
Strongly minimal theories with recursive models

Uri Andrews Julia F. Knight

Abstract

We give effectiveness conditions on a strongly minimal theory T guaranteeing
that all countable models have computable copies. In particular, we show that if T
is strongly minimal and for all n ≥ 1, T ∩ ∃n+2 is ∆0

n, uniformly in n, then every
countable model has a computable copy. A longstanding question of computable
model theory asked whether for a strongly minimal theory with one computable
model, every countable model has an arithmetical copy. Relativizing our main result,
we get the fact that if there is one computable model, then every countable model
has a ∆0

4 copy.

1 Introduction

In computable model theory, we try to understand the algorithmic complexity of the var-
ious models of an elementary first order theory. For a theory with nice model-theoretic
properties, it should be easier to understand the complexity of the models. We mention
first some results for ℵ0-categorical theories. Lerman and Schmerl [20] showed that for
an ℵ0-categorical theory T , if T is arithmetical and T ∩∃n+1 is Σ0

n for each n, then T has
a computable model. Knight [18] dropped the assumption that T is arithmetical, assum-
ing that T ∩ ∃n+1 is Σ0

n uniformly in n. At the time these results were proved, there was
no known example of a non-arithmetical ℵ0-categorical theory with a computable model.
Khoussainov and Montalbán [14] gave an example, using an infinite language. Andrews
[1] showed that in all tt degrees≤ 0(ω), there are ℵ0-categorical theories with computable
models. Moreover, the theories are in a finite language.

For ℵ1-categorical theories, Goncharov and Khoussainov [9] and Fokina [6] gave ex-
amples for which the theory has degree 0(n) and there are computable models. These

U. Andrews: University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706;
e-mail: andrews@math.wisc.edu

J. F. Knight: University of Notre Dame, 255 Hurley, Notre Dame, IN 46556 ;
e-mail: Julia.F.Knight.1@nd.edu

Mathematics Subject Classification (2010): Primary 03C57; Secondary 03D45

1

2 Uri Andrews, Julia F. Knight

examples used “Marker extensions”, a method that does not produce strongly minimal
theories. Andrews [1] showed that there are non-arithmetical strongly minimal theories
with computable models. For strongly minimal theories, as for ℵ0-categorical theories, in
each tt-degree ≤ 0(ω), there is a theory T , in a finite language, such that all models of T
have computable copies.

An important collection of results and questions in computable model theory involves
using a bound on complexity of one model of a theory to give a uniform bound that
serves for some copy of each model. A major open problem since the 90’s has been to
find such a uniform bound in the case of a strongly minimal theory with a computable
model. Goncharov, Harizanov, Laskowski, Lempp, and McCoy [8] solved this problem
in the case where the strongly minimal theory is disintegrated (or geometrically trivial).
They showed that ifM is a model of a disintegrated strongly minimal theory T , then the
complete (or elementary) diagram, Dc(M), is model complete. It follows that if M is
X-computable, then T is computable in X ′′. In particular, if T is a disintegrated strongly
minimal theory with a computable model, then T must be ∆0

3. It then follows from a
theorem of Harrington [10] and Khisamiev [12] that every model of T has a copy whose
complete diagram is ∆0

3. One might hope to drop the assumption of disintegration in the
result of [8]. By a result of Andrews [1], there are non-arithmetical strongly minimal
theories whose countable models are computable. This led some people to suspect that
there would be no arithmetical set that computes copies of all models.

Here is our main result.

Main Theorem. If T is a strongly minimal theory such that T ∩ ∃n+2 is uniformly ∆0
n,

then every countable model of T has a computable copy.

The main result, relativized to ∅(3), gives the following corollary.

Main Corollary. If T is a strongly minimal theory with a recursive model, then every
countable model of T has a ∆0

4 copy.

Proof. If T has a recursive model, then T ∩ ∃n is uniformly Σ0
n. Thus, relative to ∅(3),

T ∩ ∃n+2 is uniformly ∆0
n. So, by the Main Theorem, relativized to ∅(3), all the other

countable models have copies computable in ∅(3).

Khoussainov, Laskowski, Lempp, and Solomon [13] showed that there is a disinte-
grated strongly minimal theory T such that the prime model has a computable copy, and
the other models (with universe a subset of ω), not isomorphic to the prime model, all
compute ∅′′. This is the largest known gap. It remains open whether our Main Corollary
is sharp.

Question 1. Is it true that if T is strongly minimal and has a recursive model, then all
models of T have ∆0

3 copies?

Strongly minimal theories with recursive models 3

1.1 Model theoretic preliminaries

Definition 1.1. A complete elementary first order theory T is strongly minimal if for
every modelM, and every formula ϕ(ā, x) with parameters ā inM, ϕM(ā, x) is finite or
co-finite.

Examples. The following are strongly minimal theories.

1. the theory of Z with the successor function

2. the theory of infinite Q-vector spaces

3. the theory of the field C of complex numbers

These three canonical examples represent the three classes of the “Zilber trichotomy”,
which Zilber at one time conjectured to exhaust the strongly minimal theories. Hrushovski
[11] showed that the Zilber Trichotomy Conjecture is not true by constructing exotic
strongly minimal theories. These theories are combinatorial in nature and have no natural
algebraic interpretation. Andrews [1], [2], [3] used variants of Hrushovski’s construction
to produce strongly minimal theories with interesting recursion-theoretic properties.

Definition 1.2 (Algebraic closure, independence). Let T be a strongly minimal theory, let
M be a model of T , and let X be a subset ofM.

• The algebraic closure of X inM, denoted by aclM(X), is the union of the finite
sets ϕM(c̄, x) definable inM with parameters c̄ in X .

• The set X is algebraically independent if for all a ∈ X , a /∈ aclM(X r {a}).

When the model in question is clear, we write acl for aclM. Algebraic closure gives a
well-defined notion of dimension. The dimension of a set is the size of a maximal alge-
braically independent subset. For a strongly minimal theory T , each model is determined,
up to isomorphism, by its dimension.

We say what dimension and algebraic closure mean in the three examples above. For
the theory of (Z, S), each model consists of some number of Z-chains. The algebraic clo-
sure of a set X is the union of the Z-chains containing elements of X , and the dimension
is the number of these Z-chains. For the theory of non-trivial Q-vector spaces, the alge-
braic closure of a set is the linear span, and dimension is vector space dimension. For the
theory of C (the theory of algebraically closed fields of characteristic 0), algebraic closure
is usual algebraic closure, and dimension is transcendence degree.

Definition 1.3 (Disintegration). A strongly minimal theory is disintegrated if for all mod-
elsM and X ⊆M, aclM(X) =

⋃
s∈X aclM({s}).

4 Uri Andrews, Julia F. Knight

Of the three examples given above, only the first is disintegrated.

The assumptions in our main theorem involve fragments of the theory T of different
quantifier complexities. In the proof, we classify formulas with free variables also by their
quantifier complexity.

Definition 1.4. A formula is ∃n if it has the form (∃x̄1)(∀x̄2) · · · (Qx̄n)ϕ(ȳ, x̄), where ϕ
is quantifier-free and Q is either ∀ or ∃, depending on the parity of n. Note that a string of
like quantifiers (all ∃, or all ∀) is counted as a single quantifier.

Definition 1.5 (Bn-formula, Bn-type, Bn-algebraicity).

• A Bn-formula is a Boolean combination of ∃n-formulas.

• A Bn-type is the set of Bn-formulas in a complete type.

• If b satisfies a Bn-formula ϕ(ā, x) such that ϕM(ā, x) is finite, we say that b is in
the Bn-algebraic closure of ā. In this case, we write b ∈ aclBn(ā).

Notation: For n ≥ 1, we write Tn for T ∩ ∃n.

Note that if T ∩ ∃n is computable in X , so is T ∩Bn.

Definition 1.6 (n-saturation, bounded saturation).

• M is n-saturated if for all ā ∈ M, every Bn-type p(ā, x) consistent with the type
of ā is realized inM.

• M is boundedly saturated if it is n-saturated for all n.

Every saturated structure is boundedly saturated. The familiar examples of strongly
minimal theories have elimination of quantifiers down to Bn-formulas for some n, so
the finite dimensional models are not boundedly saturated. However, Andrews [1] gave
examples of strongly minimal theories whose finite dimensional models are boundedly
saturated.

In the context of a strongly minimal theory, knowing thatM is boundedly saturated is
useful in building a copy. When we are building a copy of a modelM that is boundedly
saturated, we use the fact that it is always safe to add realizations of consistent Bn-types
(as in Lemma 1.7 below). Knowing thatM is not boundedly saturated is also useful for
building a copy. IfM is not n-saturated, there is some c̄ inM such that every element
of M is algebraic over c̄ via a Bn-formula (see Lemma 5.1). It is always safe to add
realizations of consistent types that contain such formulas.

The following lemma gives a hint as to how the condition of bounded saturation will
be used.

Strongly minimal theories with recursive models 5

Lemma 1.7. Let r(x̄) be a Bn-type.

1. Let s(x̄, y) be a Bn-type, extending r(x̄), such that s(x̄, y) is generated by the for-
mulas of r(x̄) and ∃n-formulas. Then for every extension of r(x̄) to a complete type
r′(x̄), r′(x̄) is consistent with s(x̄, y).

2. For any set Ψ of ∃n-formulas in the variables x̄, y, if r(x̄) ∪ Ψ is consistent, then
there is a Bn-type s(x̄, y), extending r(x̄)∪Ψ, such that s(x̄, y) is generated by the
formulas of r(x̄) and the ∃n-formulas in s(x̄, y).

3. Suppose M is an n-saturated model of T . Let p(x̄) be a Bn-type, and let q(x̄, ȳ)

be a Bn−1-type consistent with p(x̄). Then every realization of p(x̄) inM extends
to a realization of q(x̄, ȳ) inM; i.e., the n-saturation condition gives a saturation
condition for Bn−1-types of tuples.

Proof. For Part 1, let r′(x̄) be any type extending r(x̄), and suppose that s(x̄, y) is gen-
erated by r(x̄) and ∃n-formulas. If r′(x̄) and s(x̄, y) are inconsistent, then there is some
∃n-formula ψ(x̄, y) ∈ s(x̄, y) such that r′(x̄) ` ¬ψ(x̄, y). Then r′(x̄) ` (∀y)¬ψ(x̄, y).
Since this is a ∀n-formula, r(x̄) ` (∀y)¬ψ(x̄, y), so s(x̄, y) is inconsistent. This is a
contradiction.

For Part 2, let r(x̄) be given, and fix an enumeration (ϕj)j∈ω of all ∃n-formulas in the
variables x̄, y. We can generate a Bn-type s(x̄, y) as follows. At stage 0, we set Φ0 := Ψ.
At stage i, we have decided to put some subset Φi−1 of Ψ ∪ {ϕj | j < i} into s(x̄, y). If
Φi−1 ∪ {ϕi(x̄, y)} is consistent with r(x̄), then we let Φi = Φi−1 ∪ {ϕi}. If not, then it
would be inconsistent to add ϕi, and we let Φi = Φi−1. This results in a set of ∃n-formulas
Φ =

⋃
i Φi, which, along with r(x̄), generates a complete Bn-type s(x̄, y).

For Part 3, we proceed by induction on the size of ȳ. If ȳ has size 0, the claim is trivial.
We are given a Bn-type p(x̄), a Bn−1-type q(x̄, y, z̄), and a realization ā of p(x̄). Let Ψ be
the set {(∃z̄)ϕ(x̄, y, z̄) | ϕ ∈ q}. By Part 2 of the lemma, this can be extended to a type
s(x̄, y) generated over p(x̄) by its ∃n-formulas, and by Part 1, s(x̄, y) is consistent with
p(x̄). By n-saturation, s(x̄, y) is realized by ā and some b inM. Now, the type q(x̄, y, z̄)

is still consistent with the type of ā, b. By the inductive hypothesis, there is a realization
of the type q(ā, b, z̄), as required.

The reason that this is pertinent is that during a construction, we will build Bn−1-
types and will need to know that whatever we build, even if based on incorrect guesses
at recursion-theoretic information, is realized in the model, provided that it is consistent
with the theory.

In order to understand and enumerate the types in the theory, we use Morley rank,
which we will often refer to simply as rank.

6 Uri Andrews, Julia F. Knight

Definition 1.8 (Morley rank and degree).

1. The Morley rank of a formula ϕ(x̄) is the maximum dimension of a tuple (in any
model) satisfying the formula. We write MR(ϕ(x̄)) for the Morley rank of ϕ(x̄).

2. The Morley rank of a type is the minimum of the ranks of the formulas in the type.

3. The Morley degree of a formula ϕ(x̄) is the maximal number of formulas ψi(x̄) that
are pairwise inconsistent, with MR(ϕ(x̄) ∧ ψi(x̄)) = MR(ϕ(x̄)). In every strongly
minimal theory, the Morley degree of any formula is well-defined and finite.

4. A formula ϕ is said to have minimal Morley rank/degree inside a set S of formulas
if ϕ has minimal Morley rank among all formulas in S, and among the formulas in
S with this Morley rank, ϕ has minimal Morley degree.

Throughout what follows, we assume that T is a theory in a relational language. Given
a theory T in a language L with function symbols, there is a natural theory T ′ in a rela-
tional language L′ such that T ′ is inter-definable with T—simply consider functions as
described by relation symbols instead of function symbols. Moreover, there is a uniform
effective procedure for converting models of T ′ into models of T and vice versa. Since
every term in L is uniformly both ∃1- and ∀1-definable in T ′, for each n ≥ 1, every Bn-
formula in T is expressed by a Bn-formula in T ′, and vice versa. Thus, for a theory T , if
Tn+2 is ∆0

n uniformly in n, then the same is true for T ′. We can then apply the Main The-
orem to T ′ to see that every model of T ′ has a computable copy. This is enough to show
that every model of T has a computable copy. Thus, working with theories in relational
languages carries no loss of generality.

1.2 Recursion-theoretic preliminaries

The proofs of Theorems 6.1 and 7.1 each involve a construction by ”workers”. We build
a sequence of structures An such that each An is ∆0

n—we imagine Worker n as building
the structure An, using a ∆0

n oracle. Each An is built to have certain relationships to the
other structures Ai for i 6= n. Certainly, since An+1 is not ∆0

n, but rather only ∆0
n+1, the

construction ofAn cannot access direct information aboutAn+1. Rather, we will, in a ∆0
n

way, employ approximations at facts about An+1 in the midst of the construction of An.
Below, we indicate how the Recursion Theorem allows us to engage in this construction
to simultaneously build all the structures An for n ∈ ω.

