
THE FIRST-ORDER THEORY OF THE

COMPUTABLY ENUMERABLE EQUIVALENCE RELATIONS

IN THE UNCOUNTABLE SETTING

URI ANDREWS, STEFFEN LEMPP, MANAT MUSTAFA, AND NOAH D. SCHWEBER

Abstract. We generalize the analysis of Andrews, Schweber and Sorbi of the
first-order theory of the partial order of degrees of c.e. equivalence relations to

higher computability theory, specifically to the setting of a regular cardinal.

1. Introduction

We lift the analysis of Andrews, Schweber and Sorbi [ASS20] of the first-order
theory of the partial order of degrees of c.e. equivalence relations to higher com-
putability theory. Specifically, we work in the setting of κ-recursion for a regular
cardinal κ. Andrews, Schweber, and Sorbi showed that the structure Ceers of de-
grees of c.e. equivalence relations (or ceers) under computable reducibility (R ≤ S if
and only if there is a computable function f so that x R y if and only if f(x) S f(y))
interprets (N,+, ·). In particular, the theory of Ceers is computably isomorphic
with the theory of first-order arithmetic. We show the analogous result for the
structure Ceersκ:

Theorem 1.1 (Main Theorem). The partial order Ceersκ of κ-ceers under κ-
computable reducibility (defined analogously) interprets the structure Lκ. In partic-
ular, the theory of Ceersκ is computably isomorphic with the theory of Lκ.

Since we are forced to pay more attention to the combinatorial principles at
work, we are ultimately led to a simplification of the original argument. This
simplification stems from the fact that it is much easier to code finite structures
into the ceers, or κ-finite structures into the κ-ceers. In particular, every element
of Lκ is contained in an admissible set which is itself κ-finite. We can therefore
within Ceersκ try to build Lκ itself by “pasting together” appropriately coded
versions of smaller admissible sets. The new wrinkle in this approach is the danger
of overshooting; this is handled by a general fact about interpretations between
admissible sets (Lemma 5.3).

We also present a different argument for the special case κ = ω1; while applicable
to a much narrower collection of ordinals, essentially the successor cardinals which
define their predecessors in a “simple” way, it relies less on the specific nature
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of α-recursion theory and is applicable to a wider range of higher computability
notions.

Convention 1.2. Throughout this paper, κ is an uncountable regular cardinal.

We refer for the basics and the background on c.e. equivalence relations (or
ceers on ω, i.e., the classical case) to the papers by Gao and Gerdes [GG01] or
Andrews, Badaev, and Sorbi [ABS17] and Andrews and Sorbi [AS19]. However, for
the convenience of the reader, we recall some of the basic notions in the following
section, phrased in terms of κ-ceers.

Convention 1.3. Throughout this paper, we assume for simplicity V = L. This
hypothesis, however, can be removed after the fact since the theorem we prove is
absolute between V and L. Indeed, the objects the Main Theorem refers to, such
as κ-ceers, κ-computable reductions between κ-ceers, and Lκ can each be defined
with quantifiers ranging over L as opposed to V . Thus the interpretation of Lκ

in Ceersκ which we will construct in L also gives an interpretation in V . Thus also
the computable isomorphism between the first-order theories of these structures
also holds in V .

The simplifying role of the assumption V = L in our argument is purely linguistic.
It lets us conflate “κ-finite” and “size < κ”. In our view, this makes the flow of
ideas clearer.

Lemma 1.4. A subset of Lκ is κ-finite if and only if it has size < κ. In particular,
if f is a partial function from κ to κ whose domain has size < κ, then f is κ-finite.

To reiterate, this is not provable in ZFC alone. However, the results of this paper
are theorems of ZFC since they are absolute between V and L, despite the proofs
using the lemma above.

Proof. Let X be a subset of Lκ of size less than κ. Then by regularity of κ, there
must be an α < κ so that X ⊆ Lα. Since V = L, X ∈ Lα+1, so X ∈ Lκ. That is, X
is κ-finite.

Note that we used both the regularity of κ and the convention that V = L. For
example, if we did not have regularity of κ, then a smaller cofinal subset of κ would
not be κ-finite, and without V = L, a non-constructible subset of ω is small but is
not in L, so certainly not κ-finite. □

We will use this, for example, to build κ-computable reductions from a κ-ceer
which has λ < κ many classes to any κ-ceer with ≥ λ many classes. We will be
able to name a map from a representative of each class, and it’s free that this map
is κ-computable because it is κ-finite. We can then extend this to a κ-computable
reduction of κ-ceers. There is a related topic where the hypothesis V = L would
no longer be benign. Namely, Andrews, Belin, and San Mauro [ABSMta] consider
the partial order of all equivalence relations on ω of arbitrary complexity under
computable reducibility. By analogy, we could fix an uncountable cardinal κ which
is regular in V and consider the preorder of arbitrary equivalence relations on κ
under κ-computable reductions. A priori, basic facts about this preorder might
depend heavily on whether or not V = L since the underlying set of the preorder is
not determined by L alone. However, in this paper, we will only consider the local
structure of κ-ceers.
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In the next section, we cover basic properties of κ-ceers including the combina-
torics of working with κ-finite κ-ceers. In section 3, we will introduce the definable
collection of “almost self-full minimal κ-ceers” which have nice combinatorial prop-
erties. In section 4, we show how to code any κ-finite graph into Ceersκ. The
almost self-full minimal κ-ceers will be used as the domains of these encodings,
and the combinatorial properties from section 3 will be critical to carrying out the
coding. In section 5, we will show that Ceersκ interprets Lκ without parameters
by “pasting together” the encodings of Lα for admissible α < κ. Finally, in sec-
tion 6, we give an alternate approach to the fact that Ceersω1 interprets Lω1 . This
approach is applicable to a wider range of notions of uncountable computability.

1.1. Basic notions of κ-computability. We recall the following definitions:

Definition 1.5. A set B ⊆ κn is said to be κ-computably enumerable if B is Σ1-
definable over Lκ. Note that parameters from Lκ are permitted in the definition.

A partial function f : κ → κ is said to be partial κ-computable if its graph is a
κ-computably enumerable set. If f is total on κ, then it is said to be κ-computable.

The κ-finite subsets of κ are those that belong to Lκ.
All of these notions are transferred from κ to Lκ via a natural enumeration of Lκ

that maps κ onto Lκ.

We note that using our conventions that κ is regular and V = L, Lemma 1.4 tells
us that κ-finiteness has a simpler description. A subset of Lκ is a member of Lκ as
long as its size is less than κ.

