
COMPUTING AND DOMINATING THE RYLL-NARDZEWSKI

FUNCTION

URI ANDREWS AND ASHER M. KACH

Abstract. We study, for a countably categorical theory T, the complexity

of computing and the complexity of dominating the function specifying the
number of n-types consistent with T.

1. Introduction

Independently in 1959, Erwin Engeler [3], Czes law Ryll-Nardzewski [10], and
Lars Svenonius [12] provided a myriad of necessary and sufficient conditions on a
first-order theory1 for it to be countably categorical. Of these conditions, perhaps
the best remembered is the existence of, for each n ∈ N, only finitely many n-types
consistent with the theory.

Definition. A theory T is countably categorical (alternately ℵ0-categorical) if T

has, up to isomorphism, a unique countable model.

Ryll-Nardzewski Theorem (Engeler [3], Ryll-Nardzewski [10], and Svenonius [12]2).
A theory T is countably categorical if and only if there are only, for each n ∈ N,
finitely many n-types consistent with T.

For a countably categorical theory T, the Ryll-Nardzewski Theorem implies the
function mapping an integer n to the number of n-types consistent with T is a
well-defined function from N to N. In this paper, we study the complexity of this
function.

Definition. For an arbitrary theory T, the Ryll-Nardzewsi function for T is the
function RNT : N → N ∪ {∞} such that RNT(n) gives the number of n-types
consistent with T.

By the Ryll-Nardzewski Theorem, the function RNT has range inside of N if and
only if T is countably categorical. The main result of this paper provides sharp upper
bounds on the complexity of computing and the complexity of dominating RNT

for a countably categorical structure. Before stating this theorem, we recall the
analogous result for a countably categorical theory.

Theorem 1 (Schmerl [11]). Let T be a countably categorical theory. Then RNT ≤T

T′. Moreover, this bound is sharp.
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Proof. For any theory T, we have RNT(n) ≥ m if and only if
(†)

(∃ψ1(x̄)) . . . (∃ψm(x̄))
∧

1≤i≤m

T ` (∃ā) [ψi(ā)] ∧ (∀x̄)

ψi(x̄) =⇒
∧
j 6=i

¬ψj(x̄)

 ,
with the ψi(x̄) having exactly n-many free variables. For a countably categorical
theory T, the value of RNT(n) is finite for all n by the Ryll-Nardzewski Theorem.
Thus to compute RNT(n), it suffices to find the greatest m such that RNT(n) ≥ m.
Since the outer conjunction in (†) is finitary, it is immediate that T′ suffices as an
oracle to do so.

We refer the reader to the paper for sharpness. Alternately, it follows from
Theorem 2. �

Theorem 2. There is a computable structure with countably categorical theory T

such that any function f dominating RNT computes ∅(ω+1). In particular, the Ryll-
Nardzewski function RNT satisfies RNT ≡T ∅(ω+1).

By Theorem 1, this result is sharp. The proof of Theorem 2 is found in Section 2.
Before delving into the proof of Theorem 2, we mention some related literature.
Khoussainov and Montalbán [6] construct a countably categorical theory T such
that T ≡T ∅(ω). Andrews [1], for any d ≤tt ∅(ω), constructs a countably categorical
theory T such that T ≡tt d using a finite language. In both cases, however, there is
a computable function f dominating RNT. Thus, those theories are inadequate to
establish Theorem 2.

We refer the reader to Hodges [4] for background on model theory (especially
Section 6.1 which covers Fräıssé Constructions) and to Ash and Knight [2] for
background on computability theory and computable model theory.

2. Proof of Theorem 2

Our construction of a theory T witnessing Theorem 2 relies heavily on the exis-
tence of a 0(ω+1)-computable function possessing an approximation satisfying var-
ious properties. In Section 2.1, we demonstrate the existence of such a function
and approximation. In Section 2.2, we exhibit the model M and verify it has the
requisite properties.

2.1. The Function to Dominate. We include a proof of Lemma 3 as the form
of h is important for showing Lemma 4.

Lemma 3 (Theorem 4.13 of Jockusch and McLaughlin [5]3). There is a total
∅(ω+1)-computable function h : N→ N such that

(∀g : N→ N)
[
(∀x ∈ N) [g(x) > h(x)] =⇒ g ≥T ∅(ω+1)

]
.

