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Abstract. We examine the degree structure ER of equivalence rela-
tions on ω under computable reducibility. We examine when pairs of
degrees have a join. In particular, we show that sufficiently incompa-
rable pairs of degrees do not have a join but that some incomparable
degrees do, and we characterize the degrees which have a join with every
finite equivalence relation. We show that the natural classes of finite,
light, and dark degrees are definable in ER. We show that every equiv-
alence relation has continuum many self-full strong minimal covers, and
that d ‘ Id1 needn’t be a strong minimal cover of a self-full degree d.
Finally, we show that the theory of the degree structure ER as well as
the theories of the substructures of light degrees and of dark degrees are
each computably isomorphic with second order arithmetic.

1. Introduction

The study of the complexity of equivalence relations has been a major
thread of research in diverse areas of logic. The most popular way for
evaluating this complexity is by defining a suitable reducibility. A reduction
of an equivalence relation R on a domain X to an equivalence relation S on
a domain Y is a (nice) function f : X Ñ Y such that

x R y ô fpxq S fpyq.

That is, f pushes down to an injective map on the quotient sets X{R ÞÑ Y{S .
It is natural to impose a bound on the complexity of the reduction f , as
otherwise, if the size of X{R is not larger than the size of X{S , then the Axiom
of Choice alone would guarantee the existence of a reduction from R to S,
thus we would not be measuring the complexity of the equivalence relations.
In the literature, there are two main definitions for this reducibility, designed
to deal, respectively, with the uncountable and the countable case:

‚ In descriptive set theory, Borel reducibility pďBq is defined by as-
suming that X and Y are Polish spaces and f is Borel;
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‚ In computability theory, computable reducibility pďcq is defined by
assuming that X “ Y coincide with the set ω of natural numbers
and f is computable.

The theory of Borel equivalence relations (as surveyed in, e.g, [15, 17]) is
a central field of modern descriptive set theory and it shows deep connec-
tions with topology, group theory, combinatorics, model theory and ergodic
theory—to name a few.

Research on computable reducibility dates back to the work of Ershov [12,
11] in the theory of numberings. It concentrates on two main focuses: first,
to calculate the complexity of natural equivalence relations on ω, proving,
e.g., that provable equivalence in Peano Arithmetic is Σ0

1-complete [9], Tur-
ing equivalence on c.e. sets is Σ0

4-complete [18], and the isomorphism rela-
tions on several familiar classes of computable structures (e.g., trees, torsion
abelian groups, fields of characteristic 0 or p) are Σ1

1-complete [13]; secondly,
to investigate the poset of degrees generated by computable reducibility on
the collection of equivalence relations of a certain complexity Γ, e.g., lying at
some level of the arithmetical [10], analytical [7], or Ershov hierarchy [8, 21].

Regarding the latter focus, computably enumerable equivalence relations—
known by the acronym ceers [16], or called positive equivalence relations in
the Russian literature—received special attention. Historically, the empha-
sis was on combinatorial classes of universal ceers, i.e., ceers to which all
other ceers computably reduce (see, e.g., [2, 1]). But recently, there has
been a growing interest in pursuing a systematic study of Ceers, the poset
of degrees of ceers, whose structure turns out to be extremely rich. An-
drews, Schweber, and Sorbi [4] proved that the first-order theory of Ceers
is as complicated as true arithmetic (see also [5] for a structural analysis of
Ceers focused on joins, meets, and definability).

In this paper, we focus rather on ER, the poset of degrees of all equiva-
lence relations with domain ω. Our interest in ER is twofold.

On the one hand, we want to explore to what extent techniques coming
from the theory of ceers can be applied to equivalence relations of arbitrary
complexity. Some proofs will move smoothly from Ceers to ER (proving
that the underlying results are independent from the way in which the equiv-
alence relations are presented), but the analogy between the two structures
often breaks down (see, e.g., Theorem 3.8), or new ideas will be required to
recast analogous results from the setting of ceers (see, e.g., Theorem 2.20).

On the other hand, we regard ER as a natural structure, interesting
and worth studying per se. After all, ER is to Ceers as, e.g., the global
structure of all Turing degrees (DT ) is to the local structure of c.e. degrees
(RT )—and we consider it only a historical accident that, for equivalence re-
lations, the local structure has been analyzed in great detail with no parallel
investigation of the global structure.

We add a final piece of motivation. Dealing with a seemingly distant
problem (i.e., Martin’s conjecture), Bard [6] recently proved that DT is
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Borel reducible to ER. This may be regarded as preliminary evidence for
the intricacy of ER. In this paper, we push this analysis further by fully
characterizing the logical complexity of ER (Theorem 4.1).

The rest of this paper is organized as follows. In the remainder of this
section, we offer a number of preliminaries to make the paper self-contained.
In Section 2, we focus on first-order definability of some natural fragments of
ER and analyze when joins exist. In Section 3, we exhibit many disanalogies
between ER and Ceers, by concentrating on covers of equivalence relations:
generic covers (to be defined), minimal covers, and strongly minimal covers.
Finally, in Section 4, we show that the first-order theory of ER (and in
fact, that of two natural fragments of ER) is as hard as possible, being
computably isomorphic to second-order arithmetic.

Our computability theoretic terminology and notation is standard, and
as in [24].

1.1. Preliminary material. Throughout this subsection we assume that
R and S are equivalence relations. The R-equivalence class of a natural
number x is denoted by rxsR. For a set A Ď ω, the R-saturation of A (i.e.,
Ť

xPArxsR) is denoted by rAsR. We denote the collection of all R-equivalence
classes by ωR. If f is a computable function witnessing that R ďc S, then
we write f : R ďc S. If f : R ďc S, then µf is the injective mapping
from ωR to ωS induced by f . In our proofs, it will sometimes be useful to
consider the orbit of a number or of an equivalence class along all iterations
of a given reduction: for x P ω and X P ωR, denote by orbf pxq the set

tf piqpxq : i ą 0u Ď ω and by orbf pXq the set tµ
piq
f pXq : i ą 0u Ď ωR. The

following lemma, which is immediate to prove, will be used many times in
the paper, often implicitly.

Lemma 1.1. Let f : R ďc S. For all X P ωR, X ďm µf pXq so also
X ďm S.

Definition 1.2. For any non-empty c.e. set W and equivalence relation R,
we let RæW be the equivalence relation given by x RæW y if and only if
hpxq R hpyq, where h : ω Ñ W is any computable surjection (note that up
to ”c, the definition does not depend on the choice of surjection h).

Remark 1.3. For any non-empty c.e. set W and equivalence relation R,
observe that h (as in the definition) gives a reduction of RæW to R, which
we call the inclusion map.

If f : X ďc Y , then X ”c Y æ rangepfq.

If f : R ďc S and rangepfqXX ‰ H for some X P ωS , then we say that f
hits X; otherwise, we say that f avoids X. R is self-full, if every reduction
of R to itself hits all elements of ωR (the reader is referred to [5, 3] for several
results about self-full ceers).
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By the notation f ‘ g, we denote the following function,

f ‘ gpxq “

#

fpxq if x is even,

gpxq if x is odd.

The uniform join R‘S is the equivalence relation that encodes R on the
evens and S on the odds, i.e., x R‘ S y if and only if either x “ 2u, y “ 2v,
and u R v; or x “ 2u` 1, y “ 2v` 1, and u S v. For the sake of exposition,
we often say R-classes (respectively, S-classes) for the equivalence classes
of R ‘ S consisting of even (odd) numbers. The operation ‘ is clearly
associative on degrees, so we will generally be lax and write expressions
such as R0 ‘ . . .‘Rn.

The following easy lemma is again a generalization of the same result for
ceers [4, Fact 2.3]. The proof is exactly the same.

Lemma 1.4. If X ďc R‘S, then there are R0 ďc R and S0 ďc S such that
X ”c R0 ‘ S0.

Proof. Let f : X ďc R‘ S and denote rangepfq by W . Then

X ”c R‘ SæW ”c RæV1 ‘ SæV2,

where V1 :“ tx : 2x PW u and V2 :“ tx : 2x` 1 PW u. �

If A Ď ωˆω, then R{A is the equivalence relation generated by the set of
pairs RYA. We say that R{A is a quotient of R, and a quotient is proper if
R{A ‰ R. Of particular interest for this paper will be quotients of uniform
joins.