2. Basic Results about κ-ceers

Definition 2.1. (1) A κ-ceer is a κ-c.e. equivalence relation on the set κ.
(2) A κ-ceer R is reducible to a κ-ceer S (denoted R ≤ S) if there is a κ-

computable function f : κ→ κ such that for all α, β < κ, α R β if and only
if f(α) S f(β). κ-ceers R and S are equivalent (denoted R ≡ S) if R ≤ S
and S ≤ R. The degree of a κ-ceer is its ≡-equivalence class.

(3) The structure of the degrees of all κ-ceers in the language of ≤ will be
denoted by Ceersκ.

(4) The uniform join of κ-ceers R and S is R⊕ S, defined by (α+m) (R⊕ S)
(β + n) (for non-successor ordinals α, β < κ and m,n ∈ ω) if and only if
(α+ m

2 ) R (β+ n
2 ) (and m and n are both even) or (α+ m−1

2 ) S (β+ n−1
2 )

(and m and n are both odd). We extend this definition to arbitrarily large
κ-finite sums: For a sequence (Rα)α<λ for some λ < κ, we can define E
to be an equivalence relation on κ × λ given by (α, β) E (γ, δ) if and only
if β = δ and α Rβ γ. Finally, using a uniform sequence of κ-computable
bijections between κ and ordinals κ × λ for λ < κ, we translate E to an
equivalence relation ⊕αRα on κ. (Note that ⊕ is well-defined on degrees
even though deg(R⊕ S) need not be the least upper bound of the degrees
of R and S.)

(5) For any (possibly finite) nonzero cardinal λ < κ, the κ-ceer Idλ is defined
by α Idλ β (for α ≤ β) if and only if λ ·γ+α = β for some γ. The κ-ceer Id
is given by equality, i.e., α Id β if and only if α = β.

(6) A κ-ceer R is κ-finite if R ≡ Idλ for some λ < κ; otherwise R is κ-infinite.
We will show immediately below that κ-finiteness is equivalent to having
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fewer than κ many classes. A κ-ceer R is light if Id ≤ R; and it is dark if
it is neither κ-finite nor light.

(7) A κ-ceer R is self-full if R⊕ Id1 ≰ R.
(8) If A is any κ-ceer and W is a κ-infinite κ-c.e. set, then A |W is the κ-ceer

obtained by taking a κ-computable bijection g of κ with W and defining
a A |W b if and only if g(a) A g(b). This is well-defined up to degree, so
we do not need to specify the bijection g we use. If W is κ-finite, we write
A |W for Idλ, where λ is the cardinality of the set of A-equivalence classes
of members of W .

(9) We say A ≤Finκ
B if there is a κ-finite κ-ceer F so that A ≤ B ⊕ F . This

gives the notion of the “mod-κ-finite” κ-ceer-degrees.

We note that it might be more natural to define κ-ceers to have domain any κ-
c.e. subset of κ. We would then demand a reduction to be a κ-computable function
defined on the whole domain. In this case, (8) above has the more natural definition
of A | W being literally given by restriction. Of course, this intuition gave rise to
the notation. We do not take this approach, though it may be more elegant, in
order to match the approach taken in the classical setting of ω-ceers. We would also
define Idλ to be given by equality on the domain λ. Again, this clearly motivates
the notation.

Lemma 2.2. We note the following basic facts:

(1) If f is a reduction of A to B and the range of f intersects every B-class,
then A ≡ B.

(2) If R is a κ-ceer with exactly λ many classes for some λ < κ, then R ≡ Idλ.
So, a κ-ceer is κ-finite if and only if it has fewer than κ many classes.

(3) If f is a reduction of A to B, then A ≡ B | ran(f).
(4) If X ≤ Y ⊕ Z, then X ≡ Y0 ⊕ Z0 for some Y0 ≤ Y and Z0 ≤ Z.
(5) If R is not self-full, then Idω ≤ R. (In the classical setting, where Id = Idω,

this is the result that dark degrees are self-full.)

Proof. (1) Given an element x ∈ κ, we can κ-computably search for some y ∈ κ so
that x B y and y is in the range of f , say, y = f(a). Then the map x 7→ a gives a
reduction of B to A.

(2) Fix an enumeration of the classes of R in order type λ. Then the map that
sends the γth class to γ is a κ-computable reduction of R to Idλ, and it is onto the
classes of Idλ, which shows that R ≡ Idλ by (1). Note that we are using Lemma 1.4
here, which relies on the regularity of κ, and our convention that V = L. Using
Lemma 1.4 allows us to act analogously to what we do in the classical setting of
defining a computable function by first non-uniformly fixing its values on finitely
many inputs.

(3) In the case when ran(f) is κ-infinite, this follows by (1). In the case when
ran(f) is κ-finite, this follows by (2).

(4) If X ≤ Y ⊕ Z via the map f , then let Y0 = Y | {x | 2x ∈ ran(f)} and
Z0 = Z | {x | 2x + 1 ∈ ran(f)}. Note that y ∈ Y0 if and only if the image of y
in the reduction of Y to Y ⊕ Z is in the range of f (similarly for z ∈ Z0). Then
we can easily tweak f to give a reduction of X to Y0 ⊕ Z0 which is onto, and so
X ≡ Y0 ⊕ Z0 by (1).

(5) Say R ⊕ Id1 ≤ R via a map f . Then g = f(2x) is a reduction from R to
itself whose range is disjoint from some R-class (namely, the class that Id1 was
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sent to by f). Let a be in this class. Then {g(n)(a) | n ∈ ω} is an infinite set of
pairwise R-inequivalent elements, since g(n)(a) cannot be R-equivalent to a as the
class of a does not intersect the range of g; but since g is a reduction of R to itself,
this implies that g(n+k)(a) is not R-equivalent to g(k)(a) for any n, k ∈ ω. □

We will need the following theorem whose proof is a straightforward adaptation
of [AS19, Theorem 7.2]. Here we give only a proof sketch. For a careful exposition
of the priority argument and how each parameter is chosen, see [AS19].

Theorem 2.3 (Exact Pair Theorem). Let (Ai)i<κ be a uniformly κ-c.e. sequence
of κ-ceers. Then there exist two κ-ceers X and Y above

⊕
i<αAi for every α < κ

so that any κ-ceer Z which is reducible to both X and Y is below
⊕

i<αAi for some
α < κ.

