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Abstract. We study computably enumerable equivalence relations (or, ceers), under computable
reducibility ¤, and the halting jump operation on ceers. We show that every jump is uniform
join-irreducible, and thus join-irreducible. Therefore, the uniform join of two incomparable ceers is
not equivalent to any jump. On the other hand there exist ceers that are not equivalent to jumps,
but are uniform join-irreducible: in fact above any non-universal ceer there is a ceer which is not
equivalent to a jump, and is uniform join-irreducible. We also study transfinite iterations of the
jump operation. If a is an ordinal notation, and E is a ceer, then let Epaq denote the ceer obtained
by transfinitely iterating the jump on E along the path of ordinal notations up to a. In contrast
with what happens for the Turing jump and Turing reducibility, where if a set X is an upper bound
for the A-arithmetical sets then Xp2q computes Apωq, we show that there is a ceer R such that
R ¥ Idpnq, for every finite ordinal n, but, for all k, Rpkq § Idpωq (here Id is the identity equivalence

relation). We show that if a, b are notations of the same ordinal less than ω2, then Epaq � Epbq,

but there are notations a, b of ω2 such that Idpaq and Idpbq are incomparable. Moreover, there is no
non-universal ceer which is an upper bound for all the ceers of the form Idpaq where a is a notation
for ω2.

1. Introduction

Recently, there has been a renewed interest in studying equivalence relations on the set ω of natural
numbers under the reducibility ¤, where R ¤ S if there exists a computable function f such that,
for all x, y P ω,

x R y ô fpxq S fpyq.

The first systematic investigation of this reducibility goes back to Ershov (see e.g., [9]). More recent
papers, with applications to computable model theory and computable algebra, include [7, 10, 11].
A natural and interesting particular case is provided by restriction of ¤ to computably enumerable
equivalence relations (which will be abbreviated as ceers). The earliest paper fully dedicated to
ceers (therein called positive equivalence relations) is [8], followed by other papers motivated by
applications to logic, in view of the numerous examples of ceers naturally arising in logic: see for
instance [3, 4, 13, 14, 17, 19].

Let � be the equivalence relation given by R � S if R ¤ S and S ¤ R. Then one can define, in
the usual way, the degrees of equivalence relations (i.e., the �-equivalence classes of equivalence
relations), and in particular the poset P of degrees of ceers, which is bounded (see for instance
[1]), i.e., with least element 0, consisting of just the trivial ceer, and greatest element 1: the
ceers belonging to 1 are called universal. It is also worth recalling that this structure extends the
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structure of the 1-degrees of infinite c.e. sets: Given a set X define RX to be the equivalence
relation so that x RX y if and only if x � y or x, y P X. It is not difficult to show (see for instance
[1]) that if X,Y are infinite c.e. sets then X ¤1 Y if and only if RX ¤ RY ; moreover if Y is c.e.
and Z ¤ RY then Z � RX for some c.e. set X. It turns out in this way that the interval of degrees
of ceers rdegpIdq, degpRKqs (where Id denotes the identity realtion) is isomorphic to the interval of
c.e. 1-degrees r01,0

1
1s, where 01 is the 1-degree of any infinite and coinfinite decidable set, and 011

is the 1-degree of the halting set K. This fact has been exploited in [1] to show that the first order
theory of the poset of degrees of ceers is undecidable.

Gao and Gerdes [12] define a useful notion of jump of a ceer.

Definition 1.1. Given a ceer R, define

x R 1 y ô rx � y or ϕxpxqÓR ϕypyqÓs .

The ceer R1 is called the halting jump ceer of R: in the following we simply call it the jump of R.

The main properties of the operation R ÞÑ R1 are summarized in the following theorem:

Theorem 1.2. [12, 1] The following properties hold:

(1) R ¤ R 1;
(2) R ¤ S if and only if R 1 ¤ S 1;
(3) If R is not universal then R 1 is not universal;
(4) if R is not universal, then R   R1.

Proof. Item (1) is [12, Proposition 8.3(1)]; item (2) is [12, Theorem 4]; item (3) is [12, Corollary
8.5(2)]; item (4) is [1, Theorem 4.3]. �

In particular we have a well-defined jump operation on degrees, given by pdegpRqq1 � degpR1q: this
jump operation is an order embedding, and takes every degree to a bigger degree, except when it
can not become strictly bigger, i.e., on the greatest element of P. A degree of a ceer is a jump
degree if it it in the range of the jump operation on degrees.

Given equivalence relations R,S on ω, let R` S be defined by

x R` S y ô

#
u R v if x � 2u and y � 2v,

u S v if x � 2u� 1 and y � 2v � 1.

Notice that ` induces a well defined binary operations on degrees: if a and b are the degrees of R
and S, respectively, then a` b is the degree of R` S. Moreover R` S satisfies R,S ¤ R` S.

Henceforth we will restrict our attention only to equivalence relations which are ceers, and conse-
quently only to degrees of ceers, i.e., degrees in P. Clearly, if R and S are ceers then R ` S is a
ceer, hence the degree of R ` S is an upper bound of the degrees of R,S, but it need not be the
least upper bound: in fact ([1]) in P there are degrees without least upper bound.

Definition 1.3. Define a degree e to be uniform join-irreducible if whenever e ¤ a ` b, then
e ¤ a, or e ¤ b. A ceer E is uniform join-irreducible if its degree is uniform join-irreducible, i.e.,
whenever E ¤ R` S, then either E ¤ R or E ¤ S.

As the degree of a`b is an upper bound of a and b, if e is uniform join-irreducible, then its degree
e is join-irreducible, i.e., for all degrees a,b for which the join a_b exists, if e ¤ a_b, then e ¤ a,
or e ¤ b.
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In Section 2 we investigate the interrelations between the property of being a jump degree, and
uniform join-irreducibility. We show that every jump is uniform join-irreducible, and thus every
jump degree is join-irreducible. Therefore, the uniform join of two incomparable degrees is not a
jump. On the other hand, uniform join-irreducibility does not characterize the property of being
a jump degree, as there exist degrees that are not jumps, but are uniform join-irreducible: in fact
above any a strictly below 1 there is a degree which is not a jump, and is uniform join-irreducible.
The notions of computable inseparability, and effective inseparability play an important role in
this investigation. In Section 3 we study transfinite iterations of the jump operation. Given an
ordinal notation a, and a ceer E, let Epaq denote the ceer obtained by transfinitely iterating the
jump on E along the path of ordinal notations up to a. We show that if a and b are notations for
the same ordinal less than ω2, then Epaq � Epbq for every ceer E. On the other hand, the story is
quite different at ω2: there are notations a, b of ω2 such that Idpaq and Idpbq are incomparable ceers
(where we recall that Id is the identity equivalence relation). Furthermore, for any non-universal

ceer Y , there is a notation a P O for ω2 so that Idpaq ¦ Y . In contrast with what happens for the
Turing jump and Turing reducibility, where if a set X is an upper bound for the A-arithmetical
sets then X2 computes Apωq, we show that there is a ceer R such that R ¥ Idpnq, for every finite
ordinal n, but, for all k, Rpkq § Idpωq.