Proof. Let h1 : N→ N be the function given by

h1(〈i, j〉) :=

{
s if j enters

(
∅(i−1)

)′
at stage s,

0 otherwise, i.e., if j 6∈
(
∅(i−1)

)′
.

3Though we reference Jockusch and McLaughlin [5] for the next result, it was known before
then, at least implicitly. For example, it follows from the fact that for every x ∈ O, there is a

Π0
1-singleton f in Baire space with f ≡T Hx (Rogers [9]), and the fact that the Π0

1-singletons

coincide with the uniformly majorreducible functions (Kuznecov and Trahtenbrot [8]).
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Let h2 : N→ N be the function given by

h2(x) := (µs)
[
∅(ω+1) � x = K∅

(ω)

[s] � x
]

Define h : N→ N by h(x) := h1(x) + h2(x).
From its definition, it is immediate that h ≤T ∅(ω+1). Thus, we need only

argue that any function g dominating h computes ∅(ω+1). As a first step, we
show that any function g dominating h1 computes ∅(ω). This is because, given i
and j and using g, we can determine whether j ∈ ∅(i) by seeing if the computa-

tion ϕ∅
(i−1)

j (j)[g(〈i, j〉)] converges. Of course, the computation ϕ∅
(i−1)

j (j)[g(〈i, j〉)]
converges if and only if ϕ∅

(i−1)

j (j)[h1(〈i, j〉)] converges as g dominates h. The com-

putation ϕ∅
(i−1)

j (j)[g(〈i, j〉)] may query ∅(i−1) as an oracle on a finite set of num-

bers. Having reduced the question whether j is in ∅(i) to a finite set of questions
about ∅(i−1), repeating as such, we eventually reduce to questions about ∅, which
are computable.

Thus, if g dominates h1, then it computes ∅(ω). As a second step, we show that g
computes ∅(ω+1). This is because, given x, h1, and h2, we can determine whether

x ∈ ∅(ω+1) by computing ϕ∅
(ω)

x (x)[g(x)]. As g dominates h2, this converges if and
only if x ∈ ∅(ω+1). Moreover, the computation is g-computable as g dominates h1
and thus computes ∅(ω). �

When building the theory T, it will be necessary to approximate the function h.
Though perhaps not strictly necessary, it simplifies later arguments if we impose
strong constraints on how the approximations behave. Essentially, it is helpful to
assume the approximations computed by ∅(n) for n ∈ N do not increase too quickly
nor require the full computational power of the oracle.

Lemma 4. There is a sequence of functions {fn : N→ N}n∈N such that:

(F1) The function fn : N→ N is uniformly ∅(n−4)-computable.
(F2) The functions {fn}n∈N satisfy h(m) = limn→∞ fn(m).
(F3) The function f0 satisfies f0(m) = 0 for all m.
(F4) The functions {fn}n∈N satisfy fn(n+ 3) = 0.
(F5) For all n,m ∈ N, that 0 ≤ fn+1(m)− fn(m) ≤ 1.
(F6) For all n ∈ N, that |{m : fn+1(m)− fn(m) = 1}| ≤ 1.

For notational convenience, we let f : N×N→ N be the function given by f(m,n) :=
fn(m).

Proof. It is enough to satisfy (F1) and (F2) since (F3), (F4), (F5), and (F6) can
be easily achieved by slowing down and distributing any increases in the approxi-
mation. We describe how to approximate h1 and h2 separately, denoting their nth
respective approximation function by f1,n and f2,n. Then fn := f1,n + f2,n gives
an approximation to h.

For approximating h1(〈i, j〉), it suffices to take

f1,n(〈i, j〉) :=

{
s if n > i+ 3 and j enters

(
∅(i−1)

)′
at stage s,

0 otherwise.

Then f1,n(〈i, j〉) is uniformly ∅(n−4)-computable: The value is zero unless n > i+3,

in which case n−4 > i−1, so ∅(n−4) knows if and when j will enter
(
∅(i−1)

)′
. Since

f1,n(〈i, j〉) = h1(〈i, j〉) if n > i+ 3, we have h1(〈i, j〉) = limn→∞ f1,n(〈i, j〉).
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For approximating h2(x), it suffices to take

f2,n(x) := (µs)(∀j < x)
[
if j ∈ K∅(ω)

with use contained in ∅(n−5), then j ∈ K∅(ω)

s

]
.

