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Abstract

The notion of Turing computable embedding [4] provides an effective
way to compare classes of countable structures, reducing the classification
problem for one class to that for the other. Most of the known results on
non-existence of Turing computable embeddings reflect differences in the
complexity of the sentences needed to distinguish among non-isomorphic
members of the two classes. Here we give some examples of further dis-
tinctions that we can make using Turing computable embeddings. The
classes that we consider consist of sum structures. We consider cardinal
sums of n structures, in which the components are named by predicates,
and sums given by an equivalence relation, where the components are not
named. We also consider direct sums of certain groups. The results are
based on model-theoretic considerations related to Morley degree. The
proofs of non-embeddability involve index set calculations.

1 Introduction

We consider classes K consisting of structures all having the same computable
language, and all with universe a subset of ω. Our classes are closed un-
der isomorphism. We say that a class is nice if it is axiomatized by a com-
putable infinitary sentence. If we are interested just in computable structures,
then we may accept as nice a class for which the set of computable indices is
hyperarithmetical—this is equivalent to saying that there is a computable in-
finitary sentence whose computable models are just the computable members
of our class. Here is the main definition from [4].

Definition 1. A Turing computable embedding of K into K ′ is a Turing op-
erator Φ = ϕe such that the following hold:

1. For each A ∈ K, there is some B ∈ K ′ such that ϕ
D(A)
e = χD(B)—we

write Φ(A) for B.
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2. For A,A ∈ K, A ∼= A′ iff Φ(A) ∼= Φ(A′).

We write K ≤tc K ′ if there is a a Turing computable embedding of K into
K ′. The relation ≤tc is a pre-ordering on classes of structures. The notion
of Borel embedding, introduced in [8], gives a pre-ordering ≤B , on classes of
structures with universe ω. Using ≤tc, we can make some distinctions that
are not made using ≤B . Under ≤B , all classes with ℵ0 isomorphism types are
equivalent. Under ≤tc, we have

NF <tc V

where NF is the class of number fields, and V is the class of non-trivial Q-vector
spaces. The class V is tc-equivalent to the class of free groups. The class LO
lies on top, along with the class UG of undirected graphs. The class ApG of
Abelian p-groups does not lie on top [7].

For ≤tc, many of the known results have been discovered by considering
the kinds of sentences that distinguish among non-isomorphic members of the
classes and applying the following result from [11].

Theorem 1 (Pullback Theorem). Suppose K ≤tc K ′ via Φ. Then for any
computable infinitary sentence ϕ in the language of K ′, we can find a sentence
ϕ∗ in the language of K such that for A ∈ K, A |= ϕ∗ iff Φ(A) |= ϕ. Moreover,
if ϕ is computable Σα, where α is a computable ordinal ≥ 1, then ϕ∗ is also
computable Σα.

As an example of the use of the Pullback Theorem, we show that V 6≤tc NF
(see [12]).

Sample proof. Suppose V ≤tc NF via Φ, expecting a contradiction. Let A,A′
be non-isomorphic Q-vector spaces. Then Φ(A),Φ(A′) are non-isomorphic num-
ber fields. The number fields must differ on some existential sentence ϕ. The
Pullback Theorem gives a computable Σ1 sentence ϕ∗ on which A,A′ should
differ. However, all elements of V satisfy the same computable Σ1 sentences
[11].

in [7], the Pullback Theorem is used for a general result implying that
UG 6≤tc ApG. There are non-isomorphic undirected graphs G1, G2 such that
ωGi
1 = ωCK1 and G1, G2 satisfy the same computable infinitary sentences, but

non-isomorphic Abelian p-groups that compute no non-computable ordinals
must differ on some computable infinitary sentence.

In the present paper, we make some further distinctions, based on model
theoretic differences related to Morley degree, not complexity of sentences. We
consider classes of sum structures with a fixed number of summands.

Definition 2. Let K be a class of structures, closed under isomorphism.

