Φẽ(x̃), for every q ∈ f̃(ỹ, ñ) = g(ỹ),
Φı̃(x̃, q) ↓, then there is q ∈ f̃(ỹ, ñ) such that Φe((ẽ, ı̃, x̃), q) /∈ tJ(f̃). Since ξ̃ is an extension of ξs,
if ξs(x̃) ↓ then ξs(x̃) = ξ̃(x̃) = ñ. In this case, or if Φẽ(x̃) ↑, then there is nothing to do, and we set
ξs+1 := ξs. Otherwise, let ξs+1 := ξs ∪ {(x̃, ñ)}. Observe that indeed, for every extension ξ̄ of ξs
such that ξ̄(x̃) = ñ, the input (ẽ, ı̃, x̃) witnesses tJ((x, ξ̄(x)) 7→ g(x)) 6≤W g via Φe,Φi.

The desired scrambling function is the map ξ :=
⋃
s∈N

ξs. Since all the requirements are satisfied,
the above-defined function f satisfies f <W g and tJ(f) 6≤W g, which concludes the proof.

In light of Theorem 4.7, a natural question is how tJ(id) compares with CN (as lim ≡W ĈN). By
Theorem 3.21, as CN is co-total, CN ≤W tJ(id) would imply that CN ≤W id, which is a contradiction.
On the other hand, tJ(id) 6≤W CN. In fact, we have a slightly stronger result (as CN <W TCN by
[17, Prop. 24]).

Proposition 4.11. tJ(id) 6≤W TCN.

Proof. We use the fact that tJ(id) ≡W χΠ0
2
→Π0

1
(Theorem 4.4). As mentioned above, χΠ0

2
→Π0

1
≡W

isFiniteS. But Neumann and Pauly proved that isFiniteS 6≤W TCN [17, Prop. 24(5)].

The following result is folklore.

Lemma 4.12. TCN is a fractal, i.e., for every σ ∈ N<N, TCN is Weihrauch equivalent to its
restriction to Xσ := {p ∈ NN : σ ⊏ p}.

Proof. Fix σ ∈ N<N. To prove that TCN ≤W TCN|Xσ
, let m := max ran(σ). We can uniformly map

p ∈ NN to
q := σa(1, . . . ,m)a(p(0) +m, p(1) +m, . . .).

Clearly, q ∈ Xσ and for every n ∈ TCN(q), max{n−m, 0} ∈ TCN(p).

Theorem 4.13. There is no f such that TCN ≡W tJ(f).

Proof. Observe first of all that TCN <W tJ(CN). Indeed, the reduction follows by Theorem 3.3, while
the fact that the reduction is strict follows from the fact that tJ(id) 6≤W TCN (Proposition 4.11)
whereas tJ(id) ≤W tJ(CN) (by the monotonicity of the tot-jump).

This also implies that if tJ(f) ≤W TCN then f <W CN. To conclude the proof, it is enough to
show that if TCN ≤W tJ(f) then CN ≤W f .

Assume now that the reduction TCN ≤W tJ(f) is witnessed by the functionals Φ,Ψ. Consider
the input 0N for TCN. By continuity, there are k ∈ N and σ ∈ Nk such that, for some m ∈ N,
Ψ(0k, σ)(0) ↓= m. Let q ∈ NN be an input for CN such that 0ka(m+ 1) ⊏ q. Let also Φ(q) = (e, i, x),
which is an input of tJ(f). By definition of Weihrauch reduction, Φe(x) ∈ dom(f) and, for every
y ∈ f(Φe(x)), Φi(x, y) ↓∈ tJ(f)(Φ(q)) (as otherwise σ would be the initial segment of a solution for
tJ(f)(Φ(q)), hence Ψ would not produce a valid answer for TCN(q)). This implies that

{Ψ(q,Φi(x, y)) : y ∈ f(Φe(x))} ⊆ TCN(q) = CN(q),

where (e, i, x) are uniformly computable from q. Since CN is a fractal (by the same proof as
Lemma 4.12 or see [6, Fact 3.2(1)]), CN is Weihrauch equivalent to its restriction to {p ∈ NN :
0ka(m+ 1) ⊏ p}.
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In other words, the reduction TCN ≤W tJ(f) yields a reduction CN ≤W f , which concludes the
proof.

