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Abstract

We employ an infinite-signature Hrushovski amalgamation construction to yield
two results in Recursive Model Theory. The first result, that there exists a strongly
minimal theory whose only recursively presentable models are the prime and saturated
models, adds a new spectrum to the list of known possible spectra. The second result,
that there exists a strongly minimal theory in a finite language whose only recursively
presentable model is saturated, gives the second non-trivial example of a spectrum
produced in a finite language.

1 Introduction

Baldwin and Lachlan [2] developed the theory of ℵ1-categoricity in terms of strongly
minimal sets. They show, in particular, that for any ℵ1-categorical theory in a countable
language which is not ℵ0-categorical, the countable models form a chain of elementary
embeddings of length ω+1: M0 ≺M1 ≺ . . . ≺Mω, whereM0 is the prime model andMω

is the saturated model. Furthermore, there is a strongly minimal formula such that each
Mi is characterized by the size of a maximal algebraically independent subset realizing
that formula. In particular, the models of a strongly minimal theory are characterized by
the size of a maximal algebraically independent subset. We call such a subset a basis for
the model.

Let T be an ℵ1-categorical theory in a countable language which is not ℵ0-categorical.
We have, by Baldwin-Lachlan, the chain of countable models of T : M0 ≺ M1 ≺
. . . ≺ Mω. We associate to T the Spectrum of Recursive Models of T , SRM(T ) =
{i|Mi has a recursive presentation}. We call a set S ⊆ ω+ 1 a spectrum if there exists an
ℵ1-categorical T such that SRM(T ) = S.

A general problem of recent years has been to characterize which subsets of ω + 1
are spectra. Many results in this direction have been of the form “S is a spectrum” and
have been proved by providing a construction of a theory T yielding S as SRM(T ). For
example, Goncharov [3] showed that {0} is a spectrum, and Kudaibergenov [8] generalized
Goncharov’s method to show that {0, . . . , n} is a spectrum for any n. In [5], it is shown
that {ω} is a spectrum, and in [7], it is shown that ω and ω + 1 r {0} are both spectra,
and Nies [9] shows that {1, . . . n} is a spectrum for any natural number n.

One thing that these examples all have in common is that each spectrum is an interval
within ω+1, leading some to make the conjecture that this is always the case. In Theorem
1, we provide a counterexample to this conjecture.

Theorem 1. There exists a strongly minimal theory T such that SRM(T ) = {0, ω}.
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There is also the question as to which of the possible spectra can be achieved with
a finite language. That is, for which S ⊆ ω + 1 does there exist a theory T in a finite
language such that SRM(T ) = S? This question has its roots in the paper of Herwig,
Lempp, and Ziegler [4], where they show that {0} can be achieved as a spectrum of an
ℵ1-categorical theory in a finite language. In [1], this result is extended to show that
{0, . . . , n} can be achieved as a spectrum of an ℵ1-categorical theory in a finite language
for any n, and similarly for the set ω. In Theorem 2, we present another such result.

Theorem 2. There exists a strongly minimal theory T in a finite language such that
SRM(T ) = {ω}

In [1], as in this paper, the construction proceeds via an alteration of the Hrushovski
construction. Aside from this similarity, the content of the proofs are different. In [1], the
proof proceeds via encoding information into the type of a set based on how independent
the set is, yielding that a truly independent n+ 1-tuple codes non-recursive information.
In the proof of Theorem 2, we do not directly code information, but rather we infinitely
often change our mind about which formulas are algebraic to entice a recursive model to
generate an independent sequence of elements.

Both main theorems will proceed via an alteration of the Hrushovski construction (see
[6]) to allow for infinite languages. Through section 2 and most of section 3, we will
work over a general countable language and allow for any µ function, to demonstrate the
construction in generality. The amalgamation method, as developed by Hrushovski in [6],
will be followed closely to ensure that the theory resulting from the construction is in fact
strongly minimal. The new content in sections 2 and 3 is confined to the use of an infinite
language and to the use of recursion theoretic information to change algebraicity within
the Hrushovski construction. Nonetheless, we state the core lemmas and some chosen
proofs in the interest of self-containment of this paper.

2 The Amalgamation Class

Let L be a countable relationary language. Though the amalgamation construction de-
scribed here works with any relationary language, we work with a language whose symbols
are all ternary. Throughout the construction, we enforce that each relation is symmetric
and holds only on distinct triples. For a finite L-structure A and relation symbol R ∈ L,
we write |R(A)| for the number of triples from the set A on which R holds, counting each
triple only once.

Definition 3. Set δ : {finite L-structures} → Z ∪ {−∞} by δ(A) = |A| −
∑

R∈L|R(A)|

From δ, we make the standard definitions for a Hrushovski construction:

Definition 4. For any finite L-structures A and B and infinite L-structure D, we define:

• δ(B/A) = δ(A ∪B)− δ(A).

• If A ⊆ B, we set δ(A,B) = min{δ(C)|A ⊆ C ⊆ B}.

• If A ⊆ B, we say A is strong in B or A ≤ B if δ(A) = δ(A,B).
We say A is strong in D if A ⊆ D and A is strong in C for each finite A ⊆ C ⊆ D.

• We say B is simply algebraic over A if B 6= ∅, A∩B = ∅, A ≤ A∪B, δ(B/A) = 0,
and there is no proper subset B′ of B such that δ(B′/A) = 0.
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• We say that B is minimally simply algebraic over A if B is simply algebraic over A
and there is no proper subset A′ of A such that B is simply algebraic over A′.