Our construction proceeds as follows. From a computable sequence of ∆0
i -indices, for

i 6= n, we produce a ∆0
n-index for a structure An (in fact, the construction will use only

the indices i for i < n or i = n + 1). Furthermore, our construction has the property
that on any input whatsoever (for example, the indices we are given could be for partial

Strongly minimal theories with recursive models 7

functions), we produce an index for a total ∆0
n function that describes An. In Section 3,

we discuss exactly how An is to be described, but the details of this have no bearing on
our present general discussion. We may consider the sequence of constructions of An for
each n ∈ ω as follows. Given any computation Φ0(ω)

i , we produce a new computation Φ0(ω)

σ(i)

so that Φ0(ω)

σ(i)(〈n,−〉) is the function giving the description of An. Further, we ensure that

Φ0(ω)

σ(i) is total and that only the ∆0
n fragment of the oracle is ever used in the computation of

Φ0(ω)

σ(i)(〈n,−〉). We also ensure that if Φi is a computation with the same property, namely

that only the ∆0
n fragment of the oracle is ever used in the computation of Φ0(ω)

i (〈n,−〉),
then each computation Φ0(ω)

σ(i)(〈n,−〉) gives the required ∆0
n description of An. Now, we

take a fixed-point i so that Φ0(ω)

σ(i) = Φ0(ω)

i , as guaranteed by the Recursion Theorem. Doing
this ensures that we build a sequence of ∆0

n descriptions for structures An for n ∈ ω with
the property that each An relates to the other structures Ai for i 6= n according to the
given construction.

The first argument of this kind was a result of Harrington, saying that there is a
non-standard model of first order Peano arithmetic that is ∆0

2, but whose theory is not
arithmetical. For an account of this result, see [15] or [5]. Ash gave a “meta-theorem”,
for transfinitely nested limit constructions, and this is what is used in [5] to prove Har-
rington’s Theorem. Ash developed his meta-theorem independently of Harrington. Ash’s
original proof of the meta-theorem was an induction inspired by Martin’s proof of Borel
Determinacy, not using workers. The proof of Ash’s meta-theorem in [5] uses workers.
Ash’s meta-theorem is relatively simple to use when the conditions are satisfied, but, un-
fortunately, they are not satisfied in our setting. There are other general descriptions of
worker constructions in [16] (for finite levels) and [17] (for transfinite levels). Lerman
[19] described some very general machinery. More recently, Montalbán [21] gave his
own account of worker constructions, based on the notion of “ξ-true” stages. It would be
possible to fit our constructions into the framework of Montalbán.

Here we will not use any meta-theorem or general framework. Instead, we will simply
describe how each worker acts. We did not want the details of some necessarily com-
plicated formal machinery to obscure the content of the proof. Like everyone else who
has described worker constructions, from Harrington to Montalbán, we use the Recursion
Theorem. The Recursion Theorem merely puts together the pieces of the construction. We
must still say what each worker does at each step, and we must argue that all requirements
are satisfied in the end.

1.3 Outline

Our Main Theorem says that for a strongly minimal theory T such that each T ∩ ∃n+2

is uniformly ∆0
n, every modelM has a computable copy. In the proof, we consider four

8 Uri Andrews, Julia F. Knight

cases, depending on whether T is arithmetical, and on the saturation properties of the
modelM.

1. T is ∆0
N andM is N -saturated,

2. M is not N -saturated for some N—T may be arithmetical or not,

3. T is not arithmetical andM is saturated,

4. T is not arithmetical andM is boundedly saturated but of finite dimension,

In Section 2, we say how difficult it is to compute Morley ranks. In Section 3, we
use computations of Morley ranks to arrive at an indexing of all Bn-types, for each n. In
Sections 4–7, we give the proof for the four cases. Case 1 is simpler than the others, but it
illustrates many of the core ideas. We begin with this case in Section 4. Case 3, considered
in Section 6, and Case 4, considered in Section 7, involve workers constructions.

2 Computing Morley ranks

In this section, T is a fixed strongly minimal theory.

Lemma 2.1. For each formula ϕ(ū, x), there is a number k such that for all modelsM
and all ā inM, if ϕM(ā, x) has at least k elements, then it is infinite. Moreover, if ϕ is a
Bn-formula, then we can find k using Tn+1.

Proof. If there is no such k, then by Compactness, we would have a model M with a
tuple ā such that ϕM(ā, x) and ¬ϕM(ā, x) are both infinite. Since T is strongly minimal,
this is impossible. To find k, we search for the first k such that the sentence saying

(∀ū)¬[(∃≥kx)ϕ(ū, x) ∧ (∃≥kx)¬ϕ(ū, x)]

is in T . If ϕ is a Bn-formula, the sentence is ∀n+1, so Tn+1-suffices.

Lemma 2.2. For a formula ϕ(ū, x1, . . . , xm), there exist k1, . . . , km such that in any
modelM, for any tuple ā,

M |= (∃≥k1x1) · · · (∃≥kmxm)ϕ(ā, x̄) iff M |= (∃∞x1) · · · (∃∞xm)ϕ(ā, x̄)

Moreover, if ϕ is an ∃n-formula, then we can find the numbers k1, . . . , km using Tn+1.

Proof. Applying Lemma 2.1 to an ∃n-formula ϕ(ū, x1, . . . , xm), letting xm play the role
of x, we can find km, using Tn+1. The formula (∃≥kmxm)ϕ(ū, x1, . . . , xm) is ∃n. Applying
Lemma 2.1, we can find km−1, using Tn+1. The formula (∃≥km−1xm−1)(∃≥kmxm)ϕ(ū, x̄)

is ∃n. Applying Lemma 2.1 again, we can find km−2. We continue in this way until we
have k1.

Strongly minimal theories with recursive models 9

We write |x̄| for the length of a tuple x̄.

Lemma 2.3. For any formula ϕ(x̄) and any m ≤ |x̄|, there is a sentence saying that ϕ(x̄)

has rank at leastm. Moreover, if ϕ is an ∃n-formula, then the sentence saying that the rank
is at least m is ∃n, and we can find this sentence using Tn+1. In particular, the function
that assigns to an ∃n-formula its Morley rank is uniformly computable from Tn+1, and
thus the function that assigns to a Bn-formula its Morley rank is uniformly computable
from Tn+2.

Proof. For each partition of the variables x̄ into a tuple z̄ of length m and remaining
variables ȳ, we have a sentence saying that (∃∞z1) · · · (∃∞zm)(∃ȳ)ϕ(x̄). To say that there
exist infinitely many zi, we say that there are at least ki, for appropriate finite numbers ki.
If ϕ is an ∃n-formula, then (∃ȳ)ϕ is also ∃n, and we use Tn+1 to find the numbers, as in
Lemma 2.2. In this way, we arrive at a sentence saying that the variables z̄ witness that
the rank of ϕ is at least m. To say that ϕ has rank at least m, we take the disjunction of
these sentences, over the possible choices of z̄. This sentence is ∃n.

We will in several places need the following refinement of Lemma 2.3.

Lemma 2.4. The set of pairs (ϕ(x̄), k) such that ϕ is an ∃n-formula of Morley rank at
least k is uniformly Π0

1(Tn).

Proof. The Morley rank ofϕ(x1, . . . xl) is at least k if, for some permutation σ of {1, . . . , l},
for all m, the sentence

(∃≥mxσ(1))(∃≥mxσ(2)) · · · (∃≥mxσ(k))(∃xσ(k+1)) · · · (∃xσ(l))ϕ(x̄)

is in Tn. This condition is thus uniformly Π0
1(Tn).

2.1 The generic type of a k-tuple

Definition 2.5. If Γ is a set of formulas, then an n-tuple ā ∈ Mn has a generic Γ-type if
for every ϕ(x1, . . . , xn) ∈ Γ, ifM |= ϕ(ā), then MR(ϕ(x̄)) = n.

In particular, we use this definition where Γ is the set of ∃n, ∀n or Bn-formulas and
refer to a generic ∃n-type, generic ∀n-type, or genericBn-type. The genericBn-types play
a special role in our analysis. Using Lemma 2.4, we can give a simple way of computing
these types.

Lemma 2.6. The set of ∃n-formulas satisfied by a generic tuple ā is uniformly Π0
1(Tn).

Proof. The formula ϕ(x1, . . . xk) is satisfied by the generic tuple if and only if its Morley
rank is ≥ k. By Lemma 2.4, this is a Π0

1(Tn) condition.

In several key places, knowing that this condition is Π0
1(Tn) will allow us to combine

universal quantifiers.

10 Uri Andrews, Julia F. Knight

3 Enumerating types

In this section, T is a strongly minimal theory such that T ∩ ∃n+2 is uniformly ∆0
n. For

each n, we define an enumeration, or indexing, P n of the Bn-types, and we verify several
properties of this enumeration

Definition 3.1. We say that a pair (θ(x̄), k) is a P n-index for a Bn-type p(x̄) if the fol-
lowing hold:

• θ is a Bn-formula of Morley rank k,

• the type p(x̄) is the only Bn-type of rank k containing θ.

Definition 3.2. For any tuple z̄ ⊆ x̄, we partition x̄ = z̄ȳ, and we let mult(θ, z̄) = l if l is
greatest so that T |= (∃∞z1)(∃∞z2) . . . (∃∞zk)(∃lȳ) θ(x̄).

Note that if mult(θ, z̄) = ∞, then MR(θ) > |z̄|. Also, if mult(θ, z̄) > 0, then
MR(θ) ≥ |z̄|.

Definition 3.3. We define Mult(θ, k) to be the function that sends each tuple z̄ of length
k to mult(θ, z̄). We write Mult(θ, k) ≤ Mult(ψ, k) provided that for each z̄ of length k,
mult(θ, z̄) ≤ mult(ψ, z̄). We write Mult(θ, k) < Mult(ψ, k) if Mult(θ, k) ≤ Mult(ψ, k)

and Mult(θ, k) 6= Mult(ψ, k).

Lemma 3.4. The pair (θ, k) is an index for a Bn-type if and only if θ ∈ Bn, MR(θ) = k,
and for every Bn formula ψ, either Mult(θ ∧ ψ, k) = Mult(θ, k) or Mult(θ ∧ ¬ψ, k) =

Mult(θ, k).

Proof. First, suppose that (θ, k) is an index for a Bn-type. Then there is only one Bn type
of rank k that contains θ. Thus, either MR(θ ∧ ψ) < k or MR(θ ∧ ¬ψ) < k. It follows
that either Mult(θ ∧ ψ, k) = 0 or Mult(θ ∧ ¬ψ, k) = 0. We have

Mult(θ, k) = Mult(θ ∧ ψ, k) + Mult(θ ∧ ¬ψ, k) ,

where addition is component-wise. This is simply because the set of realizations of θ is
the union of the set of realizations of θ ∧ ψ with the set of realizations of θ ∧ ¬ψ. Thus,
we have either Mult(θ ∧ ψ, k) = Mult(θ, k) or Mult(θ ∧ ¬ψ, k) = Mult(θ, k).

Now, suppose that for every Bn-formula ψ(x̄), we have either Mult(θ ∧ ψ, k) =

Mult(θ, k) or Mult(θ∧¬ψ, k) = Mult(θ, k). Then, again using the fact that Mult(θ, k) =

Mult(θ ∧ ψ, k) + Mult(θ ∧ ¬ψ, k), we have that for every ψ, either Mult(θ ∧ ψ, k) = 0

or Mult(θ ∧ ¬ψ, k) = 0. Thus, MR(θ ∧ ψ) < k or MR(θ ∧ ¬ψ) < k. Therefore, there
can be only one Bn-type of rank k that contains θ.

Strongly minimal theories with recursive models 11

Lemma 3.5. For a Bn-formula θ(x̄), the condition that mult(θ, z̄) ≥ l is Π0
1(Tn+1).

Proof. By definition, mult(θ, z̄) ≥ l if and only if, partitioning the variables x̄ of θ into z̄
and ȳ, we have

∀m(∃≥mz1) . . . (∃≥mzk)(∃≥lȳ)θ(x̄) ∈ T∃n+1) .

Thus, the condition is Π0
1(T ∩ ∃n+1).

Lemma 3.6. The set of indices for Bn-types is computable in (Tn+1)′.

Proof. It is computable to check that θ ∈ Bn, and, by Lemma 2.4, it is computable in
(Tn+1)′ to see that MR(θ) = k. Now, to check that θ is an index, (Tn+1)′ begins by
computing Mult(θ, k), which it can by Lemma 3.5. In particular, since MR(θ) = k, it
is impossible to have mult(θ, z̄) = ∞ for any z̄ of length k. Thus, (Tn+1)′ can simply
compute the function α = Mult(θ, k). Now, by Lemma 3.4, (θ, k) is an index if and only
if for all ψ(x̄) ∈ Bn either

• ∀z̄ ⊆ x̄ of length k, mult(θ ∧ ψ, z̄) ≥ α(z̄), or

• ∀z̄ ⊆ x̄ of length k, mult(θ ∧ ¬ψ, z̄) ≥ α(z̄).

It follows from Lemma 3.5 that this condition is Π0
1(Tn+1), so (Tn+1)′ can check it.

We now state some properties of this indexing of types.

Lemma 3.7.

1. The set of indices for Bn-types is computable from (Tn+1)′. Therefore, it is ∆0
n if

n > 1, and it is ∆0
2 if n = 1.

2. Given an index (θ, k) for a Bn-type, we can compute the Bn-type with index (θ, k)

using Tn+1. Thus, for n > 1, it is ∆0
n−1 to compute a Bn-type given its index, and it

is ∆0
1 to compute a B1-type given its index.

Proof. Statement (1) is immediate from Lemma 3.6. For Statement (2), let (θ, k) be an
index for a Bn-type P . Note that ψ is in p if and only if MR(θ ∧ ψ) ≥ k. By Lemma 2.4,
this condition is Π0

1(Tn+1). Since ψ ∈ p if and only if ¬ψ /∈ p, the condition is also
Σ0

1(Tn+1), so p is computable from Tn+1, uniformly in the pair (θ, k).

During our constructions, for n > 1, the ∆0
n worker will assign P n−1-indices to tuples,

based in part on guesses at the P n-indices assigned by the ∆0
n+1-worker. This worker

needs to check the consistency of aBn-type that seems to have index (θ, k) with theBn−1-
type that has index (χ, l). For n = 1, the ∆0

1 worker will decide atomic facts about tuples
based on guesses at P 1-indices. This worker needs to check the consistency of a B1-type

12 Uri Andrews, Julia F. Knight

that seems to have index (θ, k) with a finitary quantifier-free formula. It will sometimes
happen that (θ, k) is not actually a P 1-index. In the next two results, we describe what ∆0

n

can do to check consistency, and when n = 1 we say what this means in the case where
(θ, k) is not a P 1-index. We begin with the case where n > 1.