A quotient R‘ S{A is pure if it does not collapse distinct R-classes, or
distinct S-classes, i.e.,

R‘ S{Aæ Evens“ R‘ Sæ Evens and R‘ S{Aæ Odds“ R‘ Sæ Odds .

The quotient R ‘ S{A is a total quotient if every odd number is equivalent
to an even number and vice versa.

Lemma 1.5. Every pure quotient of R‘ S is an upper bound of R and S.

Proof. Assume that R ‘ S{A is pure. It is immediate to observe that R
computably reduces to R‘S{A via the function x ÞÑ 2x and S computably
reduces to R‘ S{A via the function x ÞÑ 2x` 1. �

Lemma 1.6. Let R ‘ S{A be a total quotient of R ‘ S. Suppose that f :
X ďc R‘ S{A and rangepfq XOdds is finite. Then X ďc R.

Proof. For each x P rangepfqXOdds, fix an even number x1 so that x R‘ S{A
x1. Let

hpxq “

#

fpxq if x is even

fpxq1 if x is odd

and observe that h is a reduction of X to R ‘ S{A with range contained in

the evens, so h
2 is a reduction of X to R. �



COMPUTABLE REDUCIBILITY ON EQUIVALENCE RELATIONS ON N 5

Let us now fix notation for some natural families of equivalence relations of
natural numbers. They will serve as benchmark relations for our structural
analysis of ER. Some terminology naturally generalizes from the theory of
ceers (see, e.g., [5]).

‚ Id and Idn denote respectively the identity on the natural numbers
and the identity modulo n; we also write Idω for Id. That is, x Id y
if and only if x “ y and x Idn y if and only if x ” y mod n. I is
the family of equivalence relations that are equivalent to some Idn
for n P ω., i.e., I :“ tIdn : n P ωu.

‚ An equivalence relation R is finite, if R has finitely many equivalence
classes. Otherwise R is infinite. F and Fn denote respectively the
family of all finite equivalence relations and the family of equivalence
relations with exactly n equivalence classes. Observe that each ele-
ment of F2 naturally encodes a pair of sets of numbers: EpXq P F2

denotes the equivalence relation consisting of exactly two classes, X
and X.

‚ Light is the family of equivalence relations which are above Id. It is
easy to see that the light equivalence relations are exactly the infinite
equivalence relations which have a computable transversal, i.e., a
computable sequence txiuiPω of pairwise nonequivalent numbers;

‚ Dark denotes the family of equivalence relations R with infinitely
many classes with Id ęc R.

‚ For each of these classes, the bold version represents the collection
of ER-degrees containing members of the class. For example, F is
the set of degrees of finite equivalence relations, Dark is the set of
degrees of dark equivalence relations, etc.

As is clear, ER is partitioned into F , Light, and Dark. Moreover,
I Ď F . Inside ER, computable equivalence relations can be readily char-
acterized.

Observation 1.7 ([16], Prop. 3.3 and 3.4). The degrees of computable
equivalence relations form an initial segment of ER of order type ω`1, and
are exactly I Y tIdu.

Proof. First, note that

Id1 ă . . . Idn ă Idn`1 ă . . . Id .

So, the family I Y tIdu of equivalence relations has order type ω ` 1.
Let R be a computable equivalence relation. Then the set S of x so that

x “ minrxsR is computable. Let S “ tc0 ă c1 ă c2 . . .u. Then the function
which sends each rcisR to i is a computable function giving a reduction of R
to Id|ωR| (letting Idω “ Id). Further, this function is onto the classes of Id|ωR|
and the inverse function on classes is also computable, so R ”c Id|ωR|. �

The following is an easy, but useful fact about taking a uniform join with
Id1, and how it essentially “cancels out” collapsing a computable class.
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Lemma 1.8. If E is an equivalence relation with a computable class C, and
B is any other E-class, then E{pminC,minBq ‘ Id1 ”c E.

Proof. To show E{pminC,minBq ‘ Id1 ďc E, let f : E{pminC,minBq ďc E be

defined by sending every element of C to minB and be the identity on C.
Then notice that the class of C is avoided by f . This lets us extend f to a
reduction of E{pminC,minBq ‘ Id1 ďc E by sending the Id1-class to the class
C in E. The function gpxq “ 2x for every x R C and gpxq “ 1 for x P C
gives a reduction g : E ďc E{pminC,minBq ‘ Id1. �

Note that Ceers, F , and
Ť

iďnF i for each n are each initial segments of
ER. An obvious elementary difference between Ceers and ER is that the
former degree structure is bounded and the latter is not.

Observation 1.9. ER has least element, but there is no maximal element.

Proof. Every constant function computably reduces Id1 to any given equiva-
lence relation. Hence, Id1 is the least degree of ER. On the other hand, let
X be degT pRq and consider EpX 1q. We have that EpX 1q ęc R, as otherwise
X 1 would be ďm R by Lemma 1.1, but R is strictly Turing below X 1. So,
R ă R‘ EpX 1q and R is not maximal. �

We now turn to some facts about dark equivalence relations. The next
two lemmas are adapted from the setting of ceers [5, Lemmas 4.6 and 4.7].
The proof is essentially the same.

Lemma 1.10. Dark equivalence relations are self-full.

Proof. Let R be dark. Suppose that there is f : R ďc R which avoids a
given X P ωR. Let x P X and consider orbf pxq. From the fact that f is
a self-reduction of R and X R rangepµf q, it follows that orbf pxq is a c.e.
infinite transversal of R, contradicting the darkness of R. �

Lemma 1.11. If R is dark, then R is not reducible to any of its proper
quotients.

Proof. Towards a contradiction, suppose that a dark R is reducible to one
of its proper quotients R{A, via some f . Note that, since R is dark, R{A
must be infinite. Now, let X,Y P ωR be two equivalence classes that are
collapsed in R{A and choose x P X and y P Y . We claim that at least
one of orbf pxq or orbf pyq cannot intersect X Y Y . Indeed, suppose that

i, j ą 0 are minimal so that tf piqpxq, f pjqpyqu Ď X Y Y , and, without loss of
generality, suppose i ě j. Since X and Y are collapsed in R{A, we have that

f piqpxq R{A f jpyq. But since f : R ďc R{A and R{A Ě R, this would imply

that f pi´jqpxq R y, which either contradicts x��R y, if i “ j, or contradicts
the minimality of i, if i ą j.

So, one can assume that orbf pxq X pX Y Y q “ H. Now suppose that, for

i ą j, f piqpxq R f pjqpxq. Reasoning as above, we obtain that f pi´jqpxq R x,
a contradiction. Hence, orbf pxq would be a c.e. transversal of R. But this
contradicts the darkness of R. �
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We now introduce the dark minimal equivalence relations.

Definition 1.12. An equivalence relation R is dark minimal if it is dark
and its degree is minimal over F , i.e., if S ăc R then S is finite.

Lemma 1.13. Let R be a dark minimal equivalence relation. Let W be a
c.e. set which intersects infinitely many R-classes. Then W must intersect
every R-class.

Proof. Suppose W intersects infinitely many R-classes. Consider the equiv-
alence relation RæW and note that RæW ”c R since RæW is not in F and
R is minimal over F . Thus, we have reductions R ď RæW ď R with the
second reduction given by inclusion. Since R is dark, it is self-full by Lemma
1.10, so the reduction of R to itself through RæW must hit every R-class.
In particular, W must intersect every R class. �

For the next lemma, recall that two sets of natural numbers A,B are
computably separable if there is a computable set C such that A Ď C and
C XB “ H.

Lemma 1.14. Let R be a dark minimal equivalence relation. Then the
elements of ωR are pairwise computably inseparable.

Proof. Let C be any computable set. Either C or ωrC intersects infinitely
many R-classes. Thus by Lemma 1.13, either C or ω r C intersects every
R-class, so C cannot separate two R-classes. �

Remark 1.15. Dark minimal equivalence relations exist (see [5, Theo-
rem 4.10] for examples of dark minimal ceers) and they will occur several
times in this paper, as their combinatorial properties will facilitate our study
of the logical complexity of ER.