The standard necessary property of pre-dimension functions holds here, namely that
δ(A∪B) ≤ δ(A) + δ(B)− δ(A∩B). We call this property sub-modularity. This is verified
by seeing that each relation is counted at least as many times on the left as on the right.
Also, note that equality holds if and only if there are no relations holding on tuples from
(A∪B) other than those already holding in A or B. In this case, we say A and B are freely
joined over A∩B. From the sub-modularity property, the following standard lemmas hold.

Lemma 5. Suppose A ≤ N . Then:

1. δ(X ∩A) ≤ δ(X) for any X ⊆ N

2. δ(A′, A) = δ(A′, N) for any A′ ⊆ A

3. A′ ≤ A ≤ N implies A′ ≤ N

Proof. 2 and 3 follow from 1 trivially, so we will prove 1. δ(X∪A) ≤ δ(X)+δ(A)−δ(X∩A).
Reordering, we get δ(X ∩A) ≤ δ(X) + δ(A)− δ(X ∪A) ≤ δ(X), where the last inequality
holds because A ≤ N .

Lemma 6. If X,A, and B are finite L-structures such that A ⊆ B and X ∩B = ∅, then
δ(X/A) ≥ δ(X/B).

Proof. δ((X ∪A) ∪B) ≤ δ(X ∪A) + δ(B)− δ((X ∪A) ∩B), which simplifies to
δ(X ∪B)− δ(B) ≤ δ(X ∪A)− δ(A), as needed.

The following two lemmas are from Lemma 2 and the proof of Lemma 3 in [6].

Lemma 7. Let M be a finite L-structure. Let A ⊆M and suppose Bj are simply algebraic
over A and A ≤ (A ∪

⋃
j Bj), (j ∈ J). Then:

1. The Bj are pairwise equal or disjoint.

2. A ∪
⋃
j Bj is a free join of the Bj over A.

3. Suppose A ⊆ A′ ⊆ M , A′ ≤ A′ ∪ Bj, and Bj is not a subset of A′ (j=1,2). Then
any isomorphism of B1 with B2 over A extends to an isomorphism over A′. In fact,
A′ ∪Bj is a free join of A′ and Bj over A.

Definition 8. Let C0 be the class of finite L-structures C such that if A ⊆ C ∈ C0, then
δ(A) ≥ 0.

Lemma 9. Suppose A,B1, B2 ∈ C0, A = B1 ∩B2, and A ≤ B1. Let E be the free-join of
B1 with B2 over A. Suppose C1, . . . Cr, F are disjoint substructures of E such that each
Ci is minimally simply algebraic over F and the structures Ci and Cj are isomorphic over
F for each 1 ≤ i, j ≤ r. Then one of the following holds:

1. One of the Ci is contained in B1 rA and F ⊆ A.

2. The set F ∪
⋃r
i=1C

i is entirely contained in B1 or B2. Further, in the case that
F ∪

⋃r
i=1C

i is entirely contained in B1, one of the Ci is contained in B1 rA.

3. r ≤ δ(F )
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4. For one Ci, setting X = (F ∩A) ∪ (Ci ∩B2), δ(X/X ∩A) < 0. Further, one of the
Cj is contained in B1 rA. (Note that this cannot happen if A ≤ B2 by Lemma 5).

Continuing as in the standard Hrushovski construction, we define a bounding function
µ. µ will tell us how many copies of a given minimally simply algebraic extension to allow
within structures in our amalgamation class. For a pair of finite structures A and B,
µ(B,A) ∈ ω will decide this bound. Since L may have infinite signature, it is not first
order to bound the number of extensions isomorphic to Y over X. In place of this, we will
bound the number of extensions of the “form of Y/X”.

For any disjoint L-structures ā, b̄ ⊆ C, we write tpr.q.f.(b̄/ā) for the set
{R(x̄i, ȳi)|R ∈ L, (b̄iāi) ⊆ (b̄ ∪ ā)3 r ā3, i ∈ ω, and R(b̄i, āi) holds}. We call this set the
relative quantifier-free type of b̄ over ā. We say two relative quantifier-free types are the
same if they are equal after a re-ordering of b̄ and a re-ordering of ā. Thus we can talk
about the relative quantifier-free type of the set B over A, and we write tpr.q.f.(B/A).

We write tpq.f.(X) to refer to the quantifier-free type of X.

Definition 10. Let Y and X be finite L-structures such that Y is minimally simply
algebraic over X. Let LY/X be the language generated by {R|R ∈ L,∃x̄ ⊆ (B ∪ A)3 r
A3(R(x̄))}, ie: the language occurring in tpr.q.f.(Y/X). Suppose B and A are finite L-
structures such that tpr.q.f.(B/A)|LY/X

= tpr.q.f.(Y/X) and tpq.f.(X) = tpq.f.(A). Then we
say the extension B/A is of the form of Y/X.

Fix a function µ from pairs of L-structures (B,A) with B minimally simply algebraic
over A to N so that µ depends only on the atomic type of the pair (B,A) and µ(B,A) ≥ |A|.
Further, µ must be such that if Γ is a relative quantifier-free type, then there exists a sub-
language L′ with a finite sub-signature of L so that if tpr.q.f.(B/A) = Γ = tpr.q.f.(B

′/A′)
and tpq.f.(A)|L′ = tpq.f.(A

′)|L′ then µ(B,A) = µ(B′, A′).
Now we use µ to bound the number of extensions allowed of the form of a given

minimally simply algebraic extension and define our amalgamation class. We may also
fix a b ∈ ω which will become the dimension of the prime model of the theory we are
constructing.