Lemma 3.8. For every n, there is a (Tn+1)′-computable procudure (if n > 1, this is ∆0
n)

for checking whether pairs (θ, k) and (χ, l) satisfy the following conditions:

1. (θ, k) is a P n-index for a Bn-type p(x̄)

2. (χ, l) is a P n−1-index of a Bn−1-type q(x̄, ȳ),

3. p(x̄) ∪ q(x̄, ȳ) is consistent.

Proof. By Lemma 3.7, it is computable in (Tn+1)′ to verify the first two conditions. We
now argue that Condition (3) is equivalent to

(∀ψ ∈ q)(MR(θ(x̄) ∧ (∃ȳ)ψ(x̄, ȳ)) ≥ k) .

Certainly, Condition (3) implies this, since each of the formulas θ(x̄) ∧ (∃ȳ)ψ(x̄, ȳ) must
be contained in p(x̄) and MR(p) = k. Suppose p(x̄) ∪ q(x̄, ȳ) is inconsistent. Then there
exist a formula ρ(x̄) ∈ p(x̄) and a formula ξ(x̄, ȳ) ∈ q(x̄, ȳ) such that ρ(x̄) ∧ ξ(x̄, ȳ) is
inconsistent. Then ρ(x̄) ∧ (∃ȳ)ξ(x̄, ȳ) is inconsistent. Since MR(θ(x̄) ∧ ¬ρ(x̄)) < k, and
θ(x̄) ∧ (∃ȳ)ξ(x̄, ȳ) implies θ(x̄) ∧ ¬ρ(x̄), we get that MR(θ(x̄) ∧ (∃ȳ)ξ(x̄, ȳ)) < k. By
Lemma 2.4, this condition is Π0

1(Tn+1).

For n = 1, the ∆0
1 worker will enumerate the atomic diagram of a structure, based on

guesses at the P 1-indices assigned by the ∆0
2 worker. Having enumerated a finite part of

the atomic diagram with conjunction δ(b̄, d̄), the ∆0
1 worker will be checking the consis-

tency of the type indexed by (θ(x̄), k), where θ is a B1-formula, with the quantifier-free
formula δ(x̄, ȳ). Since the set of P 1-indices is not ∆0

1, at some points in the construction,
the ∆0

1 worker will be attempting to verify consistency, but (θ, k) will fail to determine
a type. We describe here what we do computably to check consistency, and we say what
this means in the case where (θ(x̄), k) is not a P 1-index.

Lemma 3.9. Assuming that (θ, k) is a P 1-index for a type p(x̄), it is computable to say
whether p(x̄) is consistent with a given quantifier-free formula δ(x̄, ȳ).

Proof. By Lemma 2.3, we can computably check whether an existential formula has rank
k, but we cannot do this for a B1 formula. By Lemma 3.7, it is ∆0

2 to say that (θ, k) is a
P 1-index. By Lemma 2.4, it is Π0

1 to say that a B1 formula has rank at least k, so it is Σ0
1

to say that a B1 formula has rank less than k. Assuming that (θ(x̄), k) is a P 1-index for

Strongly minimal theories with recursive models 13

p(x̄), exactly one of θ(x̄) ∧ (∃ȳ)δ(x̄, ȳ), θ(x̄) ∧ ¬(∃ȳ)δ(x̄, ȳ) will have rank less than k.
In the first case, δ(x̄, ȳ) is inconsistent with p(x̄), and in the second, δ(x̄, ȳ) is consistent
with p(x̄).

Not knowing whether (θ(x̄), k) is a P 1-index, we effectively search for one of the
following:

1. Σ0
1 evidence that MR(θ(x̄) ∧ (∃ȳ)δ(x̄, ȳ)) < k,

2. Σ0
1 evidence that MR(θ(x̄) ∧ ¬(∃ȳ)δ(x̄, ȳ)) < k,

3. a change in our ∆0
2 approximation indicating that (θ(x̄), k) may not be a P 1-index.

Throughout what follows, the versions of consistency in Lemmas 3.8 and 3.9 will
suffice for our purposes.

4 Boundedly saturated models of an arithmetical theory

In this section, we suppose that T is ∆0
N , where for 1 ≤ n < N , Tn+2 is ∆0

n, and we
consider a modelM that is N -saturated. We show thatM has a computable copy. Har-
rington [10] and Khisamiev [12] showed that for a decidable ℵ1-categorical theory, all
models have decidable copies. This result, relativized, gives the following.

Lemma 4.1 (Harrington, Khisamiev). Suppose T is a strongly minimal theory. If T is
∆0
N , then every model of T has a copy whose complete diagram is ∆0

N .

Note. We could equally well obtain Lemma 4.1 from a result of Goncharov [7] and
Peretyat’kin [22] on homogeneous structures with decidable copies.

If T is computable, then Lemma 4.1 gives computable copies of all models. We sup-
pose N > 1. For our theory T , we have the enumerations P n for the Bn-types. All of our
models are assumed to have universe ω. We think of the natural numbers as constants. We
will consider models with tuples of elements labeled by indices for types.

Definition 4.2 (P n-labeling). Let A be a model of T . A P n-labeling of A is a function
assigning to each tuple ā from A a P n-index for the Bn-type realized by ā.

In our constructions, for each n > 1, we produce a model with a ∆0
n P

n−1-labeling.
For n = 1, we produce a model whose atomic diagram is ∆0

1. The next lemma gives a
labeled model on top.

Lemma 4.3. Suppose A is a model whose complete diagram is ∆0
N , for some N > 1.

Then A has a ∆0
N+1 P

N -labeling.

14 Uri Andrews, Julia F. Knight

Proof. Since the complete diagram of A is ∆0
N and the set of PN -indices is ∆0

N+1, we
assign PN -indices to tuples of elements as follows. For each tuple ā ∈ A, we take the
first PN -index (θ, k) for a type p(x̄) such that (∀ψ(x̄) ∈ BN)

(
ψ ∈ p(θ,k) iff A |= ψ(ā)

)
.

We can do this using ∆0
N+1.

In the lemma below, we say how (for n > 1) to pass from an n-saturated model with a
∆0
n+1 P

n-labeling to an isomorphic copy with a ∆0
n P

n−1-labeling.

Lemma 4.4 (First Pull-Down Lemma). Suppose n > 1. Let A be a model of T that is
n-saturated. If A has a ∆0

n+1 P
n-labeling, then there is an isomorphic copy B with a ∆0

n

P n−1-labeling.

Proof. Using ∆0
n, we guess at the P n-labeling of A, and we produce an isomorphic copy

B with a P n−1-labeling. The isomorphism f from B to A will be ∆0
n+1. In particular, we

assign tentative values of f , based upon guesses at the ∆0
n+1 P

n-labeling of A. When
a guess at the P n-labeling changes, some values of f that we had defined earlier may
become undefined, to be defined again. To build a bijective function, we must ensure
that for each d ∈ B, from some stage onwards, f(d) is assigned and does not change.
Similarly, we must ensure that for each c ∈ A, from some stage onwards, f−1(c) is
assigned and does not change. Thus, we have the following requirements.

(a) Determine f−1(c) for c ∈ A.

(b) Determine f(d) for d ∈ B.

We arrange the requirements in a natural list of length ω. As usual for a finite in-
jury construction, when one of the guesses behind our action on a particular requirement
changes, we change what we have done for this requirement (the requirement is injured),
and we start over on later requirements (they are re-initialized). This distinction is to
ensure that the kth helper requirement for a (b)-requirement acts after the previous re-
quirements have settled–the (b)-requirement is re-initialized, so its next injury is the first
since re-initialization.

At each stage, as we assign values for f , we always choose the first possible image, or
pre-image, preserving what we have done for earlier requirements, and we always main-
tain consistency of the Bn−1-type assigned to a tuple b̄, d̄ with the current approximation
at theBn-types assigned to f(b̄) and its sub-tuples. By Lemma 3.8, this consistency check
is ∆0

n.
At each stage, we have a tuple b̄ on which f is tentatively defined, say f(b̄) = ā, and

we have determined P n−1-indices assigningBn−1-types to b̄, d̄ and its sub-tuples. Say that
q(ū, v̄) is the Bn−1-type of b̄, d̄. We believe that we have correctly guessed P n-indices for

Strongly minimal theories with recursive models 15

the Bn-types of ā and its sub-tuples. We have checked that q(ū, v̄) is consistent with these
Bn-types.

Suppose the next requirement has type (a), defining f−1(c). It is easy to satisfy this
requirement, assuming that we have correctly guessed the P n-indices for the Bn-types of
ā, c and its sub-tuples. We first check whether there is some di ∈ d̄ such that we can take
f(di) = c (i.e., we check whether q(ū, v̄) ∪ {x = vi} is consistent with the Bn-types of
ā, c and its sub-tuples). If so, then for the first such di, we let f(di) = c. If not, then we
create a new element e in B, set f(e) = c and assign to b̄, d̄, e a Bn−1-type q′(ū, v̄, x) that
extends q(ū, v̄) and is consistent with the Bn-types of ā, c and its sub-tuples.

Suppose the next requirement has type (b), defining f(d). One possible strategy for
satisfying this requirement would be to first determine a Bn-type for ā, f(d), where this
type is generated by formulas in the Bn-type of ā and ∃n-formulas, and then to search for
an element that satisfies this type. Instead, our strategy for the requirement of type (b) is
to try possible f -images for d until we find one that works. To try a possible image e, we
guess the P n-indices of the Bn-types of ā, e and its sub-tuples, and we check consistency
with these Bn-types of the Bn−1-type that we have currently assigned to b̄, d and further
elements d̄. It may turn out that one of our guesses is wrong, resulting in injury to the re-
quirement of type (b). We introduce helper requirements, which have the effect of putting
formulas into the ∃n-type of b̄, d. We satisfy one of these helper requirements each time
the requirement of type (b) is injured. There will be only finitely many injuries, and we
are happy to settle on a value for f(d) before actually completing the Bn-type. Here is the
family of “helper” requirements.

(c)k Suppose the type (b) requirement to define f(d) is injured for the kth time (since it
was last initialized). Let q(ū, x, v̄) be theBn−1-type that we have currently assigned
to b̄, d and a further tuple d̄, and let ϕk(ū, x) be the kth ∃n-formula (in variables
ū, x) in order of Gödel number. If it is possible to make ϕk(b̄, d) true in B, while
maintaining consistency with the Bn-types of ā and its sub-tuples, then we do this.

We say exactly how (after the kth injury to the requirement of defining f(d)) to satisfy
the helper requirement (c)k. Say ϕk(b̄, d) = (∃ȳ)α(b̄, d, ȳ), where α(ū, x, ȳ) is Bn−1. We
check whether q(ū, x, v̄) ∪ {ϕk(ū, x)} is consistent with the Bn-types of ā and its sub-
tuples. Lemma 3.7 guarantees that we can do this. If we have consistency, then we look
for a P n−1-index for a Bn−1 type

q′(ū, x, v̄, ȳ) ⊇ q(ū, x, v̄) ∪ {α(ū, x, ȳ)}

that is consistent with theBn-types of ā and its sub-tuples. If there is no such P n−1-index,
it is because we have incorrectly guessed the P n-index for some sub-tuple of ā, so we see
injury to a higher priority requirement.

16 Uri Andrews, Julia F. Knight

Claim 4.5. The type (b) requirement to define f(d) cannot be injured infinitely often.

Proof of Claim. Suppose the requirement is injured infinitely often. Eventually, we cor-
rectly guess the P n-indices for the Bn-types of ā and its sub-tuples. Since we considered
all ∃n-formulas ϕk(ū, x), the Bn-type p(ū) assigned to ā, together with those ϕk(ū, x) for
which we have provided witnesses generates a completeBn-type p′(ū, x). By Lemma 1.7,
there is some e realizing p′(ā, x). Consider a stage s large enough that all higher priority
requirements have settled, and so have our approximations to the P n-indices forBn-types
assigned to sub-tuples of the initial segment ā, ā′, e of ω containing ā, e. Since e is a pos-
sible choice for f(d), some element of ā, ā′, e is assigned as f(d), with no possibility of
further injury. This contradicts the assumption that the (b) requirement is injured infinitely
often.

There is a special Pull-Down Lemma for the case where n = 1. Lemma 4.4 does not
work in this case, since ∆0

1 cannot check consistency as in Lemma 3.8. However, ∆0
1 just

needs to produce the atomic diagram. We shall check consistency as in Lemma 3.9.

Lemma 4.6 (Second Pull-Down Lemma). LetA be a model of T that is 1-saturated. IfA
has a ∆0

2 P
1-labeling, then there is an isomorphic copy B with a ∆0

1 atomic diagram.

Proof. Guessing at the ∆0
2 P

1-labeling of A, we give a ∆0
1 atomic diagram of an iso-

morphic copy B. The isomorphism f from B to A will be ∆0
2. At each stage, we have

tentatively determined a finite part of f , say f(b̄) = ā, based on guesses at the P 1-indices
assigned to ā and its sub-tuples. At each stage, we have permanently decided a finite part
of the atomic diagram, say the conjunction is δ(b̄, d̄). We check that δ(b̄, d̄) is consistent
with the B1-types of ā and its sub-tuples, using the consistency test from Lemma 3.9.
Assuming that our guesses at the P 1-indices for these types are actually P 1-indices, we
know that δ(b̄, d̄) is consistent with the corresponding types.

As in the First Pull-Down Lemma, we have the following requirements.

(a) Determine f−1(c).

(b) Determine f(d).

At each stage, the finite part of f(b̄) = ā that we have tentatively determined satis-
fies an initial set of requirements, based on guesses at the P 1-indices of types assigned
to sub-tuples of the range ā. First, suppose that the next requirement is of type (a), defin-
ing f−1(c). Apart from the consistency check, this is satisfied as in the First Pull-Down
Lemma. Once we have correctly guessed the P 1-indices of the B1-types assigned to ā, c
and its sub-tuples, we can define f−1(c), once and for all.

Strongly minimal theories with recursive models 17

Next, consider a requirement of type (b), defining f(d). Again, to satisfy the require-
ment, we could first build a B1-type and then look for f(d) satisfying this type. Instead,
we just try possible images of d, one after another, and each time the current one is shown
not to work, we try to make a certain existential formula true of b̄, d. As in the proof of
the First Pull-Down Lemma, we have a family of “helper” requirements:

(c)k Suppose f(b̄) = ā for earlier requirements, and the requirement to define f(d) is
injured for the kth time. Let ϕk(ū, x) be the kth existential formula in variables ū, x
corresponding to b̄, d. Then add a witness to make ϕk(b̄, d) true in B, if possible.