Notice that the above argument does not necessarily yield a reduction TCN ≤W f , as tJ(f) is
still allowed to go in the “otherwise” case when every n > 0 is in ran(q).

Remark 4.14. Notice that TCN is another witness for Corollary 4.9. Indeed, it is total (trivially),
a fractal (by Lemma 4.12), and not in the range of tJ (by Theorem 4.13). Every fractal is join-
irreducible (see [7, Prop. 4.11]), so all that is left is to show that TCN is not co-total. If it were,
then TCN ≤W TCN would imply that TCN ≤W CN, but we have already noted that CN <W TCN.

Theorem 4.15. tJ(CN) ≡W T(CN × WΠ0
2
→Π0

1
).

Proof. In light of Theorem 3.3 and of the uniform computability of WΠ0
2

→Π0
1
, it suffices to show that

tJ(CN) ≤W T(CN × WΠ0
2

→Π0
1
). Given the input (e, i, p) for tJ(CN), let q ∈ NN be such that q has

infinitely many zeroes iff

(∀n)[ (∀j)(Φe(p)(j) 6= n+ 1) → Φi(p, n) ↓ ].

In other words, q has infinitely many zeroes iff Φi(p, n) ↓ whenever n is not enumerated by Φe(p).
Moreover, let ē be such that Φē(p) works by simulating Φe(p) and padding the output with zeroes
(this ensures that Φē is total and CN(Φe(p)) = CN(Φē(p)) whenever Φe(p) ↓).

The forward functional of the reduction tJ(CN) ≤W T(CN × WΠ0
2

→Π0
1
) is then given by the map

(e, i, p) 7→ (Φē(p), q).
Given 〈n, t〉 ∈ T(CN × WΠ0

2
→Π0

1
)(Φē(p), q), we uniformly compute a solution for tJ(CN)(e, i, p) as

follows: We run Φi(p, n) until we either see that n+ 1 ∈ ran(Φe(p)) or we see that t /∈ WΠ0
2

→Π0
1
(q)

(both conditions are c.e.). If this never happens, we know that n is a valid solution for CN(Φē(p))
and Φi(p, n) ↓. Otherwise, it means that tJ(CN)(e, i, p) = NN, hence we can just continue the output
with 0N.

Unlike CN, the fact that 2N is computably compact implies that C2N ≡W TC2N (see, e.g., [5, Prop.
6.1]). However, a characterization similar to the one for the tot-jump of CN holds for C2N .

Theorem 4.16. tJ(C2N) ≡W T(C2N × WΠ0
2

→Π0
1
).

Proof. As above, it suffices to show that tJ(C2N) ≤W T(C2N × WΠ0
2

→Π0
1
). Let (e, i, p) be an input for

tJ(C2N). Let S ⊆ 2<N be a tree such that

[S] = {x ∈ 2N : (∀n)[ Φe(p)(〈x[n]〉) ↓→ Φe(p)(〈x[n]〉) = 1 ]}.