Definition 11. Let C = Cµ,b be the class of finite L-structures C such that the following
hold:

• If A ⊆ C then δ(A) ≥ min(|A|, b).

• Let Y/X be a minimally simply algebraic extension. Let Bi, i = 1, . . . , n, and A be
disjoint subsets of C such that Bi/A is an extension of the form Y/X for each i.
Then n ≤ µ(Y,X).

Note that if we choose b ≥ arity(R) then realizations of R do not appear in members
of C, thus will not appear in the amalgam we construct. Thus with our choice of a ternary
language, only b < 3 will yield interesting models. In fact, we will use b = 2. This class C
is the class of finite L-structures which we will amalgamate together to form our generic
model. To do so, we must show that C satisfies an amalgamation property. Recall that
the free-join of X with Y over X ∩ Y is the structure on X ∪ Y where a relation holding
on z̄ implies that z̄ is contained entirely in X or entirely in Y .

Lemma 12. (Algebraic Amalgamation Lemma) Suppose A,B1, B2 ∈ C, B1∩B2 = A, and
B1 r A is simply algebraic over A. Let E be the free-join of B1 and B2 over A. Then
E ∈ C unless one of the following holds:

4



• B1 r A is minimally simply algebraic over F ⊆ A, and B2 contains µ(B1 r A,F )
many disjoint extensions of F of the form (B1 rA)/F .

• There exist a set X ⊆ B2 and a subset L̂ of LB1rA/A such that (A ∩ X)|L̂ 6≤ X|L̂.
Further, B1|L̂ contains an isomorphic copy of X|L̂.

Proof. We focus on the last condition for E to be in C. Suppose Y is minimally simply
algebraic over X and E contains disjoint sets C1, . . . , Cr, F where each of the Cj over F is
of the form of Y over X. We will look at the structure E|LY/X

. Call this structure E′. Our

focus will be on using the structure E′ to count the Cjs, so we abuse notation and write
Cj also for the subset of E′. Here, each of the Cj over F are minimally simply algebraic
extensions. Note further that E′ is the free-join of B1|LY/X

with B2|LY/X
over A|LY/X

,

both B1|LY/X
and B2|LY/X

are in C0, each of the Cj are minimally simply algebraic over
F , and A|LY/X

≤ B1|LY/X
. By Lemma 9, there are 4 cases to consider:

1. One of the Ci is contained in B1 r A and F ⊆ A. Since B1 r A is simply algebraic
over A in E, Ci = B1 r A. As the Cj and F are disjoint and one is B1 r A, each
of the other Cj as well as F are contained in B2. If r > µ(Y,X) then there must be
µ(Y,X) of them contained in B2 putting us in the case of the first exception to this
lemma.

2. F ∪
⋃r
i=1C

i is entirely contained in either B1 or B2. Then r ≤ µ(Y,X) as B1, B2 ∈ C.

3. r ≤ δ(F ). Then r ≤ δ(F ) ≤ |F | = |X| ≤ µ(Y,X).

4. For one Ci, setting X = (F ∩A)∪ (Ci ∩B2), we see that δ(X/X ∩A) < 0. Further,
one of the Cj is contained in B1rA. Letting L̂ = LY/X yields the second exception
in our lemma.

Lemma 13. (Strong Amalgamation Lemma) Suppose A,B,C ∈ C, A = B ∩ C, A ≤ B,
and A ≤ C. Then there exist E ∈ C and embeddings f : B → E, g : C → E so that
f |A = g|A, f(B) ≤ E, and g(C) ≤ E.

Proof. This is a consequence of inductively applying the previous lemma as in Lemma 4
of [6].

Repeatedly applying the strong amalgamation lemma yields a modelM. M is strongly
minimal, saturated, and recursive if µ is recursively approximable from below, as will be
shown in the next section.

3 The Amalgam

Using the Strong Amalgamation Lemma, we get a modelM which satisfies the following:

1. M is countable

2. Every finite substructure of M is an element of C

3. Suppose B ≤ M, B ≤ C, and C ∈ C. Then there exists an embedding f : C →M
such that f |B = idB, and f(C) ≤M.

5



Note that for any finite A ⊂ M, there exists a finite B ⊂ M such that A ⊆ B ≤ M.
By a standard back-and-forth argument using finite strong substructures, (1-3) definesM
up to isomorphism.

We would like to show thatM is saturated by showing that any countable elementary
supermodel of M must also have properties (1-3) and thus would have to be isomorphic
to M. The problem is that 3 is not a first-order property. To make the argument work,
we replace 3 by 3′ and 3′′:
3′. M contains an infinite set I such that there are no relations holding on I, and any
finite A ⊆ I has the property that A ≤M.
3′′. Suppose B ⊆M, B ≤ C, C ∈ C, and CrB is simply algebraic over B, say minimally
simply algebraic over F ⊆ B. Suppose also that for any subset L̂ of LCrB/B and any
subset X of C there is no set X ′ such that X|L̂ ∼= X ′|L̂ and (B ∩ X ′)|L̂ 6≤ X ′|L̂. Then
there are µ(C r B,F ) many disjoint sets A in M such that A/F is an extension of the
form (C rB)/F .

Note that 3′′ is defined by a first order schema as each formula involves only a finite
language.

Claim 14. (1, 2, 3) and (1, 2, 3′, 3′′) are equivalent.

Proof. →: 3′ follows from 3 directly and 3′′ follows from the Algebraic Amalgamation
Lemma.
←: 3 follows as in the proof of the Strong Amalgamation Lemma.

Corollary 15. M is saturated.