1. Kn is the class of cardinal sums of n elements of K, where the components
of the cardinal sum are named by disjoint unary predicates,

2



2. Kn∗ is the class of structures consisting of an equivalence relation with n
equivalence classes, with an element of K on each equivalence class.

We will show that if V is the class of non-trivial Q-vector spaces, then
V n <tc V

n+1. We will also show that V n ≡tc V n∗. It follows that V n∗ <tc
V (n+1)∗. Similarly, if S is the class of sets, with no relations, we show that
Sn <tc S

n+1 and Sn ≡tc Sn∗, so Sn∗ <tc S
(n+1)∗. We consider also certain

classes of orderings and trees. Finally, we consider direct sums of certain groups.
Let Pn be the class of direct sums of n Abelian p-groups, of the form Zpn or
Zp∞ . We show that Pn <tc P

n+1 by showing that Pn ≡tc Sn. The proofs of
non-embeddability use index set calculations.

1.1 Index sets

We identify a structure A with its atomic diagram. Thus, A is computable if
there is some e such that ϕe = χD(A).

Definition 3.

1. For a structure A, the index set I(A) is the set of indices for computable
copies of A.

2. For a class K, I(K) is the set of indices for computable members of K.

Definition 4 (Nice class). Suppose K is a class of structures closed under iso-
morphism. We say that K is nice if it is axiomatized by a computable infinitary
sentence.

Note that if K is a nice class, then I(K) is hyperarithmetical.

Definition 5 (Γ-hard, Γ-complete). Let Γ be a complexity class (such as Π0
3 or

Σ1
1), and let A ⊆ ω.

1. A is Γ-hard if for every S ∈ Γ, S ≤m A,

2. A is m-complete Γ if A ∈ Γ, and A is Γ-hard.

The following index set calculations are given in [3].

Example 1. Recall that V is the class of non-trivial Q-vector spaces. Let
A ∈ V .

1. If A has infinite dimension, then I(A) is m-complete Π0
3.

2. If A has dimension 3, then I(A) is m-complete d-Σ0
2; i.e., it is a difference

of Σ0
2 sets.

Sometimes, we want to describe a specific structure A so as to differentiate
it from other members of a class K. The description of K may be complicated,
more complicated than the description of A within K. The following definitions
are from [2].
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Definition 6 (Γ within, Γ-hard within, Γ-complete within). Let A,B ⊆ ω,
where A ⊆ B.

1. A is Γ within B if there is some C ∈ Γ such that A = C ∩B.

2. A is Γ-hard within B if for each S ∈ Γ, there a computable function f
such that for all n, f(n) ∈ B, and f(n) ∈ A iff n ∈ S.

3. A is m-complete Γ within B if it is Γ within B, and Γ-hard within B.

2 Cardinal sums

In this section, we consider cardinal sums of sets, cardinal sums of vector spaces,
and cardinal sums of structures from some classes that are not nice.

2.1 Sums of sets

Let S be the class of structures that are just sets. Then Sn is the class of
cardinal sums of n elements of S.

Proposition 2. Sn <tc S
n+1

Proof. There is an obvious embedding Φ witnessing that Sn ≤tc Sn+1. For each
input structure A, Φ(A) = B, where the first n components of B have the same
size as the corresponding components of A, and the last component of B has a
fixed size, say it is infinite. We must show that Sn+1 6≤tc Sn. It is enough to
prove the following.

Lemma 3. If Ss ≤tc St, via Φ, then Φ takes a structure with r infinite sets to
one with at least r infinite sets.

Proof. We proceed by induction. For r = 1, let u be a computable member of
Ss with just one infinite set, and let v be a computable member of St with no
infinite sets. Suppose Φ(u) = v, expecting a contradiction. From Φ, we derive
a partial computable function f : I(Ss)→ I(St) such that f takes I(u) to I(v).