Observe that a tree S as above can be uniformly computed from e, p (as the formula defining [S]
is Π0

1 with parameters e, p) and that, if Φe(p) is the characteristic function of a subtree of 2<N,
then [S] = [Φe(p)]. Moreover, S is well-defined, even if Φe(p) does not converge or it is not the
characteristic function of a tree. To compute an input q ∈ NN for WΠ0

2
→Π0

1
, we first observe that

the set

Ae,i,p := {y ∈ 2N : Φe(p) ↑

∨ (∃τ ∈ 2<ω)(∃σ ⊑ τ)[ Φe(p)(〈τ〉) = 1 ∧ Φe(p)(〈σ〉) = 0 ]

∨ [ (∀n)[ Φe(p)(〈y[n]〉) ↓→ Φe(p)(〈y[n]〉) = 1 ]

∧ (∃n) Φi(p, y)(n) ↑ ]}

is defined by a Σ0
2-formula with parameters e, i, p. Intuitively, the first two rows of the definition

capture “Φe(p) is not the characteristic function of a subtree of 2<N”, while the last two rows can be
read as “y ∈ [Φe(p)] and Φi(p, y) ↑”. The third row could have been written as “(∀n)(Φe(p)(〈y[n]〉) =
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1)”. This is (in general) a Π0
2 statement, but it can be equivalently rewritten in a Π0

1-way in light of
the first row.

Since the projection of a Σ0
2-set over a computably compact set is Σ0

2 (see, e.g., [15, Lemma 3.9])
and that checking if a subtree of 2<N is ill-founded is a Π0

1-problem, this implies that the statement

“Φe(p) is an ill-founded subtree of 2<N and ¬(∃y ∈ 2N) y ∈ Ae,i,p.”

is Π0
2. Therefore, we can uniformly compute a string q ∈ NN such that q has infinitely many zeroes

iff the above formula holds.
The forward functional of the reduction is the map that sends (e, i, p) to (S, q). The back-

ward functional Ψ is the map that works as follows: given e, i, p and a solution 〈z, t〉 for T(C2N ×
WΠ0

2
→Π0

1
)(S, q), Ψ outputs Φi(p, z) as long as t appears to belong to WΠ0

2
→Π0

1
(q). As soon as an

error is found, Ψ extends the partial output with 0N.
It is immediate from the definition of q that an error is found only if Φe(p) does not define an

ill-founded subtree of 2<N or if there is y ∈ [Φe(p)] such that Φi(p, y) ↑. In this case, tJ(C2N)(e, i, p) =
NN, hence the computed string is a valid solution. On the other hand, if an error is never found, then
z ∈ [S] = [Φe(p)] and Ψ((e, i, p), 〈z, t〉) = Φi(p, z) ∈ tJ(C2N)(e, i, p), which concludes the proof.

We conclude this section by showing that, as a consequence of Corollary 3.13, the tot-jump of
each of the problems lim, lim

[n], UCNN , and CNN is the respective total continuation.

Theorem 4.17. For every n ≥ 1, tJ(lim[n]) ≡W T(lim[n]).

Proof. Let us first prove the theorem for n = 1. Let P be the family of all problems f such that
there is a total computable Φ such that, for every e, i ∈ N and every p ∈ NN, if Φe(p) ∈ dom(f) and
(∀q ∈ fΦe(p)) Φi(p, q) ↓, then

Φ(e, i, p) ∈ dom(f) and fΦ(e, i, p) ⊆ {Φi(p, q) : q ∈ fΦe(p)}.

By Corollary 3.13 (with Ψ the projection on the second coordinate), for every f ∈ P , tJ(f) ≡W Tf ,
so it is enough to show that lim ∈ P . Let Φ be the map that, upon input e, i, p, computes the
sequence (xn)n∈N defined as follows: We read the output of Φe(p) as (an initial segment of) the
join of countably many strings 〈q0, q1, . . .〉. Formally, if σn is the string produced by Φe(p) in n
steps, we define kn := max{j : 〈j, 0〉 < |σn|} and, for every j ≤ kn, define τn,j(m) := σn(〈j,m〉)
for all m with 〈j,m〉 < |σn|. With this definition, for every j ≤ kn, τn,j ⊑ qj . We can uniformly
compute the string y ∈ NN defined as yn(m) := τn,j(m) for the largest j such that 〈j,m〉 < |σn|,
and yn(m) := 0 if no such j exists. Observe that, if (qn)n∈N converges, then so does (yn)n∈N and
limn→∞ yn = limn→∞ qn. We define

xn := Φi,n(p, yn)a0N,

where Φi,n(p, t) denotes the output produced by Φi(p, t) in n steps. Clearly, the map Φ is total and
computable.