2. Definability in ER and existence of joins

A natural way of understanding the logical complexity of a structure is
by exploring which of its fragments are definable. In this section, we show
that many natural families of equivalence relations are first-order definable
without parameters.

2.1. Defining the class of finite equivalence relations. In the case
of ceers, the equivalence relations with finitely many equivalence classes
are easily characterized: A ceer R has n equivalence classes if and only if
R ”c Idn. Hence in Ceers, F coincides with I (and therefore it has order
type ω). These form an initial segment of Ceers and they are definable as
the collection of non-universal ceers which are comparable to every ceer.

In ER, the picture is much more delicate. For the moment, just observe
that F Ę I: to see this, take EpXq with X noncomputable. Moreover,
while Id bounds I, no equivalence relation can bound F (see the proof of
Observation 1.9).



8 U. ANDREWS, D. BELIN, AND L. SAN MAURO

We will show that I is definable in ER as the collection of degrees which
have a join (i.e., a least upper bound) with any other degree, and from that
definition will easily follow that F is also definable. To obtain this result,
throughout this section we will focus on the existence of joins of equivalence
relations, obtaining several structural results of independent interest.

The following lemma describes the shape of a potential join of equivalence
relations. An upper bound T of equivalence relations R,S is minimal if there
is no upper bound V of R,S such that V ăc T .

Lemma 2.1. Suppose f : R ďc T and g : S ďc T . Then there is a pure
quotient U of R ‘ S and reductions f0 : R ďc U given by f0pxq “ 2x and
g0 : S ďc U given by g0pxq “ 2x` 1 and h : U ďc T so that f “ h ˝ f0 and
g “ h ˝ g0.

In particular, if T is a minimal upper bound of equivalence relations R
and S, then T is equivalent to a pure quotient of R‘ S.

Proof. Let f : R ďc T , g : S ďc T , and A :“ tp2x, 2y ` 1q : fpxq T gpyqu.
Then R‘S{A is a pure quotient of R‘S. Now, observe that R‘S{A ďc T
via the function h “ f ‘ g. And observe that f “ h ˝ px ÞÑ 2xq and
g “ h ˝ px ÞÑ 2x` 1q. �

In ER, to have a join is a rather strong property. Any pair of equivalence
relations which are sufficiently incomparable cannot have a join.

Definition 2.2. Define R ďF S, if there is computable set A so that RæA ďc
S and RæA is finite.

Obviously, ďc-reducibility implies ďF -reducibility. The converse does not
hold as there are ďc-incomparable X,Y P F , but then EpXq ”F EpY q.

Theorem 2.3. If R and S are equivalence relations which are F -incomparable,
then R and S do not have a least upper bound in ER.

Proof. Suppose towards a contradiction that T is the least upper bound forR
and S. By Lemma 2.1, we can assume that T is a pure quotient of R‘S. We
will build by stages another pure quotient V p“

Ť

Vsq of R‘S such that T ę
V , contradicting the choice of T . To do so, we let V0 be R‘S and, at further
stages, we will collapse R-classes and S-classes in V to diagonalize against
all potential reductions from T to V . We note that we are constructing V
to be c.e. in the Turing degree degT pRq _ degT pSq _ degT pT q _ 02.

The construction. During the construction we will restrain some equiv-
alence classes of V that we do not want to collapse further on; by saying
that two numbers are restrained we mean that they come from restrained
classes.

Stage 0. Let V0 :“ R‘ S. Do not restrain any equivalence class.
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Stage e ` 1. If ϕe is nontotal, let Ve`1 :“ Ve. Otherwise, search for a pair
of distinct numbers pu, vq such that ϕepuq Ó“ xe, ϕepvq Ó“ ye, and

paq either u T v ô{ xe Ve ye,
pbq or u �T v and xe and ye have different parity and they are both

unrestrained.

Claim 2.4 below shows that such a pair is always found. If the outcome
is paq, let Ve`1 :“ Ve and restrain every number in rxesVe Y ryesVe . If the
outcome is pbq, let Ve`1 :“ Ve{pxe,yeq and we restrain every number in rxsVe`1 .

The verification. The verification relies on the following claim.

Claim 2.4. The action defined at stage e ` 1 (i.e., the search of a pair of
numbers satisfying either paq or pbq) always terminates.

Proof. Suppose that there is a stage e ` 1 at which no pair pu, vq is found.
This means that ϕe is total and ϕe : T ďc Ve; otherwise, we would reach
outcome paq. Next, observe that ϕe cannot hit infinitely many equivalence
classes of both VeæEvens and VeæOdds; otherwise, since only finitely many
equivalence classes are restrained at each stage and Ve coincides with R‘S{A
for a finite set A, there would be a pair of numbers different parity which
are unrestrained and we would reach outcome pbq.

So, without loss of generality, assume that ϕe hits only finitely many
classes in VeæOdds. Let f be the following partial computable function,

fpxq “

$

&

%

ϕepxq

2
ϕepxq is even,

Ò otherwise.

We have that f : Tædompfq ďc R and Tædompfq is finite. Thus, T ďF R.
Since S ďc T and T ďF R, we obtain that S ďF R, which contradicts the
fact that R and S are F -incomparable. �

It follows from the above construction that V is a pure quotient of R‘S.
In particular, every time we collapse an odd with an even class, we restrain
all members of that class, so it cannot be part of any future collapse. Hence,
by Lemma 1.5, V is an upper bound of R and S. Towards a contradiction,
assume that T ďc V via some ϕi. Claim 2.4 ensures that the action defined
at stage i` 1 terminates with either disproving that ϕi is a reduction from
T to Vi or by providing two equivalence classes that will be V -collapsed to
diagonalize against ϕi. Then the restraints and the fact that V is a quotient
of Vi guarantee that ϕi : T ę V , a contradiction. �

Corollary 2.5. No dark equivalence relation has a least upper bound with
Id.

Proof. It suffices to show that no dark equivalence relation R can be F -
comparable with Id. On the one hand, note that Id æA ” Id for any cofinite
A and thus Id æA ęc R since R is dark. Therefore Id ęF R. On the other
hand, suppose RæA ďc Id with RæA finite. Observe that RæA ıc Id, as
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otherwise R would be light because Id ďc RæA ďc R. So, RæA ă Id and,
by Observation 1.7, this means that RæA is finite. As RæA is also finite, it
follows that R is finite, contradicting its darkness. �

Obviously, if R P F , then R is F -reducible to any given equivalence
relation S. This does not guarantee that they have a join with every other
equivalence relation. We explore this in the next section. The next lemma
says that the finite equivalence relations are the only ones which are F -
comparable with any other equivalence relation.

Lemma 2.6. If R is infinite, then there is an infinite S so that R and S
are ďF -incomparable.

Proof. If R is dark, let S be Id and use Corollary 2.5. If R is light, then let
S be any dark equivalence relation such that tY P ωS : Y ęm Ru is infinite.
We will show that such S exists after verifying its F -incomparability with
R.

Note that, if RæA is finite, then RæA must be light, because R is light.
It follows that R ęF S. Next, let A be so that SæA is finite. There exists
rysS Ď A which is not ďm R. But, by Lemma 1.1 this shows that SæA ęc R.

To see that such an S exists, we begin with any dark ceer S0 and we
partition ωS0 into infinitely many infinite families Mi. Next, define

Ni :“

#

ď

IPJ
I : for J ĎMi

+

.

Each Ni is obviously uncountable and so it contains a set Xi whose m-degree
does not reduce to the degree of R. Let S be a quotient of S0 such that
Xi P ωS , for all i. Since a quotient of a dark equivalence relation is dark,
this S satisfies our requirements. �

Combining the last lemma with Theorem 2.3, we immediately obtain the
following.

Corollary 2.7. If R is infinite, then there is an infinite S so that R fails
to have a least upper bound with S.

It might seem at this point that any pair of degrees ought to not have a
least upper bound, but we now show that there are pairs of infinite degrees
which have a least upper bound.

Theorem 2.8. There are incomparable equivalence relations R,S R F which
have a join.

Proof. Let R0 be a dark equivalence relation with all computable classes
and let S0 P F . Let R “ R0 ‘ Id and S “ S0 ‘ Id. We will show that
R‘ S ”c R0 ‘ S0 ‘ Id is a least upper bound of R and S.