Our main references for computability theory are the textbooks [6, 16, 18].

2. Jumps of ceers

In this section we prove that every degree in the range of the jump is not uniform join-reducible
(Theorem 2.4), so there are degrees ¥ 01 that are not jump degrees, the degree of any uniform join
of two incomparable ceers being so. However, uniform join-irreducibility does not characterize the
property of being a jump, as (Theorem 2.11) above any degree of a non-universal ceer, there are
uniform join-irreducible degrees that are not jumps.

The notions of computable inseparability, and effective inseparability will play a fundamental role
in the rest of the paper. Recall that a pair of disjoint sets A,B is computably inseparable if there
is no computable set X such that A � X � ω r B. And a pair of disjoint sets A,B is effectively
inseparable (shortly, e.i.) if there exists a partial computable function ψ (called a productive
function for the pair) such that, for every pair of c.e. indices u, v,

A �Wu &B �Wv &Wu XWv � Hñ ψpu, vqÓ &ψpu, vq RWu YWv.

Clearly, effective inseparability implies computable inseparability. For every i, let

Ki � tj : ϕjpjqÓ� iu :

it is known, see e.g., [16, Theorem 7.XII(a)(c)], that Ki and Kj are effectively inseparable if i � j.
Note that K �

�
iKi, where K is the halting set.

A ceer E is called computably inseparable (respectively, effectively inseparable, abbreviated as e.i.),
if each pair of its distinct equivalence classes is computably inseparable (respectively, e.i. ). Clearly,
if a ceer is e.i. then it is also computably inseparable. It is known that there exist ceers that yield
partitions of ω into e.i. sets, see [2], or [4]. If E is a computably inseparable ceer then E has no
computable equivalence classes.

Recall:
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Proposition 2.1. [12, Proposition 8.3(v)] If E has no computable equivalence classes, and E ¤ R1,
then E ¤ R.

Proof. See [12]. �

This yields the following corollary:

Corollary 2.2. If E has no computable equivalence classes and is not universal, then E is not
equivalent to a jump.

Proof. Suppose R1 ¤ E ¤ R1, and E has no computable classes. By the previous proposition, we
have E ¤ R, thus R1 ¤ R, which implies, by Theorem 1.2(4), that R is universal. Therefore E is
universal. �

The following lemma is motivated by the fact that in general, for given equivalence relations E,F ,
the ceer E ` F need not be the least upper bound of E and F , or equivalently it is not true in
general that E ` E ¤ E.

Lemma 2.3. If R and S are ceers then R1 ` S1 ¤ pR` Sq1.

Proof. By the s-m-n-Theorem, consider two 1-1 computable functions f, g so that, for all x, i,
ϕfpiqpxq � 2ϕipiq, ϕgpiqpxq � 2ϕipiq�1, and (using padding) f, g have disjoint ranges. We will show
that the function h defined by hp2xq � fpxq and hp2x� 1q � gpxq gives the needed reduction. For
two even numbers 2x, 2y,

2x R1 ` S1 2y ô x R1 y

ô x � y _ ϕxpxqÓR ϕypyqÓ

ô x � y _ 2ϕxpxqÓR` S 2ϕypyqÓ

ô fpxq � fpyq _ ϕfpxqpfpxqqÓR` S ϕfpyqpfpyqqÓ

ô fpxqpR` Sq1fpyq

ô hp2xqpR` Sq1hp2yq.

Similarly, we can show that

2x� 1 R1 ` S1 2y � 1 ô hp2x� 1qpR` Sq1hp2y � 1q

for two odd numbers. For 2x and 2y � 1, these are never R1 ` S1 equivalent: towards a contra-
diction, assume that hp2xqpR` Sq1hp2y � 1q, i.e., fpxqpR` Sq1gpyq. Since fpxq � gpyq, we have
ϕfpxqpfpxqqÓR` S ϕgpyqpgpyqqÓ, but this can not be, since ϕfpxqpfpxqq is even and ϕgpyqpgpyqq is
odd. �

We are now ready to show that every jump is uniform join-irreducible, hence join-irreducible. Under
the embedding of the 1-degrees of infinite c.e. sets into the ceers mentioned in the introduction,
the halting set K is mapped to Id11, the jump of the ceer with only one class. Thus, this theorem
is a generalization of the well-known fact that the 1-degree (equivalently the m-degree) of K is
join-irreducible.

Theorem 2.4. If E1 ¤ R` S, then E1 ¤ R or E1 ¤ S.
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Proof. Suppose f witnesses that E1 ¤ R ` S. For i, j P K, fpiq and fpjq have the same parity:
otherwise, f�1p2ωq would give a separation of Kϕipiq and Kϕjpjq, which are effectively inseparable.

Suppose fpiq is even for every i P K (a similar argument will apply if fpiq is odd for every i P K).
Thus the set Y � f�1p2ω� 1q is a decidable set in ωrK. We will show that E1 ¤ R. For this, we
first show that there exists an infinite decidable set X contained in ωr pK Y Y q. Use a productive
function p of ωrK to enumerate an infinite c.e. set X0 � txn : n P ωu so that X0 � ωr pK Y Y q:
let x0 � ppy0q where y0 is a c.e. index of Y ; having defined xn, let xn�1 � ppyn�1q where yn�1 is
a uniformly found index of Y Y tx0, . . . , xnu. Since X0 is an infinite c.e. set, it contains an infinite
decidable set X which has the desired properties.

Now, we define the function g witnessing E1 ¤ R. Fix a computable injection h : X Y Y to X
(notice that fphpzqq is even for every z P X Y Y ), and define

gpzq �

$&
%

fpzq
2 , if z P ω rX Y Y ,

fphpzqq
2 , if z P X Y Y .

The claim follows from a case-by-case inspection:

 If x, y P X Y Y then x, y R K; as also hpxq, hpyq R K, we have x E1 y if and only if x � y if
and only if hpxq � hpyq if and only if hpxq E1 hpyq if and only if fphpxqq R` S fphpyqq if

and only if fphpxqq
2 R fphpyqq

2 , which implies the claim;

 x, y R X Y Y , then both fpxq, fpyq are even, and gpxq � fpxq
2 , gpyq � fpyq

2 : the claim follows
trivially since f is a reduction from E1 to R` S;

 it remains to consider the case in which one of them is in X Y Y and the other is not:
suppose for instance that x P X Y Y and y R X Y Y ; notice that since at least one of x, y is
not in K, and they are distinct, we have that x��E1 y; on the other hand we have hpxq P X,
and thus hpxq R K, moreover hpxq � y, thus hpxq��E1 y, from which the claim follows, since
f is a reduction from E1 to R ` S, and fphpxqq and fpyq are both even, the latter being
even as y R Y .