Say that ϕk(ū, x) = (∃v̄)α(ū, x, v̄) and δ(b̄, d, d̄) is the conjunction of the current part of
the atomic diagram. We have already tested the consistency of δ(ū, x, ȳ) with theB1-types
of ā and its initial segments. There are finitely many ways to determine equality on the
variables v̄, ȳ and decide the atomic sub-formulas of α(ū, x, v̄) to produce an extension
δ′(ū, x, ȳ, v̄) of δ(ū, x, ȳ) that implies α(ū, x, v̄). We see if one of these δ′(ū, x, ȳ, v̄) is
consistent with the B1-types of all sub-tuples of ā. If so, then (for the first we find), we
put δ′(b̄, d, d̄, d̄′) into the atomic diagram of B, where the elements of d̄′ that are not in
b̄, d, d̄ are the first few new elements of ω.

As in Claim 4.5, the (c)k requirements ensure that the associated type (b) requirement
is satisfied.

Combining the lemmas above, we obtain the following theorem.

Theorem 4.7. Let T be a ∆0
N strongly minimal theory such that for 1 ≤ n < N , Tn+2 is

∆0
n. Then every N -saturated model of T has a recursive copy.

Proof. By Lemma 4.1, each model has a copy whose complete diagram is ∆0
N . Applying

Lemma 4.3, we get a ∆0
N+1 P

N -labeling. Now, we work our way down. Given a model
An+1 with a ∆0

n+1 P
n-labeling, we apply Lemma 4.4 to get an isomorphic copy An with

a ∆0
n P

n−1 labeling. Eventually, we come to a copy A2 with a ∆0
2 P

1-labeling. Then we
apply Lemma 4.6 to get a recursive copy A1.

5 Models that are not boundedly-saturated

Let T be a strongly minimal theory with a modelM that is not boundedly saturated. Let
n be minimal such that M is not n-saturated. This means that there is a tuple c̄ and a
Bn-type p(c̄, x) that is consistent with the type of c̄, but is not realized inM. The goal of
this section is to construct a copy ofM with a ∆0

n P
n−1-labeling. SinceM is (n − 1)-

saturated, we can then apply Lemmas 4.4 and 4.6 to get a computable copy ofM.

18 Uri Andrews, Julia F. Knight

Lemma 5.1. If p(c̄, x) is a Bn-type consistent with the type of c̄ and omitted inM, then
it can only be the generic Bn-type over c̄. That is, for each Bn-formula ψ(c̄, x) ∈ p, the
formulas guaranteeing that (∃∞x)ψ(c̄, x) holds are in the type of c̄.

Proof. Suppose p(c̄, x) is not the generic Bn-type over c̄, say ψ(c̄, x) ∈ p(c̄, x), where
(∃=kx)ψ(c̄, x) is in the type of c̄. Let a1, . . . , ak be the k elements ofM satisfying ψ(c̄, x).
We claim that some ai satisfies all of p(c̄, x). Suppose not. Then each ai satisfies someBn-
formula ϕi(c̄, x) that is not in p(c̄, x). It follows thatM |= (∀x)[ψ(c̄, x) →

∨
i ϕi(c̄, x)],

so the type of c̄ includes the formula (∀x)[ψ(ū, x)→
∨
i ϕi(c̄, x)]. However,

∨
i ϕi(c̄, x) is

inconsistent with p(c̄, x). Thus, p(c̄, x) is inconsistent with the type of c̄, a contradiction.
We have shown that if p(c̄, x) is an algebraic Bn-type over c̄, then it must be realized
inM.

We assumed that M omits some Bn-type p(c̄, x) that is consistent with the type of
c̄. By Lemma 5.1, p(c̄, x) must be the generic Bn-type over c̄. Since the generic type
is omitted, every element of M is algebraic over c̄ by a Bn-formula. As we mentioned
earlier, this is every bit as useful as n-saturation.

Lemma 5.2. If every element ofM is algebraic over c̄ by a Bn-formula, thenM has a
copy A whose Bn-diagram is recursive in tpBn+1

(c̄).

Proof. We produce the copy A, determining the truth value of Bn-sentences ϕ(c̄, b̄) for
larger and larger tuples b̄. At each stage s, we will have committed to a finite set of Bn-
sentences Φs := {ϕi | i < l}. We ensure that for every element b mentioned, there is
some ϕj(c̄, b) such that for some integer N , (∃=Nx)ϕj(c̄, x) ∈ tpBn+1

(c̄). We also ensure
that (∃x̄) ∧i<l ϕi(c̄, xi) ∈ tpBn+1

(c̄). For each Bn-sentence ϕ(c̄, b̄), at some stage s, we
add either ϕ(c̄, b̄) or its negation to Φs.

Finally, we have Henkin requirements, witnessing ∃n+1-formulas in the type of c̄. If
ψ(x̄, ȳ) is Bn and (∃ȳ)ψ(x̄, ȳ) ∈ tp∃n+1

(c̄), then for some tuple d̄ and some s, we put
ψ(c̄, d̄) into Φs. Since inM, every element is Bn-algebraic over c̄, each of these require-
ments can be satisfied. Moreover, we can proceed recursively in tpBn+1

(c̄).

Claim: Φ := ∪sΦs is the Bn-diagram of a structure A. In particular, if Φ includes a
Bn-sentence (∃x̄)ψ(c̄, b̄, x̄), then it also contains the sentence ψ(c̄, b̄, d̄), for some d̄.

Proof of Claim. We first show that for any Bn formula ϕ(c̄, ȳ) and any m, if the formula
(∃=mȳ)ϕ(ū, ȳ) is in tpBn+1

(c̄), then there are exactly m distinct tuples ȳ from A such
that ϕ(c̄, ȳ) ∈ Φ. There is an (∃n+1)-formula ϕ∗(ū) saying that there exist distinct tuples
ȳ1, . . . , ȳm satisfying ϕ(ū, ȳ). This formula is in the type of c̄. The Henkin requirements
guarantee that there exist distinct tuples d̄1, . . . , d̄m with ϕ(c̄, d̄i) ∈ Φ. Consistency of Φ

with the Bn+1-type of c̄ guarantees that there cannot be more.

Strongly minimal theories with recursive models 19

Now, consider the Bn-sentence (∃x̄)ψ(c̄, b̄, x̄) in Φ. Then (∃ȳ)(∃x̄)ψ(c̄, ȳ, x̄) is true
of c̄, so it is satisfied in M. Adding conjuncts to ψ, if necessary, we may suppose that
ψ(c̄, ȳ, x̄) is satisfied by justm distinct tuples. The previous paragraph shows that there are
exactlym tuples b̄i, d̄i such that ψ(c̄, b̄i, d̄i) ∈ Φ. Now, b̄must be one of the b̄i, as otherwise
{ψ(c̄, b̄i, d̄i) | i < m} ∪ {(∃x̄)ψ(c̄, b̄, x̄)} would be a subset of Φ that is inconsistent with
the Bn+1-type of c̄. Thus, we have ψ(c̄, b̄, d̄i) ∈ Φ, where b̄ = b̄i.

It remains to show that the structure A that we have built is isomorphic to the given
M. For this, we use a standard König’s Lemma argument. We build a tree whose paths
will be isomorphisms between (A, c̄) and (M, c̄). We construct a tree of viable partial
functions from A intoM, putting a finite function p with c̄ ⊂ dom(p) into the tree if the
Bn-type of b̄ := dom(p) is the same as that of p(b̄). At level n, the functions are defined
on c̄ and the first n elements of A (in the ω-ordering).

The tree is finitely branching, since the elements of A are all algebraic over c̄ via
Bn-formulas. The tree is infinite. For any tuple b̄ in A, the Bn-type of b̄ over c̄ in A
is consistent with the type of c̄. Since the Bn-type of b̄ is algebraic over c̄, it must be
realized in (M, c̄), by Lemma 5.1. Therefore, we have a viable function p defined on
b̄. Now, König’s Lemma yields a path through the tree. This path gives an embedding
f : A → M. We now show that the function f is onto. Suppose a ∈ M is one of
N elements satisfying the Bn-formula ϕ(c̄, x). The Henkin requirements guarantee that
A |= (∃≥Nx)ϕ(c̄, x). Now, f maps elements satisfying ϕ(c̄, x) to elements satisfying
ϕ(c̄, x), so a is in the range. Therefore, f must be onto, and it is an isomorphism.

If n = 0 or n = 1, then Lemma 5.2 suffices to give a recursive copy of M, since
tpB2

(c̄) is ∆0
1, by Lemma 3.7. Thus, we may assume n > 1. It may at first seem that

having a ∆0
n Bn-diagram should be enough to give a ∆0

n P
n−1-labeling, but this seems not

to suffice. We want a construction like the one in Lemma 5.2 except that we assign Bn−1-
types in addition to Bn-formulas. The only obstruction to carrying out the construction
directly, as in Lemma 5.2, is that we need a ∆0

n way to check whether the type with a
certain P n−1 index is consistent with a given Bn-formula over c̄. The remainder of the
current section is devoted to this. In fact, we will prove a stronger result, yielding a copy
ofM with a ∆0

n P
n-labeling. By Lemma 3.8, it is ∆0

n to turn this into a P n−1-labeling.
Before we begin, we isolate one step in the argument, since it reappears in later con-

structions. Essentially, the remainder of the argument is focused on extending this result
from generic tuples h̄ to our tuple c̄.

Lemma 5.3. For n > 1, if h̄ is a generic tuple, let S be the set of pairs (ϕ(h̄, x̄), q(h̄, ȳ))

such that ϕ(ū, x̄) is an ∃n+1-formula, q(ū, ȳ) is either a Bn-type or a Bn−1-type (given by
its P n or P n−1-index), and {ϕ(h̄, x̄)} ∪ q(h̄, ȳ) is consistent with the type of h̄. Then S is
computable in (Tn+1)′, so it is ∆0

n, uniformly in n and the length of h̄.

20 Uri Andrews, Julia F. Knight

Note that in Lemma 5.3, x̄ and ȳ need not be disjoint sets of variables.

Proof. By Lemma 2.6, since h̄ is generic, its ∃n+1-type is Π0
1(Tn+1). A Bn- or Bn−1-type

q(h̄, ȳ) is consistent with ϕ(h̄, x̄) over h̄ iff

(∀ψ ∈ q)
(
(∃x̄, ȳ)(ϕ(h̄, x̄) ∧ ψ(h̄, ȳ)) ∈ tp∃n+1

(h̄)
)
.

This is Π0
1(Tn+1), so it can be computed from (Tn+1)′.

The following is a variant of Lemma 5.3, which applies to any tuple c̄, but only applies
to types for tuples x̄ over c̄ provided that each xi is Bn-algebraic over c̄. This will let
us use essentially the same proof as in Lemma 5.2 to produce a copy of M with a ∆0

n

P n-labeling.

Lemma 5.4. Let c̄ be any tuple. Let S be the set of pairs

(
∧
i<|x̄|

ϕi(c̄;xi) ∧ ϕ(c̄, x̄), r(c̄, x̄))

such that ϕ is an ∃n+1-formula, each ϕi is a Bn-formula that is algebraic over c̄, r is a
Bn-type (given by its P n-index), and r(c̄, x̄) ∪ {

∧
i<|x̄| ϕi(c̄;xi) ∧ ϕ(c̄, x̄)} is consistent

with the type of c̄. Then S is computable from (Tn+1)′ ⊕ Tn+2, so it is ∆0
n.

Note that Lemma 5.4 also holds forBn−1-types r. We can show this either by the same
proof as for Bn-types (given below), or by considering the consistent Bn-types and taking
their restrictions to Bn−1-types.

Proof. Our first step is to partition c̄ into two pieces, ḡ and b̄.

Claim 5.5. There exists a partition of c̄ into two pieces ḡ and b̄ such that the following
conditions hold.

1. ḡ is a maximal sub-tuple of c̄ realizing the generic ∀n+1-type—it need not satisfy
the generic Bn+1-type,

2. b̄ is a tuple algebraic over ḡ by an ∃n+1-formula Θ(ḡ, x̄),

3. For a generic tuple h̄, there are only finitely many tuples satisfying Θ(h̄, x̄).

Proof. [Proof of Claim 5.5] Let ḡ be a maximal sub-tuple of c̄ realizing the generic ∀n+1-
type. Let b̄ consist of the remaining elements of c̄. We will show that this partition satisfies
the three conditions. Given an element ci of c̄r ḡ, we show that ci is algebraic over ḡ by
an ∃n+1-formula. Since the type of ḡ, ci does not contain all of the formulas of the generic
∀n+1-type, there is some ∃n+1-formula true of ḡ, ci and not true of a generic tuple.

Sub-claim: If h̄ is generic of the same length as ḡ, and ϕ(h̄, x) is algebraic, where ϕ(ū, x)

is ∃n+1, then ϕ(ḡ, x) is also algebraic.

Strongly minimal theories with recursive models 21

Proof of Sub-claim. The generic tuple h̄ must satisfy ¬(∃≥Nx)ϕ(ū, x), for some N . The
formula ¬(∃≥Nx)ϕ(ū, x) is logically equivalent to a ∀n+1-formula, so it satisfied by ḡ as
well.

The conjunction of algebraic ∃n+1-formulas ϕi(ḡ, xi) as in the Sub-claim, one for each
ci ∈ c̄r ḡ, gives the formula Θ(ḡ, x̄) required for Conditions (2) and (3) in Claim 5.5.

Having proved Claim 5.5, we return to the proof of Lemma 5.4. Taking the par-
tition ḡ, b̄ from the Claim, we will say how ∆0

n can determine consistency of a for-
mula ϕ(ḡ, b̄, x̄) ∧ ∧i<|x̄|ϕi(ḡ, b̄, xi), where ϕ(ḡ, b̄, x̄) is an ∃n+1-formula, the formulas
ϕi(ḡ, b̄, xi), one for each xi in x̄, are algebraic Bn-formulas, and r(ḡ, b̄, x̄) is a Bn−1-
type, given by its P n−1-index. Let z̄ correspond to ḡ, and let ȳ correspond to b̄. Consider
the formula

ξ(z̄; ȳ, x̄) :=
∧
i<|x̄|

ϕi(z̄; ȳ, xi) ∧ ϕ(z̄; ȳ, x̄) ∧Θ(z̄; ȳ) ∧
∧
i<|x̄|

(∃<∞ui)ϕi(z̄, ȳ, ui).