Let U be any equivalence relation with reductions f : R ďc U and g :
S ďc U . By Lemma 2.1, there is a pure quotient T0 of R0 and S0 so that
the reductions fæEvens and gæEvens filter through T0. Then consider the
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function fæOdds. It is immediate that the range of fæOdds intersects no
class in the range of fæEvens, and it can only finitely intersect the classes in
the range of gæEvens. So, putting together f (after shifting the elements in
Id to avoid the finite overlap with gæEvens) and gæEvens, we get a reduction
of T0 ‘ Id to U . Since every class of R0 is computable, any pure quotient
T0 over R0 and S0 has the property that R0 ‘ S0 ”c T0 ‘ Idk for some k by
Lemma 1.8. Thus T0 ‘ Id ”c R0 ‘ S0 ‘ Id. Thus we have a reduction of
R0 ‘ S0 ‘ Id to U . �

We are now in position to define I.

Theorem 2.9. I is definable in ER as the collection of degrees which have
least upper bounds with every other degree.

Proof. We first verify that every member of I has a least upper bound with
every other equivalence relation.

Lemma 2.10. If E P I, then E has a join with any equivalence relation R.

Proof. Let E “ Idk. If R has at least k classes, then R is the join of Idk and
R, as Idk ďc R. Otherwise, let n ă k be |ωR|. We prove that R ‘ Idk´n
is the least upper bound of Idk and R. First, it is immediate that both R
and Idk reduce to R‘ Idk´n. Next, suppose that R and Idk are reducible to
some S and, in particular, f : R ďc S. Then, f can only hit n equivalence
classes of S, but |ωS | ě k because Idk ďc S. Let A “ ta1, . . . , ak´nu be
a set of representatives from k ´ n equivalence classes which f avoids. By
letting g agree with f on elements from R and send the classes of Idk´n to
the numbers in A, we get a reduction g : R‘ Idk´n ďc S. �

Corollary 2.7 guarantees that no infinite equivalence relation can have
a join with every other equivalence relation. So, to prove the theorem, it
suffices to show that the same is true for any finite equivalence relation which
is noncomputable.

We note that the following lemma also follows from Theorem 2.19 below,
but we include a proof here for self-containment of this section.

Lemma 2.11. If R P F r I, then there is S P F r I so that R and S do
not have a join.

Proof. Let |ωR| “ k, and since R R I, fix C to be a non-computable R-class.
Let ω “ X1Y¨ ¨ ¨YXk be a partition of ω so that each Xi is m-incomparable
with all non-computable Y P ωR. Next, let S be the equivalence relation
with classes Xi for i ď k. Towards a contradiction, suppose that T is a least
upper bound of R and S. We may assume that T is a pure quotient R‘S{A
by Lemma 2.1.

First, observe that T has exactly k classes: if there were fewer, then
R ęc T ; if there were more, then we can take Z to be a pure quotient of
R ‘ S which has exactly k classes and we would have T ęc Z. Thus C is
collapsed via A with some class Xi in T .
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Now, let f : T ďc R ‘ S, and consider the image of C in the composed
reduction R ďc R ‘ S{A ďc R ‘ S. Since C ęm Xj for any j ď k, the
image must be contained in the evens. Similarly, consider the image of Xi

under the composed reduction S ďc R‘ S{A ďc R‘ S. Since Xi ęm K for
any K P ωR, the image must be contained in the odds. But C and Xi are
A-collapsed in T , which contradicts f being a reduction. �

This completes the proof of Theorem 2.9. �

The next corollary immediately follows from the definability of I.

Corollary 2.12. For all k,

‚ Idk is definable as the unique degree in I which has exactly k ´ 1
predecessors;

‚ Fk is definable in ER as the degrees which bound Idk and not Idk`1;
‚ F is definable in ER as the degrees which do not bound every mem-

ber of I.

2.2. Noncomputably avoiding equivalence relations. In this section,
we give a combinatorial characterization for the degrees which have joins
with every member of F . In Section 2.3, we will use this analysis to give
a definition of the degree Id (and thus Light and Dark) in ER as a com-
bination of its minimality over F along with the property of having joins
with every degree in F .

We will need the following combinatorial lemma:

Lemma 2.13. Let R be an equivalence relation with a uniformly computable
sequence pCiqiPω of distinct computable R-classes. Let S Ă ω be a finite set.
Then there is a reduction of R to itself which avoids every Ci for i P S.

Proof. We construct the reduction f : R ďc R in stages. At every stage s,
we will construct a partial function fs and a parameter Xs, which will be a
finite subset of ω. At stage s` 1, we will ensure fs`1psq is defined.

Stage 0. Let f0 “ H and X0 “ S.

Stage s` 1. We distinguish three cases.

(1) If s R
Ť

nPXs
Cn, let fs`1 :“ fs Y tps, squ and let Xs`1 :“ Xs.

(2) s P Cn for some n P Xs and there is some k ă s in Cn. Then let
fs`1 :“ fs Y tps, fpkqqu and Xs`1 :“ Xs.

(3) s P Cn for n P Xs and s is minpCnq. Then let m be least so that
m R Xs and range fs X Cm “ H. Let fs`1 :“ fs Y ps,minpCmqq and
let Xs`1 :“ Xs Y Cm.

We argue by induction that every fs is a partial reduction of R to itself
and no member of Cn, for n P S, is in the range of fs. We note that fs is
the identity on Xs and rangepfsæXsq Ď Xs, so we only need to show that
a R b Ø fspaq R fspbq for a, b P Xs and that no element of Xs is sent into
a class Cn for n P S. Note that when a number n first enters Xk for k ă s,
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then Cn is neither in the domain nor range of fk´1. Thus, for every n P Xs,
case p2q ensures that each class is sent via f to the same location. That is,
a R b Ñ fpaq R fpbq for a, b P

Ť

mPXs
Cm. In case p3q, we define f for an

element of Xs whose class has not been previously sent anywhere, and note
that we send it to a class which is not in the range of fs. Thus, if a��R b then
fspaq��R fspbq for a, b P

Ť

mPXs
Cm. Similarly, note that in case p3q, we only

send these new classes to classed Cm for m outside of Xs. In particular,
m R X0, so we never put Cm for m P S into the range of fs. �

The next lemma identifies a common way in which we get a uniformly
computable sequence of computable classes.

Lemma 2.14. Let f : R ďc R and let C P ωR be a computable R-class.
Suppose that µf pCq is not a computable R-class. Then there is a uniformly
computable sequence of distinct computable R-classes pCiqiPω.

Proof. Let Ci “ tx : f piqpxq P Cu. It is immediate that this is a uniformly
computable sequence of computable classes. We need only verify that they
are distinct. Suppose that Ci “ Cj with i ă j. Further, suppose that
i is minimal for such an example. Then i “ 0, as otherwise, we would
have Ci´1 “ Cj´1 since f is a reduction of R to R. Thus we have some
Cj “ C0 “ C. But then µf pCq “ µf pCjq “ Cj´1 is computable, contrary to
hypothesis. �

We now present the combinatorial condition which we will show is equiv-
alent to having a join with every member of F .

Definition 2.15. An equivalence relation R is noncomputably avoiding if,
for every finite collection C of noncomputable equivalence classes of R, there
is a reduction f : R ďc R which avoids all the equivalence classes in C.

First we observe that avoiding any one non-computable class is equivalent
to avoiding any finite set of non-computable classes.

Lemma 2.16. Let R be an equivalence relation so that for any non-computable
class C, there is a reduction of R to itself that avoids C. Then R is non-
computably avoiding.

Proof. We proceed by induction on k to show that for any set of size k of
non-computable classes, there is a reduction of R to itself which avoids every
class in the set. The claim is assumed for k “ 1.

Let S “ tC1, . . . Ck`1u be a collection of non-computable classes. Then,
by inductive hypothesis, there is a reduction f : R ďc R which avoids
C2, . . . Ck`1. We consider three cases depending on what type of class is
sent to C1 via f : If there is no class sent to C1 via f , then f avoids every
class in S. If there is a non-computable class X sent via f to C1, then by
assumption there is a reduction g : R ďc R which avoids X. Then f ˝ g
avoids every class in S. Lastly, if a computable class X is sent via f to C1,
then Lemmas 2.14 and 2.13 show that there is a reduction g : R ďc R which
avoids X. Then f ˝ g avoids every class in S. �
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Next we show that the property of noncomputable avoidance is degree
invariant.