Assume that Φe(p) produces the sequence (qj)j∈N ∈ dom(lim) and that Φi(p, q) ↓, where q :=
limn→∞ qn. By the continuity of Φi, we immediately obtain

lim
n→∞

xn = Φi

(
p, lim
n→∞

yn

)
= Φi

(
p, lim
n→∞

qn

)
= Φi(p, lim Φe(p)),

which shows that lim ∈ P .
The general case follows by induction on n, as the class P is closed under composition and

lim ◦ lim ≡sW lim ∗ lim (by [6, Example 4.4(1)] and the fact that lim is a cylinder). To prove that P
is closed under composition, we can use f ∈ P first and g ∈ P later, to conclude that fg ∈ P .

More precisely, let f, g ∈ P and let F and G be the total computable witnesses. Fix e, i ∈ N

and p ∈ NN such that Φe(p) ∈ dom(fg) (i.e. Φe(p) ∈ dom(g) and g(Φe(p)) ⊆ dom(f)) and (∀q ∈
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fgΦe(p)) Φi(p, q) ↓. Let ē, ı̄ ∈ N be such that Φē(〈a, b〉) = b and Φı̄(〈a, b〉, c) = Φi(a, c). Observe
that

{Φi(p, q) : q ∈ fgΦe(p)} =
⋃

t∈gΦe(p)

{Φı̄(〈p, t〉, q) : q ∈ fΦē(〈p, t〉)}.

By the choice of F , for every t ∈ gΦe(p) ⊆ dom(f) (which implies that Φē(〈p, t〉) ∈ dom(f) and
(∀q ∈ fΦē(〈p, t〉)) Φı̄(〈p, t〉, q) ↓),

∅ 6= fF (ē, ı̄, 〈p, t〉) ⊆ {Φı̄(〈p, t〉, q) : q ∈ fΦē(〈p, t〉)}

= {Φi(p, q) : q ∈ f(t)}.

In other words, letting j be such that Φj(p, t) := F (ē, ı̄, 〈p, t〉), we obtain

f({Φj(p, t) : t ∈ gΦe(p)}) ⊆ {Φi(p, q) : q ∈ fgΦe(p)}.

To conclude the proof, note that by the choice of G, we have

∅ 6= g G(e, j, p) ⊆ {Φj(p, t) : t ∈ gΦe(p)}.

In particular, the map (e, i, p) 7→ G(e, j, p) witnesses the fact that f ◦ g ∈ P .

Theorem 4.18. tJ(UCNN) ≡W TUCNN and tJ(CNN) ≡W TCNN .

Proof. We only show that tJ(CNN) ≡W TCNN , as (with minor modifications) the same proof works
for UCNN .

As in the previous proof, we show that CNN satisfies the assumptions of Corollary 3.13, namely,
there are two total computable functionals Φ and Ψ such that, for every e, i ∈ N and every
p ∈ NN, if Φe(p) ∈ dom(CNN) and (∀x ∈ [Φe(p)]) Φi(p, x) ↓, then Φ(e, i, p) ∈ dom(CNN) and
Ψ((e, i, p), [Φ(e, i, p)]) ⊆ {Φi(p, x) : x ∈ [Φe(p)]}. Let Φ be the map that sends (e, i, p) to (the
characteristic function of) a tree T ⊆ N<N such that

[T ] = {〈x, y〉 : x ∈ [Φe(p)] and Φi(p, x) ⊑ y}.