We can replace (∃<∞ui)ϕi(z̄, ȳ, ui) by (∃≥Nui)¬ϕi(z̄, ȳ, ui), for an appropriate N . By
Lemma 2.1, Tn+1 can identify ξ with an equivalent ∃n+1-formula.

We note that for a generic tuple h̄, the formula ξ(h̄; ȳ, x̄) must be algebraic. In fact,
we see that Θ(h̄; ȳ) ∧ ϕi(h̄; ȳ, xi) ∧

∧
i(∃<∞ui)ϕi(h̄, ȳ, ui) is algebraic for each i. This

is because Θ(h̄; ȳ) is an algebraic formula in the variables ȳ and there are only finitely
many realizations of the ϕi over any ȳ satisfying

∧
i(∃<∞ui)ϕi(h̄, ȳ, ui). By the sub-claim

above, ξ(ḡ; ȳ, x̄) is also an algebraic formula.
Since ξ(h̄; ȳ, x̄) is a ∃n+1-formula, Lemma 2.6 shows that it is computable from (Tn+1)′

to check whether the ∃n+1-formulas ∃≥k(ȳ, x̄)ξ(h̄; ȳ, x̄) are true. Let K be the number of
distinct tuples ȳ, x̄ satisfying the formula ξ(h̄; ȳ, x̄). We consider the formula

χ(h̄, ȳ1, x̄1, . . . , ȳK , x̄K) :=
∧
i≤K

ξ(h̄, ȳi, x̄i) ∧
∧

i<j≤K

(x̄iȳi 6= x̄j ȳj) .

This is an ∃n+1-formula that is satisfied. Now, we use Lemma 5.3 to find an index of a
Bn-type q(h̄; ȳ1, x̄1, . . . , ȳK , x̄K) consistent with χ over h̄.

Since tp∃n+1
(ḡ) ⊆ tp∃n+1

(h̄), if s(w̄, ȳ, x̄) is a Bn-type, and s(ḡ, ȳ, x̄) ∪ {ξ(ḡ; ȳ, x̄)}
is consistent, then s(h̄, ȳ, x̄)∪ {ξ(h̄; ȳ, x̄} is also consistent. Thus, any Bn-type r(w̄, ȳ, x̄)

such that r(ḡ, ȳ, x̄) ∪ {ξ(ḡ; ȳ, x̄)} is consistent is a restriction of q(w̄; ȳ1, x̄1, . . . , ȳK , x̄K)

to the variables w̄, ȳi, x̄i for some i ≤ K. There are only finitely many such distinct Bn-
types, which we index as qj(w̄, ȳ, x̄). Further, Lemma 3.7 shows that it is computable
from (Tn+1)′ to find P n-indices for these types and to determine whether qj = qi for each
pair j 6= i. We do this and remove any repetitions in our list.

We claim that it is computable from (Tn+1)′ to say that qj(ḡ, b̄, x̄) ∪ {ξ(ḡ; b̄, x̄)} is
consistent. For each of the Bn-types qj(w̄, ȳ, x̄), we find a formula αj(w̄, ȳ, x̄) that is in

22 Uri Andrews, Julia F. Knight

the type qj but not in any of the others. Now, by Lemma 3.7, it is computable from Tn+2

to determine, for each j, whether {αj(ḡ, b̄, x̄), ξ(ḡ; b̄, x̄)} is consistent, since we only need
to check whether a single formula is in the ∃n+1-type of c̄. If {αj(ḡ, b̄, x̄), ξ(ḡ; b̄, x̄)} is
consistent, then qj(ḡ, b̄, x̄)∪{ξ(ḡ; b̄, x̄)} is consistent as well, since some Bn−1-type must
extend {αj(ḡ, b̄, x̄), ξ(ḡ, b̄, x̄)} consistently, and the only possibility is qj .

We have computed a finite list of P n-indices for types qj that are consistent with∧
i<|x̄| ϕi(c̄;xi) ∧ ϕ(c̄, x̄) and the type of c̄, and our finite list represents all such types.

Given any P n-index, it is computable from (Tn+1)′ to check whether it gives another
index for one of these types. If so, then the given index is consistent, and if not, it is
not.

Next, we show how an argument like that in Lemma 5.2 suffices to yield a computable
copy ofM.

Lemma 5.6. Let T be a strongly minimal theory, and let M be a model that is not n-
saturated. Then there is a copy ofM with a P n-labeling computable in (Tn+1)′ ⊕ Tn+2.

Proof. As in Lemma 5.2, we fix a tuple c̄ so that every element ofM is algebraic over
c̄ via a Bn-formula. We produce a copy of M with a ∆0

n P
n-labeling. We use the fact

that tpBn+1
(c̄) is computable in Tn+2, by Lemma 3.7. At each stage s, we will have a

finite tuple Ms = c̄, ȳ with a P n-labeling that is consistent with the type of c̄. Let p(c̄, ȳ)

be the Bn-type given by the P n-labeling. Further, for each yi ∈ ȳ, we have a specified
Bn-formula ρi(c̄, x) that is algebraic over c̄ and, according to the P n-labeling, true of yi.
We then consider the sth Bn-formula ψ(c̄, x). We first search tpBn+1

(c̄) for a K such that
(∃=Kx)ψ(c̄, x) or (∃=K)¬ψ(c̄, x) is in the Bn+1-type of c̄. Without loss of generality, we
assume the former. Next, we let l be the number of elements in Ms satisfying ψ(c̄, x). For
a tuple of variables z̄ of length K− l, let δ(c̄, ȳ, z̄) be a quantifier-free formula saying that
for zj ∈ z̄, zj /∈Ms. We search for a P n-index for a type r(c̄, ȳ, z̄), such that the following
hold:

• the formula
∧
yi∈ȳ ρi(c̄, yi) ∧ δ(c̄, ȳ, z̄) ∧

∧
zj∈z̄ ψ(c̄, zj) is consistent with r(c̄, ȳ, z̄)

over the type of c̄.

• The restriction of r(c̄, ȳ, z̄) to the variables c̄, ȳ is equal to p(c̄, ȳ).

There must be such a type. To see this, recall that, by Lemma 5.1, since p(c̄, ū) is
algebraic, it must be realized by some ȳ insideM. Since there are only l elements that
satisfy ψ(c̄, x) inside the tuple c̄, ȳ inM, there must be K − l other elements that satisfy
ψ(c̄, x). If ȳ realizes p(c̄, ū) in M and z̄ consists of the K − l elements outside c̄, ȳ
for which ψ(c̄, x) holds in M, then the Bn-type of c̄, ȳ, z̄ satisfies the conditions. By
Lemma 5.4, it is computable in (Tn+1)′ ⊕ Tn+2 to find a P n index for the type. We assign

Strongly minimal theories with recursive models 23

this index to c̄, ȳ, z̄, determine ρi(c̄, zi) = ψ(c̄, zi) for each zi ∈ z̄, assign consistent
P n-types to sub-tuples, and let this be Ms+1. This builds a P n-labeling of a structure
isomorphic toM, exactly as in the proof of Lemma 5.2.

Theorem 5.7. Let T be a strongly minimal theory such that Tk+2 is ∆0
k uniformly in k.

LetM be a model of T that is not boundedly saturated. Then there is a computable copy
ofM.

Proof. Let n be least so that M is not n-saturated. If n = 0 or n = 1, then the result
follows from Lemma 5.2, so we suppose n > 1. In Lemma 5.6, we showed that there
is a P n-labeling of a copy of M that is computable in (Tn+1)′ ⊕ Tn+2, so it is ∆0

n. By
Lemma 3.8, it is ∆0

n to determine the consistency of P n-types with P n−1-types. Thus, it
is ∆0

n to turn this into a ∆0
n P

n−1-labeling. SinceM is m-saturated for every m < n, we
can use Lemmas 4.4 and 4.6 to build a computable copy ofM.

6 Saturated models of non-arithmetical theories

The cases that remain are where the theory T is not arithmetical, and the given modelM
is either saturated or else boundedly saturated but of finite dimension. Since the theory
T is not arithmetical, we do not have a “top” model as we did in Section 4. To produce
a computable copy of M, we will use a worker construction. The ∆0

n worker produces
a structure An, based on guesses at the structure An+1 produced by the ∆0

n+1 worker.
We want an isomorphism fn from An onto An+1. At each level n, the construction of
An will involve requirements of type (a), putting c into ran(fn), and type (b), putting
d into dom(fn). We will need to be more careful with the type (b) requirements than
we were when the theory was arithmetical. The ∆0

n+1 worker will have extra saturation
requirements, so that the ∆0

n worker can satisfy the type (b) requirements.
If we are building a copy of the saturated model, it is always fine to add more generics.

When we are building a finite dimensional model, we will need to ensure that every ele-
ment is algebraic over a fixed basis. That will take more work. In this section, our goal is
to build a computable copy of the countable saturated model. Since we have Lemmas 4.4
and 4.6, it is enough to prove the following.

Theorem 6.1. Let T be a strongly minimal theory such that Tn+2 is ∆0
n uniformly in n.

Then there is a copy of the countable saturated model with a ∆0
3 P

2-labeling.

Proof. Throughout the construction, for each n ≥ 3, the ∆0
n worker builds a structure

An, with a P n−1 labeling. The universe of each An is ω. The ∆0
n worker guesses at the

P n-labeling ofAn+1 and attempts to makeAn isomorphic toAn+1. We will show that all

24 Uri Andrews, Julia F. Knight

An are isomorphic, and that the common isomorphism type is that of the saturated model
of T .

The ∆0
n worker assigns Bn−1-types to tuples, while guessing at the sequence of Bn-

types assigned by the ∆0
n+1 worker. The goal is to produce an isomorphism fn from An

to An+1. We have the following requirements.

(a) Find an fn-pre-image for some c ∈ An+1.

(b) Find an fn-image for some d ∈ An.

(c) If r(x̄) is the Bn−1-type assigned to ē, and s(x̄, y) is a Bn−1-type generated by r(x̄)

and further ∃n−1-formulas, then realize s(ē, ȳ).

(d) Contribute towards ensuring that An has dimension at least n.

We begin the construction with requirement (d). The ∆0
n worker assigns to the first n

elements (in the usual ordering of ω) the generic Bn−1-type. This type has P n−1-index
(
∧
i<n xi = xi, n). Further, we set fn(i) = i for each i < n. It is guessed that the Bn-type

of fn(0, . . . , n − 1) has P n-index (
∧
i<n xi = xi, n). Since the ∆0

n+1 worker assigns to
the first n + 1 elements the generic Bn-type, this guess is correct. The rest of the ∆0

n

construction proceeds over this permanent assignment of fn(0, . . . , n− 1).
Note that P n−1-indices for types r and s give rise to a (c)-requirement if and only if

r ⊂ s and for all ∃n−1-formulas ϕ(x̄, y),

ϕ ∈ s OR (∃ψ(x̄, y) ∈ (s ∩ ∃n−1)) ((∀y) (ψ(x̄, y)→ ¬ϕ(x̄, y)) ∈ r) .

The displayed condition is Σ0
1(r⊕s). This is Σ0

1(∆0
n−2), so it is Σ0

n−2. Thus, saying that the
condition holds for all ∃n−1-formulas ϕ(x̄, y) is Π0

n−1. So, the set of pairs of P n−1-indices
for (c)-requirements is ∆0

n.

Note: Our reason for starting with the ∆0
3 worker is to ensure that Π0

2(∆0
n−2) is Π0

n−1.

The role of the ∆0
n (c)-requirements is to ensure that the ∆0

n−1 (b)-requirements can be
satisfied. This is explained in more detail below. At each stage in the construction, we have
fn mapping a tuple b̄ in An (which we are building) to a tuple ā ∈ An+1 that we believe
is assigned P n-type p(ū), and we have assigned the P n−1-index of a type q(ū, x, v̄) to a
tuple b̄, d, d̄ in An. We believe, based on guesses at the P n-indices, that the Bn−1-type q
is consistent with the Bn-types assigned to fn(b̄′) for all sub-tuples b̄′ of b̄.

For a requirement of type (a), we need to find a pre-image for c, where c is the least
constant not in ā. We guess the Bn-type p′(ū, x) of ā, c. We either map some e ∈ d, d̄ to
c, or else choose an appropriate type q′(ū, x, v̄, y) for the first new constant e over b̄, d̄,

Strongly minimal theories with recursive models 25

and map e to c. We take the first possible pre-image for c, preserving what we have done
for earlier requirements (always maintaining consistency of the Bn−1-types that we are
assigning with the Bn-types that the isomorphism fn gives to the sub-tuples of b̄, c).

For a requirement of type (b), we need an fn-image for an element d. As in the case
where T is arithmetical, we try possible images ei, guessing the P n-index of the type
assigned to ā, ei and checking that this type is consistent with the current Bn−1-type that
we have assigned to b̄, d and the current d̄. To handle the injury to the (b) requirement, we
add the family of “helper” requirements.

(e)k If the type (b) requirement to define fn(d) is injured for the kth time, where for
earlier requirements, fn assigns the Bn-type p(ū) to b̄, and ϕk(ū, x) is the kth

∃n-formula in variables ū, x, then make ϕ(b̄, d) true in An, if possible. That is, if
q(ū, x, v̄) is the Bn−1-type that we have currently assigned to b̄, d and further con-
stants d̄, and p(ū) ∪ q(ū, x, v̄) ∪ {ϕk(ū, x)} is consistent, then assign a Bn−1-type
q′(ū, x, v̄, v̄′) (extending q) to a larger tuple b̄, d, d̄, d̄′ so as to witness that ϕk(b̄, d)

is true.

After finitely many steps, we settle on an image for fn(d), and we find a P n-index.
In Lemma 6.3 below, we argue that the actions for requirements (e)k ensure that the re-
quirements of type (b) are satisfied, assuming that those of type (c) at level n + 1 are
satisfied.

To see that the type (c) requirements are satisfied at every level, note that by Lemma 1.7,
if a tuple ē is assigned the Bn−1-type r(x̄), and s is a Bn−1-type generated by formulas in
r(x̄) and ∃n−1-formulas, then at any stage, regardless of which Bn-type r′(x̄) is assigned
to f(ē), r′(x̄)∪ s(x̄, y) is consistent. Thus, in a saturated model, every realization of r′(x̄)

extends to a realization of r′(x̄) ∪ s(x̄, y). This shows that, regardless of what other con-
sistent commitments we make, we can always find a consistent way to add a realization
of s(ē, y).