Observation 2.17. If R is noncomputably avoiding and R ”c S, then S is
also noncomputably avoiding.

Proof. Let S be equivalent to some noncomputably avoiding R via f : R ďc
S and g : S ďc R. Given any non-computable S-class C, we need to build
k : S ďc S such that k avoids C.

If C R rangepµf q, then f ˝ g is a reduction of S to itself which avoids C.
So, let K be an R-class so that µf pKq “ C. It suffices to find a reduction `
of R to itself avoiding K. Once we have this, k “ f ˝ ` ˝ g is a reduction of
S to itself avoiding C.

If K is non-computable, then we use the hypothesis that R is noncom-
putably avoiding to give the reduction `, and we are done. So, suppose K
is computable. Observe that g ˝ f : R ďc R and µg˝f pKq is not computable
because C is not computable. Thus we can apply Lemmas 2.14 and Lemma
2.13 to get a reduction ` of R to itself avoiding the class K. �

Noncomputably avoiding equivalence relations exist. For instance, any
equivalence relation having all computable classes (and note that there are
dark equivalence relations with this property, see e.g. [14, Lemma 3.4] or
[16, Prop. 5.6]) is obviously noncomputably avoiding. A less trivial example
is provided by the following observation.

Observation 2.18. The degree of universal ceers is noncomputably avoid-
ing.

Proof. Let U be a universal ceer. Let V “ U ‘ U and note that V ”c U
since V is also a ceer. Any non-computable class C is either contained in
Evens or Odds. So, we can reduce V to the copy of U on the Odds or,
respectively, Evens of V . This gives a reduction of V to itself avoiding
the class C. Thus, V is noncomputably avoiding by Lemma 2.16 and U is
noncomputably avoiding by Lemma 2.17. �

We now give the main result of this section characterizing the degrees
which have a join with every equivalence relation in F .

Theorem 2.19. An equivalence relation R is noncomputably avoiding if
and only if R has a join with every equivalence relation in F .

Proof. pñq Let R be noncomputably avoiding. Fix S P F and let k “
|ωS |. Fix a1, . . . , ak representing the k distinct S-classes. Let j ď k be the
minimum of k and the number of computable R-classes, and fix C1, . . . Cj to

be computable R-classes. We will show that X :“ Ræ
Ť

iďj Ci ‘ S is a least

upper bound for R and S. First note that it is an upper bound for R (and
trivially S) via the function fpxq “ 2ai ` 1 if x P Ci for i ď j and otherwise
fpxq “ 2x.
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By Lemma 2.1, it suffices to show that X reduces to any pure quotient
R ‘ S{A of R ‘ S. Fix a pure quotient R ‘ S{A. Let h : R ďc R be a
reduction of R to itself which avoids every non-computable R-class which
is A-collapsed with an S-class in R ‘ S{A. Let K1, . . .Km enumerate the
R-classes so that µhpKiq is A-collapsed with an S-class. Note that these all
must be computable, and m ď j. If any Ki0 equals some Ci1 for i0, i1 ď m,
then reorder the K’s so that i0 “ i1.

Let g be a reduction of R to itself which swaps Ki with Ci for i ď m.
That is,

gpxq “

$

’

&

’

%

x x R
Ť

iďmCi Y
Ť

iďmKi

minKi x P Ci

minCi x P Ki.

Then all R-classes which are sent via h˝g to an R-class A-collapsed with an
S-class are among the classes Ci for i ď m. Thus, taking the restriction of
h ˝ g to the set

Ť

iďj Ci gives a reduction f of Ræ
Ť

iďj Ci to R which avoids
every R-class which is A-collapsed with an S-class. Then we can make a
reduction f 1 of Ræ

Ť

iďj Ci‘ S to R‘ S{A by following f on Ræ
Ť

iďj Ci and
being the identity map on S-classes.
pðq Assume that R has a join with every finite equivalence relation, and

fix a non-computable class A P ωR. Let Y be a set so that Y and Y are
m-incomparable with every non-computable R-class. Let T be the join of
R and EpY q. We will show that the existence of the join T will imply that
there is a reduction f : R ďc R which avoids the class A. By Lemma 2.16,
this suffices to show that R is noncomputably avoiding.

By Lemma 2.1, we may assume T “ R ‘ EpY q{„, a pure quotient of
R ‘ EpY q. Since T ďc R ‘ EpY q, we see that no non-computable R-class
C can be collapsed in T to an EpY q-class. This is because then f : T ďc
R‘EpY q would give an m-reduction from C‘Y (or C‘Y ) to either some
EpY q-class (giving an m-reduction of C to Y or Y ) or to an R-class (giving
an m-reduction of Y or Y to an R-class). So, we know T “ R ‘ EpY q{„
where „ collapses at most 2 R-classes, each of which must be computable,
with the odd classes.

Fix any R-class B ‰ A and let

S :“ R‘ EpY q
{p2minA,2minY`1q,p2minB,2minY`1q,

i.e., we collapse A with the Y -class in EpY q and B with the Y class in EpY q.
Next, consider the reduction g : T ďc S. Consider the two T -classes of Y
and Y (possibly collapsed also with computable R-classes). Since these do
not m-reduce to any R-class, their g-images must intersect the odds. Thus,
the image of the evens under g, with the exception of two classes, must
avoid each class containing the odds. In other words, we have a reduction
h : RæZ ď R where Z “ C for C the union of the (at most 2) computable
R-classes which are „-collapsed in T with odd classes, and h avoids the
classes A and B. Thus, by extending h to the computable classes, we get a
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reduction ĥ : R ďc R and if A has an ĥ-preimage, this preimage must be a
computable class. If A is not in the image of ĥ (e.g., if T “ R ‘ EpY q and
„ does not collapse any computable R-class to an EpY q-class), then we are

done. So, suppose the class C is computable and is sent to A via ĥ. Then,
we can apply Lemmas 2.14 and 2.13 to get a reduction i of R to itself that
avoids the computable class C. Then ĥ˝ i is a reduction of R to itself which
avoids A. �

2.3. Defining Light and Dark. We turn to showing that Id is definable
in ER as the unique noncomputably avoiding degree minimal over F . From
there, we define Light and Dark.

Theorem 2.20. In ER, Id is definable as the unique noncomputably avoid-
ing degree which is minimal over F .

Proof. The fact that Id is minimal over F is easy (Id æW ”c Id|W | for any
c.e. W ), and Id is obviously noncomputably avoiding.

We now verify that Id is the only minimal noncomputably avoiding de-
gree. Every other degree minimal over F is self-full by Lemma 1.10 and has
a non-computable class by Lemma 1.14. Clearly any self-full equivalence
relation with a non-computable class is not noncomputably avoiding. �

Corollary 2.21. Light and Dark are definable in ER.

Proof. d P Light if and only if Id ď d. d P Dark if and only if d R

F Y Light. �

Having defined the degree Id, we wonder which other degrees are definable
in ER. In particular, we ask if the degree of the universal ceer is definable:

Question 1. Is the degree of the universal ceer, or equivalently the sub-
structure Ceers, definable in ER?

3. Covers and Branching

We now turn our attention to further structural properties in ER. We
consider the existence of minimal covers and strong minimal covers, and we
explore which degrees are branching. Here, many of the results differ from
their analogues in the theory of ceers.

A minimal cover for a degree d is a minimal upper bound of tdu, i.e.,
a degree c ą d such that there is no degree strictly between c and d; a
minimal cover c of d is strong if anything strictly below c is bounded by d,
i.e.,

p@bqpb ă c ñ b ď dq.

A degree is branching if it is the meet of two incomparable degrees.
In Ceers, not all degrees are branching. Andrews and Sorbi [5] proved

that a ceer R is self-full if and only if R‘ Id1 is the unique strong minimal
cover of R. Further, it has the following upward covering property: If X ą

R, then X ě R ‘ Id1. This implies that the degree of R cannot branch.
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In fact, they show that the branching degrees in Ceers are precisely the
non-self full degrees [5, Theorem 7.8]. Inside ER, the situation is quite
different. In this section, we will show that every degree has continuum
many strong minimal covers, and therefore every degree is branching. Before
proving these results, we will concentrate on the ‘ Idk operation for self-full
equivalence relations (where R ‘ Idk ąc R). We show the surprising result
that though R ‘ Id1 is a minimal cover of any self-full equivalence relation
R (Corollary 3.4), it is not always a strong minimal cover.