Then f2,n(x) is uniformly ∅(n−4)-computable: For each j less than x, the ora-

cle ∅(n−4) can determine if and when j enters K∅
(ω)

with use contained in ∅(n−5).
The value of f2,n(x) is then the maximum of the stages for those j that enter. Also,

for any j, if j enters K∅
(ω)

, the computation uses at most a bounded number Mj of
jumps. Letting M be the maximum of the number of such jumps for j less than x,
i.e., letting M := max{Mj}j<x, we have f2,n(x) = h2(x) for all n > M + 1. Thus
h2(x) = limn→∞ f2,n(x). �

2.2. The Fräıssé Construction. In a manner similar to Andrews [1], we will
employ a Fräıssé construction to create a countably categorical theory T. The
theory T will be such that RNT dominates the function h. The theory T will be in
a reduct of the language

L := {U, V } ∪ {Ri | i ∈ ω, i ≥ 3} ∪ {Qj,k | j, k ∈ ω},

where U and V are binary relations, Ri is an i-ary relation, and Qj,k is a j-ary
relation.

The intuition is that the presence of the relation Qj,k (on some tuple) will code
that f(j, k) = f(j, k − 1) + 1; the absence of the relation Qj,k (on every tuple) will
code that f(j, k) = f(j, k − 1). The remaining relations serve to create a count-
ably categorical theory (after taking a Fräıssé Limit) such that the full theory is a
definitional expansion of the theory restricted to the language {U, V,R3}. Unfortu-
nately, this intuition may be masked in the next definition to a reader unfamiliar
with similar constructions.

Definition. Let K be the class of finite L-structures C where the following hold:

(K1) Each relation on C is symmetric and holds only on tuples of distinct ele-
ments.

(K2) The structure C satisfies

¬(∃x̄)(∃y)(∃z)

Ri(x̄) ∧ U(y, z) ∧
∧
w̄⊂x̄
|w̄|=i−2

(Ri−1(w̄, y) ∧Ri−1(w̄, z))

 .
(K3) If f(j, n) > f(j, n− 1), then C satisfies

¬(∃x1 . . . ∃xj)(∃y1 . . . ∃yn−j)

Qj,n(x̄) ∧Rn(x̄, ȳ) ∧
∧
yi,yj

V (yi, yj)

 .
(K4) If f(j, n) = f(j, n− 1), then C satisfies

¬(∃x̄) [Qj,n(x̄)] .

To use the Fräıssé construction, we need to verify that K has the hereditary
property, the amalgamation property, and the joint embedding property.

Lemma 5. The class K satisfies the hereditary property, the amalgamation prop-
erty, and the joint embedding property.
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Proof. The class K has the hereditary property since it is defined via universal
formulae.

For the amalgamation property, we show if A, B, and C are L-structures in K
with A ⊆ B, C, then there is an L-structure D ∈ K and embeddings g : B → D and
h : C → D with g �A= h �A. Fixing A, B, and C, let D be the free-join of B and C
over A, i.e., the structure with universe B∪C and with relations RB∪C := RB ∪RC
for any R ∈ L. Then D satisfies (K1) as both B and C satisfy (K1). Also D
satisfies (K2), (K3), and (K4) as both B and C do and no relations hold in D other
than those in B and C. In particular, as every two elements in the disallowed tuple
are in some realization of some relation, the disallowed tuple, were it to exist in D,
would have to be a subset of B or C. Thus we conclude D ∈ K, showing that K
has the amalgamation property.

Taking A = ∅, we see that K has the joint embedding property. �

Let M be the unique Fräıssé limit (see, for example, Theorem 6.1.2 of [4]) of
the class K. The theory T we seek will be the theory of an appropriate reduct
of M. Since M will be a definitional expansion of the reduct, we verify various
facts about M rather than the reduct.

Lemma 6. The theory of M is countably categorical. Hence, the theory of any
reduct of M is countably categorical.

Proof. Being a Fräıssé limit, the structure M is ultrahomogeneous, thus admits
quantifier elimination. Thus, the number of n-types is determined by the num-
ber of quantifier-free n-types. As, for each n, there are only finitely many rela-
tions among P , Ri, and Qj,k which have arity at most n which have occurrences
(since h(n) is finite), the theory of M is countably categorical.

Also, the reduct of any countably categorical theory is countably categorical. �

Lemma 7. The function RNTh(M) dominates h. Hence in any theory T for which
Th(M) is a definitional expansion of T, the function RNT dominates h.