Proof. Any countable elementary extension of M satisfies (1, 2, 3′, 3′′), hence is isomor-
phic to M. It follows that there are only countably many types realized in elementary
extensions ofM. Hence, there is a saturated countable elementary extension ofM, which
M must be isomorphic to.

We want to characterize algebraicity in M. We define d(A) = min{δ(C)|A ⊆ C ⊆
M, C finite}. Clearly for any A and x, either d(xA) = d(A) or d(xA) = d(A) + 1.

Lemma 16. If d(xA) = d(A) + 1 and d(yA) = d(A) + 1, then (M, Ax) ∼= (M, Ay).

Proof. LetB be such thatA ⊆ B, δ(B) = d(A). ThenB ≤M. d(xB) = d(xA) = d(A)+1.
Thus xB ≤M, and similarly yB ≤M. Using property 3 and a standard back-and forth
argument, we see that (M, xB) and (M, yB) are isomorphic.

We have shown that there is a unique 1-type over A of an element x such that d(xA) >
d(A). Next we show that d(xA) = d(A) implies that x ∈ aclM(A).

Lemma 17. If d(xA) = d(A), then x ∈ aclM(A).

Proof. Suppose d(xA) = d(A). First, let B be a minimal set such that A ⊆ B and
δ(B) = d(A). We show that B is algebraic over A in M. Suppose there were two
realizations of the type of B over A. Call the second realization B′. Then δ(B ∪ B′) ≤
δ(B) + δ(B′) − δ(B ∩ B′) < δ(B′) = d(A). The strict inequality is due to B being a
minimal set with the properties that A ⊆ B and δ(B) = d(A). This inequality contradicts
the definition of d(A).

Fix E to be a set such that xA ⊆ E and δ(E) = d(A). Then δ(E∪B) ≤ δ(E)+δ(B)−
δ(E ∩ B). If E does not contain B, then δ(E ∩ B) > d(A) by minimality of B. Then
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δ(E ∪ B) ≤ d(A) + d(A) − δ(E ∩ B) < d(A), again a contradiction. Thus, E contains B
and d(xB) = d(B).

Take a sequence of extensions B0, B1, B2, . . . Bn such that B0 = B, Bn = E, and Bi+1

is a minimal set such that Bi ( Bi+1 ⊆ E and δ(Bi+1) = d(A). Then Bi+1 is a simply
algebraic extension of Bi. Thus Bi+1 is algebraic over Bi. We conclude that E is algebraic
over A. In particular, x ∈ aclM(A).

Corollary 18. Th(M) is strongly minimal.

Proof. In the previous lemma, we showed that over any set there is a unique non-algebraic
1-type realized in M. Since M is saturated, we see that Th(M) is strongly minimal.

Corollary 19. Let A ⊂ M be such that |A| < b. Then aclM(A) = A. In particular, the
dimension of the prime model of Th(M) is b.

Proof. Suppose c ∈ aclM(A) r A. By the characterization of algebraicity above, this
means that there exists a set D so that cA ⊆ D and δ(D) = d(A) ≤ δ(A) ≤ |A|, but
|A| < |D| and |A| < b. Thus δ(D) < min(|D|, b) yielding a contradiction.

Let B ≤M be of size at least b so that δ(B) = |B|. Suppose towards a contradiction
that aclM(B) is finite. By the characterization of algebraicity above, δ(aclM(B)) = |B|,
so aclM(B) ≤M. Let C ∈ C be any minimally simply algebraic extension over aclM(B),
which exists since |aclM(B)| ≥ b 1. Since aclM(B) ≤M , property 3 yields that C embeds
in M over aclM(B). But then the embedded image of C is algebraic over B but not in
aclM(B), a contradiction. Therefore aclM(B) is infinite, yielding a model of dimension
|B|. Thus the prime model has dimension exactly b.

Thus far we have worked generally, constructing a strongly minimal model from any
countable relationary language L, bounding function µ, and b ∈ ω. In what follows, we
will fix L and b, as well as describe a function µ relative to any S ⊆ N. We will then fix
the set S in section 5 to yield the theorems.

Let S be a subset of N. We view S as a set of pairs of natural numbers 〈j, k〉 using
a standard pairing function (a recursive bijection from N to N × N). We refer to {m ∈
S|∃k (m = 〈j, k〉)} as the jth column of S and will write S[j] to denote this set. From the
set S, we define the set T to consist of the first two elements of each column not contained
in S, ie: T = {〈j, k〉|〈j, k〉 /∈ S and ¬∃2k′(k′ < k ∧ 〈j, k′〉 /∈ S)}.

We define L to be the language with signature {R} ∪ {Ri|i ∈ ω} where each relation
symbol is ternary, and we fix b = 2.

We enumerate recursively the relative quantifier-free types of extensions Y over X
such that Y is minimally simply algebraic over X, |X| = 3, and the only relation symbol
occurring in tpr.q.f.(Y/X) is R. We refer to the ith such enumerated relative quantifier-free
type as Λi.

We say B/A is a Λi-extension if tpr.q.f.(B/A)|{R} = Λi. Note that a minimally simply
algebraic extension can be a Λi-extension and have a relation hold on the base. We now
define the bounding function µ.

Definition 20.

µ(Y,X) =


4 if Y/X is a Λ〈i,k〉-extension, 〈i, k〉 ∈ T , and Ri(X) holds

4 if Y/X is a Λ〈i,k〉-extension and 〈i, k〉 ∈ S
|X| otherwise

1For a ternary language, a set {a1, . . . an} has a minimally simply algebraic extension C = {c1, . . . cn}
formed by setting R(ai, ci, ci+1) to hold where i + 1 is mod n. In any relational language it is also true
that sets of size ≥ b have minimally simply algebraic extensions.
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Note that in the first two cases |X| = 3 as the Λ’s are relative quantifier-free types
over 3 element sets. Any integer greater than 3 could be used in place of 4 in the above
definition.