Theorem 3.1. If R is self-full and R ďc S ďc R ‘ Idk, then there is some
j ď k so that S ”c R‘ Idj.

Proof. We prove this by induction on k. For k “ 0, the result is trivial.
Next, let f : R ďc S, g : S ďc R‘ Idk, and suppose that S is not equivalent
to R‘ Idj for any j ď k.

Lemma 3.2. The range of f intersects every S-class.

Proof. If the range of f did not intersect every S-class, then we would have
R ‘ Id1 ďc S. But then we could use the inductive hypothesis, since R ‘
Id1 ďc S ďc R‘ Id1‘ Idk´1. Thus, we would know that S ”c R‘ Id1‘ Idj
for some j ď k ´ 1, but then it would follow that S ”c R ‘ Idj1 for some
j1 ď k. �

Lemma 3.3. The range of g intersects every R‘ Idk-class.

Proof. If the range of g did not intersect every R‘ Idk-class, then we would
have S ďc R ‘ Idk´1. But then, since R ďc S ďc R ‘ Idk´1, we could use
the inductive hypothesis to show that S ”c R‘ Idj for some j ď k ´ 1. �

Let h :“ g ˝ f be the composite reduction of R to R ‘ Idk through S.
Fix any odd number a and let Ci :“ tx : h ˝ ph2 q

piqpxq R‘ Idk au. Note
that the Ci’s so defined for i ě 1 are a uniform sequence of computable
R-classes. Thus Lemma 2.13 yields our contradiction by showing that R is
not self-full. �

Applying this to k “ 1, we get that if R is self-full, then R ‘ Id1 is a
minimal cover of R.

Corollary 3.4. Let R be self-full. Then R‘ Id1 is a minimal cover of R.

Now, we will show that, contrary to the case of ceers, there are self-full
equivalence relations R so that R‘ Id1 is not a strong minimal cover of R.
To do so, we introduce generic covers of equivalence relations. Intuitively,
a generic cover S of a given equivalence relation R codes R into the evens
and lets S be generic given this fact.

Definition 3.5. A generic cover S of an equivalence relation R is any equiv-
alence relation of the form R ‘ Id{ graphpfq, where f : Odds Ñ Evens is
1-generic over the Turing degree of R.
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Obviously, the map x Ñ 2x computably reduces R to any generic cover.
We now see how reductions into the odds must intersect the classes of S.

Lemma 3.6. Let S be a generic cover of R and Z Ď Odds be an infinite
set which is c.e. in the Turing degree of R. Then, Z intersects every S-class
infinitely. It follows that S ęc R.

Proof. Assume that S, R, and Z are as in the statement of the lemma. In
particular, S “ R ‘ Id{ graphpfq. Observe that the following sets of strings
are c.e. in degT pRq,

Va,k :“ tσ P EvensăOdds : pDkxqpx P Z ^ σpxq “ 2aqu

Further, since Z is infinite, Va,k is dense in EvensăOdds. Therefore f meets
every Va,k by genericity of f , and Z intersects the S-class of every even
number, so every S class, infinitely often.

Next, suppose f : S ďc R and take any odd number a. Let Z “ tb P
Odds : fpbq R fpaqu. Necessarily Z is an infinite R-c.e. set since Z contains
rasS X Odds (and the set Odds intersects every S-class infinitely by the
above). Therefore, Z meets every S-class, contradicting f being a reduction.

�

So, R properly reduces to a generic cover of R, but S covers R in a way
quite differently from how R‘ Id1 covers R:

Lemma 3.7. If S is a generic cover of R, then, for all n, the only equiv-
alence relations which reduce to both R ‘ Idn and S are the equivalence
relations reducible to R.

Proof. Suppose that, for some equivalence relation X, there are f : X ďc
R ‘ Idn and g : X ďc S. Let A and B be any two X-classes. Note
that A,B ďm R ‘ Idn ”T R by Lemma 1.1. Consider the R-c.e. sets
OddsX rangepgæAq and OddsX rangepgæBq. These must both be finite, as
otherwise Lemma 3.6 would show that gæA would hit µgpAq or gæB would
hit µgpBq. Thus rangepgq X Odds is finite. So, Lemma 1.6 shows that
X ďc R. �

In Ceers, R ‘ Id1 is a strong minimal cover (in fact, the only one) of
a given self-full ceer R. Hence, any ceer which is below R ‘ Id1 is already
reducible to R. But the dual property also holds: R ‘ Id1 reduces to any
ceer which is above R (see [5, Lemma 4.5] for details). The next theorem
uses generic covers to show that these properties both fail in ER.

Theorem 3.8. The following hold.

(1) Let R be any self-full equivalence relation. There is S so that R ďc S
but R‘ Id1 ęc S.

(2) There exist a self-full equivalence relation R so that, for some S,
S ăc R‘ Id1 but S ęc R.
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Proof. p1q: Let S be a generic cover of R. S is above R and, by Lemma 3.7,
we have that S is incomparable with R‘ Id1.
p2q: Let S0 be any self-full equivalence relation, let R be a generic cover

of S0, and denote S0 ‘ Id1 by S. It is immediate that S ďc R ‘ Id1 as
S0 ďc R. But S and R are incomparable by Lemma 3.7. �

Having shown that R‘ Id1 is not a strong minimal cover for some self-full
R, it is natural to ask whether every self-full degree has a strong minimal
cover. The next theorem answers this question affirmatively. In fact, all
equivalence relations aside from Id1 have continuum many strong minimal
covers, and such covers can be chosen self-full.

Theorem 3.9. Let R be any equivalence relation ‰ Id1. Then there are
continuum many strong minimal covers of R which are self-full.

Proof. We begin with a ceer E0 constructed in [5, Theorem 4.10], with
A “ Id. In particular, this is a ceer so that E0æEvens “ Id, there are
infinitely many classes which contain no even number, and if W is any
c.e. set which intersects infinitely many E0-classes which contain no even
number, then W intersects every E0-class. These ceers are constructed in
[5, Theorem 4.10] to be self-full strong minimal covers of Id. We let S0 be
the quotient of E0 formed by collapsing 2n with 2m if and only if n R m.
In particular S0æEvens “ R.

Let S be the set of quotients of S0 which collapse every S0-class which
contains no even number to exactly one S0-class which does contain an even
number. That is, if X P S, then XæEvens “ R, but we collapse to ensure
that every X-class contains an even number. Since E0, and thus also S0,
has infinitely many classes which contain no even number, and |ωR| ą 1, we
have |S| “ 2ℵ0 . Thus, there are continuum many elements of S which are
not ďc R, and there is a continuum sized ďc-antichain in S. It suffices to
show that for S P S, if X ăc S, then X ďc R. It suffices by Remark 1.3 to
prove that either S ďc SæW or SæW ďc R for any c.e. set W .

We argue by cases:

(1) If W intersects only finitely many E0-classes which do not contain
an even number, then we build a reduction of SæW to R as follows:

Let a1, . . . an represent the E0-classes which contain no even num-
ber and are intersected by W . Let b1, . . . bn be even numbers so that
ai S bi. Then define gpxq to be the first member of EvensYtai : i ď
nu found to be E0-equivalent to x (note that we are using that E0 is a
ceer). Then let hpxq “ gpxq if gpxq is even and hpxq “ bi if gpxq “ ai.
This gives a reduction of SæW to S whose range is contained in the
evens. So, this gives a reduction of S to SæEvens “ R.

(2) If W intersects infinitely many E0-classes which do not contain an
even number, then we know that W intersects every E0-class. We
then give a reduction of S to SæW by sending x to the first member
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of W found to be E0-equivalent to x. Since S is a quotient of E0,
this is the identity map on classes, so a reduction of S to SæW .

Lastly, we check that S is self-full. Suppose f is a function reducing S to
itself. Let W be rangepfq. Since R ăc S, we cannot be in case (1) above,
so W must intersect every E0-class, so also every S-class. �

Corollary 3.10. In ER, every degree is branching.