�

Definition 2.5. If tSiuiPω is a family of equivalence relations, we define
À

i Si to be the equivalence
relation

xu, xy
à
i

Si xv, yy ô u � v&x Su y.

Theorem 2.6. If tSiu is a uniformly c.e. family of ceers (i.e., the relation in x, y, i, which holds
if x Si y, is c.e.), and E1 ¤ `iPωSi, then E1 ¤ Si for some i.

Proof. Let f witness the reduction. As above, for some j, fpiq is in the jth column for every i P K.
We complete the proof exactly as above using the equivalence: `iPωSi � Sj ``i�jSi. �

Corollary 2.7. If R and S are incomparable, then R1 ` S1   pR` Sq1.

Proof. Otherwise, by Lemma 2.3, we would have pR` Sq1 � R1 ` S1. Then by Theorem 2.4, either
S1 ¤ pR ` Sq1 ¤ R1 or R1 ¤ pR ` Sq1 ¤ S1. But then, by Theorem 1.2(2), R ¤ S or S ¤ R, which
is a contradiction. �

Corollary 2.8. There are nonzero degrees which are not jumps.
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Proof. Take R and S to be incomparable ceers. Then R ` S cannot be equivalent to any jump
E1, as otherwise by Theorem 2.4 E1 would be below R or S, which would cause R ¤ S or vice
versa. �

Let now E be a ceer such that there is no decidable set X � H, ω which is E-closed (i.e., satisfying
that X � rXsE � ty : pDx P Xqrx E ysu), and let f be a computable function reducing E ¤ R` S.
Then E ¤ R or E ¤ S, otherwise the set X � tx : fpxq evenu would be a nontrivial decidable set
which is E-closed.

Theorem 2.4 extends the following previously known result to jumps.

Proposition 2.9. [8] Let E be any ceer such that no E-closed set X is decidable, unless X � H,
or X � ω. Let tSiuiPω be a uniformly c.e. family of ceers. If E ¤

À
i Si, then E ¤ Si for some i.

Proof. Suppose f gives a reduction E ¤
À

i Si. If f has image in at least two different columns,

then for some j, f�1pωrjsq is a decidable E-closed set, which is neither H nor ω. �

Corollary 2.10. If E is a computably inseparable ceer, then E is uniform-join irreducible, and
hence join irreducible.

Proof. Suppose E is either the join or the uniform join of R and S. Then E ¤ R` S, thus E ¤ R
or E ¤ S, because there is no nontrivial decidable set which is E-closed, as otherwise such a set
would separate two distinct equivalence classes. �

One could hope that perhaps being a join or being a uniform join is the only obstruction to being
a jump degree. The following theorem shows that this is false:

Theorem 2.11. Given any non-universal ceer R, there exists a ceer E ¥ R so that E is not
equivalent to a jump, and E is not uniform join-reducible and hence not join-reducible.

In fact, this theorem follows by Corollary 2.2 and Corollary 2.10, together with the following
theorem, which is of independent interest.

Theorem 2.12. Let R be any non-universal ceer. Then there exists a non-universal e.i. ceer
E ¥ R.

Proof. We construct E so that 2i E 2j if and only if i R j, thus R ¤ E; we also construct an
auxiliary ceer S such that S ¦ E, so that E is not universal; and we guarantee that E is e.i. .

Requirements and their strategies. For k P ω and a   b P ω, we have the requirements:

Pa,b : rasE � rbsE ñ fa,b is productive for rasE and rbsE ,

Nk : ϕk is not a reduction of S to E,

where fa,b is a computable function built by us, witnessing that the two equivalence classes rasE
and rbsE form an e.i. pair, if distinct.

We suppose in the following to have fixed a computable priority ordering tRi : i P ωu, of order type
ω, of the requirements.
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Pa,b-strategies. We construct the computable function fa,b by stages: when the strategy for Pa,b

acts, it extends fa,b to the least pair pu, vq on which fa,b is still undefined, putting fa,bpu, vq � m,
where m is new and odd; if fa,bpu

1, v1q � m1 has been already defined, and we see that m1 P Wu1

then we E-collapse m1 and b; and if we see that m1 PWv1 then we E-collapse m1 and a.

We will give an inductive argument below to show that no two “active” odd numbers are ever
equivalent. (As defined later, m is “active” if m is in the range of fa,b for a Pa,b which may later
cause it to collapse to either a or b.) From there, we will be able to see that no two even numbers
become equivalent unless we collapse them for the sake of copying R.

Nk-strategies. The strategies for Nk requirements are slightly different. Nk starts by searching for
four elements a0, b0, a1, b1 that are new in S in the kth column so that ϕk of these elements are
odd: if found then we implement the Nkpa0, b0, a1, b1q-module as described below. In the meantime,
as ϕk on more and more elements in the kth column converges to even numbers, we cause S on
the kth column to agree with a universal ceer, extending this agreement when S agrees with its
ϕk image in E. We will argue that since R is not universal, this process must stop either with
agreement failing, ϕk being partial, or ϕk giving four elements in the kth column with odd images.
The Nkpa0, b0, a1, b1q-module is described here:

The Nkpa0, b0, a1, b1q-module. The module aims at making S not reducible to E via ϕk; it is acti-
vated for the first time only if the computations ϕkpa0q, ϕkpb0q, ϕkpa1q, ϕkpb1q are all defined, give
odd numbers, and a0, b0, a1, b1 are pairwise S-inequivalent.

(1) If already ϕkpa0q E ϕkpb0q or already ϕkpa1q E ϕkpb1q; then do nothing.
(2) Otherwise, S-collapse a0 and b0, and initialize lower-priority strategies; and
(3) if later ϕkpa0q E ϕkpb0q, then go to stage (2) and proceed similarly with a1, b1 in place of

a0, b0, respectively.
(4) After completing (3) for a1, b1, if already

ϕkpa0q E ϕkpb0q E ϕkpa1q E ϕkpb1q,

then do nothing;
(5) otherwise, S-collapse a0, b0, a1, b1, and initialize lower-priority requirements.

Outcomes of Nkpa0, b0, a1, b1q. The module Nkpa0, b0, a1, b1, q has the following outcomes:

(1) If (1) holds for the pair a0, b0 then a0 �S b0 and ϕkpa0q E ϕkpb0q; similarly, if (1) holds for
the pair a1, b1 then a1 �S b1 and ϕkpa1q E ϕkpb1q.

(2) If we wait forever at (3) for the pair a0, b0 to see ϕkpa0q E ϕkpb0q then a0 S b0 and ϕkpa0q��E
ϕkpb0q; similarly, if we wait forever at (3) for the pair a1, b1 to see ϕkpa1q E ϕkpb1q then
a1 S b1 and ϕkpa1q��E ϕkpb1q.