As the set above is uniformly Π0
1 in (e, i, p), a tree T as above can be uniformly computed from

(e, i, p). Let Ψ := ((e, i, p), 〈x, y〉) 7→ y.
To conclude the proof, notice that if Φe(p) ∈ dom(CNN) and Φi(p, x) ↓ for every x ∈ [Φe(p)],

then T is ill-founded and, for every 〈x, y〉 ∈ [T ], Ψ((e, i, p), 〈x, y〉) = y ∈ {Φi(p, q) : q ∈ fΦe(p)}.

5 Remarks on abstract jump operators

In this paper, we introduce and study a natural jump operator on the Weihrauch lattice, a natural
partial order. The remarks in this section address a much more abstract question: under what
conditions do arbitrary partial orders admit a jump operator in the sense of Definition 1.1? We
show that, without additional structure, admitting a jump is not a first-order property.

We mentioned in the introduction that the existence of an abstract jump operator is easy to
see in any upper semilattice without maximum (using the Axiom of Choice). This result can be
extended to countable upper directed partial orders (i.e., partial orders such that any finite number
of elements have a common upper bound) without maximum. Indeed, any such partial order (P,≤)
admits a strictly increasing cofinal chain (qn)n∈N. This can be easily shown by letting (pn)n∈N be
an enumeration of P and defining q0 := p0 and qn+1 := pm where m is least such that qn < pm. The
existence of a jump operator follows from the fact that every partial order with a strictly increasing
cofinal chain admits a jump operator (it is enough to map every element of the poset to the first
element in the sequence that is strictly above it).

We mention that the same strategy cannot be used to obtain the existence of a jump operator
on the Weihrauch degrees. Indeed, the third and fifth author will show in an upcoming paper that
no chain in the Weihrauch degrees can be cofinal.
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Remark 5.1. There is an upper directed partial order with no maximum and size ℵ1 that does
not admit a jump operator, which implies that the above observation cannot be generalized to
larger partial orders. To show this, let (Q,≤Q) be ω1 ordered as an antichain (each element is only
comparable with itself). Let also (R,≤R) be the partial order of all non-empty finite subsets of ω1

ordered by inclusion. Let P be the union of Q and R, where ≤P is defined as the transitive closure
of

≤Q ∪ ≤R ∪ {(α, {γ}) : α ≤ γ}.

Assume towards a contradiction that P admits a jump operator j. Observe now that, for a
fixed α, j(α) is a non-empty finite set of ordinals such that at least one is ≥ α. Let β ∈ j(α) be
such that α ≤ β. In particular, for every γ ≥ α, we have α <P {γ} and hence j(α) ≤P j({γ}), i.e.,
β ∈ j(α) ⊆ j({γ}).

Define an increasing sequence (αn)n∈N of countable ordinals as follows: α0 := 0 and, for every n,
αn+1 := max j(αn) + 1. For every n, let βn ∈ j(αn) be such that αn ≤ βn. In particular, we obtain

α0 ≤ β0 < α1 ≤ β1 . . . ,

which implies that all the βn are distinct.
By the above observation, for every γ ≥ supn∈N αn and every n, βn ∈ j({γ}), hence j({γ}) is

infinite, which is a contradiction with j({γ}) ∈ P .

Finally, we consider the case of arbitrary countable partial orders (without a maximum). We
show that the existence of a jump operator is as complicated as its naive definition suggests: it is
Σ1

1-complete.

Theorem 5.2. There is a computable map F : LO → PO0 from the family of countable linear orders
to the family of countable partial orders without maximum (where we represent a linear/partial order
using its characteristic function) such that

L is ill-founded ⇐⇒ F (L) admits a jump operator.

Proof. To show this, let (X,≤X) be the partial order defined as X := 2 × ω and (i, n) ≤X (j,m)
iff i = j and n ≤ m. Intuitively, X consists of two incomparable copies of ω. We define F (L) :=
1+

∑
x∈L∗ X , where L∗ is L with the order reversed. We order F (L) as expected: in particular, every

element of a given term is less than every element of the later terms. For the sake of readability, we
write Xx := {(i, n)x : i ∈ 2 and n ∈ ω} for the x-th copy of X in F (L). Let also ⊥ be the minimum
of F (L).