Proof. We construct the κ-ceers X and Y to meet requirements:
Qα: There is some column of X and Y which codes Aα.
Pj,k: If Z is reducible to X via φj and reducible to Y via φk, then Z ≤

⊕
i<αAi

for some α < κ.
For the sake of a Q-requirement, we “restrain a column” of each of X and Y

to prevent collapse aside from those used for coding on that column. For the sake
of P -requirements, we collapse potentially many columns all together to the class
of 0 in either X or Y in order to perform a diagonalization. If we cannot perform
the diagonalization, this will be because the range of φj or φk is contained entirely
in the κ-finitely many columns restrained by higher-priority Q-requirements. The
argument is put together as a standard κ-finite-injury priority construction. □

2.1. Working with κ-finite κ-ceers. In this section, we establish facts about
working with κ-finite κ-ceers. In particular, we will characterize the relation ≤Finκ

.
We begin with a negative observation, pointing out a key difference between κ-ceers
and ω-ceers.

We start with the following

Fact 2.4. Let A and B be κ-ceers. Then we cannot “cancel κ-finite κ-ceers” in
the following sense: The fact that A⊕ F ≡ B ⊕ F for a κ-finite κ-ceer F does not
imply that A ≡ B. For example, Id1 ⊕ Idω ≡ Id2 ⊕ Idω, but Id1 ̸≡ Id2. □

This does not happen in the setting of ω-ceers. In fact, even for κ-ceers A and B,
if F is truly finite (i.e., has < ω equivalence classes), then A⊕ F ≡ B ⊕ F implies
A ≡ B.

That said, much of what we want for finite ceers does carry through. For exam-
ple, κ-infinite κ-ceers bound all κ-finite κ-ceers.

Lemma 2.5. If X is a κ-infinite κ-ceer, then every κ-finite κ-ceer is reducible
to X.

Proof. Fix λ < κ. Let (ai)i∈λ be a sequence of X-inequivalent elements of κ. Then
the map that sends λ · γ + α to aα gives a κ-computable reduction of Idλ to X.
Note that we are again using Lemma 1.4. □

Also, taking the uniform join of a degree with the degree of a κ-finite ceer does
not move the degree very far in Ceersκ:

Lemma 2.6. If A ≤ B and F is κ-finite, then either B ∈ [A,A⊕F ] or A⊕F < B.
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Proof. Let F ≡ Idγ for some γ < κ, and let g be the reduction from A to B. We
consider two cases: Either there are γ many classes in B which do not intersect
the range of g or not. If there are, then we can reduce A ⊕ F to B by taking
the union of g with a map sending the classes of Idγ to these unused classes. If
not, then let β < γ be so that there are precisely β many B-classes which do not
intersect the range of g. Then we can build a reduction g′ from A⊕ Idβ to B which
is onto the classes of B. Thus B ≡ A⊕ Idβ . In both cases, we used Lemma 1.4 to
κ-computably send the fewer than κ many classes to the right images. □

Next we characterize the relation ≤Finκ
in terms of taking uniform joins with

κ-finite κ-ceers.

Lemma 2.7. If X ≤Finκ
Y , then either X ≤ Y or there is some γ < κ so that

X ≡ Y ⊕ Idγ .

Proof. We have X ≤ Y ⊕ Idγ for some γ < κ via a reduction f . Then X ≡ Y0⊕ Idβ
with Y0 ≤ Y given by the image of the reduction f (since the only κ-ceers below
Idγ are equivalent to Idβ for some β ≤ γ by 2.2(2)). We consider two cases: If Y
contains β many classes that do not intersect the range of f , then we can send the
classes in X to these instead of Idβ , so we obtain a reduction witnessing X ≤ Y .
In the second case, there are not β many classes in Y which do not intersect the
range of f . In this case, we have that Y0 ⊕ Idα ≡ Y for some α < β. By sending α
many of the elements in X which were sent into Idβ instead to these classes, we
can build a map from X to Y ⊕ Idβ which is onto the classes of Y in Y ⊕ Idβ . It
follows that X ≡ Y ⊕ Idδ for some δ ≤ β. □

Corollary 2.8. If X < Z < X ⊕ Idγ , then Z ≡ X ⊕ Idβ for some β < γ. □

Corollary 2.9. If X ≡Finκ
Y , then either X ≡ Y or there is a γ < κ so that

X ≡ Y ⊕ Idγ or Y ≡ X ⊕ Idγ . □

From our characterization of ≤Finκ
, we derive that the relation ≤Finκ

is definable
in Ceersκ.

Lemma 2.10. The set of pairs of degrees a,b so that a ≤Finκ b is definable
in Ceersκ.

Proof. This definition is similar to [AS19, Obs. 9.7]. By Lemma 2.7, X ≤Finκ Y is
equivalent to either X ≤ Y or X > Y ∧X ≡ Y ⊕ Idγ for some γ < κ. The former is
clearly definable, so we need only define the latter condition. We will show that for
Y > X, Y ≡ X ⊕ Idγ for some γ < κ is equivalent to [X,Y ] being linearly ordered
and (∀Z)[X ≤ Z → (Y < Z ∨ Z ∈ [X,Y ])].

Suppose that Y > X and Y ≡ X ⊕ Idγ . Then Corollary 2.8 and Lemma 2.6
show that [X,Y ] is linearly ordered and (∀Z)[X ≤ Z → (Y < Z ∨ Z ∈ [X,Y ])].

Conversely, suppose that Y > X, [X,Y ] is linearly ordered, and (∀Z)[X ≤ Z →
(Y < Z ∨Z ∈ [X,Y ])]. From the Exact Pair theorem (Theorem 2.3) applied to the
sequence (Ai)i∈κ defined by A0 = X and Aγ = Id1 for γ ̸= 0, we see that there
are κ-ceers Z and W which are incomparable and form an exact pair for the set of
degrees which are ≤ X ⊕ Idγ for some γ < κ. By the condition, Y is comparable
with each of Z and W . Since they are incomparable, Y is either above both or
below both. If Y were above both Z and W , then [X,Y ] would not be linearly
ordered, contradicting the condition. So Y must be ≤ Z,W . Thus Y must be
≤ X⊕ Idγ for some γ < κ. Then Y ≡ X⊕ Idγ for some γ < κ by Corollary 2.8. □
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3. Almost self-full κ-ceers

In the ω-setting, the entire coding machinery from [ASS20] revolved around the
good combinatorial behavior of dark minimal ceers, which were used as the domains
for coded graphs. This in turn relied on defining the collection of dark minimal
ceers, which leaned heavily on true finiteness, and in particular on the fact that
classically, dark minimality is equivalent to self-full minimality.

Self-fullness is a very useful property in the study of ceers. In the setting of
ω-ceers, if A is non-self-full, then for any finite ceer F , A ⊕ F ≡ A. But in the
κ-ceers, a non-self-full κ-ceer A can satisfy A⊕ Idλ ̸≡ A for some λ ≥ ω. Consider
for example the case with κ > ℵ1 and A = B⊕ Idω where B is self-full. A is clearly
non-self-full, but A⊕ Idω1 > A.