Claim 1: I(v) is d-c.e. within I(St). Since v is a finite structure, we have a
finitary d-c.e. description. If m is the size of v, we say that there are m elements
located in the appropriate sets, and there do not exist m+ 1 elements.

Claim 2: I(u) is m-complete Π0
2 within I(Ss). We have a computable Π2

description giving the sizes of all s sets, including the infinite one. Therefore,
I(u) is Π0

2. To show hardness, let S be a Π0
2 set. We have a uniformly computable

sequence (Ck)k∈ω of structures in Ss such that

• if k ∈ S, then Ck ∼= u, and

• if k /∈ S, then the components of u match those of Ck except that the
infinite set in u corresponds to a finite set in Ck.
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For e ∈ I(Ss), f(e) is always in I(St), and e ∈ I(u) iff f(e) ∈ I(v). Therefore,
I(u) is d-c.e. within I(Ss), a contradiction. We have proved the lemma for the
case where r = 1.

Assuming that the lemma holds for r, we prove it for r + 1. Let u be a
computable member of Ss with r + 1 infinite sets, and let v be a computable
member of St with just r infinite sets. Suppose Φ(u) = v, expecting a contra-
diction. Let Ls consist of the elements of Ss with at least r infinite sets, and let
Lt consist of the elements of St with at least r infinite sets. From Φ, we derive
a partial computable function f : I(Ss)→ I(St) such that f takes I(u) to I(v)
and takes I(Ls) to I(Lt).

Claim 3: I(v) is d-c.e. within I(Lt). We can describe v within Lt by saying
how many elements there are in the t− r sets that are finite.

Claim 4: I(u) is m-complete Π0
2 within I(Lt). We can describe u by giving

the sizes of all sets. Therefore, I(u) is Π0
2 within I(Ss) and also within I(Ls).

To show that I(u) is m-complete Π0
2 within I(Ls), let R be a Π0

2 set. We
have a uniformly computable sequence (Ck)k∈ω of elements of Ls such that each
component of Ck has the same size as the corresponding component of u except
that the component of Ck corresponding to the last infinite component of u is
infinite if k ∈ R and finite otherwise.

For e ∈ I(Ls), f(s) is always in I(Lt), and e ∈ I(u) iff f(e) ∈ I(v). Therefore,
I(u) is d-c.e. within I(Ls). This contradicts Claim 4 above.

2.2 Sums of vector spaces

Recall that V is the class of non-trivial Q-vector spaces. Then V n is the class
of cardinal sums of n vector spaces.

Proposition 4. V n <tc V
n+1.

Proof. There is an obvious embedding—we make the first n components of the
output match those of the input, and for the last component of the output, we
fix the dimension, say it is infinite. To prove that V n+1 6≤tc V n, it is enough to
show the following.

Lemma 5. If Φ is an embedding of V s into V t, then Φ takes a tuple with r
components of infinite dimension to one with at least r components of infinite
dimension.

Proof. We proceed by induction on r. For r = 1, let u be a computable member
of V s with one component of infinite dimension, and let v be a computable
member of V t with no components of infinite dimension. Suppose Φ(u) = v,
expecting a contradiction. From Φ, we get a partial computable function f from
I(V s) to I(V t) taking I(u) to I(v).
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Claim 1: I(v) is d-Σ0
2 within I(V t). We have a computable d-Σ2 description

of v, saying for each component that the dimension is at least some k, and not
at least k + 1.

Claim 2: I(u) is m-complete Π0
3 within I(V s). We have a computable Π0

3 Scott
sentence for u, giving the dimensions of all components. Therefore, I(u) is Π0

3.
To show hardness, let S be a Π0

3 set. We have a uniformly computable sequence
Cn of structures in V s such that if n ∈ S, then Cn ∼= u, and if n /∈ S, then
for any component of u of finite dimension, the corresponding component of Cn
has the same dimension, and for the component of u of infinite dimension, the
corresponding component of Cn has finite dimension.