Proof. Every degree d has two incomparable strong minimal covers. The
meet of these two degrees is d. �

So, contrary to the case of ceers, the self-full equivalence relations cannot
be isolated in terms of their strong minimal covers. We ask:

Question 2. Is the collection of self-full degrees first-order definable in ER?

4. The complexity of the first-order theory of ER

In this last section, we characterize the complexity of ThpERq, the first-
order theory of ER. Our analysis contributes to a longstanding research
thread. Indeed, computability theorists have been investigating the first-
order complexity of degree structures generated by reducibilities for decades.

Since a reducibility r is typically a binary relation on subsets of ω, one
can effectively translate first-order sentences regarding the corresponding
degree structure Dr to second-order sentences of arithmetic, obtaining a 1-
reduction from ThpDrq to Th2pNq. Remarkably, the converse reduction of-
ten holds, e.g., the first-order theories of the following degree structures are
1-equivalent (and so, by Myhill Isomorphism Theorem, computably isomor-
phic) to second-order arithmetic: the Turing degrees DT [22]; the m-degrees
Dm, the 1-degrees D1, the tt-degrees Dtt, the wtt-degrees Dwtt [20]; and
the enumeration degrees De [23]. Here, we add ER to this list, namely, we
prove:

Theorem 4.1. ThpERq is computably isomorphic to Th2pNq.

In fact, we will show that the theorem is also true for each of the definable
substructures Dark and Light of ER.

4.1. Our strategy. Equivalence relations are straightforwardly encoded
into subsets of ω, hence ThpERq ď1 Th2pNq trivially holds. So, to prove
Theorem 4.1, it suffices to prove the converse reduction. Our strategy for
coding second-order arithmetic into ER is based on coding all countable
graphs as second order objects into this degree structure. The justification
for such approach relies on a well-known fact: second-order arithmetic is 1-
reducible to second-order logic on countable sets, which is in turn 1-reducible
to the theory of second order countable graphs [19], so that one can effec-
tively translate any question about second-order arithmetic into a question
about a graph which encodes the standard model of Robinson’s arithmetic
Q.
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Finally, let us mention that our encodings are similar to the way in which
graphs are coded in Ceers, as in [4]. But there are three major differences.
Firstly, in what follows we code any countable graph, rather than just com-
putable graphs. Secondly, we must code subsets of the set of vertices of our
graph. Thirdly, since we are giving codes for subsets, we do not need to code
functions between different codings of natural numbers; that means that we
do not need to distinguish the natural numbers from non-standard models
of Robinson’s Q as being embeddable into any other such model (thus need-
ing to code functions), because the second order theory distinguishes the
standard model of Robinson’s Q as the only one with no proper inductive
subset.

4.2. Coding graphs into Dark. To code graphs in Dark, we heavily use
dark minimal degrees. In particular, we fix a collection tDi : i P ωu of
pairwise nonequivalent dark minimal equivalence relations; since Ceers is a
initial segment of ER, such equivalence relations can be ceers, as constructed
in [5].

Definition 4.2. Let d1,d2 be two dark minimal degrees. We say that
degrees a,b are a covering pair of d1,d2 if, for each x P ta,bu, the set of
dark minimal degrees below x is precisely td1,d2u, and there is no y ď a,b
so that d1,d2 ď y.

We now describe how to encode a countable graphs by parameters in
Dark.

Definition 4.3. For any degree c, let Gc be the graph with vertices the
dark minimal degrees below c and edges the collection of pairs d1,d2 so
that there are distinct a,b ď c which form a covering pair of d1,d2.

The next lemma provides an easy way of forming covering pairs of dark
minimal equivalence relations.

Lemma 4.4. If D,E are dark minimal equivalence relations, then D ‘ E
and D ‘ E{p0,1q form a covering pair of D and E.

Proof. It is immediate that D and E are both computably reducible to D‘E
and D ‘ E{p0,1q (the latter being a pure quotient). We show that the only
dark minimal degrees below either D ‘ E or D ‘ E{p0,1q are the degrees of
D and E.

Suppose f : X ďc D ‘ E, for a dark minimal X. Since X is dark
minimal, its equivalence classes are computably inseparable by Lemma 1.14,
so rangepfq must be either contained in the evens or the odds, which implies
X ďc D or X ďc E. But then X ”c D or X ”c E, by minimality of D and
E.

On the other hand, suppose f : X ďc D ‘ E{p0,1q, for a dark minimal X.
Since the equivalence classes of X are computably inseparable by Lemma
1.14, rangepfq is contained in
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(1) either EvensY r1sD‘E{p0,1q ;

(2) or OddsY r0sD‘E{p0,1q .

Without loss of generality, we assume the former. Let h be the function given
by hpxq “ x if x is even and 0 if x is odd. Then h ˝ f : X ďc D ‘ E{p0,1q
and rangeph ˝ fq Ď Evens. This induces a reduction of X to D. But then
X ”c D, by minimality of D.

Next, to see that D‘E and D‘E{p0,1q are not equivalent, use Lemma 1.11
to conclude that D ‘ E does not reduce to its proper quotient D ‘ E{p0,1q.

Finally, suppose that X ďc D ‘ E. Then by Lemma 1.4, X ”c D0 ‘ E0

where D0 ďc D and E0 ďc E. So either

(1) X P F ,
(2) or X ”c D ‘ E,
(3) or X ”c D ‘ F for some F P F ,
(4) or X ”c E ‘ F for some F P F .

In the first case, X obviously does not bound D or E. In the second, X is not
below D‘E{p0,1q, as just proved. In the third or fourth, X does not bound
both D and E. To see this, suppose X ”c D‘F for some F P F . Then any
reduction of E to X gives a reduction of E to D ‘ F . But by computable
inseparability of the classes of E, this reduction is either contained in the
evens, giving E ďc D, or contained in the odds, giving E is finite, either
way leading to a contradiction. Thus, there is no set X which reduces to
both D ‘ E and D ‘ E{p0,1q and bounds both D and E. �

We are ready to show that we can uniformly code any countable graph
as a second order structure into Dark, which, combined with the remarks
offered in Section 4.1, will yield the following theorem.

Theorem 4.5. The theory of the degree structure Dark is computably iso-
morphic to second-order arithmetic.

Proof. We first embed any countable graph as a first-order structure into
Dark.

Lemma 4.6. For any countable graph G, there is some c P Dark so
Gc – G.

Proof. We may assume that the universe of G is ω (if G is finite, then the
dark ceer C constructed below can be taken to just be the uniform join of Di

and Du ‘Dv{p0,1q for pairs where u G v, and everything else is the same).
Recall that tDi : i P ωu represent a collection of distinct dark minimal
degrees.

LetX be the collection of equivalence relations tDi : i P ωuYtDi ‘Dj{p0,1q :

i G ju and fix an enumeration of X “ pXiqiPω. Fix S to be an immune set.
Then we define C by xx, iy C xy, jy if and only either i “ j is the nth element
of S and x Xn y or i, j R S.

We now argue that C is dark and Gc – G, where c is the degree of C.
The proof is split into several claims.
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Claim 4.7. C is dark.

Proof. If We intersects infinitely many columns of ω, then by immunity of S,
it enumerates two elements xx, iy, xy, jy with i, j R S. But then xx, iy C xy, jy
and We is not a transversal.

If We intersects only finitely many columns, then We is enumerating a
subset of Y “ txx, iy : i ď mu for some m. But CæY is equivalent to a finite
uniform join of dark ceers Xi. Thus We cannot be a transversal. �

Next, we see that c only bounds the degrees of the fixed equivalence
relations Di.

Claim 4.8. If D ďc C and D is dark minimal, then D ”c Du for some u.

Proof. Since D is dark minimal, its classes are computably inseparable by
Lemma 1.14. So, either D ďc Du, for some u, or D ďc Du ‘ Dv{p0,1q, for
some pair i, j. In the former case, dark minimality of Du ensures D ”c Du,
and in the latter case Lemma 4.4 ensures D ”c Di or D ”c Dj . �

We now know that the map i ÞÑ di is onto Gc. It only remains to show
that it is an embedding of G.

Claim 4.9. If u G v, then u Gc v.