(3) Otherwise, at some point, the strategy yields ai S bi and ϕkpaiq E ϕkpbiq, for both i � 0, 1.
When this happens, if already ϕkpb0q E ϕkpa1q, then we keep b0 �S a1; if ϕkpb0q��E ϕkpa1q,
then our action in (5) makes b0 S a1, and keeps ϕkpb0q��E ϕkpa1q, unless next item holds.

(4) ϕkpa0q E ϕkpb0q E ϕkpa1q E ϕkpb1q: we will in fact show that eventually this outcome can
not happen.

Note that outcomes (1) through (3) are all winning outcomes for Nk. On the other hand, we can
rule out outcome (4), as we can exclude the possibility that we end up with

ϕkpa0q E ϕkpb0q E ϕkpa1q E ϕkpb1q
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and we have already S-collapsed a0, b0, a1, b1. Note that when we defined a0 S b0 we had ϕkpa0q��E
ϕkpb0q. The E-collapse of ϕkpa0q and ϕkpb0q to, say, a number a (which is the least in its equivalence
class) is due to the action of a higher-priority strategies of the form Pa,b; after this convergence of
ϕkpa0q and ϕkpb0q, the lower-priority P -requirements are initialized, and thus they cannot move
ϕkpa0q or ϕkpb0q to new equivalence classes, since they can only move their markers, which by initial-
ization are chosen to be different from all elements in the equivalence classes of ϕkpa0q and ϕkpb0q.
Similarly, when we defined a1 S b1, we had ϕkpa1q��E ϕkpb1q. The E-collapse of ϕkpa1q and ϕkpb1q
to, say, c (which is the least in its equivalence class) must be the effect of a later action of a higher-
priority strategy of the form Pc,d. When we S-collapsed a0, b0, a1, b1, we had ϕkpb0q��E ϕkpa1q, hence
a��E c. When later we E-collapse a and c, either a or c stops being the least representative in its
equivalence class, and so either Pa,b or Pc,d becomes “obsolete”, and initializes Nk. We will show,
however, that eventually Nk is not initialized anymore, so there is a final choice of the witnesses
which allows for Nk only winning outcomes.

Environments for the requirements. A Pa,b requirement uses a parameter fa,b,sp q which is a finite
function approximating the function fa,b as in the informal description given above. An Nk re-
quirement uses parameters ckpsq, dkpsq (which yield the interval Ikpsq � txk, xy : ckpsq ¤ x ¤
dkpsqu), and the four odd numbers ak,0psq, ak,1psq, bk,0psq, bk,1psq which are used to implement the
Nkpak,0psq, bk,0psq, ak,1psq, bk,1psqq-module.

The construction. Let us fix a universal ceer T defined by xx, iy T xy, jy and and only if i � j and
x Ai y where Ai is the ceer generated by the set Wi, with computable approximation tTs : s P ωu
as a c.e. set. Let us fix also a computable approximation tRs : s P ωu to R as a c.e. set.

For a requirement to be initialized, it means that its parameters are set to be undefined.

Stage 0. All requirements are initialized.

Stage s�1. Suppose we have already dealt with all requirements Rj , with j   i   s, after skipping
all P -requirements that have already been declared obsolete.

If ppsq is a parameter, or a computation of a partial computable function, as evaluated at stage s,
then for simplicity we will omit to mention the stage s, thus simply writing p, instead of ppsq. We
distinguish the following three cases.

Case 1. If Ri � Pa,b and a, b are not the least in their respective E-equivalence classes, then declare
Pa,b obsolete (thus we never consider Pa,b again), and end the stage (this will cause all lower priority
requirements to be initialized);

Case 2. Ri � Pa,b and a, b are the least in their respective E-equivalence classes, then define fa,b,s�1

to be the extension of fa,b to the least (by code) pair u, v on which fa,b is undefined, and define
fa,b,s�1pu, vq � m, where m is a new odd number.

If fa,bpu
1, v1q � m1 is already defined and m1 P Wu1 then E-collapse b and m1; if m1 P Wv1 then

E-collapse a and m1.

Case 3. Suppose Ri � Nk. Carry on the first action that applies below:
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(1) if ck is undefined, then choose ckps � 1q (call it ck) to be new (so, all numbers xk, jy with
j ¥ ck are bigger than all numbers so far mentioned in the construction), let dkps�1q � ck�1
(call it dk), and

Ikps� 1q � txk, xy : ck ¤ x ¤ dku,

(call it Ik);
(2) if ϕkpjq converges for all j ¤ xk, dky, and there are four S-inequivalent elements z in Ik so

that ϕkpzq is odd, then
(a) if ak,0, ak,1, bk,0, bk,1 are undefined, then define ak,0ps�1q, ak,1ps�1q, bk,0ps�1q, bk,1ps�1q

to be the least four S-inequivalent numbers j P Ik such that ϕkpjq is odd (call them
pak,0, ak,1, bk,0, bk,1);

(b) if ak,0, ak,1, bk,0, bk,1 are defined, then perform the Nkpak,0, ak,1, bk,0, bk,1q-module;
(3) if ϕkpjq converges for all j ¤ xk, dky, and there are not four S-inequivalent elements in Ik

with odd ϕk-images, then code T in S by S-collapsing all pairs xk, iy, xk, jy P Ik such that
their ϕk-images are even and so that i Ts j.

(4) if after (3), we have that for all xk, iy, xk, jy P Ik such that their ϕk-images are even,

xk, iy S xk, jy ô ϕkpxk, iyq E ϕkpxk, jyq

then let dkps�1q � dk�1, and consequently Ikps�1q � txk, xy : ckps�1q ¤ x ¤ dkps�1qyu.

If Nk has acted, or i� 1 � s, then end the stage; otherwise go to the next Ri�1.

Define Es�1 to be the equivalence relation generated by Es plus the pairs pi, jq that have been
E-collapsed at s� 1, plus the pairs p2i, 2jq such that i Rs j.

When we end the stage, if R is the last requirement that has acted, then we initialize all requirements
of lower priority than R.

Verification. The verification is based on the following lemmata.

We call an odd number n active at stage s if n � fa,b,spu, vq and n��Es a and n��Es b.

Lemma 2.13. At every stage s:

(1) 2i Es 2j ñ i Rs j
(2) If n is active, then n��Es 2i for every i.
(3) If n � m are active, then n��Es m.

Proof. All three conditions clearly hold at stage 0. Supposing all three conditions hold at stage
s, we verify the conditions at stage s � 1. If 2i Es�1 2j but 2i��Es2j, then this collapse must have
either been caused by collapse in Case 2 or by the final instruction that we Es�1-collapse 2i and
2j if i Rs j. In the latter case, we have i Rs j. In the former case, we must have the odd element
fa,bpu

1, v1q being Es-equivalent to either 2i or 2j, which would contradict (2) at the previous stage.