For e ∈ I(V s), f(e) is always in I(V t), and e ∈ I(u) iff f(e) ∈ I(v). There-
fore, I(u) is d-Σ0

2 within I(V s). This contradicts Claim 2. Therefore, the lemma
holds for r = 1.

Assuming that the lemma holds for r, we prove it for r + 1. Let u be a
computable member of V s with r+ 1 components of infinite dimension, and let
v be a computable member of V t with just r components of infinite dimension.
Suppose Φ(u) = v, expecting a contradiction. Let Ls consist of the elements of
V s with at least r components of infinite dimension, and let Lt consist of the
elements of V t with at least r components of infinite dimension. From Φ we
derive a partial computable function f that maps I(V s) to I(V t), taking I(u)
to I(v), and taking I(Ls) to I(Lt).

Claim 3: I(v) is d-Σ0
2 within I(Lt). We can describe v within Lt by saying, for

each of the t − r finite dimensional components, that the dimension is at least
some k and not at least k + 1.

Claim 4: I(u) is m-complete Π0
3 within I(Lt). We have a computable Π3

Scott sentence for u, giving the dimensions of all components. Therefore, I(u)
is Π0

3. We show that I(u) is m-complete Π0
3 within Ls. Let S be a Π0

3 set.,
We have a uniformly computable sequence (Ck)k∈ω of elements of Ls such that
each component of Ck has the same dimension as the corresponding component
of u, except possibly the component corresponding to the last in u of infinite
dimension. This has infinite dimension if k ∈ S and finite dimension otherwise.

For e ∈ I(Ls), f(s) is always in I(Lt), and e ∈ I(u) iff f(e) ∈ I(v). Therefore,
I(u) is d-Σ0

2 within I(Ls), contradicting Claim 4 above.

2.3 Sums of ordinals, rank-saturated trees, etc.

Let K be a class of structures such that among the computable members, there
is just one (up to isomorphism) for which the index set is not hyperarithmetical.
Here are some examples:
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Example 2. Let K be the class of orderings that are either well orderings or
have the form α(1 + η), for an admissible ordinal α.

The next example is a special class of trees. For a node σ in a tree T ⊆ ω<ω,
we write tr(σ) for the tree rank, or foundation rank of the node σ. Recall that
tr(σ) = 0 if σ has no successors, for α > 0, tr(σ) = α if all successors of σ have
ordinal ranks, and α is the least ordinal greater than all of these, and tr(σ) =∞
if σ does not have ordinal rank.

Example 3. Let K be the class of trees T ⊆ ω<ω such that, for the least α that
is the ordinal of an admissible set containing a copy of T , for all σ ∈ T , either

1. tr(σ) is an ordinal less than α and for all β < α, σ has infinitely many
successors σ′ with tr(σ′) = β, or

2. tr(σ) = ∞ and for all β < α, σ has infinitely many successors σ′ with
tr(σ′) = β, plus infinitely many successors σ′ with tr(σ′) =∞

The two classes above are not nice. We do not know that there is a nice
class in which just one computable member (up to isomorphism) has non-
hyperarithmetical index set. Assuming that Vaught’s Conjecture fails, we get
a relativized version of such a class. Becker [1] has shown that if there is a
counterexample to Vaught’s Conjecture, then there is an Lω1ω sentence ϕ such
that for a cone of sets X, ϕ has, up to isomorphism, a unique X-computable
model for which the set of X-computable indices is not X-hyperarithmetical;
i.e., it is not in the least admissible set containing X.

Proposition 6. Suppose K is a class with (up to isomorphism) just one com-
putable member A for which the index set is non-hyperarithmetical. Then
Kn <tc K

n+1.

Proof. The proof follows the same outline as the earlier results. There is an
obvious embedding witnessing that Kn ≤tc Kn+1. We copy the first n compo-
nents of the input structure, and we fix the last component, giving it type A.
To show that Kn+1 6≤tc Kn, it is enough to prove the following.