The shift from ω to κ forces us back to the drawing board here. We now introduce
the notion of a κ-ceer being almost self-full, and in this section, we show that the
class of almost self-full κ-ceers is definable in Ceersκ and that we can recover some
of the nice combinatorial properties of self-full ceers for the almost self-full κ-ceers.

Definition 3.1. We say that a κ-ceer A is almost self-full if there is some κ-finite
κ-ceer F so that A⊕ F ̸≤ A.

A κ-infinite κ-ceer A is minimal if every X < A is κ-finite.
A degree is almost self-full (or minimal) if some, or equivalently every, κ-ceer in

the degree is almost self-full (or minimal, respectively).

Note that in the ω-ceers, being almost self-full is the same as being self-full.
In the ω-ceers, the following formula defines the self-full ceers. In the κ-ceers, it
defines the collection of almost self-full κ-ceers.

Lemma 3.2. A κ-ceer A is almost self-full if and only if there exists a κ-ceer
B > A so that ∀X (X > A→ X ≥ B)

Proof. First suppose that A is almost self-full. Then for some γ < κ, we have that
A⊕ Idγ > A. Fix a minimal such γ and let B = A⊕ Idγ . Then Lemma 2.6 shows
that X > A implies that either X ≥ B or X is strictly between A and B. The
minimality of γ and Corollary 2.8 rule out the latter possibility.

Now suppose that A is not almost self-full. That is, A ⊕ F ≡ A for every κ-
finite F . There are two κ-ceers X and Y which are incomparable so that Z < X, Y
implies Z ≤ A. This follows directly from the Exact Pair Theorem (Theorem 2.3)
applied to the sequence (Ai)i∈κ defined by A0 = A and Aγ = Id1 for γ ̸= 0. Thus
there can be no such B, which would have to be below both X and Y . □

Corollary 3.3. The class of almost self-full κ-ceers is definable in Ceersκ. □

The class that we will use in place of the dark minimal ceers will be the almost
self-full minimal κ-ceers. That is, a degree is almost self-full minimal iff it is almost
self-full and does not strictly bound any degree of an infinite κ-ceer.

3.1. Properties of reductions of minimal κ-ceers. In this subsection, we see
two nice combinatorial properties regarding reductions of minimal κ-ceers. Firstly,
they are “atomic” with regard to uniform joins.

Lemma 3.4. If A is minimal and A ≤ B ⊕ C, then A ≤ B or A ≤ C.

Proof. If A ≤ B ⊕ C, then we know A ≡ B0 ⊕ C0 for some B0 ≤ B and C0 ≤
C. Then B0 is reducible to A as well, so it is either equivalent to A or κ-finite.
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Similarly C0 is reducible to A as well, so it is either equivalent to A or κ-finite.
Both cannot be κ-finite since A is not κ-finite. If B0 ≡ A, then A ≤ B, and if
C0 ≡ A, then A ≤ C. □

This fact extends even to κ-finite uniform joins.

Lemma 3.5. Suppose that A is minimal and A ≤
⊕

i<λBi for λ < κ. Then for
some i < λ, A ≤ Bi.

Proof. By the same argument as in Lemma 2.2(4), we see that A ≡
⊕

i<λB
0
i ,

where B0
i ≤ Bi. If any of the B0

i is infinite, then A ≡ B0
i and so A ≤ Bi. If all of

the B0
i were to be κ-finite, then the regularity of κ would imply that A is κ-finite,

but A is minimal, so κ-infinite. □

Secondly, incomparability extends to ≤Finκ -incomparability.

Lemma 3.6. Suppose that R and S are ≤-incomparable minimal κ-ceers. Then
they are also ≤Finκ

-incomparable. Namely, for no κ-finite F is R ≤ S ⊕ F .

Proof. By Lemma 3.4, if R were to reduce to S ⊕ F for some κ-finite F , then R
would reduce to either S or F . The first is assumed to be false and the second is
impossible since R is κ-infinite. □

3.2. Existence and combinatorial properties of almost self-full minimal κ-
ceers. In order to do the necessary coding using almost self-full minimal κ-ceers,
we will need to show that there are κ many almost self-full minimal κ-ceers. The
easiest way to do this is to show that there are κ many self-full minimal κ-ceers. We
will use the following combinatorial characterization of the self-full minimal κ-ceers,
which is the direct analog of the combinatorial characterization used in [ASS20].

Lemma 3.7. A κ-ceer A is self-full and minimal if and only if it is κ-infinite and
for every κ-c.e. set W , if W intersects κ many A-classes, then W intersects every
A-class.

Proof. Suppose that A is self-full and minimal. Let W be a κ-c.e. set which inter-
sects κ many A-classes. Then A | W is κ-infinite and ≤ A. By minimality of A, it
must be equivalent to A itself. Thus we have a reduction of A to A |W . If W were
not to intersect every A-class, then we could extend this to a reduction of A⊕ Id1
to A, but A is assumed to be self-full.

Suppose that A is κ-infinite and for every κ-c.e. set W , if W intersects κ many
A-classes, then W intersects every A-class. Let X ≤ A via f . If X is κ-infinite,
then ran(f) is a κ-c.e. set which intersects κ many A-classes. Thus it intersects
every A-class. Thus X ≡ A. So, A is minimal. If it were true that A⊕ Id1 reduced
to A via some f , then the range of the even ordinals under f would be a κ-c.e.
set which intersects κ many A-classes but would have to be disjoint from one class,
namely, the class of f(1). This is impossible by the condition, so A is self-full. □

It is immediate that a self-full minimal κ-ceer is almost self-full minimal.

Theorem 3.8. There are κ many pairwise incomparable self-full minimal (and
thus almost self-full minimal) κ-ceers.

Proof. For simplicity, we build a pair of incomparable self-full minimal κ-ceers; the
construction of κ many is similar.
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We wish to build κ-ceers A0, A1 which are self-full minimal and incomparable.
Towards this end, we must meet the following requirements for each i < 2 and
x, y ∈ κ:

• Ri
x,y: if Wx intersects κ many Ai-classes then Wx intersects [y]Ai

.

• Si
x: φx is not a reduction of Ai to A1−i.