Suppose n is active and n Es�1 2i for some i. Then this collapse is either caused by collapse in
Case 2 or by the final instruction that we Es�1-collapse 2i and 2j if i Rs j. In the latter case, we
would have n Es 2j, which contradicts (2) at the previous stage. In the former case, we would have
n Es�1 2i is caused by the collapse of an odd element m with some other element. Thus either
n Es m or 2i Es m. If n Es m, then we would have two active odd elements being equivalent at
stage s contradicting (3). If 2i Es m, then we have an active element being equivalent to an even
element, contradicting (2) at stage s.
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Suppose n � m are active at stage s�1 and n Es�1 m. Then again, this collapse is either caused by
collapse in Case 2 or by the final instruction that we Es�1-collapse 2i and 2j if i Rs j. As neither
can be Es-equivalent to an even number by (2) at the previous stage, we rule out the latter case.
Then there is some m1 active which collapses with another element and either n Es m

1 or m Es m
1.

Either way, this contradicts (3) at stage s. �

Lemma 2.14. For every i, j, we have i R j ô 2i E 2j. Hence R ¤ E.

Proof. By Lemma 2.13, we have the right-to-left direction. By the final step of every stage, we
ensure that if i R j then 2i E 2j. �

Lemma 2.15. Each requirement R initializes lower-priority strategies only finitetely often, and if
R � Nk, for some k, then R requires attention finitely often: in particular lims dkpsq exists.

Proof. We prove this by induction. Assume the claim true of every requirement R1, with R1   R.
If R � Nk, after all R1 with R1   Nk stop initializing lower priority strategies, we have that Nk

cannot be further initialized, and when this happens we appoint the last value ck of ckpsq. To see
that Nk requires attention only finitely often, since the N -module itself is finitary, it is enough to
show that lims dkpsq exists. Suppose that this is not the case, then dkpsq, after the last initialization
of Nk monotonically increases to 8. Then for all but finitely many T -classes rxsT , we have that
every ϕkpxk, iyq is even for all i P rxsT with i ¡ ck. By padding and the definition of T , there is a
reduction of T to itself given by x ÞÑ xl, xy which misses these finitely many classes, where l P ω.
Thus,

i T j ô xl, iy T xl, jy

ô xk, xl, iyy S xk, xl, jyy

ô ϕkpxk, xl, iyyq E ϕkpxk, xl, jyyq

ô
ϕkpxk, xl, iyyq

2
R
ϕkpxk, xl, jyyq

2
,

This gives a computable reduction of T to R, but this is impossible since R is not universal. This
contradicts the assumption that lims dkpsq does not exist.

Thus all outcomes of Nk are finitary, and thus Nk also initializes lower priority requirements only
finitely often. Similarly, if R � Pa,b: after its last initialization, Pa,b may initialize lower-priority
strategies at most once, namely, when it becomes obsolete. �

Lemma 2.16. Each requirement is satisfied, or eventually obsolete.

Proof. Let Pa,b be given, and Pa,b not eventually obsolete. By Lemma 2.15, there is a least stage
after which Pa,b is not initialized any more. Then after this stage, we construct fa,b witnessing that
prasE , rbsEq is an e.i. pair.

Let us now consider the case of an Nk-requirement, and let s0 be a stage after which Nk is never
again initialized, so no higher-priority N -requirement requires attention after s0, nor does any
higher-priority P -requirement become obsolete after s0. Let ck denote the limit value of ckpsq, and
by Lemma 2.15, let dk be the limit vale of dkpsq. So we have that Ik � txk, xy : ck ¤ x ¤ dkyu is
the limit value of Ikpsq.

If ϕk is not total on r0, xk, dkys or for some x, y, we have

 rx T y ô ϕkpxk, xyq E ϕkpxk, yyqs,
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then ϕk is not a reduction function and thus Nk is satisfied. Otherwise, we eventually appoint four
permanent witnesses ak,0, bk,0, ak,1, bk,1. For simplicity, for i � 0, 1, write ai � ak,i and bi � bk,i.
We may suppose that action taken by Nk makes a0 S b0 and a1 S b1; otherwise, again Nk is
satisfied. We must exclude the possibility that the numbers ϕkpa0q, ϕkpb0q, ϕkpa1q, ϕkpb1q all E-
collapse, and the numbers a0, b0, a1, b1 all S-collapse. But, as explained in the informal description
of the outcomes of the Nkpa0, b0, a1, b1q-module, this possibility would require some P   Nk to
become obsolete at some stage after s0, thus providing one more initialization of Nk, which is
impossible by the choice of s0. �

This concludes the proof of the theorem. �

3. Transfinite iterations of the jump operation

For a finer analysis of the properties of the jump operation on ceers, we use computable ordinals,
and Kleene’s system O of ordinal notations: for all unexplained notions in this regard (including the
function |a|O expressing the ordinal with notation a; the sum �O on ordinal notations, and Kleene’s
strict partial order  O on notations) the reader is referred to Rogers’ textbook [16, §11.7-8].

Definition 3.1. We define, for each ceer E and a P ω, a ceer Epaq by recursion as follows:

If a � 1, then Epaq � E.

If a � 2b, then Epaq � pEpbqq1.

If a � 3 � 5e, then Epaq �
À

nPω E
pϕepnqq.

If a is not of the form 2b or 3 � 5e, then Epaq � Id.

Lemma 3.2. For every a P O, E ¤ Epaq. If a, b P O and a  O b, then Epaq ¤ Epbq, and if E is
non-universal then Epaq   Epbq. Moreover, the reduction witnessing Epaq ¤ Epbq is uniform in a, b
and does not depend on E.

Proof. The proofs follow (using Theorem 1.2) by standard inductive arguments on notations. �

Theorem 3.3. If E is any computably inseparable ceer, R is any ceer, and a P O is any notation,
then E ¤ Rpaq if and only if E ¤ R.

Proof. The right to left direction is clear since R ¤ Rpaq. We now prove the left to right direction by
transfinite induction on notations for a. If a � 2b, and E ¤ Rpaq � pRpbqq1, then by Observation 2.2,

E ¤ Rpbq, thus E ¤ R by inductive hypothesis. If a � 3 �5e, and E ¤ Rpaq, then by Proposition 2.9,
E ¤ Rpϕepnqq for some n, thus E ¤ R by inductive hypothesis.

�

Corollary 3.4. Above any non-universal ceer R there is a non-universal ceer E such that E ¦ Rpaq

for any a P O.

Proof. Given a non-universal ceer R, take E to be computably inseparable and ¥ R1, as constructed
in Theorem 2.11 (R1 is not universal by Theorem 1.2(4)). If E ¤ Rpaq for any a P O, then E ¤ R
by the previous theorem, but then R1 ¤ E ¤ R, contradicting the assumption that R is not
universal. �

Theorem 3.5. If a, b P O and |a|O   |b|O, then for any non-universal ceer X, Xpbq ¦ Xpaq.
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Proof. Suppose towards a contradiction that there are pairs of notations a, b P O so that |a|O  

|b|O and Xpbq ¤ Xpaq. Choose such a pair which minimizes |a|O. Since X is not universal, and

X 1 ¤ Xpbq ¤ Xpaq, we see that Xpaq ¦ X, so |a|O is not 0. Let c  O b be so |c|O � |a|O.