Proof. Fixing j, by (F2), (F3), and (F5), there are at least h(j) many n such that
f(j, n) > f(j, n − 1). For each of these n, the relation Qj,n will hold on some
tuple on which no other relation Qj,n′ for n′ 6= n holds. Of course, this exploits
the ultrahomogeneity of M. Consequently, there are at least h(j) many distinct
n-types, so RNTh(M)(j) ≥ h(j). �

We now show that we can restrict our attention to an appropriate reduct ofM.

Lemma 8. If i > 3, then

M |= (∀x̄)

Ri(x̄) ⇐⇒ ¬(∃y)(∃z)

U(y, z) ∧
∧
w̄⊂x̄
|w̄|=i−2

(Ri−1(w̄, y) ∧Ri−1(w̄, z))


 ;

if f(j, n) > f(j, n− 1), then

M |= (∀x̄)

Qj,n(x̄) ⇐⇒ ¬(∃ȳ)

Rn(x̄, ȳ) ∧
∧
yi,yj

V (yi, yj)

 ;

and if f(j, n) = f(j, n− 1), then

M |= (∀x̄) [¬Qj,n(x̄)] .
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Thus, the structure M is a definitional expansion of its reduct to the language
{U, V,R3}. Thus the reduct has the same Ryll-Nardzewski function as M.

Proof. The rightward directions hold explicitly from (K2), (K3), and (K4). We
show the leftward direction via the contrapositive.

SupposeM |= ¬Ri(x̄). By ultrahomogeneity, it suffices to see that there is some
C ∈ K which extends x̄ so that

C |= (∃y)(∃z)

U(y, z) ∧
∧
w̄⊂x̄
|w̄|=i−2

(Ri−1(w̄, y) ∧Ri−1(w̄, z))

 .
Let C be the structure comprised of x̄ with two new elements y and z and whose re-
lations are the relations on x̄, the relation U(y, z), and the relations Ri−1(w̄, y) and
Ri−1(w̄, z) for w̄ a subset of x̄ of the appropriate size. As we added no occurrences
of Q or V , we see that C ∈ K, and we are done.

Similarly, suppose M |= ¬Qj,n(x̄). Let C be the structure consisting of x̄ and
a tuple ȳ whose relations are the relations on x̄, Rn(x̄, ȳ), and V (yi, yj) for each
yi, yj ∈ ȳ. It is easily seen that C ∈ K, and thus, by ultrahomogeneity of M, that

M |= (∃ȳ)
[
Rn(x̄, ȳ) ∧

∧
yi,yj

V (yi, yj)
]
. �

We let T be the theory of M in the language with signature {U, V,R3}. The
reason for the reduct of M is so that the countable model of T is computable,
which we will show using the following theorem.

Theorem 9 (Knight [7]). Let T be a countably categorical theory. If T ∩ ∃n+1 is
Σ0

n uniformly in n, then T has a computable model.

Lemma 10. The reduct of the structure M to the language {U, V,R3} is com-
putable.

Proof. Uniformly in n, the fragment T ∩ ∃n is computable in ∅(n−1). The salient
point is that n-quantifier formulae in T are equivalent to quantifier-free formulae in
the language {U, V }∪{Ri | i ≤ n+3}∪{Qj,k | k ≤ n+2}. The n-quantifier theory
of T is thus determined by whether or not f(j, k) > f(j, k − 1) for k ≤ n+ 2. This
in turn uniformly depends on information computable in ∅(n+2−4) = ∅(n−2).

It remains to see that the n-quantifier formulae in T are equivalent to quantifier-
free formulae in the language {U, V } ∪ {Ri | i ≤ n + 3} ∪ {Qj,k | k ≤ n + 2}.
This follows by playing an Ehrenfeucht-Fräıssé game of length n. Given a pair of
tuples ā, b̄ which have the same quantifier-free {U, V } ∪ {Ri | i ≤ n + 3} ∪ {Qj,k |
k ≤ n+2}-types, and given a tuple c̄, it suffices to show the existence of a tuple d̄ so
that āc̄ and b̄d̄ have the same {U, V }∪{Ri | i ≤ n+2}∪{Qj,k | k ≤ n+1}-types. It
is easy to check that such a b̄d̄ exists in K, and the rest is done by ultrahomogeneity
of M.

�

Taken together, Lemma 3, Lemma 6, Lemma 7, and Lemma 10 show the theory T

witnesses Theorem 2.
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