Lemma 6.2. The P n−1-labeling created by the ∆0
n worker gives a well-defined structure

An that has this P n−1-labeling.

Proof. Recall that n ≥ 3. LetAn be the structure such that for each relation symbolR and
tuple c̄, An |= R(c̄) if and only if the formula R(x̄) is in the Bn−1-type assigned to c̄. We
show that for all formulas ψ(x̄) that are ∃k or ∀k for some k < n and for all appropriate
tuples c̄, An |= ψ(c̄) if and only if ψ(x̄) is in the Bn−1-type assigned to c̄. We suppose
that ψ(x̄) is in prenex normal form, and we proceed by induction on the total number of
quantifiers.

If ψ is atomic, An |= ψ(c̄) if and only if ψ(x̄) is in the Bn−1-type assigned to c̄, by
definition. We assume the statement is true for all Bn−1-formulas ψ with fewer than l

26 Uri Andrews, Julia F. Knight

quantifiers. Suppose the Bn−1-formula (∀x)ψ(ū, x) is in the type assigned to c̄. To show
that An |= (∀x)ψ(c̄, x), we note that if the negation held, then ¬ψ(c̄, x) would be sat-
isfied by some element a. By the inductive hypothesis, the Bn−1-type assigned to c̄, a

includes the formula ¬ψ(ū, x). This implies that the assigned types are inconsistent. Sim-
ilarly, suppose the Bn−1-formula (∃x)ψ(ū, x) is in the type assigned to c̄. To show that
An |= (∃x)ψ(c̄, x), we use the fact that the construction succeeds in all requirements of
type (c). Lemma 1.7 shows that some type q(ū, x) containing ψ(ū, x) is assigned to c̄ and
some a. By the inductive hypothesis, An |= ψ(c̄, a), so An |= (∃x)ψ(c̄, x).

Now that the model An is well-defined, it makes sense, for example, to refer to the
Bn-type of a tuple in An, even though the type is not assigned by the ∆0

n worker.

Lemma 6.3. For all n, all requirements at level n are satisfied. Hence, for all n, An is
isomorphic to An+1.

Proof. Suppose that at level n, some requirement is not satisfied. The first one must have
type (b), to find an fn-image for d, since the requirements of other types are easily seen to
be satisfiable once the earlier requirements have been satisfied. Having failed to satisfy the
requirement of type (b) for the element d, we may also fail to satisfy later requirements
of type (a) or (b), but we still satisfy all requirements of type (c). Say that for earlier
requirements, we have fn(b̄) = ā. By the (e)k requirements, the Bn-type of d over b̄ in
An is generated by the Bn-type of b̄ and the ∃n-formulas in the type of d over b̄. Since we
know that ∆0

n+1 will satisfy all of its type (c) requirements, there will be a realization e
of this Bn-type over ā, and we can eventually satisfy the (b)-requirement by sending d to
this e.

We have shown that the structuresAn built by the different workers are all isomorphic
to some fixed structure A.

Lemma 6.4. The structure A is a model of T .

Proof. By Lemma 6.2, every P n-type assigned to a tuple b̄ in An+1 represents only true
statements about the tuple. However, every Bn-sentence ϕ ∈ T is in every P n-type. Thus,
ϕ is true in An+1, so ϕ is true in A. Since this holds for every n, A |= T .

Lemma 6.5. The model A is the saturated model of T .

Proof. We show that for each n, dim(A) ≥ n. The tuple (0, . . . , n − 1) is assigned
the generic Bn−1-type in An. For all k ≥ n, fk : Ak → Ak+1 is the identity function
on {0, . . . , n − 1}, and each Ak assigns the n-tuple (0, . . . , n − 1) to be Bk−1-generic.
Then by Lemma 6.2, this tuple satisfies the full generic type in An. Thus, the tuple has
dimension n.

Strongly minimal theories with recursive models 27

We have a ∆0
3 P

2-labeling ofA3, where this is a saturated model of T . By Lemmas 4.4
and 4.6, we get a recursive copy.

7 Boundedly saturated models of finite dimension

In this section, we consider Case 4, where M has finite dimension and is boundedly
saturated. By Lemmas 4.4 and 4.6, to show thatM has a computable copy, it is enough
to prove the following.

Theorem 7.1. Let T be a strongly minimal theory such that Tn+2 is ∆0
n uniformly in n,

and supposeM is a boundedly saturated model of dimension k. Then for some N there
is a copy ofM with a ∆0

N PN−1-labeling.

We will split the proof into two sub-cases, and we will say, in each sub-case, what
is N . For each n ≥ N , we will produce a structure An with a ∆0

n P
n−1-labeling. We

will also produce an isomorphism fn : An → An+1. We will say more later about the
complexity of fn. We fix in advance a tuple c̄ of k independent elements. The tuple c̄ is
known at all levels n ≥ N . It will form a basis for allAn, and it will be fixed by all of the
isomorphisms fn. The ∆0

n worker has access to Tn+2, and thus computes the Bn+1-type
of c̄ and enumerates the ∀n+2-type of c̄, by Lemma 2.6. For each n,An will have infinitely
many further Bn-independent elements, but each of these will become algebraic over c̄ at
some level.

Here is the first sub-case.

Sub-case 4 (a): There is some K such that for every n ≥ K, there is an ∃n+1-formula
ϕn(c̄, x) that is algebraic and consistent with tp(c̄) and the generic Bn−1-type p(c̄, x).

We may suppose that K > 2. We produce a copy of M with a ∆0
K PK−1-labeling.

Thus, we may let N = K. The difficulty in the construction is ensuring that each element
is algebraic over c̄. Towards this aim, for each even n ≥ K, the pair of workers ∆0

n and
∆0
n+1 will work together. In particular, ∆0

n+1 will create an element a, assign it a generic
Bn-type over c̄ and send it to an element satisfying an algebraic ∃n+2-formula in An+2.
The ∆0

n worker will identify the highest priority element to make algebraic, not satisfying
any algebraic Bn−1-formula, and will send this element to a, if it does not satisfy an
algebraic ∃n-formula.

In the course of the construction, we build the sequence of functions fn, for n ≥ K,
where fn is an isomorphism fromAn toAn+1, such that fn is ∆0

n+1, uniformly in n. Thus,
all of the composite maps fn−1 ◦ . . . ◦ fK are ∆0

n, and the ∆0
n worker can compute the

images in An of elements in AK . This gives a ∆0
n ordering < of An induced by the usual

28 Uri Andrews, Julia F. Knight

ordering <ω on the universe of AK . We will define fn using this order, and we will have
to argue that each fn is in fact a bijection, so that the order is well-defined.

By Lemma 2.6, ∆0
n−2 can enumerate the ∀n-type of c̄. Then ∆0

n−2 can enumerate the
algebraic ∃n-formulas ϕ(c̄, x). It follows that ∆0

n−1 can decide which ∃n-formulas ϕ(c̄, x)

are algebraic. By Lemma 3.2, given a P n-index for a type p(c̄, x), ∆0
n−1 can compute the

type. Then ∆0
n can determine whether p(c̄, x) contains an algebraic ∃n-formula. Recall

that ∆0
n assigns Bn−1-types to tuples in An. Thus, ∆0

n can easily find the <-first element
b ∈ An that does not satisfy any algebraic Bn−1-formula.

Note that ∆0
n+1 could find the <-least element of An for which the ∃n-type over c̄ is

generic. Of course, the construction is dynamic, and the workers will collaborate to make
sure that all elements are eventually algebraic over c̄. For each n ≥ K, ∆0

n arranges that
the element an that is right after c̄ in (the ω-ordering of)An is assigned the generic Bn−1-
type. For odd n, the ∆0

n worker finds an algebraic ∃n+1-formula ϕn(c̄, x) that is consistent
with the generic Bn−1-type p(c̄, x) and the generic type of c̄. By Lemma 5.3, it is ∆0

n to
identify such a ϕn(c̄, x). Say that ϕn(c̄, x) = (∃ȳ)ψ(c̄, x, ȳ), where ψ is ∀n. In addition to
the other requirements, the ∆0

n worker has the goal of making the fn-image of an satisfy
ϕn(c̄, x). For even n ≥ K, the ∆0

n worker acts to ensure that if en is the <-first element
of An that does not satisfy an algebraic Bn−1-formula, then either it satisfies an algebraic
∃n-formula or else fn(en) = an+1.

Here are the requirements:

(a) Find an fn-pre-image for some c ∈ An+1.

(b) Find an fn-image for some d ∈ An.

(c) If r(x̄) is the Bn−1-type assigned to a tuple ē, and s(x̄, y) is a Bn−1-type generated
by r(x̄) and the collection of ∃n−1-formulas in s(x̄, y), then realize s(ē, y).

(d) (If n is odd): Ensure that fn(c̄, an) satisfies ϕn(c̄, x).

(e) (If n is even): Ensure that if en is the <-first element of An whose Bn−1-type is
generic over c̄, then either en satisfies some algebraic ∃n-formula ψ(c̄, x) or else
fn(en) = an+1.

At level n, the single requirement of type (d) or (e) has highest priority. If n is odd,
we give the type (b) requirement for an highest priority among the remaining require-
ments. We start by saying how the (d) requirement is satisfied. Note that it is ∆0

n to find
ϕn(c̄, x) and to determine the number of realizations of ϕn(c̄, x). For an element of An+1

to satisfy an ∃n+1-formula ϕn(c̄, x) would normally be a Σ0
n+1 condition, but knowing the

number of such elements makes it ∆0
n+1. Thus, in a finite-injury fashion, we can change

Strongly minimal theories with recursive models 29

the fn-image of an finitely often before finding an image that satisfies ϕn(c̄, x). The only
remaining issue is that, when we assign Bn−1-types, we must verify that the types are
consistent with ϕn(c̄, an) and the generic type of c̄. This can be done, by Lemma 5.3.

Now, we describe how (e) requirements are satisfied. Let en be the <-first element of
An that does not satisfy an algebraic Bn−1-formula. This element is easily identified by
∆0
n. We can map it to an+1 unless we have assigned a Bn−1-type q(c̄, x, ȳ) to en and a

further tuple d̄, such that q(c̄, x, ȳ) is inconsistent with the generic Bn-type p(c̄, x). This
would mean that en satisfies some algebraic ∃n-formula ψ(c̄, x). Either way, requirement
(e) is satisfied.

The other requirements are handled exactly as in previous arguments, modulo the finite
injury incurred due to action on behalf of the type (d) or (e) requirements. Again, for a
requirement of type (b), we will have a family of “helping requirements” (e)k, so that
when the requirement of finding an image for d is injured for the kth time, we make b̄, d
satisfy the kth ∃n-formula, if this is consistent.

Lemma 7.2. For all n, the ∆0
n worker gives the P n−1-labeling of a structure, and every

requirement is satisfied. Therefore, the structures An are all isomorphic. Moreover, each
An is a model of T .

Proof. Note that, on each level, every (c) requirement is satisfied (since it is not subject to
injury). Thus, at each level, we do build a structureAn. As before, this guarantees that the
Bn−1-type assigned to a given tuple is actually realized by the tuple. Let n be least such
that some requirement at level n fails to be satisfied. Once the (d) or (e) requirement and
the (b) requirement for an are satisfied, the rest is proved as in Lemmas 6.2, 6.3, and 6.4.
For odd n, to see that the (d)-requirement is satisfied, recall that ϕn(c̄, x) is an algebraic
∃n+1-formula, so it has the form (∃ȳ)ψ(c̄, x, ȳ), where ψ is a ∀n-formula. Also note that
on each level, the tuple c̄ is generic. Using these facts, we can show the following.

Claim: There is a tuple ē in An+1 containing all realizations of ϕn(c̄, x), as well as wit-
nesses for each realization.

Proof of Claim. Let M be greatest such that (∃≥Mx)ϕn(c̄, x) is in the ∃n+1-type of c̄.
Consider the Bn-type q(c̄, x1, . . . , xM , ȳ1, . . . , ȳM) that is generated by the Bn-formulas
true of c̄, the formulas ψ(c̄, xi, ȳi), for 1 ≤ i ≤ M , and xi 6= xj , for 1 ≤ i < j ≤ M , and
further ∃n-formulas. The type (c) requirements at level n + 1 guarantee that q is realized
by some tuple ē in An+1. This is the tuple we want.

Take ē as in the Claim. Consider a stage large enough that the P n-index has settled
for the tuple ē in An+1. At this stage s, we can assign an image for an, and there will be
no further injury. To see that the (e) requirement is satisfied at an even level n, note that
each fk, for k < n, is total. This is because we are supposing n to be least so that some

30 Uri Andrews, Julia F. Knight

requirement at level n fails to be satisfied. Then en is well-defined. Once the ∆0
n worker

identifies en, we satisfy the (e) requirement. It follows that all An are isomorphic, and all
are models of T .

Lemma 7.3. For odd n, let ϕn(c̄, x) be the special formula found by the ∆0
n worker. Then

fn(an) satisfies ϕn(c̄, x). Thus, an is in the ∃n+1-algebraic closure of c̄.

Proof. This is immediate from the success of requirement (d) and Lemma 7.2.

Lemma 7.4. Let d be any element in AK . Then d ∈ acl(c̄).

Proof. Suppose, toward a contradiction, that d is the least element of AK that is not in
acl(c̄). Let n be even and sufficiently large that each constant less than d is mapped by the
composite function fn−1 ◦ . . . ◦ fK+1 ◦ fK to an element of aclBn(c̄). Then the image of d
inAn is en. Now, either d satisfies an algebraic ∃n-formula ϕ(c̄, x) or else fn(en) = an+1.
By the previous lemma, an+1 is algebraic over c̄. Therefore, d is algebraic over c̄.

In Sub-case 4 (a), we assumed that for all n ≥ K, there is an ∃n+1-formula that can
be used to make an element algebraic. We showed that the structure AK is a model of T
with a generic tuple c̄ such that every d ∈ AK is algebraic over c̄. This AK is a copy of
M with a ∆0

K PK−1-labeling. We now turn to the other sub-case.

Sub-case 4 (b): For infinitely many n, there is no ∃n+1-formula ϕn(c̄, x) that is algebraic
and consistent with tp(c̄) and the generic Bn−1-type for c̄, x.