First, suppose that |a|O is a successor ordinal, so a � 2d. Then, since pXpcqq1 ¤ Xpbq ¤ Xpaq �

pXpdqq1, we have that Xpcq ¤ Xpdq contradicting the minimality of a.

Next, suppose that |a|O is a limit ordinal, so a � 3 � 5e. Then pXpcqq1 ¤ Xpbq ¤ Xpaq. By Theorem

2.6, there is some n so that pXpcqq1 ¤ Xpϕepnqq. But then ϕepnq  O a contradicts the minimality of
|a|O. �

Throughout what follows, we also use the notation

exp0pbq � b

expx�1pbq � 2expxpbq.

Theorem 3.6. If a, b P O are notations for α   ω2, then for any E, Epaq � Epbq.

Proof. Suppose that the theorem is false, and let α   ω2 be least so that the theorem fails. First, we
show that α � ω. Let a, b be any notations for ω. This means a � 3 � 5ea and b � 3 � 5eb where each
ϕeapnq is of the form expkp1q for some m, and similarly for ϕebpnq. Then to see Epaq ¤ Epbq, we give
a reduction: For each n, find some new m so that ϕebpmq ¡ ϕeapnq. Then we can uniformly find

a reduction from Epϕea pnqq to Epϕeb
pmqq since these are just finite jumps. Putting these reductions

together yields a reduction witnessing Epaq ¤ Epbq. Clearly the least α where the result fails cannot
be a successor ordinal since X ¤ Y if and only if X 1 ¤ Y 1. For any other limit ordinal ω�pk�1q   ω2,
with notations a � 3 � 5ea and b � 3 � 5eb , we simply fix some n and m so that ϕeapnq is a notation
for an ordinal ¡ ω � k and ϕebpmq is a notation for an ordinal ¡ |ϕeapnq|O. Then by induction, we

can get a reduction of the first n columns of Epaq into the first m� n columns of Epbq, and above
these the rest is exactly as in the case of α � ω. �

In the rest of this section we will often use the jumps of the identity equivalence relation Id (where
x Id y if x � y). If κ is the partial computable function κpxq � ϕxpxq, then (as observed in [12]),
for every x, y, n P ω,

x Idpnq y ô pDi ¤ nqrκipxqÓ� κipyqÓs,

where ki is the i-th iterate of κ, starting with κ0, the identity function. More generally, if X is an
equivalence relation, then

x Xpnq y ô pDi   nqrκipxqÓ� κipyqÓ _κnpxqÓX κnpyqÓs.

In particular, we have the following lemma.

Lemma 3.7. For every n, Idpnq is properly contained in Idpn�1q.

Proof. The proof is trivial. Properness of the inclusion follows from Theorem 1.2. �

The following theorem stands in contrast to the situation for the Turing degrees. In Turing re-
ducibility, if a set X is ¥T all A-arithmetical sets, then the double Turing jump X2 of X computes
Apωq.

In the proof of next theorem and some of the following ones, we make use of infinite computable
lists of fixed points as given by the recursion theorem, which is formally justified as follows. We fix
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a single index j so that we control ϕj by the Recursion Theorem, and we then take a computable
list pjiqiPω of indices for the columns ϕjipkq � ϕepxi, kyq. We can then control the ϕji in any order
we wish, as we are simply controlling the single function ϕj . Alternatively, since a computable
sequence of indices can be viewed as the range of a computable function f , a formal justification
to the argument is also provided by the Case Functional Recursion Theorem [5]: see also [15] for
useful comments about this theorem.

Theorem 3.8. There is a ceer X so that for all n, X ¥ Idpnq and for all k, Xpkq § Idpωq

Proof. We present the ideas of the proof and omit some details. We build X with the property
that only numbers in the same column can ever collapse, and we ensure that X satisfies two types
of requirements. Firstly, we code each Idpnq as a column of X. Secondly, we ensure ϕj is not a

reduction of Idpωq to Xpkq. Obviously, any finite number of requirements of the first kind commit
to entire columns of X, but these together only force X to code some Idpnq for a finite n. Similarly,
we will make sure that actions for the requirements of the second type only effect X on finitely
many columns, allowing infinitely many remaining columns for later requirements of the first type.
Action for requirements of the first type are clear: You choose an unused column and code.

We now discuss action for requirements of the second type: We want to ensure that ϕj is not a

reduction of Idpωq to Xpkq. Let n be largest so that some higher priority requirement has some
column of X committed to coding Idpnq, and let m � n� k� 1. The idea is that no higher priority
requirement gives a way to decode Idpmq from Xpkq. We will use this for our diagonalization.

We fix an infinite collection F of indices which we control via the recursion theorem, and let x0, x1

be from F . The mth column of Idpωq is Idpmq, so we consider the reduction ϕj1pxq � ϕjpxm,xyq

from Idpmq to Xpkq. We now diagonalize against ϕj1 being a reduction from Idpmq to Xpkq. This

allows us to forget about Idpωq and work with the more managable Idpmq.

The goal is to force the enemy to cause κkpϕj1px0q and κkpϕj1px1qq to converge while we have not
yet caused κmpx0q or κmpx1q to have converged. Once this happens, we will have enough power to
diagonalize as needed. We now describe how we entice κkpϕj1px0qq to converge. Note that while
we control ϕx0 via the recursion theorem, we have no power over the identity (κ0) of ϕj1px0q, and
thus have no direct control over convergences of κ on ϕj1px0q. Our only control is via the supposed

reduction ϕj1 from Idpmq to Xpkq. Using an auxiliary element, x2 P F , we first wait for ϕj1px2q to

converge, and then make κpx0q Ó� κpx2q � x3 for an x3 P F . This implies that x0 Idpmq x2. In order

to cause ϕj1px0q X
pkq ϕj1px2q, it must be that κpϕj1px0qq converges. Using similar strategies and

many auxiliary elements, we can cause κkpϕj1px0qq and κkpϕj1px1qq to converge. In the meantime,

we have caused κkpx0q and κkpx1q to have converged.

Now, ϕj1px0q X
pkq ϕj1px1q if and only if κkpϕj1px0qq is X-equivalent to κkpϕj1px1qq. Since we control

X, we are in a position to diagonalize. That is true unless κkpϕj1px0qq � xl, ay and κkpϕj1px1qq �

xl, by where the lth column is already a coding column for a higher priority requirement. In this

case, that column is coding precisely Idpsq for some s ¤ n. Thus we have ϕj1px0q X
pkq ϕj1px1q if

and only if a Idpsq b.