Lemma 7. If Ks ≤tc Kt via Φ, then Φ maps computable structures with r
components of type A to structures with at least r components of type A.

Proof. We proceed by induction on r. For r = 1, let u be a computable member
of Ks with one entry of type A, and let v be a computable member of Kt with
no entries of type A. We have the following.

Claim 1: I(v) is hyperarithmetical. For each B ∈ K such that B 6∼= A, I(B) is
hyperarithmetical. By a result in [9], there is a computable infinitary sentence ϕ
whose computable models are just those isomorphic to A. Using such sentences,
we obtain a computable infinitary sentence whose computable models are just
the copies of v. If this sentence is computable Σα, then I(v) is Σ0

α.
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Claim 2: We have a Turing operator Ψ taking K to Ks such that in the output
structure, a copy of the input structure fills the place of A in u, and the other
components of the output are as for u. From Ψ, we get a partial computable
function g taking I(K) to I(Ks) such that e ∈ I(A) iff g(e) ∈ I(u). Then I(u)
is not hyperarithmetical within I(K)s.

From Φ, we get a partial computable function mapping I(Ks) to I(Kt) such
that e ∈ I(u) iff f(e) ∈ I(v). Therefore, I(u) is hyperarithmetical within I(Ks).
This contradicts Claim 2. Therefore, the lemma holds for r = 1.

Assuming that the lemma holds for r, we prove it for r + 1. Let u be a
computable member of Ks with r + 1 components of isomorphism type A, and
let v be a computable member of Kt with just r components of type A. Suppose
Φ(u) = v, expecting a contradiction. Let Ls consist of the elements of Ks with
at least r components of type A, and let Lt consist of the elements of Kt with
at least r components of type A. From Φ we get a partial computable function
f from I(Ks) to I(Kt), taking I(u) to I(v) and taking I(Ls) to I(Lt).

Claim 3: I(v) is hyperarithmetical within I(Lt). We describe v within Lt by
describing t− r components not of type A.

Claim 4: I(u) is not hyperarithmetical within I(Ls). Let Ψ be a Turing
operator taking K to Ks such that in the output structure, a copy of the input
structure fills the last place filled by A in u, and the other components of
the output are the same as for u. This gives a partial computable function g
taking I(K) to I(Ls) such that e ∈ I(A) iff g(e) ∈ I(u). Then I(u) is not
hyperarithmetical within I(Ls).

From Φ, we get a partial computable function f taking I(Ks) to I(Kt), such
that f takes I(Ls) to I(Lt), and e ∈ I(u) iff f(e) ∈ I(v). Therefore, I(u) is
hyperarithmetical within I(Ls), contradicting Claim 4 above.

2.4 ≤FF -reducibility

In the results so far, the proofs of non-existence of Turing computable embed-
dings involved computable structures and index sets. For a class K, let E(K)
be the set of pairs (a, b) ∈ ω2 such that either a and b are indices for computable
members of K that are isomorphic, or else a and b are both not in I(K). If
K is a nice class, then E(K) is a Σ1

1 equivalence relation on ω. Friedman and
Fokina [5] defined a variant of Turing computable embedding for comparing Σ1

1

equivalence relations on ω.

Definition 7. Let E,E′ be equivalence relations on ω. We write E ≤FF E′ if
there is a computable function f : ω → ω such that mEn iff f(m)E′f(n). If
E = E(K) and E′ = E(K ′), where K and K ′ are nice classes of structures,
then we write K ≤FF K ′.
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In [6], it is shown that isomorphism on computable trees lies on top under
≤FF . The same is true for isomorphism of computable torsion-free Abelian
groups (not known to be on top under ≤tc) and even Abelian p-groups (known
not to be on top under ≤tc).

We may define a variant of ≤FF , on equivalence relations that are not defined
on all of ω. In the cases that interest us, the equivalence relation E is Σ1

1 within
S×S, where S is the field of E. Suppose E,E′ are equivalence relations, defined
on sets S, S′ ⊆ ω. We write E ≤FF E′ if there is a partial computable function
f , such that

1. f maps S into S′ (the domain of f may be larger than S), and

2. for m,n ∈ S, mEn iff f(m)E′f(n).