At every stage s, we enforce reflexivity, symmetry and transitivity; and we must
describe when we collapse elements in Ai. The possible actions will be to make two
elements of κ equivalent in A0 or A1 or to lay down (or maintain or remove) κ-
finitely many restraints of the form “x and y remain Ai-inequivalent.” Conversely,
each such requirement will be faced with κ-finitely many such restraints, and if there
is some stage after which a given requirement is never injured, then that requirement
will act at most once after that stage and will be satisfied. Consequently, the κ-
ceers Ai will have the desired properties. The strategies we use to meet the R- and
S-requirements are the following:

• To meet Ri
x,y, we simply follow a greedy algorithm: If at a given stage,

there is some element of Wx which we can Ai-collapse to y, we do so;
otherwise, we wait. The only way we can be prevented from collapsing y
to a given element u is if u itself is collapsed to an element involved in one
of the restraints set by a higher-priority requirement. These restraints at
the end of the day will only apply to κ-finitely many Ai-classes. So if in
factWx meets κ many Ai-classes, then at some stage, there must have been
an element enumerated into Wx which we were free to Ai-collapse to y.

• To meet Si
x, we pick fresh distinct a and b on the Ai-side and restrain

lower-priority requirements from causing Ai-collapse involving either of
their classes; we then wait for φx(a) and φx(b) to halt. If this never hap-
pens, then the requirement is vacuously satisfied; otherwise, if φx(a) ↓= c
and φx(b) ↓= d, say, then we check to see whether cA1−id. If so, then
we maintain our restraint; otherwise, we restrain c and d from becoming
A1−i-equivalent and Ai-connect a and b. Since we restrained lower-priority
requirements from causing collapse involving a and b or c and d, the only
way this strategy does not succeed is if a higher-priority requirement acts
after it begins. In that case, we reinitialize the strategy, choosing fresh a
and b. Since this can only happen fewer than κ many times, the strategy
eventually succeeds. □

Finally, we note that almost self-full minimal κ-ceers satisfy something similar
to the combinatorial condition for self-full minimality.

Lemma 3.9. If A is almost self-full minimal and W is a κ-c.e. set which intersects
κ-infinitely many A-classes, then it intersects κ-cofinitely many A-classes.

In fact, if A is minimal, A ⊕ Idλ > A, and W is a κ-c.e. set which intersects
κ-infinitely many A-classes, then there are strictly fewer than λ A-classes which do
not intersect W .

Proof. Suppose A is minimal, A⊕ Idλ > A, and W is a κ-c.e. set which intersects
κ-infinitely many A-classes. Then A | W is an infinite κ-ceer. By minimality of
A, we must have A | W ≡ A. If W were to be disjoint from λ many A-classes,
then we could reduce A | W ⊕ Idλ ≡ A⊕ Idλ to A. But since A⊕ Idλ > A, this is
impossible. □
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4. Coding structures with κ-ceers

We now build up the machinery to code graphs into Ceersκ. We use the almost
self-full minimal κ-ceers as the domains of our graphs. We introduce the notion of
a sharp cover of a pair of κ-ceers, which will be used to code edges in our graphs.

Definition 4.1. A sharp cover of a pair of ≤Finκ-incomparable minimal κ-ceers R0

and R1 is a κ-ceer S such that for all X, we have

X <Finκ
S ⇔ X ≤Finκ

R0 or X ≤Finκ
R1.

We now introduce the encoding of a graph by a single κ-ceer degree, and show
that the graph encoded is uniformly definable in the parameter.

Definition 4.2. To each κ-ceer degree c, we assign a graph Graphc as follows:

• The vertices of Graphc are the almost self-full minimal degrees ≤ c.
• For distinct (and hence ≤Finκ

-incomparable) a,b ∈ Vert(Graphc), we set
⟨a,b⟩ ∈ Edge(Graphc) if and only if there are ≤Finκ -incomparable u,v ≤ c
each of which is a sharp cover of a and b.

Lemma 4.3. Both the vertex set and the edge set of Graphc are definable in Ceersκ
uniformly in the parameter c.

Proof. The relation ≤Finκ
is definable by Lemma 2.10. Note that a κ-ceer A is

κ-finite if and only if A ≤Finκ Id1, and the degree of Id1 is definable as it is the
least degree in Ceersκ. It follows that the κ-finite degrees, thus also the minimal
degrees, and thus also the almost self-full minimal degrees (by Corollary 3.3), form
definable classes. So we have shown that all of the notions used in the definition of
Graphc are definable in Ceersκ. □

We next show how to build sharp covers of pairs of almost self-full minimal κ-
ceers. This is necessary in order to show that every κ-finite graph on a set of almost
self-full minimal κ-ceers is equal to Graphc for some c.

Definition 4.4. For two κ-ceers A and B and two sequences a = (ai)i<λ and
b = (bj)j<λ, we let A ⊕/a,b B be the κ-ceer generated from A ⊕ B by connecting
2ai and 2bi + 1 (that is, by connecting the A-class of ai and the B-class of bi) for
every i < λ.

Lemma 4.5. Let A and B be incomparable almost self-full minimal κ-ceers and
ω ≤ λ < κ be so that A⊕ Idλ > A and B⊕ Idλ > B. Let a be a sequence of length λ
in distinct A-classes, and let b be a sequence of length λ in distinct B-classes. Then
A⊕B and A⊕/a,b B are ≤Finκ

-incomparable sharp covers of A and B.

Proof. We trivially have A,B ≤ A ⊕ B,A ⊕/a,b B. Note that A and B are Finκ-
incomparable by Lemma 3.6.

To see that A⊕B is a sharp cover of A and B, suppose that X ≤ A⊕B ⊕ Idγ
for some γ < κ. Then X ≡ A0 ⊕ B0 ⊕ Idβ for some A0 ≤ A, B0 ≤ B and β ≤ γ
by Lemma 2.2(4). By minimality of A, A0 is either κ-finite or equivalent to A.
Similarly, B0 is either κ-finite or equivalent to B. If both A0 ≡ A and B0 ≡ B,
then X ≡Finκ

A⊕ B. If both are κ-finite, then X is κ-finite. If A0 ≡ A and B0 is
κ-finite then X ≡Finκ A, and if B0 ≡ B and A0 is κ-finite then X ≡Finκ B.