We once more employ the strategy above to force κspaq and κspbq to converge. This causes us to
cause κk�spx0q and κk�spx1q to converge to new members of F . Critically, k�s ¤ k�n   m. That
is, we have not yet caused κmpx0q or κmpx1q to converge. At this point, it has been determined
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whether or not κspaq � κspbq, and thus whether or not ϕj1px0q X
pkq ϕj1px1q, and we can still

determine whether or not x0 Idpmq x1. This allows direct diagonalization. �

We now turn our attention to the case of understanding jumps of a ceer based on notations for ω2.
Unlike in the case of notations for ordinals   ω2, we will see that the degree of the jump depends
on the notation. We will see that for any degree of a ceer X, there is a least degree of a ceer of
the form Xpaq where a is a notation for ω2. We will see that there are incomparable degrees of this
form, and that the only upper bound to the set of degrees of this form is the universal degree.

Theorem 3.9. There is a notation c P O for the ordinal ω2 so that for any ceer X and notation
b P O for an ordinal ¥ ω2, then Xpcq ¤ Xpbq. Moreover, the reduction witnessing Xpcq ¤ Xpbq can
be found uniformly in b and does not depend on X.

Proof. We fix c to be a notation generated as follows: the notation c0 for ω is given by the function
ϕepnq � expnp1q. Let ck be the chosen notation for ω � pk � 1q. The notation ck�1 for ω � pk � 2q
is given by the computable function ϕpnq � expnpckq. Finally, the notation for c is given by the
computable function ψpnq � cn. This particular choice of c0 is special for the purpose of the

following lemma. The choice of ck�1 is so that Xpck�1q � pXpckqqpc0q.

Lemma 3.10. Given a reduction of the ceer X to Y pmq, m P O, and given any notation n � 3 �5e P
O so that m  O n, we can uniformly find a reduction of Xpc0q to Y pnq.

Proof. We have that m  O ϕeplq  O ϕepl � 1q for some l. Thus 2ϕeplq ¤O ϕepl � 1q. Thus, since

X ¤ Y pmq, we have that X ¤ Y pmq ¤ Y pϕeplqq and thus X 1 ¤ Y p2ϕeplqq and thus X 1 ¤ Y pϕepl�1qq

uniformly. Repeating this process, we see that X2 ¤ Y pϕepl�2qq uniformly, and more generally

Xpexpkp1qq ¤ Y pϕepl�kqq uniformly, which gives a reduction of Xpc0q to Y pnq �

Let b � 3 � 5e be any notation for an ordinal ¥ ω2. It suffices to find uniformly an increasing
sequence n0   n1   . . . and reductions of Xpciq to Xpϕepniqq. To find n0, we wait until we see some
3 � 5e0  O ϕepyq for some e0 and y. We then declare n0 � y. Using the lemma above, we can

uniformly find a reduction of Xpc0q to Xp3�5e0 q, and thus to Xpϕepn0qq. Next, we search for some
n1 ¡ n0 and an e1 so that ϕepn0q  O 3 � 5e1  O ϕepn1q. Since Xpc0q reduces to ϕepn0q, the lemma

allows us to uniformly reduce Xpc1q � pXpc0qqpc0q to Xp3�5e1 q, and thus to Xpn1q. Repeating as such
gives the desired reduction. �

Now we show that there can be incomparable degrees of the form Xpaq where a is a notation for
ω2. In fact, this happens even with X � Id.

Theorem 3.11. There are two notations a, b P O for the ordinal ω2 so that Idpaq and Idpbq are
incomparable ceers.

Proof. Let ten : n P ωu and tin : n P ωu be recursive sets of indices that we control by the recursion

theorem. Let e be so ϕepnq � 23�5en , and a � 3 � 5e. Similarly, let i be so ϕipnq � 23�5in and let
b � 3 � 5i.
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Requirements. We satisfy requirements:

Pn : ϕn is not a reduction of Idpaq to Idpbq

Rn : ϕn is not a reduction of Idpbq to Idpaq

Fix a priority ordering of order type ω.

Throughout the course of the construction, we will be choosing values for ϕenpmq and ϕinpmq for
each m P ω. At stage s, we determine the values of ϕenpmq and ϕinpmq when n,m ¤ s. We choose
ϕe0p0q � ϕi0p0q � 1. We always choose ϕen�1p0q � en to ensure that en  O en�1 as needed to
make e P O. Similarly, we choose ϕin�1p0q � in. Unless some instruction is given otherwise, we will

always choose ϕenpm � 1q � 2ϕen pmq. At stage s, for any n P ω, we let N s
n be 1 plus the number

of x so that we have determined ϕenpxq to be an odd number (i.e. a notation for a limit ordinal).
Similarly, we let M s

n be 1 plus the number of x so that we have determined ϕinpxq to be an odd
number. In other words, if we give no special instructions, we will continue the construction to
make en be a notation for the ordinal ω �pΣk¤nN

s
kq and in be a notation for the ordinal ω �pΣk¤nM

s
kq.

Actions. For the sake of requirement Pn, we act as follows: Choose l fresh, and let k � xl, xy P
tlu � K. We wait for ϕnpkq Ó� xj, gy. Once we see this convergence, we mention ϕnpkq so that
future requirements will choose fresh numbers larger than this. Then, we let m be largest so that
ϕelpmq is defined. We then make ϕelpm� 1q � ϕelpmq �O cΣk¤jMk

. Recall from above that ck is a
canonical notation for the ordinal ω � k.

The action for the sake of the requirement Rn is symmetric to the action for requirement Pn.

At each stage, we say that a requirement Pn or Rn requires attention if it has not yet acted since
being initialized or if ϕnpkq has converged (thus ending its waiting phase). At each stage, we let
the highest priority requirement requiring attention act.

Whenever we act for the sake of requirement Pn (or Rn) by choosing l or by mentioning ϕnpkq and
choosing ϕelpm� 1q (or ϕilpm� 1q), we initialize all lower priority requirements.

It is straightforward to see that each requirement is reinitialized only finitely often. Thus, each
3 � 5ej�1 is a notation for some ordinal of the form 3 � 5ej �O c where c is a notation for an ordinal
  ω2. It follows that 3 � 5e is a notation for ω2. Similarly, 3 � 5i is a notation for ω2.

Lemma 3.12. Each requirement is satisfied.