We note the following simple fact.

Remark. If K,K ′ are classes of structures (closed under isomorphism, but not
necessarily nice), and K ≤tc K ′, then E(K) ≤FF E(K ′).

Above, we gave two examples of classes K such that among the computable
members, there is (up to isomorphism) just one with non-hyperarithmetical
index set. The computable members of the two classes are as follows:

1. the computable linear orderings that have type α for some computable
ordinal α, or have Harrison type ωCK1 (1 + η),

2. the computable rank-saturated trees—if tr(σ) = ∞, then there are in-
finitely many unranked successors, and infinitely many of rank β for each
computable ordinal β.

Our proofs yield the following.

Theorem 8. For any of the following classes K, we have E(Kn) <FF E(Kn+1):

1. S—the class of sets

2. V—the class of Q-vector spaces

3. computable well orderings, plus orderings of Harrison type,

4. computable rank-saturated trees.

3 Sums over equivalence classes

Recall that for a class K, Kn∗ consists of structures with an equivalence relation
that partitions the universe into n equivalence classes, with a structure from K
on each equivalence class. Recall that S is the class of sets, and V is the class
of non-trivial Q-vector spaces.
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Proposition 9.

1. Sn∗ <tc S
(n+1)∗

2. V n∗ <tc V
(n+1)∗

We know that Sn <tc S
n+1 and V n <tc V

n+1. Therefore, to prove Proposi-
tion 9, it is enough to prove that Sn ≡tc Sn∗ and V n ≡tc V n∗.

Lemma 10. Sn ≡tc Sn∗

Proof. We first show that Sn ≤tc Sn∗. Given an input structure A ∈ Sn,
we produce an output structure B ∈ Sn∗ that codes which components of A
have which size. When we are building B, there is an ordering on the classes,
corresponding to that in A. If at stage s, we have seen m elements in the
kth component of A, then the kth class in B has size < k,m >. From the
isomorphism type of the output B, we can recover the set of pairs (k,m) such
that the kth component of the input A has size m. For 1 ≤ k ≤ n, if there is no
such pair (k,m), then the kth component of the input is infinite.

Next, we show that Sn∗ ≤tc Sn. Given an input structure A ∈ Sn∗, we
produce an output structure B ∈ Sn that codes the number of components of
each size. At stage s, we produce a sequence of numbers ks1, . . . , k

s
n, representing

the current sizes of the components of A, arranged in non-decreasing order. We
give the ith component of B size ksi .

Lemma 11. V n ≡tc V n∗

Proof. We first show that V n ≤tc V n∗. Recall the standard computable guessing
function d(k, s) such that lim infs d(k, s) is the dimension of the kth component—
we are guessing at basis elements. For an input A ∈ V n, we build an output
B ∈ V n∗. At stage s, d(k, s) is our guess at the dimension of the kth component
in B. We give the kth component in B (this is not part of the structure) di-
mension < k, d(k, s) >. We designate the basis elements. When the dimension
of a component increases, we add new basis elements, and when the dimension
decreases, we keep the first ones, and remove the last ones. From B, we can
recover the set of pairs (k,m) such that m = lim infs d(k, s). For 1 ≤ k ≤ n such
that lim infs d(k, s) =∞, the kth component of the input has infinite dimension.