In this sub-case, we will show that there is a copy ofM with a ∆0
3 P

2-labeling. (Thus,
we have the conclusion of Theorem 7.1 with N = 3.) The construction will have one
key feature that did not appear in the constructions in earlier sections or in Sub-case 4
(a). Earlier, the ∆0

n worker constructed an isomorphism fn via a finite injury construction,
so fn was ∆0

n+1, uniformly in n. In Sub-case 4 (b), fn will be constructed via an infinite
injury construction. As a consequence, we cannot say that fn is ∆0

n+1 uniformly, although
the argument will show that each fn is ∆0

n+1.
In general, when we begin the construction ofAn using a ∆0

n oracle, we will not know
whether there is a suitable ∃n+1-formula ϕn(c̄, x), algebraic and consistent with tp(c̄) and
the generic Bn−1-type for c̄, x. Thus, we cannot begin by finding it. Instead, we search
for such a ϕn(c̄, x), and we begin the construction of An and fn, assuming that no such
ϕn exists. Of course, if we find an appropriate ∃n+1-formula ϕn after we have already
committed to a formula that implies ¬ϕn(c̄, a), then we cannot use ϕn(c̄, x) to make the
element a algebraic over c̄. Instead, we will make some new element a′ algebraic via ϕn,
and we hope that the lower worker will succeed in mapping the first element that needs to
be made algebraic to this new a′.

Strongly minimal theories with recursive models 31

In the course of the construction, we build a sequence of functions fn each of which is
∆0
n+1, whose indices are uniformly ∆0

n+2 for n > 2. The maps f3, . . . , fn−1 are all known
by ∆0

n+1. Thus, for each An, we can consider the isomorphism F := fn−1 ◦ · · · ◦ f3 from
A3 to An. We consider An to be ordered by <, where this is the image under F of the
usual order <ω on ω (the universe of A3). Recall that ∆0

n can determine whether the Bn-
type p(c̄, x) with a given index is algebraic, and can check whether a given ∃n+1-formula
ϕ(c̄, x) is algebraic. As in Subcase 4 (a), ∆0

n assigns Bn−1-types. Once ∆0
n approximates

sufficiently much of the isomorphisms f3, . . . , fn−1 (in particular, fn−1), ∆0
n can locate

the <-least element of Bn that does not satisfy any algebraic Bn−1-formula ψ(c̄, x). We
call this element en.

We define inductively the “purpose” of each level n. There are three possible purposes:
A, B or C. The bottom level is an A level. If level n is an A level that does not find a
formula ϕn, then level n+ 1 is a B level if and only if there is an ∃n+2-formula ϕn+1(c̄, x)

that is algebraic and consistent with tp(c̄) and the generic Bn-type p(c̄, x). Otherwise,
level n + 1 is also an A level. If level n is a B level, then level n + 1 is automatically a
C level. If level n is a C level, then level n + 1 is automatically an A level. The idea is
that pairs where n is an A level and n + 1 is a B level will ensure that one more element
becomes algebraic. The purpose of C levels is to allow one level where nothing special
happens, which will guarantee enough saturation of the appropriate structures to ensure
that B levels succeed.

Throughout the construction, if level n−1 is an A level that fails to find a formulaϕn−1,
the ∆0

n worker will search for an ∃n+1-formula ϕn(c̄, x) that is algebraic and consistent
with the Bn+1-type of c̄ and the generic Bn−1-type p(c̄, x). Note that for ϕn to have these
properties is ∆0

n, by Lemma 5.3. If such a ϕn is found, then the ∆0
n-worker will re-start

the task of building fn, canceling fn(y) for every element y /∈ c̄. In other words, the ∆0
n

worker realizes that he is a B level, and from then on, he can work with that knowledge.

The ∆0
n worker will add a new element an, assign to c̄, an the generic Bn−1-type

p(c̄, x), and begin building fn again. Now, defining fn(an), and ensuring that it satis-
fies ϕn(c̄, x), has the top priority. The element an is labeled “algebraizable”. In this event,
∆0
n, knowing now that he is a B level worker and not an A-level worker, switches from at-

tempting to satisfy one requirement (called (f) on the list below) to a different requirement
(called (e) below). In particular, it is the role of a ∆0

n B level worker to label an element an
algebraizable and ensure that an is mapped to an element inAn+1 that is algebraic over c̄.
The task of the ∆0

n−1 worker below, an A level worker, is to ensure that the first element
that does not satisfy an algebraic Bn−2-formula either satisfies an algebraic ∃n-formula
ψ(c̄, x) or is mapped to the element an labeled algebraizable.

Note that what we have described above, finding the formula ϕn(c̄, x) and starting over
on building fn, happens at most once. The requirements are as follows:

32 Uri Andrews, Julia F. Knight

(a) Find an fn-pre-image for some c ∈ An+1.

(b) Find an fn-image for some d ∈ An.

(c)k If the type (b) requirement to define f(d) is injured for the kth time, and for the cur-
rent Bn-type p(ū) and Bn−1-type q(ū, x, v̄), p(ū) ∪ q(ū, x, v̄) is consistent with the
kth ∃n-formula ψk(ū, x) (in variables ū, x), then add a witness d̄′ to make ψk(b̄, d)

true in An.

(d) If the tuple ē is assigned theBn−1-type r(x̄), and s(x̄, y) is a type generated by r(x̄)

and the collection of ∃n−1-formulas in s(x̄, y), then realize s(ē, y).

The following two requirements depend on the nature of the layer n.

(e) If level n is a B level, then create a new element an, label it algebraizable, and
ensure that fn(an) satisfies the algebraic ∃n+1-formula ϕn(c̄, x).

(f) Suppose that level n is an A level and that there is no ∃n+1-formula ϕn(c̄, x) that
is algebraic and consistent with the generic Bn−1-type q(c̄, x) and the Bn+1-type
of c̄. Let en be the <-first element of An that does not satisfy any algebraic Bn−1-
formula. If some element an+1 of An+1 is labeled algebraizable, then ensure that
either en satisfies some algebraic ∃n-formula or else fn(en) = an+1.

If n is a C layer, then there is no (e) or (f) requirement.

The priorities are as follows: (e) has highest priority, (f) has second highest priority,
and (a)-(d) are all of lower priority with the (b)-requirement for en having highest priority
among these. The actions for requirements (a)-(d) are essentially as in the saturated case.
Note that if level (n−1) is an A level, it is not clear whether the ∆0

n worker should satisfy
requirement (e) or (f). Being a B level is then a Σ0

1(∆0
n) event, so, if a special formula

ϕn is found, then the (e) requirement combines with the (a)-(d) requirements exactly as
in Sub-case 4 (a), and they all succeed. The main difficulty will be to show that despite
injury from the (f) requirement, the requirements of types (a) and (b) can still be satisfied.

Note first that if, in attempting to satisfy the (f)-requirement, we find a formulaϕn, then
the (f)-requirement is permanently satisfied. This removes any restraints for the require-
ment and injures all lower-priority requirements (i.e., fn becomes undefined for all ele-
ments except for c̄). This can happen at most once. The ∆0

n+1 worker searches for an ∃n+2

algebraic formula ϕn+1, and upon finding one, enumerates a single pair (ϕn+1, an+1).
Thus, the pair (ϕn+1, an+1) where ϕn+1 is the formula found, and an+1 is the labeled
element, forms a Σ0

2(∆0
n) singleton. So, the ∆0

n worker can use Σ0
2-approximation to ap-

proximate the element an+1. This means that at each stage, the ∆0
n worker has a guess as

Strongly minimal theories with recursive models 33

to the identity of an+1, which is allowed to be “undefined”. If, in fact an+1 is defined, then
from some stage onwards, the ∆0

n worker’s guess will be correct. If, on the other hand,
the ∆0

n+1 worker never defines an element to be an+1, then the ∆0
n worker will infinitely

often guess “undefined”, but may also infinitely often guess various elements of An+1.

As a consequence, fn will be defined by an infinite injury process. That is, as stages
go by, fn may send an element x to infinitely many different images based on different
guesses as to the identity of an+1, but then the correct image is the one based on the guess
that an+1 is “undefined”. As discussed above, after finite injury, the ∆0

n worker can find en,
where this is the <-first element ofAn not satisfying any algebraic Bn−1-formula ψ(c̄, x).
We can map en to the special element an+1 unless it satisfies some algebraic ∃n-formula,
witnessed in the course of assigning Bn−1-types.

An “(f)-true stage” is a stage at which the approximation correctly determines whether
ϕn exists, and, in addition, either identifies the element an+1 labeled as algebraizable, or
correctly guesses that an+1 is “undefined”; i.e., that the ∆0

n+1-worker never defines an
element as an+1. A more precise formulation of the type (b) requirement for d says that
for all but finitely many (f)-true stages, d is in the domain of fn and the value of fn(d) is
the same on all of these stages. The (a)-requirements are made precise in the same way.
Then our function fn will be the limit of the ∆0

n approximations to fn along the (f)-true
stages.

The main difficulty in this construction is as follows. Having made progress towards
building fn, we have a tuple en, b̄ on which we have defined fn, say fn(en, b̄) = e′, b̄′,
and we have a further tuple d̄ on which we have not defined fn. Later, via our Σ0

2(∆0
n)-

approximation, we come to believe that an+1 is defined and is equal to k. We now attempt
to make fn(en) = k, if en has not become algebraic over c̄ via some ∃n-formula, wit-
nessed by our assignment of a Bn−1-type to c̄, en, b̄, d̄. While believing that k is labeled
algebraizable, we need to continue building fn. We may later stop believing that k was la-
beled algebraizable, and in this case, we want to be able to make fn return to fn(en) = e′

and fn(b̄) = b̄′.

It appears that the actions made to extend the construction at stages where we assign
fn(en) = k may make it impossible to revert to the earlier fn with fn(en, b̄) = e′, b̄′.
There would be no problem if, in fact, some element is labeled algebraizable, for then
this would be a standard finite-injury phenomenon. In particular, once the approximation
settles down on the correct an+1, the construction would continue with no further injury
from the (f)-requirement. However, in the case where no element is labeled algebraizable
by the ∆0

n+1 worker, we need to ensure that each later requirement of type (a) or (b) can
succeed on the (f)-true stages.

It will turn out that our (c)k-requirements will suffice to ensure that we satisfy (b)-
requirements, but in order to ensure we satisfy (a)-requirements, we will need to protect

34 Uri Andrews, Julia F. Knight

the image of fn. For some tuples a, ē in An+1, we will engage in the process explained
below to “certify” this tuple. If we do so, then we will attempt to preserve fn(en, b̄) = a, ē

on the (f)-true stages. That is, when we change fn in order to send en to our current
guess d at an+1, we will ensure that the Bn-type of fn(en, b̄) is the same as the Bn type
of a, ē. That is, we look for a tuple d̄ so that d, d̄ is assigned the same Bn-type to be the
new image of en, b̄. If we set fn(en, b̄) = d, d̄, then any of our later Bn−1-commitments
will still be consistent with the Bn-type of a, ē, since when we make the extension, we
check consistency with the Bn-type of the current image and these images have the same
Bn-type. We now describe the process of certifying a tuple a, ē.

Lemma 7.5. Let p(c̄, a, ē) be a given guess at the Bn-type of c̄, a, ē. For a sub-tuple ḡ of
ē, it is ∆0

n to check if

{(∃ȳ)ψ(c̄, en, ḡ, ȳ) | ψ ∈ p(c̄, a, ē))} is contained in the generic ∃n+1-type.

Proof. Since {(∃ȳ)ψ(c̄, en, ḡ, ȳ) | ψ ∈ p(c̄, a, ē))} is a subset of the generic ∃n+1-type if
and only if

(∀ψ ∈ p(c̄, a, ē)) ((∃ȳ)ψ(c̄, en, ḡ, ȳ) is in the generic ∃n+1-type) ,

and by Lemma 2.6, the generic ∃n+1-type is Π0
1(Tn+1), the whole condition is Π0

1 relative
to Tn+1 ⊕ p(c̄, a, ē)). Thus, it is Π0

n−1 to verify that

{(∃ȳ)ψ(c̄, en, ḡ, ȳ) | ψ ∈ p(c̄, a, ē)}

is contained in the generic ∃n+1-type.

If the empty tuple ḡ does not satisfy this condition, then we will not certify the tuple
a, ē. If the empty tuple satisfies the condition, then we find a maximal ḡ ⊆ ē that satis-
fies the condition. Let k̄ be b̄ r ḡ. Having the partition of b̄ into ḡ, k̄, we find, for each
ki ∈ k̄, and for k̄∗i = k̄ − ki, a ∀n-formula ψi(c̄, en, ḡ, y, z̄) such that ψ(c̄, a, ḡ, ki, k̄

∗
i) is

in p(c̄, a, ḡ, k̄) and (∃z̄)ψi(c̄, en, ḡ, y, z̄) is not in the generic ∃n+1-type. (These formulas
witness the maximality of ḡ.)

Let Ψ = ∧ki∈k̄ψi(c̄, en, ḡ, ki, k̄∗i). Say that c̄, a, ḡ has length m and let h̄ be a generic
tuple of length m. Over h̄, there are only finitely many tuples z̄ satisfying Ψ(h̄, z̄). Let K
be the number of such tuples. Note that

χ(c̄, x) := ¬(∃∞u1)(∃∞u2) . . . (∃∞um)(∃≥K z̄)Ψ(c̄, x, ū, ȳ)

is equivalent to a ∀n+1-formula, and by Lemma 2.1, it is ∆0
n to figure out how to replace

(∃∞ui) here by (∃≥liui) for an appropriate li. Since for a generic tuple h̄, there are K
realizations of Ψ(h̄, z̄), if χ(c̄, a) were true, then a would be algebraic over c̄ via a ∀n+1-
formula.

Strongly minimal theories with recursive models 35

The condition

Qa,ē := (∀ψ(c̄, x) ∈ the generic Bn-type)((∃x)(χ(c̄, x) ∧ ψ(c̄, x)) ∈ tp∃n+2
(c̄))

is Π0
1 over a positive instance of tp∃n+2

(c̄) along with the generic Bn-type, which is Π0
n,

so condition Qa,ē is Π0
n. Condition Qa,ē declares that it is possible to have the generic

Bn-type over c̄ and also be algebraic via χ. In particular, if condition Qa,ē is true, then
the ∆0

n+1 worker can use χ as ϕn+1, and we know that the ∆0
n+1 worker will identify

some element as an+1. When the ∆0
n-worker sees ¬Qa,ē, then we say it certifies the tuple

a, ē. If the approximation to the Bn-type assigned to a, ē changes, then the certification is
removed.