We now argue that A⊕/a,bB is a sharp cover of A and B as well. Suppose that X
reduces via f to (A⊕/a,bB)⊕ Idδ for some δ < κ. Let A0 be A | {x | 4x ∈ ran(f)}.
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Then A0 is the trace of f on the copy of A in (A⊕/a,bB)⊕ Idδ. Similarly, let B0 be
B | {x | 4x+2 ∈ ran(f)}, which is the trace of f on the copy of B in (A⊕/a,bB)⊕Idδ.
If A0 (or B0) is κ-finite, then X ≤Finκ B (or X ≤Finκ A, respectively). On the
other hand, if both A0 and B0 are κ-infinite, then the image of f can omit at
most λ classes in A⊕/a,b B as A0 omits at most λ A-classes and B0 omits at most
λ B-classes by Lemma 3.9, so X ≡Finκ

A⊕/a,b B.
We now just need to establish ≤Finκ

-incomparability of A ⊕ B and A ⊕/a,b B.
As they are both sharp covers of A and B, it suffices to show that A ⊕ B ≰
(A ⊕/a,b B) ⊕ Idγ for any γ < κ. Suppose that f is such a reduction. We look at
the reduction g of A to (A⊕/a,b B)⊕ Idγ given by the composition of the obvious
reduction of A to A ⊕ B and of f . Consider the trace of g on the κ-ceer B: That
is, B | W where W is the set of x so that 4x + 2 is in the range of g. This κ-
ceer B |W is both reducible to B and A (via sending x to the first c found so that
g(c) = 4x+2). Thus B |W is κ-finite since A and B are incomparable and minimal.
It follows that only κ-finitely many A-classes contain an element c so that g(c) is 2
mod 4. Similarly, only κ-finitely many A-classes contain an element c so that g(c) is
odd. Thus, κ-infinitely many A-classes are sent entirely via g to elements that are 0
mod 4, that is, into the copy of A in (A⊕/a,bB)⊕ Idγ . Thus the set of x so that 4x
is in the range of g must intersect κ-infinitely many A-classes. By Lemma 3.9, it
misses fewer than λmany A-classes. The same argument shows that the reduction h
of B to (A ⊕/a,b B) ⊕ Idγ intersects all but fewer than λ many B-classes. But in
the definition of A⊕/a,b B, we collapsed λ many A-classes with B-classes. By the
pigeonhole principle, there is a pair c, d so that g(c) ((A⊕/a,b B)⊕ Idγ) h(d). But
the reductions g and h go through A ⊕ B, where the images are not equivalent, a
contradiction. □

We are finally ready for the key theorem of this section:

Theorem 4.6. For every κ-finite undirected graph G with vertex set consisting of
almost self-full minimal degrees in Ceersκ, there is a κ-ceer degree c with Graphc =
G.

Remark 4.7. Note the equality, rather than mere isomorphism, between G and
Graphc: The vertices of G are precisely the vertices of Graphc, and two vertices
are connected in G if and only if they are connected in Graphc. Note that c does
provide extra information not present in G, namely, specific “names” for edges in
the graph (the appropriate pairs of sharp covers), but this extra information isn’t
present in Graphc which really is just G itself. In particular, the construction
c 7→ Graphc is not injective.

Proof of Theorem 4.6. Let Vert(G) = {deg(Ri) | i < λ} for some λ < κ be the
vertex set of G. Each Ri is almost self-full. For each pair Ri, Rj with an edge in G,
let Ri#Rj be Ri ⊕/a,b Rj for sequences a and b as in Lemma 4.5. Let C be the
κ-ceer

(
⊕
i<λ

Ri)⊕

 ⊕
⟨i,j⟩∈Edge(G), i<j

Ri#Rj

 ,

and let c = deg(C). For brevity, let H = Graphc; we claim that H = G.
First, we observe that trivially Vert(H) ⊇ {deg(Ri) | i < λ}. Next, we check

that H has no unwanted vertices. To see this, suppose that S is almost self-full
minimal and that S ≤ C. Then, by Lemma 3.5, we have that S must be reducible
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to one of the summands of C, so either to some Ri or to some Ri#Rj . In the former
case, we have S ≡ Ri, since Ri is minimal, and in the latter case, since Ri#Rj is a
sharp cover of Ri and Rj , by Lemma 4.5, we have that S ≤Finκ Ri or S ≤Finκ Rj .
But incomparable almost self-full minimal κ-ceers are mod-finite incomparable by
Lemma 3.6, so S ≡ Ri or S ≡ Rj .

Now we turn to the edges. Note that Ri ⊕ Rj ≤ C for all i < j < λ. So
whenever G has an edge between deg(Ri) and deg(Rj), we have in H an edge
between deg(Ri) and deg(Rj) as witnessed by Ri ⊕Rj ≤ C and Ri#Rj ≤ C. So it
only remains to check that H has no unwanted edges.

Suppose that i < j and that K is a sharp cover of Ri and Rj with K ≤ C.
Then K is of the form ⊕

i<λ

Ai ⊕

 ⊕
⟨i,j⟩∈Edge(G), i<j

Bij


where Ai ≤ Ri and Bij ≤ Ri#Rj . Each Ai is either κ-finite or ≡ Ri by minimality
of Ri. Similarly, each Bij is either κ-finite, ≡Finκ Ri#Rj , ≡Finκ Ri or ≡Finκ Rj .
Since K is a sharp cover of Ri and Rj , it cannot be ≥ Rk for any k ̸= i, j. By
Lemma 3.5, Ri and Rj each reduce to a single term in this expression. If they reduce
to two different terms, then we have Ri⊕Rj ≤ K and thus Ri⊕Rj ≡Finκ

K sinceK
is a sharp cover of Ri and Rj . If they do not reduce to two different terms, then the
only possible term they both reduce to is Bij , In particular, G has an edge between
deg(Ri) and deg(Rj). Thus, if H has an edge between deg(Ri) and deg(Rj), then
there are two ≤Finκ

-incomparable sharp covers of Ri and Rj , showing that G has
an edge between deg(Ri) and deg(Rj). □

We have described how to code κ-finite graphs, but this lets us talk about coding
any κ-finite structure.

Convention 4.8. It is well-known that undirected graphs are “universal” for struc-
tures of a bounded cardinality (for example, all structures of cardinality ≤ κ) in
any finite language. From now on, for simplicity, we will speak of (a degree of) a
κ-ceer coding such a structure, rather than an undirected graph per se.

Note that the above proof gave literal equality on the vertex sets instead of mere
isomorphism. This gives us additionally the ability to code maps between coded
structures:

Corollary 4.9. Suppose that A and B are disjoint κ-finite sets of almost self-full
minimal degrees, and that R ⊆ A×B is some relation (e.g., the graph of a function
from A to B). Then there is a κ-ceer coding the undirected graph with vertex set
A⊔B and with an edge between a and b if and only if either (a, b) ∈ R or (b, a) ∈ R.

This lets us talk about isomorphisms between coded structures, embeddings
between coded structures, etc.

Corollary 4.10. There is a first-order formula φ(x, y) (without parameters) such
that whenever a and b are κ-ceers coding κ-finite structures A and B, we have that
Ceersκ |= φ(a,b) if and only if A ∼= B.