Lemma 21. Suppose S is Σ1. Then µ recursively approximable from below, and thus M
is a recursively presentable structure.

Proof. We fix recursive approximations Ss to S such that Ss ⊆ Ss+1. We will use these
recursive approximations to S to build recursive approximations to the amalgamation class
and will be able to amalgamate to build M. We define Ts to be the set comprised of the
least 2 elements in each of the first s columns of ω r Ss.
At stage s, define a recursive approximation to µ by

µs(Y,X) =


4 if Y/X is a Λ〈i,k〉-extension, 〈i, k〉 ∈ Ts, and Ri(X) holds

4 if Y/X is a Λ〈i,k〉-extension and 〈i, k〉 ∈ Ss
|X| otherwise

Note that in the first two cases, |X| = 3, as the Λ’s are over 3 element sets. The 4
here corresponds to the same number in the definition of the true µ. We define Cs, the
amalgamation class allowed at stage s, from µs.

Let Cs be the class of finite L-structures C such that the following hold:

• If A ⊆ C then δ(A) ≥ min(|A|, 2).

• Let Y/X be a minimally simply algebraic extension. Let Bi, i = 1, . . . , n, and A
be disjoint subsets of C such that Bi/A is an extension of the form Y/X for each i.
Then n ≤ µs(Y,X).

Since µs(Y,X) ≤ µs+1(Y,X), we see that Cs ⊆ Cs+1. As lims µs = µ, we see that
C =

⋃
s Cs. To constructM, we work in stages. At the sth stage, we amalgamate the first

s possible amalgamations allowed in Cs. As C =
⋃
s Cs, every possible amalgamation in C

is amalgamated at a finite stage, and since Cs ⊆ C, we never leave the amalgamation class
C. This constructs a generic model for C which is therefore isomorphic to M.

From here forward we assume S is a Σ1 set, and thus the result of the lemma holds.
We fix a recursive presentation of M, and we refer to this particular presentation as M
from here on.

4 The Restricted Language

To obscure the recursion theoretic content of the construction from the presentation of the
model, we will restrict to the language generated by the single relation symbol R. Also,
to force the prime model to be recursive in Theorem 1, we will name constants which will
identify the prime model.

We fix a non-algebraic pair of elements x and y from M. By the characterization
above, aclM({x, y}) is a Σ1 set (ie: z ∈ aclM({x, y}) if and only if d({x, y, z}) = 2 if and
only if ∃A ⊇ {x, y, z}(δ(A) = 2), which is a Σ1 condition). Using this observation, we fix
a recursive enumeration of aclM({x, y}), i 7→ zi.

Definition 22. Let M′ be the model obtained by restricting M to the language generated
by {R}.
Let M′′ be the model constructed by adding constant symbols {ci|i ∈ ω} to M′ where ci
names the element zi.
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Our next goal is to understand algebraicity in the modelM′. In particular, we will see
that the relations that count are R and the Ri such that S[i] 6= ω[i]. From here forth, we
call the language generated by {R}∪{Ri|S[i] 6= ω[i]} by the name L′. We will see that the
relations in L′ are precisely the ones determining algebraicity inM′. We will construct S
so that S[i] is either finite or equals ω[i], though the results of this section hold even where
T [i] contains exactly 1 element.

Recall that Λ〈i,k〉 is a relative quantifier-free type of an extension of a 3-element set
and involves only the relation symbol R. In the context of a first order formula, we write
Λ〈i,k〉(ȳ, x̄) to represent the formula which states that ȳ over x̄ is a Λ〈i,k〉-extension. Note
that Λ〈i,k〉(ȳ, x̄) is a first order formula involving only the relation symbol R.

Lemma 23. Let i be an integer such that S[i] 6= ω[i], and let 〈i, k〉 be an element of T [i].
Then M |= ∀x̄(Ri(x̄)↔ ∃4ȳΛ〈i,k〉(ȳ, x̄))

Proof. ←: If there are 4 disjoint Λ〈i,k〉-extensions over x̄ and Ri(x̄) does not hold, then
taking the finite set A comprised of the 4 extensions and x̄, we see that A /∈ C as this
explicitly violates the µ-bound. This contradicts property (2) of M.
→: Suppose Ri(x̄) holds. Then δ(x̄) = 2, which shows x̄ ≤ M. By (3′′), we see that

there are 4 disjoint Λ〈i,k〉-extensions over x̄.

Since each of the relations Ri ∈ L′ are definable inM′, we will abuse notation and say
Ri(x̄) holds in M′ to mean that the equivalent statement involving only R holds in M′.
Similarly for M′′. This shows that these relations still count in the reduct M′. Lemma
27 shows that these are the only relations that still count.

Lemma 24. Suppose tpr.q.f.(B/A) = tpr.q.f.(Y/X) and B/A is a minimally simply alge-
braic extension. Then Y/X is a minimally simply algebraic extension.

Proof. It is easy to check that δ(Y/X) = 0 and δ(Y0/X) > 0 for any ∅ 6= Y0 ( Y , as these
are true for B/A. Thus Y is simply algebraic over X. Also, each x ∈ X satisfies some
relation in Y ∪X with an element in Y , as it must be so for B/A. Thus if Z ( X, then
δ(Y/Z) > δ(Y/X) = 0, so Y is minimally simply algebraic over X.