Now, we describe how this certification determines how we define fn when ∆0
n changes

its guess about the identity of an+1 from “undefined” to d for some d. At this moment,
we have defined fn(c̄, en, b̄) = c̄, a, ē. The first thing we do is choose a maximal initial
sub-tuple ē0 of ē so that a, ē0 has been certified. We un-define f on some values of b̄,
if necessary, so that we have ē0 = ē. Now, we need to re-define fn so that fn(en) = d

instead of fn(en) = a. Before doing so, we insist on finding a tuple d̄ so that the Bn-type
assigned to c̄, d, d̄ is the same as that assigned to c̄, a, ē. Until we find such a d̄, we con-
tinue the construction with fn(c̄, en, b̄) = fn(c̄, a, ē), ignoring the new approximation that
an+1 = d. If we find a d̄ as needed, then we re-define fn(c̄, en, b̄) = c̄, d, d̄. Note that if
the approximation to the Bn-type of c̄, d, d̄ changes, we revert to fn(c̄, en, b̄) = fn(c̄, a, ē)

until we find a new d̄ with the correct type. This is the privilege that a, ē has gained by
being certified. We must argue below that if in fact an+1 = d, then a tuple d̄ as needed
will be found.

The (c)k-actions are exactly as usual on stages where (f) sees no element labeled alge-
braizable. In particular, if s is the kth stage where (f) sees no element labeled algebraiz-
able, and fn(b) is undefined, although fn(b) was defined at the previous stage where (f)
saw no element labeled algebraizable, then we attempt to make the kth ∃n-formula true of
b over the higher priority tuple.

Similarly, every time ∆0
n guesses some element d is an+1, and fn is changed accord-

ingly, we have a (c)k-strategy which works assuming that fn(en) = d. In particular, on the
kth stage where fn(b) is undefined and fn(en) = d, we attempt to make the kth ∃n-formula
true of b over the higher-priority tuple.

Lemma 7.6. Every requirement succeeds. Thus, for all n, An is a structure with a ∆0
n

P n−1-labeling and An is isomorphic to An+1.

Proof. If level n is a B or C level, we need only verify the success of requirements (a)-(e)
or (a)-(d). The argument is exactly as in Lemma 7.2 of Sub-case 4 (a). So, we suppose
that n is an A level, and that all requirements at levels below n are satisfied, and we

36 Uri Andrews, Julia F. Knight

show that all requirements at level n are satisfied. We must show that the (a)-(d) and (f)-
requirements all succeed. If the ∆0

n worker finds an algebraic ∃n+1-formula ϕn(c̄, x), then
the (f)-requirement is fulfilled in that way at a finite stage, and the other requirements are
satisfied as in Lemma 7.2 of Sub-case 4 (a).

Suppose there is no algebraic ∃n+1-formula ϕn(c̄, x) consistent with the genericBn−1-
type over c̄. We consider the (f) requirement at level n. First, suppose that ∆0

n correctly
believes an element d is labeled algebraizable by the ∆0

n+1 worker. Recall that en is the
<-first element of An not satisfying any algebraic Bn−1-formula. The (f)-requirement is
to map en to d unless en satisfies some algebraic ∃n-formula. The difficulty is that some
tuple a, ē may have been certified, where fn(c̄, en, b̄) = c̄, a, ē. Then we insist that the full
Bn-type of c̄, en, b̄ is preserved by fn. Thus, we must argue that there is a way to map en
to d while preserving this full Bn-type. Since d is labeled algebraizable, the (n+ 1)-level
is a B level and the (n + 2)-level is a C-level. Thus, all requirements succeed on levels
n+ 1 and n+ 2. It follows that An+1

∼= An+3.
The (d)-requirements forAn+3 are satisfied, and Lemma 1.7 implies thatAn+1 realizes

all consistent Bn+1-types. Recall our partition ē = ḡ, k̄. Let h̄ be a tuple in An+1, of the
same length as ḡ, such that h̄ is Bn+1-generic over c̄, d. By ¬Qa,ē, there are at least K
realizations z̄ of Ψ over c̄, d, h̄. If there were infinitely many z̄ satisfying Ψ(c̄, d, h̄, z̄),
then d would satisfy

(∃∞u1) . . . (∃∞um)(∃∞z̄)Ψ(c̄, x, ū, z̄).

This would be equivalent to an algebraic ∃n+1-formula ϕ(c̄, x) that is consistent with the
generic Bn-type, contradicting our assumption that no ϕn(c̄, x) is found. We consider two
cases.

Case 1: Suppose that for some z̄ for which Ψ(c̄, d, h̄, z̄) holds in An+1, the Bn-type of
d, h̄, z̄ over c̄ is the same as that of a, ḡ, k̄. In this case, we may take d, h̄, z̄ as our next
fn-image for en, b̄.

Case 2: Suppose that for all z̄ satisfying Ψ(c̄, d, h̄, z̄) in An+1, the Bn-type of d, h̄, z̄
over c̄ is not the same as that of a, ḡ, k̄. Since there are only finitely many z̄ such that
Ψ(c̄, d, h̄, z̄) holds, we can let ρ(c̄, x, ū, z̄) be a Bn formula that is satisfied by d, h̄, z̄ for
all of these z̄, and is not satisfied by a, ḡ, k̄. Since the ∃n+1-type of c̄, a, ḡ is contained
in the generic ∃n+1-type, a generic tuple must satisfy (∃z̄)(Ψ(c̄, x, ū, z̄) ∧ ¬ρ(c̄, x, ū, z̄)).
However, c̄, d, h̄ does not satisfy this formula.

Since a, ē was certified, we know ¬Qa,ē. Thus, we have (∃≥K z̄)Ψ(c̄, d, h̄, z̄). Since
none of the tuples d, h̄, z̄ satisfy ρ(c̄, x, ū, z̄), we see that:

α(c̄, d) := (∃∞u1) . . . (∃∞um)(∃K z̄)(Ψ(c̄, d, ū, z̄) ∧ ρ(c̄, d, ū, z̄))

Strongly minimal theories with recursive models 37

is true inAn+1. But for a generic tuple x, ū, we know that there are exactly K realizations
of Ψ(c̄, x, ū, z̄) and one of them satisfies ¬ρ(c̄, x, ū, z̄). Thus α(c̄, d) is an algebraic ∃n+1-
formula that is consistent with the genericBn-type over c̄, since d is labeled algebraizable,
so c̄, d is given the generic Bn-type. Thus, there would be a special formula ϕn found on
level n.

We have seen that if there is no special formula ϕn, and the fn-image of en, b̄ is cer-
tified, then it is possible to change the fn-image of en, b̄, when we guess that an+1 is
defined, in such a way that we can return to the old fn-image if we later believe that an+1

is not defined. If there actually is an element an+1 ∈ An+1 that ∆0
n+1 has labeled alge-

braizable, then, after finitely many steps, ∆0
n will see this. In this case, after we assign

fn(c̄, en) = c̄, d, the other level n requirements are satisfied just as in the saturated case.
It remains to see that (a) and (b) requirements can succeed if ∆0

n, working on require-
ment (f), infinitely often falsely believes that some element of An+1 is labeled algebraiz-
able. Suppose the first requirement to fail is a (b) requirement, finding an fn-image for d.
There are infinitely many stages where the ∆0

n-worker correctly guesses that no element
is labeled algebraizable on level n + 1. Moreover, all of the (c)k requirements associated
with d will act on these (f)-true stages. It follows that the Bn-type of d over the previous
constants is generated by the ∃n-formulas. Let p(c̄, b̄, d) be this Bn-type. By minimality
of n, the functions fk are defined for all k < n, so ∆0

n eventually knows the element en.
Consider an (f)-true stage s late enough that en is known (so, by its higher priority,

en ∈ b̄ or en = d), fn(c̄, b̄) will not change on any later (f)-true stage, and the P n+1-
indices in An+1 have settled down on a tuple large enough to contain a realization m

of p(x̄, ȳ, z) over fn(c̄, b̄). Suppose further that s is large enough that for no element d′

before m does fn(c̄, b̄), d′ satisfy the fragment of the ∃n-type realized already by c̄, b̄, d.
Then at any (f)-true stage s′ > s, fn will send d to m. This means that the (b) requirement
is satisfied after all.

Suppose that the first requirement to fail is an (a) requirement, to find a pre-image
for c. Let b̄ be the tuple of constants ≤ c and the part of ran(fn) determined for higher
priority (b)-requirements. Let a be the image of en on all large enough (f)-true stages.
Let c̄, a, ē be the initial segment of ω that contains c̄, a, and b̄. Then at some stage s, the
approximation to the Bn-type of c̄, a, ē and its sub-tuples will settle. Further, a, ē will be
certified. To see this, first note that the ∃n+1-type of c̄, a is contained in the generic ∃n+1-
type. Otherwise, a satisfies an algebraic ∃n+1-formula that is consistent with the generic
Bn−1-type, so a formula ϕn will be found, contrary to assumption. If Qa,ē were true, this
would imply that there is an element an+1 labeled algebraizable, and we are considering
the case where there is no such element. Thus ¬Qa,ē must hold, so we will certify a, ē at
some stage s′ > s. Let t > s′ be the next (f)-true stage at which we determine an fn-pre-
image for c, say fn(d̄) = c̄, a, ē. Then at every non-(f)-true stage, we insist on keeping the

38 Uri Andrews, Julia F. Knight

same Bn-type of fn(d̄) so that we can return to fn(d̄) = c̄, a, ē at every later (f)-true stage.
Thus, the requirement (a) is satisfied.

Lemma 7.7. If the ∆0
n worker is a B level worker, and this worker labels an element an

algebraizable with a formula ϕn(c̄, x), then an is algebraic over c̄ via ϕn(c̄, x).

Proof. This follows from the satisfaction of the (e) requirement for B level workers and
the success of the other requirements ensuring that An ∼= An+1.

Lemma 7.8. Let en be the <-least element of An that does not satisfy any algebraic
Bn−1-formula. Then en ∈ acl(c̄).

Proof. Suppose, towards a contradiction, that en /∈ acl(c̄). Letm > n be an A level. Since
we are in Sub-case 4 (b), let k ≥ m be least so that no ϕk is found. This k is also an A
level. Let l+ 1 > k be the least B level; thus, level l is an A level that finds no formula ϕl.
Since el is the image of en inAl under the composition of fn, . . . fl−1, the (f)-requirement
ensures that either el ∈ acl(c̄) or the fl-image of el in Al+1 is labeled as algebraizable.
Then by Lemma 7.7, el satisfies an algebraic formula over c̄.

Lemma 7.9. Every element of A3 is algebraic over c̄.

Proof. Suppose, toward a contradiction, that d is the <-least element not in acl(c̄). Let n
be large enough that each element <-before d is in aclBn−1(c̄). Then the image of d under
the composition of f3, ..., fn−1 is en. By Lemma 7.8, d is in acl(c̄) after all.

Thus, A3 is a model of T in which c̄ satisfies the generic type (Lemma 7.6) and every
element is algebraic over c̄. Therefore, it is a copy ofM.

Acknowledgments. The first author’s research was partially supported by NSF grant DMS-1201338 and by
NSF Grant No. 0932078000 while he was in residence at the Mathematical Sciences Research Institute in
Berkeley, California, during the Spring 2014 semester.

References
[1] U. Andrews, “The degrees of categorical theories with recursive models”, Proc.

Amer. Math. Soc., vol. 141(2013), pp. 2501–2514.

[2] U. Andrews, “A new spectrum of recursive models using an amalgamation construc-
tion”, J. Symbolic Logic, vol. 76(2011), pp. 883–896.

[3] U. Andrews, “New spectra of strongly minimal theories in finite languages”, Ann.
Pure Appl. Logic, vol. 162(2011), pp. 367–372.

[4] U. Andrews and J. F. Knight, “Presenting non-1-saturated strongly minimal struc-
tures”, in preparation.

Strongly minimal theories with recursive models 39

[5] C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hier-
archy, Elsevier, 2000.

[6] E. Fokina, “Arithmetic Turing degrees and categorical theories of computable mod-
els”, Mathematical logic in Asia, World Sci. Publ., Hackensack, NJ, 2006, pp. 58–69.

[7] S. S. Goncharov, “Strong constructivizability of homogeneous models”, Algebra and
Logic, vol. 17(1978), pp. 363–388.

[8] S. S. Goncharov, V. S. Harizanov, M. C. Laskowski, S. Lempp, and C. McCoy, “Triv-
ial, strongly minimal theoreis are model complete after naming constants”, Proc.
Amer. Math. Soc, vol. 131(2003), pp. 3901–3912.

[9] S. S. Goncharov and B. Khoussainov, “Complexity of categorical theories with com-
putable models”, Algebra and Logic, vol. 43(2004), pp. 650–665.

[10] L. Harrington, “Recursively presentable prime models”, J. Symb. Logic, vol.
39(1974), pp. 305–309.

[11] E. Hrushovski, “A new strongly minimal set”, Ann. Pure Appl. Logic, vol. 62(1993),
pp. 147–166

[12] N. G. Khisamiev, “On strongly constructive models of decidable theories”, Izvestiya
Akademii Nauk Kazakhskoı̈, SSR. Seriya Fiziko-Matematicheskaya, (1974), pp. 83–
84, 94.

[13] B. Khoussainov, M. C. Laskowski, S. Lempp, D. R. Solomon, “On the
computability-theoretic complexity of trivial, strongly minimal models”, Proc. Amer.
Math. Soc., vol. 135(2007), pp. 3711–3721

[14] B. Khoussainov and A. Montalbán, “A computable ℵ0-categorical structure whose
theory computes True Arithmetic”, J. Symb. Logic, vol. 75(2010), pp. 728–740.

[15] J. F. Knight, “Degrees of models with prescribed Scott set”, in Classification: Proc.
of Joint U.S.-Israel Workshop, ed. by Baldwin, 1987, pp. 182–191.

[16] J. F. Knight, “A metatheorem for constructions by finitely many workers”, J. Symb.
Logic, vol. 55(1990), pp. 787–804.

[17] J. F. Knight, “Constructions by transfinitely many workers”, Annals of Pure and
Appl. Logic, vol. 46(1990), pp. 211–234.

[18] J. F. Knight, “Non-arithmetical ℵ0-categorical theories with recursive models”, J.
Symb. Logic, vol. 59(1994), pp. 106–112.

[19] M. Lerman, A Framework for Priority Arguments, ASL, 2010.

[20] M. Lerman and J. H. Schmerl, “Theories with recursive models”, J. Symb. Logic,
vol. 44(1979), pp. 59–76.

40 Uri Andrews, Julia F. Knight

[21] A. Montalbán, “Priority arguments via true stages”, J. Symb. Logic, vol. 79(2014),
pp. 1315–1355.

[22] M. G. Peretyat’kin, “A criterion of strong constructivizability of a homogeneous
model”, Algebra and Logic, vol. 17(1978), pp. 290–301.