Next, we show that V n∗ ≤tc V n. For an input A ∈ V n∗, we build an
output B ∈ V n with the same dimensions, but arranged in a non-decreasing
sequence. If we guess independently the dimensions of the different components,
we might always have too many of some dimension, even though the separate
components drop to lower dimensions. Now, ∆0

2(A) can compute the number of
basis elements in each component, among the first s elements of A), and arrange
the numbers in a non-decreasing sequence f(s) = ds1, . . . , d

s
n. For each k, dsk is

non-decreasing in s. If the kth component of A has finite dimension d, then for
all sufficiently large s, dsk = d. Computably in A, we guess at f(s). We base our
stage t construction on f(s) for the first s such that our guess is new or different
from the guess at the previous stage. The guesses are sensible, in that for those
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s such that our current guesses at f(s) seem correct, dsk is non-decreasing in s.
Suppose at stage t, we trust our guesses at f(0), . . . , f(s), and at the previous
stage, we trusted our guesses at f(0), . . . , f(s− 1). In B at the previous stage,
we may have guessed f(s) differently, and also guessed f(s+ 1), . . . and, based
on these guesses, we may have put into certain components of B extra basis
elements. We collapse the ones that are not needed for the current guess at
f(s). The current guess at f(s) may call for new basis elements in certain
components, and we add those. If for some k, there is a limiting value d for
dsk, then in B, the kth component will eventually have d basis elements, and
any further basis elements that we add will be collapsed. If dsk keeps increasing,
then for each s, there is some stage t after which our guess at f(s) will never
change, and the kth component of B will eventually have dsk basis elements that
will never be collapsed. So, the dimension is infinite.

4 Groups

In this section, we consider the class Pn of Abelian p-groups that are the direct
sum of n groups of the form Zpm , for some m, or Zp∞ (the Prüfer group). We
will show that Pn <tc P

n+1. We have shown that Sn <tc S
n+1. Hence, it is

enough to show that Pn ≡tc Sn.

Proposition 12. Sn ≤tc Pn.

Proof. Given an input structure A ∈ Sn, we produce an output structure
B ∈ Pn such that if the kth component of A has size m, then the kth di-
rect summand of B has type Zpm+1 .

We have shown that Sn ≡tc Sn∗. Hence, to prove Pn ≤tc Sn, it is enough
to show that Pn ≤tc Sn∗.

We recall some well-known facts about abelian p-groups, found in Kaplan-
sky’s book [10]. Recall that a subgroup H of a group G (usually Abelian) is
pure if whenever a ∈ H has an nth root in G, there is an nth root in H.

Theorem 13 ([10]). Let G be a group and S a pure subgroup of bounded order.
Then S is a direct summand of G.

Theorem 14 ([10]). A divisible subgroup of an abelian group is a direct sum-
mand.

Theorem 15 ([10]). Let G be a countable primary group with no elements of
infinite height. Then G is a direct sum of cyclic groups.

We say that decompositions of finite Abelian groups H,G such that H 5 G
agree with the embedding 5 if every summand of H is embedded into a summand
of G under 5.

Lemma 16. For any finite p-groups H,G such that H 5 G, there are decom-
positions of H,G that agree with the embedding.
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Proof. Recall that if C is a pure subgroup of G and for some finite n, pnC = 0
then C is a direct summand of G. Let H =< h1 >

⊕
. . .

⊕
< hn >. For all

i ≤ n, if hi has height r and gi is an element of G such that prgi = hi then
< gi > is pure in G. Applying Theorem 13, we get S 5 G such that

G =< g1 >
⊕

. . .
⊕

< gn >
⊕

S & H 5< g1 >
⊕

. . .
⊕

< gn >

Taking an arbitrary decomposition of S, we have decompositions of H,G that
agree with the embedding.

Proposition 17. Pn ≤tc Sn.

Given G ∈ Pn, we can effectively find a chain (Gs)s∈ω of finite groups such
that G = ∪sGs.

Claim. We may suppose that Gs is in Pn, for all s.

Proof of Claim. In G, there are elements a1, . . . , an of order p, and for each i,
1 ≤ i ≤ n, there is a chain ai,k, k = 0, . . . such that ai,0 = ai, ai,k+1 = pai,k, and
G is generated by the elements ai,k. Each finite subgroup Gs of G is contained
in a subgroup H generated by a1,k1 , . . . , an,kn for some choice of ki. Clearly,
H ∈ Pn. Then by Lemma 16, Gs ∈ Pn.