Definition 25. For finite A ⊆M ′, let δ′(A) = δ(A|L′) = |A| − |R(A)| −
∑

Rj∈L′ |Rj(A)|.
Let d′(A) = min{δ′(B)|A ⊆ B ⊆M′, B finite}.
Let CL′ be the class of finite L′-structures in C.

Lemma 26. If A ∈ C, then A|L′ ∈ CL′.

Proof. For anyX ′ ⊆ A|L′ , letX be the expansion to L. Then δ(X ′) ≥ δ(X) ≥ min(|X|, 2) =
min(|X ′|, 2).

Let Y ′ be a minimally simply algebraic extension over X ′. Suppose C ′
1, . . . C

′
n, F

′ are
disjoint subsets of A|L′ where each C ′

i over F ′ is an extension of the form of Y ′ over X ′.
Note that LY ′/X′ ⊆ L′. Let C1, . . . Cn, F be the expansions to L. Let Y over X be an
extension so that X ∼= F and tpr.q.f.(Y/X) = tpr.q.f.(Y

′/X ′). By Lemma 24 Y is minimally
simply algebraic over X. Each Ci over F is of the form of Y over X and tpq.f.(X)|L′ =
tpq.f.(X

′). Since A ∈ C, n ≤ µ(Y,X). Observe from the definition of µ that µ(Y,X)
depends only on the quantifier-free L′-type of Y ∪X. Thus n ≤ µ(Y,X) = µ(Y ′, X ′).

Lemma 27. M|L′ is generic for the class CL′.
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Proof. We need to show that M|L′ satisfies the conditions to be a generic model of CL′ .
We use the versions of (1, 2, 3′, 3′′) for CL′ :
1: M|L′ is countable
2: For any finite A ⊆M|L′ , A ∈ CL′

3′: M|L′ contains an infinite set I such that there are no relations holding on I, and any
finite A ⊆ I has the property that A ≤M|L′ .
3′′: Suppose B ⊆ M|L′ , B ≤ C, C ∈ CL′ , and C r B is simply algebraic over B, say
minimally simply algebraic over F ⊆ B. Suppose also that for any subset L̂ of LCrB/B
and any X ⊆ C, there is no set X ′ such that X|L̂ ∼= X ′|L̂ and (B ∩X ′)|L̂ 6≤ X ′|L̂. Then
there are µ(C r B,F ) many disjoint sets A in M such that A/F is an extension of the
form (C rB)/F .

1 is equivalent to 1 above. 2 follows immediately from 2 above and the previous lemma.
3′ follows from 3′ above since B ≤M implies that B|L′ ≤M|L′ .

Given A ⊆ M such that F ⊆ B = A|L′ and C ∈ CL′ are as in 3′′, we set D to be
the L-structure so that tpr.q.f.(D/A) = tpr.q.f.(C/B). Let E be the expansion of F to L.
By Lemma 24, D r A is simply algebraic over A and minimally simply algebraic over E.
Since LDrA/A = LCrB/B ⊆ L′ and (D,A,E)|L′ ∼= (C,B, F ), we see that (D,A,E) satisfies
the hypothesis of 3′′ for M. Applying 3′′ for M to the extension of D over A, we have
µ(DrA,E) disjoint extensions of the form of (DrA)/E over E in M. Since µ depends
only on the quantifier-free L′-type, in M|L′ this gives µ(C r B,F ) disjoint extensions of
the form of (C rB)/F over F .

Lemma 28. x ∈ aclM′(A) if and only if d′(xA) = d′(A).

Proof. Above we showed that for M the generic model of C, algebraicity meant d(xA) =
d(A). By the analogous argument forM|L′ , we see that algebraicity here means d′(xA) =
d′(A). Since M|L′ is a definitional expansion of M′, algebraicity is the same for M′.

Lemma 29. M′ and M′′ are both recursive, saturated, and strongly minimal.

Proof. M′ is recursive, saturated, and strongly minimal, as it is a reduct to a recursive
language of a model with all of these properties.
M′′ is recursive since the assignment of the constants is recursive. It is strongly

minimal, as adding constants to a strongly minimal theory retains strong minimality. Take
I an infinite algebraically independent sequence in M beginning with {x, y}. I − {x, y}
is algebraically independent over the algebraic closure of {x, y} in M. Thus I − {x, y} is
algebraically independent in M′′. This shows that M′′ has infinite algebraic dimension,
thus is saturated.

5 Defining S

Thus far we have constructed the two modelsM′ andM′′ relative to any given Σ1 set S.
We aim for a construction where SRM(Th(M′)) = {ω} and SRM(Th(M′′)) = {0, ω}.
To ensure this, we need to diagonalize against the possible finite-dimensional models of
each theory. In this section, we construct the Σ1 set S to ensure these results.

We want to ensure that the finite dimensional models of Th(M′) and Th(M′′) are
not recursive. There is no 0-dimensional model of Th(M′) (ie: acl(∅) = ∅), so we will
diagonalize only against positive dimensional models. We fix a recursive enumeration
of all pairs (f, U) where f is a partial recursive function from the set of quantifier-free
formulas in the language {R} ∪ {ci|i ∈ ω} ∪N to {true, false} and U is a non-empty finite
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subset of N. Note that if f gives the quantifier-free diagram of a model, dom(f) contains
symbols for the elements of the model, which is why we include the symbols from N. This
is to be interpreted as f giving the quantifier-free diagram of a model N with universe N
and U representing a basis of the model. Note that even though we work with functions
f describing structures in the language including constants, the construction allows for
functions which give a model of Th(M ′), ie: where each ci is not interpreted. Thus
our construction of S will simultaneously diagonalize against finite-dimensional models of
Th(M ′) and of Th(M ′′).