Proof. Though the result is stated for any encoded structures in a fixed language, it
is equivalent to show it for graphs. Using Lemma 4.3, it is definable to say “There
exist κ-ceers coding an isomorphism between Grapha and Graphb.”
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We will now spell this out more formally. Let ψ(a,b, c,d, e) be the formula
stating:

• The vertex set of Graphe is disjoint from the vertex sets of Grapha and
Graphb.

• The edges of Graphc give a function f from Vert(Grapha) to Vert(Graphe).
• The edges of Graphd give a function g from Vert(Graphe) to Vert(Graphb).
• Each of f and g are isomorphisms.

Each reference in ψ to the edges or vertex set of the graph coded by a de-
gree is defined by a formula by Lemma 4.3. Finally, let φ(a,b) be the formula
∃ c∃d∃ eψ(a,b, c,d, e). The formula φ(a,b) clearly implies that the graphs en-
coded by a and b are isomorphic. While in general it is not clear that this is equiv-
alent to the graphs encoded by a and b being isomorphic, it is equivalent if a and b
code κ-finite structures since then the required graphs Graphc, Graphd, Graphe
are also κ-finite objects and are thus encoded by κ-ceers by Theorem 4.6. □

5. Interpreting Lκ in Ceersκ

In this section, we will prove that Ceersκ interprets Lκ. Consequently, Lκ

and Ceersκ are mutually interpretable. At this point, we have shown that Ceersκ
uniformly interprets all κ-finite graphs, which, like in the ω-setting is not enough
to yield the result.

In this section, we show that the problem of interpreting Lκ for uncountable
regular cardinals κ is different from the problem of interpreting arithmetic in the
ω-case. In the κ-setting, we will show that interpreting κ-finite graphs along with
embeddings between them and a mild second order quantifier suffices, whereas this
would not suffice in the ω-setting. More formally: If A is any structure which
is interpretable in Lκ and uniformly defines a collection of graphs which includes
all κ-finite graphs, uniformly defines a collection of embeddings which includes all
embeddings between the κ-finite graphs, and uniformly defines a collection of sets
which includes all countable sets, then A interprets Lκ.

First, we show that a broad class of κ-ceer degrees is definable:

Lemma 5.1. The set of c ∈ Ceersκ such that Graphc is a (representing undi-
rected graph of a) structure isomorphic to some admissible level of L is definable
in Ceersκ.

Proof. A structure S is isomorphic to Lα for some admissible α if and only if S
is well-founded and satisfies KP− + V = L where KP− is the theory obtained from
the usual Kripke-Platek set theory KP by removing the foundation scheme. To see
this, note that well-founded models of KP− satisfy full KP, so it is enough to show
that the admissible sets satisfying V = L are exactly the admissible levels of the L-
hierarchy. This follows from [Sa90, VII Lemma 2.5], which shows that a transitive
set satisfies V = L if and only if it is a limit level of the L-hierarchy.

The theory KP− + V = L is axiomatizable by a single sentence, so the set of
κ-ceer degrees coding structures satisfying it is definable in Ceersκ. Thus we just
need to show that well-foundedness is appropriately definable.

To do this, note that since κ is an uncountable cardinal, for any ill-founded
relation on κ at all, there is a κ-finite subset with no least element. Since every
κ-finite graph is coded by a κ-ceer degree, this means that we can characterize the
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κ-ceer degrees coding well-founded structures as those which code structures for
which no other κ-ceer degree codes a counterexample to well-foundedness. □

Our strategy will be to “build up” Lκ out of codes for Lλ with λ < κ. We have
to make sure that we do not accidentally build Lγ for any γ > κ. This will be
guaranteed by the following lemma, which is a general result about interpretability
and admissible sets.

Definition 5.2. For an ordinal α, we let αad be the least admissible ordinal > α.
For a real r, we let ωCK

1 (r) be the least ordinal without an r-hyperarithmetic (or
equivalently, per Spector, r-computable) copy.1

Lemma 5.3. Suppose α is admissible. Then Lα is first-order interpretable (with
parameters) in Lκ if and only if α ≤ κ.

Proof. Since Lα ∈ Lκ when α < κ, the right-to-left direction is immediate. For the
other direction, by the same reasoning and since Lη interprets η, it is enough to
show that κad is not interpretable in Lκ.

We will use a forcing argument to reduce this to a problem about reals. While
this is not strictly necessary, it may have the benefit of making the argument more
concrete for those more used to classical computability theory.

Consider the forcing partial order Coll(ω, κ) consisting of all finite partial func-
tions from ω into κ ordered by reverse extension. We will think of this as building
a generic copy G of κ with domain ω. The forcing Coll(ω, κ) is a set in Lκad ,
hence letting G be Coll(κ, ω)-generic over Lκad , we have thatM := Lκad [G] is itself
admissible.

We now calculate ωCK
1 (G). Since G is literally a copy of κ, we have κ < ωCK

1 (G).
On the other hand, the ordinal ωCK

1 (G) is the height of the smallest admissible set
with G as an element, and so ωCK

1 (G) ≤ κad. So, in fact, ωCK
1 (G) = κad, as by

definition, there are no admissible ordinals between κ and κad.
Now suppose, for the sake of a contradiction, that κad is first-order interpretable

(with parameters) in Lκ. Since G codes a copy of κ with domain ω, by arithmetic
transfinite recursion along G, we have that κad is hyperarithmetic in G. But this
contradicts the fact that ωCK

1 (G) = κad. (Note that, strictly speaking, we merely
needed ωCK

1 (G) ≤ κad, but it is good practice to calculate it exactly.) □

Now we are ready to interpret Lκ in Ceersκ.

Theorem 5.4. Ceersκ interprets Lκ. Consequently, Lκ and Ceersκ are mutually
interpretable.

Proof. We define a definable collection of objects which we will use to glue together
to build our copy of Lκ.

Definition 5.5. An object is a pair x = ⟨l(x), r(x)⟩ of κ-ceers such that

• l(x) codes an admissible level of L, and
• r(x) is an element of the structure coded by l(x). (Recall that we are

appropriately conflating structures and undirected graphs, and the vertices
of the graph given by l(x) are themselves κ-ceers.)

1The standard notations for these are “α+” and “ωr
1”, respectively, but these clash with the

set-theoretic notations for the successor cardinal of α and for (ω1)L[r], respectively; since this may
cause confusion in our context, we use nonstandard notation here.
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We define an equivalence relation ∼ on objects by setting x ∼ y if there is an
object z such that there are κ-ceers coding initial-segment embeddings of l(x) and
l(y) into l(z) which send r(x) and r(y) to the same element.

We define an element relation ε on objects by setting xεy if there is an object z
such that there are κ-ceers coding initial-segment embeddings f and g of l(x) and
l(y), respectively, into l(z) such that f(r(x)) ∈ g(r(y)) (in l(z)).