Proof. Let s be a stage at which Pn is last initialized. Then the value of l and k chosen is final. If
ϕnpkq does not converge, then Pn is satisfied. So, suppose it does converge to xj, gy. Since every
lower priority requirement is initialized, thus will choose a fresh l and only ever gives instructions for
convergence on its own ϕel or ϕil , no lower priority requirement will ever give special instructions
for ϕed or ϕid for any d ¤ j. Similarly, no higher priority requirement will ever give any instructions
as that would reinitialize Pn after stage s, contrary to the choice of s. This shows that 3 �5ij will be
a notation for ω � pΣk¤nM

s
kq. The instruction given for ϕel ensures that 3 �5el is a notation for some

ordinal greater than this. It follows from Theorem 3.5 that Id23�5
el

¦ Id23�5
ij

. Suppose now towards

a contradiction that ϕn is a reduction of Idpaq to Idpbq. By the proof of Theorem 2.6, since Id23�5
el

reduces to Idpbq with an element of K being sent to the jth column, it follows that Id23�5
el

reduces

to the jth column of Idpbq. But this just means that Id23�5
el

¤ Id23�5
ij

, which is a contradiction.
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�

The proof of the theorem is now complete. �

We now see that there is no non-universal ceer which is an upper bound for all the ceers of the form
Y paq where a is a notation for ω2. Since for every ceer Y , Y 1 ¡ Id, it suffices to show the result for
Y � Id.

Theorem 3.13. For any non-universal ceer X, there is a notation a P O for the ordinal ω2 so
that Idpaq ¦ X.

Proof. Let tenk : n, k P ωu and I � tinjk : n, j, k P ωu be recursive sets of indices that we control by

the recursion theorem. We let a � 3 � 5e where ϕepnq � 3 � 5e
n
0 for every n P ω. As we progress, we

define ϕen0
pmq for each n and m. We make ϕe00

p0q � 1 and ϕen�1
0
p0q � 23�5e

n
0 for each n P ω.

At various stages in the construction, we may choose ϕenk
pm� 1q to be 3 � 5e

n
k�1 . When we do this,

we then define ϕenk�1
p0q � 2

ϕen
k
pmq

. The idea of the construction is as follows: We fix a universal

ceer E. In order to diagonalize against ϕn being a reduction from Idpaq into X, we attempt to code
E into Idpaq. In order to do this, we create a sequence of notations t3 � 5e

n
k ukPω so that for some

mk, we have ϕenk
pmk � 1q � 3 � 5e

n
k�1 . Of course, if this proceeded infinitely often, then 3 � 5e

n
0 and

thus a would not be in O, and certainly not a notation for ω2, as needed. On the other hand,
if this proceeded infinitely often, we would have E ¤ X contradicting the assumption that X is
non-universal. Thus, this process will stop at some finite stage, and thus 3 � 5e

n
0 will be a notation

for some ordinal of the form ω �k for some k P ω. This is the strategy to satisfy a single requirement
diagonalizing against ϕn giving a reduction from Idpaq to X. We run one such strategy for each ϕn.

Requirements. Here are the requrements to be satisfied, for each ϕn:

Pn : ϕn is not a reduction of Idpaq to X

The Pn strategy. If n � 0, we make ϕen0
p0q � 1. Otherwise, we make ϕen0

p0q � 23�5e
n�1
0 , let

ϕen0
p1q � 3 � 5e

n
1 , ϕen0

px� 1q � 2
ϕen0

pxq
for all x ¡ 1. Lastly, we define ϕen1

p0q � 2
ϕen0

p0q
. Let m0 � 0.

We will attempt to ensure that if ϕn is a reduction of Idpaq into X, then j ÞÑ x2, in0jy is a reduction

of E into Idp3�5
en0 q. This would contradict X being non-universal. Note that when first considered,

ϕin0j
pxq is undefined for all x, and we declare every j P ω to be active.

We define a counter c � 1. We allow this requirement to act at stage s ¡ n if for all j, j1 ¤ c,
j Idpaq j1 if and only if ϕnpjq X ϕnpj

1q.

If the Pn strategy acts at stage s, let j   j1 be the first pair so that j Es j
1 and we have not yet

acted on behalf of this pair. We will now act on behalf of this pair. If j or j1 is not active, then
we do nothing. Otherwise, let k be largest so that ϕenk

p0q is defined, and let mk be largest so that

ϕenk
pmkq is defined. Let ϕenk

pmk � 1q � 3 � 5e
n
k�1 and ϕenk

px � 1q � 2
ϕen

k
pxq

for all x ¥ mk � 1.

We define ϕenk�1
p0q � 2

ϕen
k
pmkq. We make ϕin

pk�1qj
pxq � ϕin

pk�1qj1
pxq � xmk � 2, inkjy for all x and

ϕin
pk�1qg

pxq � xmk � 2, inkgy for all x and g � j, j1. We now declare j1 to be inactive (we do not need
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to collapse in0j1 with other elements because we will already cause in0j1 Idp3�5
en0 q in0j and j   j1). We

now increase the counter c by 1.

Note that if j and j1 are active, then for all d   k � 1, we have made ϕindj
pxq � xmd � 2, inpd�1qjy

and similarly for j1. Thus, we have ensured for each d   k � 1 that

xmd � 2, indjy Idp3�5
end q xmd � 2, indj1y ô indj Idp2

3�5
end�1

q indj1

ô xmd�1 � 2, inpd�1qjy Idp3�5
end�1 q xmd�1 � 2, inpd�1qj1y.

In particular, by making ϕin
pk�1qj

pxq � ϕin
pk�1qj1

pxq, we make inpk�1qj Idp2
3�5

end�1
q inpk�1qj1 , and thus

x2, in0jy Idp3�5
en0 q x2, in0j1y.

At each stage, for each function ϕelk
so that ϕelk

p0q is defined, we let m be largest so that ϕelk
pmq

is already defined. In the absence of any instruction from any acting requirement as to what value

to give ϕelk
pm� 1q, we define ϕelk

pm� 1q � 2
ϕ
el
k
pmq

.

Lemma 3.14. Every strategy acts only finitely often and thus succeeds.

Proof. Suppose towards a contradiction that some requirement acts infinitely often. Let n be so
that Pn acts infinitely often. Thus we have ϕn is a reduction of Idpeq to X. We now will show

that E ¤ Idp3�5
en0 q via the map j ÞÑ x2, il0jy. By construction, we have ensured that if j E j1, then

x2, il0jy Idpe
n
0 q x2, il0j1y. Suppose j and j1 are least in their E-equivalence classes. Then at every

stage in the construction, the analysis above shows that x2, in0jy Idp3�5
en0 q x2, in0j1y is equivalent to

inpk�1qj Idp2
3�5

enk q inpk�1qj1 where k is greatest so that ϕenk
p0q is defined. But now this is impossible,

since Idp2
3�5

enk q is a jump, but ϕin
pk�1qj

pxq and ϕin
pk�1qj1

pxq have not yet converged. Thus at no stage

can it be that x2, in0jy Idp3�5
en0 q x2, in0j1y. Thus j ÞÑ x2, in0jy gives a reduction of E to Idp3�5

en0 q, but

this is the nth column of Idpaq, thus we have E reduces to Idpaq. Thus since ϕn gives a reduction of
Idpaq to X, we have a reduction of E to X contradicting the non-universality of X. �

Thus, each e0
i  O e0

i�1 and there are only finitely many notations n for limit ordinals so that

e0
i  O n  O e0

i�1. Thus a is a notation for ω2. �
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