We will describe a routine for enumerating S. For the ith pair (f, U), we will have an
ith subroutine Routinei whose job it is to ensure that this pair does not represent a model
N with a basis U satisfying either of the theories of M′ or M′′.

Given a pair (f, U), at stages we read off information about the model it describes
from fs, the computation of f at stage s. We let N0 be the empty model, and let Ns be
comprised of all n ≤ s such that for each m < n, fs(n = m) ↓= ‘false’. In Ns, we say
R(x̄) holds if fs(R(x̄)) ↓= ‘true’. We say for Ri ∈ L with i < s, Ri(x̄) holds if there is an

〈i, k〉 ∈ T [i]
s such that Ns |= ∃4ȳ Λ〈i,k〉(ȳ, x̄), where Λ〈i,k〉(ȳ, x̄) has already been defined in

Ns as a conjunction of R-statements. For a set A of natural numbers, we write δs(A) for
δ(A) as A is seen in the structure Ns. Finally, we set Ks ⊆ Ns to be the set of elements
x ∈ Ns such that fs(x = ci) ↓= ‘true’ for some i ≤ s.

Routinei is the only part of our program allowed to enumerate anything into S[i].
When Routinei is initialized, S[i] = ∅. The routine runs in parts as follows:

Part 1) Wait until a stage s when there is some set X ⊆ Ns and a set K ⊆ Ks such
that (X ∪ U ∪ K)|Ri is a minimally simply algebraic extension over (U ∪ K)|Ri . Once
found, for the duration of its run Routinei refers to these sets as X and K.

Part 2) The first thing Routinei does when it reaches part 2 is to define the set of
obstructions to moving to part 3. Suppose we reach part 2 on stage t. A set Y ⊆ Nt is an
obstruction to moving to part 3 if δt(Y/Kt) < |U | and U ⊆ Y . For each k ∈ ω, if during a
stage s > t an element is enumerated into S[k], then we say Rk is removed. If at a stage s
enough Rk are removed so that counting only the non-removed Rk, δs(Y/Kt) ≥ |U |, then
we say the obstruction Y has been removed. That is, if

|Y ∪Kt| − |R(Y ∪Kt)| −
∑
Rj not
removed

|Rj(Y ∪Kt)|

−
|Kt| − |R(Kt)| −

∑
Rj not
removed

|Rj(Kt)|

 ≥ |U |,
then the obstruction Y is removed.

If for each tuple x̄ ∈ X ∪ U ∪ K, Ns |= ∃4ȳΛ〈i,l〉(ȳ, x̄) ↔ ∃4ȳΛ〈i,m〉(ȳ, x̄) where

{〈i, l〉, 〈i,m〉} = T
[i]
s , then we say Routinei is ready for part 3. If Routinei is ready

for part 3 and all obstructions have been removed, Routinei moves to part 3.
Part 3) Routinei takes the least element of ω[i] which has not yet been enumerated

into S and enumerates it into S. Routinei then goes back to part 2.
The possible outcomes of a run of Routinei are that it gets stuck in part 1, it gets

stuck in part 2, or it cycles between part 2 and part 3 infinitely often. In the first case,
S[i] = ∅. In the second case, S[i] is a finite initial segment of ω[i], and in the third case
S[i] = ω[i]. In any case, we will show that either N does not satisfy the right theory or U
is not its basis.
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6 The Main Theorems

In the previous section we defined a Σ1 set S, and in the section before we gave a con-
struction of two models M′ and M′′ from any fixed Σ1 set. We fix M′ and M′′ to be
those models obtained by applying the construction to the set S defined in the previous
section.

It is clear that ω ∈ SRM(Th(M′)) and 0, ω ∈ SRM(Th(M′′)). The first is becauseM′

has a recursive presentation and is saturated. The second is because M′′ has a recursive
presentation and is saturated and the set of constants in M′′ is algebraically closed and
infinite, hence also a model of the same theory. Since the set of constants is Σ1 in the
recursive presentation ofM′′, they form a recursive prime model. It remains to show that
for any other n ∈ ω + 1, n is not in SRM(Th(M′)) or SRM(Th(M′′)).

Theorem 30. SRM(Th(M′)) = {ω}

Proof. Suppose N is a recursive model of Th(M′), and N has a finite basis U . Let i be
the index of the pair (f, U) where f is the recursive function describing the quantifier-
free diagram of N . Note that we let the domain of f include symbols for constants, but
f(ci = n) ↓= ‘false′ for each n ∈ ω.

Case 1: Routinei gets stuck in part 1.
Ri ∈ L′, as Routinei is never in stage 3. Note that Th(M′) has no model with a basis of
size < 2. So, we may assume |U | ≥ 2. We are guaranteed by 3′′ that if N satisfies Th(M′)
then N must contain minimally simply algebraic extensions involving only the relation Ri
over U . Thus N 6|= Th(M′)

Case 2: Routinei gets stuck in part 2.
Case 2a: Routinei gets stuck in part 2 because it is never ready for part 3.

This means that for some x̄ ∈ X ∪ U and 〈i, l〉, 〈i,m〉 ∈ T
[i]
s , N 6|= ∃4ȳΛ〈i,l〉(ȳ, x̄) ↔

∃4ȳΛ〈i,m〉(ȳ, x̄). Since Routinei never gets to part 3 again, T [i] = T
[i]
s . By Lemma 23,

M′ |= ∃4ȳΛ〈i,l〉(ȳ, x̄)↔ Ri(x̄)↔ ∃4ȳΛ〈i,m〉(ȳ, x̄). Thus N 6|= Th(M ′).
Case 2b: There is an obstruction Y which is never removed.