We may arrange that for each s, either Gs+1 = Gs or else Gs+1 is generated
by the elements of Gs and a single new element c such that pc ∈ Gs. For each Gs,
we can find a decomposition. It would be nice if, having chosen a decomposition
for Gs, we could choose a decomposition for Gs+1 such that the decompositions
agree with the identity embedding of Gs into Gs+1. Unfortunately, this may
not be possible, as the following example illustrates.

Example 4. Suppose at stage s, we have Gs ∼= Zp2 ⊕ Zp3 , with generators a
(for the first component) and b (for the second). For all we know at this stage,
Gs may be all of G. At stage s+ 1, suppose we find Gs+1 generated by a and an
element c such that pc = a+ b, so Gs+1

∼= Zp2⊕Zp4 . There is no decomposition
of Gs+1 that agrees with the identity embedding.

Let (Gs)s∈ω be a chain of finite groups as above, such that G = ∪sGs, for
each s, Gs ∈ Pn, and either Gs+1 = Gs or else Gs+1 is generated by elements of
Gs and one new element c such that pc ∈ Gs. Suppose Gs has a decomposition
with generators a1, . . . , an, where ai has order mi. Let pc = k1ai1 + . . .+ krair ,
where 1 ≤ kj < mij . At least one kj is not divisible by p, for otherwise, c would
be in Gs. We let Gs+1 be the decomposition of Gs+1 generated by c and the ai
for i 6= ij .

From our chosen decomposition of Gs, with direct summands Zpmi , mi ≥
1, we derive a sequence of numbers m1, . . . ,mn. We suppose that these are
arranged in non-decreasing order. For the output structure E corresponding
to G, our stage s approximation has equivalence classes of sizes m1, . . . ,mn.

12



While we do not label the equivalence classes, during the construction, we keep
in mind the order.

Claim 1: If uk(G) = r, then for all sufficiently large s, uk(Gs) ≥ r, and E has
at least r classes of size k.

Proof of Claim 1. Suppose a generates a subgroup H of G of type Zpk+1 , where
a is not divisible by p in G. Once we have a ∈ Gs, the subgroup H is pure in
Gs as well as in G, uk(Gs) ≥ 1. If a ∈ Gs, then we will see the number k on the
list of sizes of sets for E. Similarly, suppose H is a subgroup of G generated by
a1, . . . , ar, where ai has order pk+1 and is not divisible by p, and the elements
pkai witness that uk(G) ≥ r. Then H is pure in Gs as well as in G, and the
elements pkai witness that uk(Gs) ≥ r. We will see r occurrences of the number
k on our list of sizes of sets for E.

Claim 2: If G has r direct summands of type Zp∞ , then for all k, for all suffi-
ciently large s,

∑
k′≥k uk′(Gs) ≥ r, and E has at least r infinite classes.

Proof of Claim 2. Suppose a is an element of order p and height ∞. For each
k, there is some b ∈ G such that pkb = a. If Gs contains b, then there is some
k′ ≥ k such that uk′(Gs) ≥ 1. It follows that at stage s, k′ is on the list of sizes
for sets in E. At each stage, we arrange the n sizes in non-decreasing order, and
we build the sets in E correspondingly. If G has a direct summand of type Zp∞ ,
then the last set in E, at least, becomes infinite. Similarly, if G has r direct
summands of type Zp∞ , then for all k, for all sufficiently large s, we will have
at least r numbers k′ ≥ k on the list of sizes. For each k, the last r classes in E
will eventually have size at least k, so they are infinite.

Using the claim, we see that the numbers we get from our decompositions
of the Gs give E ∈ Sn∗ such that there the number of classes of size k matches
the number of direct summands of type Zpk+1—this is uk(G), and the number
of infinite classes matches the number of direct summands of type Zp∞ .
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