Assume that L is ill-founded and let (xk)k∈N be an infinite descending sequence (i.e., an infinite
ascending sequence in L∗). We can define a jump function j on F (L) as follows:

• j(⊥) := (0, 0)x0
;

• for every (i, n)x such that x <L∗ x0, let j((i, n)x) := (0, 0)x0
;

• for every (i, n)x such that xk ≤L∗ x <L∗ xk+1, let j((i, n)x) := (0, 0)xk+1
;

• for every (i, n)x such that xk <L∗ x for every k, let j((i, n)x) := (i, n+ 1)x.

It is immediate from the definition that j is strictly increasing. Proving that j is weakly monotone
is also easy.

Conversely, if F (L) admits a jump operator j, then we can define an ascending sequence in L∗

(i.e., a descending sequence in L witnessing the fact that L is ill-founded) as follows: We let x0 be
such that j(⊥) = (i0, n0)x0

for some i0, n0. To define x1, observe that, by the weak monotonicity of j,
we have j((1 − i0, n0)x0

) ≥F (L) j(⊥) = (i0, n0)x0
. This, in combination with j((1 − i0, n0)x0

) >F (L)

(1 − i0, n0)x0
, implies that j((1 − i0, n0)x0

) = (i1, n1)x1
for some i1, n1 with x1 >L∗ x0. We can

iterate this argument to obtain the desired strictly increasing sequence in L∗.

22



This shows that the set of partial orders without maximum admitting a jump operator is a
non-Borel Σ1

1-subset of the set of countable partial orders. In particular, the existence of a jump
operator for countable partial orders without maximum cannot be characterized by an arithmetic
formula. It would be interesting to obtain a similar result for non-countable partial orders. This
would require a detour into the realm of generalized descriptive set theory, and it is possible that
additional set-theoretic axioms (for example, on the size of the continuum) would be needed.

6 Open Questions

We mentioned in Section 3 that the tot-jump of f can be defined via a ∆1
2-formula using f as a

parameter. Moreover, we showed that no jump operator on computational problems can be defined
using a Σ1,f

1 -formula (Remark 3.6). This leaves a gap, and therefore it is natural to ask the following
question:

Open Question 6.1. Is there a Π1,f
1 -definition for the tot-jump? More generally, is it possible to

define a jump operator on the Weihrauch degrees using a Π1,f
1 -formula?

Despite our efforts, we could not obtain a satisfactory characterization for ran(tJ). A better
characterization is especially desirable in light of Theorem 3.7, as that would give us a description
of a sublattice of the Weihrauch degrees which is isomorphic to the full structure.

Open Question 6.2. Find a “natural” characterization for ran(tJ). Is tJ definable in the Weihrauch
degrees?

While the “natural” condition is of course vague and informal, a satisfactory answer would allow
us to promptly tell whether a given f is in the range of the tot-jump. To this end, a powerful result
is provided by Theorem 3.23, and especially by Corollary 3.24. As proved, closure under product
with DIS is a sufficient condition for co-totality, and we showed that a co-total problem f can be
Weihrauch-reducible to tJ(g) only in the trivial case f ≤W g. This raises the following question:

Open Question 6.3. Does closure under product with DIS characterize co-totality?

We also showed that the range of tJ is a (proper) subset of the join-irreducible degrees (Theorem 3.15
and Corollary 4.9). This allowed us to show that the tot-jump of f and g distributes over the join
of f and g only when f and g are comparable. On the other hand, we do not know whether the same
holds for the meet: While Proposition 3.19 shows that, in general, the jump does not distribute over
the meet, we do not know whether this is always the case when f and g are not comparable.

Open Question 6.4. Are there f and g such that f |W g but tJ(f) ⊓ tJ(g) ≡W tJ(f ⊓ g)?
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