In particular, every set in Lκ is contained in some Lλ for λ < κ, which is coded
by an object. By Lemma 5.3, we cannot overshoot Lκ, so the ∼-classes of objects,
equipped with ε, form a copy of Lκ. As in Lemma 4.10, the existence of initial
segment embeddings, as used in Definition 5.5, is definable in Ceersκ. Thus we
have given an interpretation of Lκ in Ceersκ without parameters. □

As an immediate corollary, this lets us calculate the logical complexity ofCeersκ:

Corollary 5.6. The first-order theories of Lκ and Ceersκ are classically-comput-
ably isomorphic, as are their nth-order theories for every truly-finite n.

The Lκ,κ-theories of Lκ and Ceersκ are κ-computably isomorphic, as are their
Lκ,ω-theories.

If κ = ω1, then there are total continuous functions f and g on Baire space with
κ-computable codes such that f and g send codes for Lω1,ω-sentences to codes for
Lω1,ω-sentences and (conflating codes with sentences appropriately), we have

Lκ |= φ ⇐⇒ Ceersκ |= f(φ); and Lκ |= g(ψ) ⇐⇒ Ceersκ |= ψ.

(An analogous result applies to all κ for which generalized descriptive set theory is
appropriate.) □

Having proved our theorem for arbitrary uncountable regular cardinals, it’s now
natural to ask how deeply it extends into the admissible ordinals in general. There
are two main obstacles to pushing further.

First, the argument above relied on a basic characterization of the κ-finite κ-
ceers, and in particular that if a κ-ceer is κ-finite, then it is comparable with every
other κ-ceer. We used this to define the collection of almost self-full minimal κ-
ceers, which we used for coding. However, this breaks down once κ is not a regular
cardinal. Consider κ = ℵω, let A be the equivalence relation where x A y ⇐⇒
x = y or x, y ≥ ω, and let B be the equivalence relation where x B y if and
only if x, y < ω or |x| = |y|. Both A and B are κ-ceers and A has a κ-finite
transversal (which appears to be the right notion of “κ-finite” once κ is no longer
a regular cardinal), but there can be no reduction from one to the other: From
such a reduction, we could extract a computable set S ⊆ κ of cardinals. Since
(by a Skolem hull + Mostowski collapse argument) Lη ≺Π1

Lλ whenever η, λ are
cardinals with η < λ, any such S would compute the κ-halting problem.

This might be avoidable by an appropriate hack, since what we really need is a
definable κ-sized set of κ-ceer degrees with the right analogue of self-fullness and
some form of minimality over some definable ideal. However, even ignoring this,
there is a second issue. The coding idea we used relied on two closure properties
of Lκ when κ is a regular cardinal, namely, that every element of Lκ is contained in
an admissible set in Lκ and that every ill-founded relation in Lκ has a descending
sequence in Lκ. These properties are equivalent to κ being recursively inaccessible,
that is, to κ being an admissible limit of admissible ordinals (see [Ba75, Chapter
V, Def. 6.7] or [Hi78, Section 8.6, Def. 6.1 and Theorem 6.5]).
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In particular, even if we came up with another way to encode graphs that got
around the issues regarding κ-finite κ-ceers, we would be unable to answer the
following question.

Question 5.7. How complicated is the theory of the ωCK
1 -ceers?

Per the above, resolving this question would seem to require a genuinely new
idea.

Andrews, Schweber and Sorbi [ASS20] also considered related degree structures
and showed that they all interpret first-order arithmetic. We ask:

Question 5.8. Do the ≡Finκ
-degrees of κ-ceers also interpret Lκ? What about

the set of light degrees? What about the set of dark degrees? What about the set
of light ≡Finκ

-degrees or dark ≡Finκ
-degrees?

6. An alternate perspective on ω1

In this section, we present an alternate proof that Ceersκ and Lκ are mutually
interpretable when κ = ω1 (or more generally, when κ is a successor cardinal whose
predecessor is “easily locatable”). Within the confines of α-recursion theory, this
argument is strictly less general than that above; however, it has a new degree of
flexibility with respect to applicability in alternate higher computability theories
on ω1.

Proposition 6.1. Lω1
is interpretable in Ceersω1

(by a proof not using admissible
sets).

Proof. Just as above, we define the coding apparatus c 7→ Graphc, conflate struc-
tures and undirected graphs, and show that every countable structure is coded by
some ω1-ceer. Rather than using ω1-finite structures to build Lω1 , however, we
start by identifying a particular structure up to isomorphism:

Lemma 6.2. In Ceersω1
, the set of ω1-ceers coding a copy of the standard model

of arithmetic N is first-order definable without parameters.

Proof. N is the unique model of Robinson arithmetic Q which has no proper sub-
model of Q. Now Q is finitely axiomatizable and all countable structures are repre-
sented by ceers; so if c codes a model of Q with a proper submodel of Q and hence
a proper countable submodel of Q, then some ceer d codes that submodel. This
definition is expressible in Ceersω1

. □

We now observe that HC = Lω1 is bi-interpretable with the full “powerset struc-
ture” of N, that is,

N2 = (ω ⊔ P(ω); +, ·, <,∈).
This is because we can code elements of Lω1

by well-founded relations on N, and
the corresponding equality and element relations are appropriately definable.

We are now ready to interpret N2 inside Ceersω1
as follows. A real-object will

be a pair ⟨c,d⟩, where c codes a copy of N and Vert(Graphd) ⊆ Vert(Graphc);
we consider two real-objects to be equivalent if there is an isomorphism of their
c-parts which yields a bijection on d-part-vertices. Meanwhile, a number-object
will be a pair ⟨c,n⟩, where c codes a copy of N and n ∈ Vert(Graphc). Again, we
obtain a notion of equality of number-objects by asking about the existence of an
appropriate isomorphism of c-parts. All the extra-logical structure on equivalence
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classes of real-objects and number-objects (that is, +, ·, <, and ∈) is straightforward
to define, and so we obtain an interpretation of N2 inside Ceersω1 . □

We mention this argument because it has one noticeable advantage: It is rela-
tively disentangled from the particular context of the L-hierarchy, and it applies to
a much wider range of computability theories. Of course, these theories still need
to be sufficiently well-structured so that they permit the basic finite-injury argu-
ment needed to show that there are ω1 many minimal ω1-ceers, but that is a fairly
mild requirement; see Stoltenberg-Hansen [SH79] for details on what exactly is re-
quired. So the N2-based approach appears to be non-redundant if we are interested
in higher computability theories besides α-recursion theory.
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