As N is assumed to be a model of Th(M′), for each n ∈ ω and constant symbol ci,
N 6|= n = ci. Thus Kt = ∅ for each stage t, and we can simplify notation and write δs(Y )
for δs(Y/Kt). When counting the non-removed relations, δs(Y ) = δs(Y/Kt) < |U |. Since
the obstruction is never removed, δ′(Y ) < |U |, contradicting U being an independent set
in N .

Case 3: Routinei loops through part 2 and part 3 infinitely often.
The construction is built so that in this case, U will not be a basis for the model N .
We will derive a contradiction from the assumption that U is a basis for N . From this
assumption, we see that X is algebraic over U , which means that there is a set Y such
that δ′(Y ) = |U |, and X ∪ U ⊆ Y . Let t be a stage when Routinei enters part 2 which is

large enough that Y ⊆ Nt and for each relation Rj in L′ occurring on Y , S
[j]
t = S[j]. Such

a t exists since by construction S[j] is finite for each Rj ∈ L′. We will show that Routinei
never enters part 3 after stage t, leading to a contradiction.

As Routinei is ready for part 3 each time it leaves part 2, we see that at all stages
s after Routinei completes part 1, Ns realizes occurrences of Ri on X. Let s > t be a
stage when Routinei is in part 2. Then δs(Y ) < δ′(Y ) since Ri occurs on X but does
not count in δ′. Then Ri is a relation which has not been removed since entering part
2 and neither have any of the relations counted in δ′, so counting only the non-removed
relations, δs(Y ) < |U |. Thus, Y is an obstruction which is never removed after stage t,
contradicting our being in case 3.
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In any case, we get a contradiction to the assumption that N is a recursive model of
Th(M ′) with finite basis U .

Lemma 31. Let U be a finite subset of M′′. Then x ∈ aclM′′(U) if and only if there is a
finite set C of elements named by constants and x ∈ aclM′(U ∪ C).

Proof. The right-to-left direction is trivial. To prove the left-to-right direction, take an
algebraic formula φ(x, U,C) defining x over U involving constants C. See that φ is an
algebraic formula over U ∪ C in M′.

Theorem 32. SRM(Th(M′′)) = {0, ω}

Proof. Suppose N is a recursive model of Th(M′′) and N has a finite basis U . Let i be
the index of the pair (f, U) where f is the function describing the quantifier-free diagram
of N .

Case 1: Routinei gets stuck in part 1.
Ri ∈ L′, as Routinei is never in stage 3. M′ has minimally simply algebraic extensions
involving only the relation Ri. Thus N does not satisfy Th(M′). In particular, if |U | ≥ 2
then 3′′ guarantees that there are minimally simply algebraic extensions of U inN involving
only the relation symbol Ri. If |U | = 1, then 3′′ guarantees the same for U ∪ {ck} for any
constant ck.

Case 2: Routinei gets stuck in part 2.
Case 2a: Routinei gets stuck in part 2 because it is never ready for part 3.

This means that for some x̄ ∈ X ∪ U ∪ K, 〈i, l〉, 〈i,m〉 ∈ T
[i]
s , N 6|= ∃4ȳΛ〈i,l〉(ȳ, x̄) ↔

∃4ȳΛ〈i,m〉(ȳ, x̄). But since Routinei never gets to part 3 again, T [i] = T
[i]
s . By Lemma 23,

M′ |= ∃4ȳΛ〈i,l〉(ȳ, x̄)↔ Ri(x̄)↔ ∃4ȳΛ〈i,m〉(ȳ, x̄). Thus N 6|= Th(M ′).
Case 2b: There is an obstruction Y that is never removed.

There is a finite set of constants C in N such that counting only the non-removed relations
on Y , δs(Y/C) < |U |. As the obstruction is never removed, δ′(Y/C) < |U |, implying that
U is not an independent set over the constants C. Hence U is not algebraically independent
over ∅.

Case 3: Routinei loops through part 2 and part 3 infinitely often.
The construction is built so that in this case, U will not be a basis for the model N .
We will derive a contradiction from the assumption that U is a basis for N . From this
assumption, we see that X is algebraic over U , which means that there is a finite set Y
and a finite set of constants C ⊇ K such that δ′(Y/C) = |U | and X ∪ U ⊆ Y . Let t
be a stage when Routinei enters part 2 which is large enough that Y ∪ C ⊆ Nt and for

each relation Rj in L′ occurring on Y ∪ C, S
[j]
t = S[j]. Such a t exists as S[j] is finite for

each Rj ∈ L′. We will show that Routinei never enters part 3 after stage t, leading to a
contradiction.

As Routinei is ready for part 3 each time it leaves part 2, we see that at all stages
s after Routinei completes part 1, Ns realizes occurrences of Ri on X. Let s > t be a
stage when Routinei is in part 2. Then δs(Y/C) < δ′(Y/C) since Ri occurs on X but does
not count in δ′. Then Ri is a relation which has not been removed since entering part
2 and neither have any of the relations counted in δ′, so counting only the non-removed
relations, δs(Y/C) < |U |. Thus, Y is an obstruction which is never removed after stage t,
contradicting our being in case 3.

In any case, we get a contradiction to the assumption of N being a recursive model of
Th(M′′) with finite basis U .
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