Proof. There are three columns of C, coding Du, Dv, and Du ‘Dv{p0,1q.
Therefore, Du ‘ Dv, Du ‘Dv{p0,1q are both ďc C. By Lemma 4.4, these
form a covering pair of Du and Dv, so we have u Gc v. �

Claim 4.10. If u Gc v, then u G v.

Proof. Suppose that a,b ď c form a covering pair of du and dv and u, v
are not adjacent in G. Let A P a, B P b, Du P du and Dv P dv. Consider
the composite reduction fu : Du ďc A ďc C. By computable inseparability
of the classes of Du (Lemma 1.14), rangepfuq must be contained in a single
column of C. By incomparability of the dark minimal equivalence relations
and Lemma 4.4, this column must be either Du or Du ‘Dw{p0,1q for some
w with u G w. In particular, the column used for fu cannot be the same
as the column used for fv. It follows that Du ‘Dv ďc A. Similarly for B,
contradicting a and b forming a covering pair of du,dv. �

This completes the proof of Lemma 4.6. �

Next, we show that for any c, we can code any subset of Gc.

Lemma 4.11. Let E be a countable set of dark minimal degrees. There is
a degree a P Dark so that the set of dark minimal degrees ď a is exactly E.

Proof. Apply the construction of the dark equivalence relation C of Lemma
4.6 to the empty graph and the collection of degrees in E. That is, let
pEiqiPω be dark minimal equivalence relations representing the classes in E.
Then let xx, iy C xy, jy if and only if i “ j is the nth element of S (a fixed
immune set) and x En y or if i, j R S. Lemma 4.8 shows that the degrees
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of dark minimal equivalence relations below C are precisely E, and Lemma
4.7 shows that C is dark. �

For a P Dark, let Ma be the set of dark minimal degrees ď a. Put
together, we now know that every second order countable graph is encoded
as pGc,Aq for some c P Dark, where A is the set of Ma for a P Dark which
are contained in Gc.

So, ThpDarkq is ě1 the theory of second order countable graphs. As
remarked in Section 4.1, this is enough to conclude that ThpDarkq is com-
putably isomorphic to second-order arithmetic. Then, Theorem 4.1 im-
mediately follows from the fact that Dark is definable in ER (Corollary
2.21). �

4.3. Coding graphs into Light. We now focus on light degrees, with the
goal of showing that ThpLightq is also computably isomorphic to second-
order arithmetic. The encoding of graphs in the light degrees will be as
follows:

Definition 4.12. A degree e is a light minimal degree if Id ă e and there
is no x so that Id ă x ă e.

Let e1, e2 be two light minimal degrees. We say that a,b are a light
covering pair of e1, e2 if for each x P ta,bu, the set of light minimal degrees
below x is precisely te1, e2u and there is no y below a and b which is above
e1, e2.

Definition 4.13. For a pair of light degrees c, let Hc be the graph with
vertices the light minimal degrees below c and edges the collection of pairs
e1, e2 so that there are a,b ď c which form a light covering pair of e1, e2.

We now show that we can uniformly encode every second order countable
graph into Light.

Theorem 4.14. The theory of Light is computably isomorphic to second-
order arithmetic

Proof. Rather than directly defining light covering pairs of light minimal
degrees (as we did in Lemma 4.4), we inherit them from the dark case
through the following map: let ι be the map from DarkYF to Light given
by ιpDq “ D ‘ Id, and ι the induced map on degrees. The next two claims
give two crucial properties of ι.

Claim 4.15. ι gives a homomorphism of DarkYF into Light whose image
is an initial segment.

Proof. It is immediate that D ďc E implies ιpDq ďc ιpEq. Now, suppose
Id ďc X ďc ιpDq “ D ‘ Id, for some equivalence relation X. From Lemma
1.4, it follows X ”c D0 ‘ A, where D0 ďc D and A ďc Id. Since D0

is dark or finite, A must be light, since Id ďc X. So, A ”c Id. Thus,
X ”c D0 ‘ Id “ ιpD0q. �
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Claim 4.16. If D is a dark minimal ceer, then ιpDq is of light minimal
degree.

Proof. Suppose Id ăc X ďc ιpDq. Then by the proof of Claim 4.15, X ”c
ιpEq for some E ď D. But D is a ceer, so E cannot be in F as that would
make E P I and X ”c Id. So, E P Dark, and thus E ”c D by dark
minimality of D. �

Lemma 4.6 guarantees that any graph G is encodable into Dark via some
Gc. The next lemma says that we can use ι to transfer our coding of graphs
into Dark into an encoding in Light.

Lemma 4.17. For any countable graph G, there is a degree c P Dark so
that Gc is isomorphic to a substructure of Hιpcq

Proof. Fix dark minimal ceers Di P di and let c be as constructed in Lemma
4.6. Lemma 4.16 shows that every ιpdiq is in Hιpcq. Let X be the subset of
vertices in Hιpcq comprised of ιpdiq for i P ω. We do not claim that there
are no other light minimal degrees bounded by ιpcq. We now show that ι
gives an isomorphism of Gc with the substructure of Hιpcq with universe X.

By Claim 4.15, ι gives a homomorphism of the degrees below c onto
the light degrees below ιpcq. We argue that such a homomorphism, when
restricted to the dark minimal degrees and their covering pairs, is in fact an
embedding.

First observe that each distinct pair of dark minimal Di and Dj below
c are sent via ι to incomparable degrees. Indeed, if ιpDiq ďc ιpDjq, then
Di ďc Dj ‘ Id. By the computable inseparability of the classes of Di, the
reduction is either to Dj or Idk, both of which are impossible.

Now, for distinct Di, Dj , observe that ιpDi‘Djq and ιpDi‘Dj{p0,1qq are

sent to incomparable degrees. To see this, recall that, by Lemma 4.4, Di‘Dj

and Di‘Dj{p0,1q are incomparable. Since neither of these have a computable

class (because this would contradict the computable inseparability of the
equivalence classes of Di and Dj , granted by Lemma 1.14), it follows that
neither can reduce to the other ‘ Id, as such a reduction could not make
any use of Id.

Claim 4.18. If di Gc dj, then ιpdiq Hιpcq ιpdjq.

Proof. Let di Gc dj . To show that ιpdiq Hιpcq ιpdjq holds, we need to
check that ιpDi‘Djq and ιpDi‘Dj{p0,1qq form a light covering pair of ιpDiq

and ιpDjq. It only remains to check that there is no Y ďc ιpDi ‘ Djq,
ιpDi ‘ Dj{p0,1qq and ιpDiq, ιpDjq ďc Y . Suppose that such a Y existed.

Consider the composite reduction fi : Di ďc Y ďc Di ‘ Dj ‘ Id. The
computable inseparability of the classes of Di and the incomparability of
Di and Dj force fi to go into the first column. Similarly, the reduction
of fj : Dj ďc Y ďc Di ‘ Dj ‘ Id must go into the second column. It
follows that Di‘Dj ďc Y . Since Y ďc ιpDi‘Dj{p0,1qq, there is a reduction
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Di ‘Dj ďc Di ‘Dj{p0,1q ‘ Id, and thus ιpDi ‘Djq ďc ιpDi ‘Dj{p0,1qq, but

we have already established that these are incomparable. �

Claim 4.19. If ιpdiq Hιpcq ιpdjq, then di Gc dj.

Proof. Let ιpdiq Hιpcq ιpdjq, and let ιpA0q P a, ιpB0q P b be a light covering
pair of ιpdiq, ιpdjq. By the computable inseparability of the classes of Di

and Dj , Di, Dj ďc A0 and Di, Dj ďc B0. Since ι is a homomorphism onto
the light degrees below ιpcq, any y witnessing that a,b is not a covering
pair of di,dj would be so that ιpyq witnesses a,b are not a light covering
pair of ιpdiq and ιpdjq. Thus we have di Gc dj . �

This concludes the proof of Lemma 4.17 �

Next, we show that we can code any subset of any countable set of vertices.
This will be used both for encoding the second order part of graphs and also
for selecting the substructure of Hιpcq which is isomorphic to G.

Lemma 4.20. Let tbi : i P ωu be a collection of distinct light minimal
degrees and S Ď ω. Then, there is a degree c so that bi ď c if and only if
i P S.

Proof. Fix a sequence of representatives Li P bi. Intuitively, we construct
X P c to encode each Li with i P S on the columns of ω and then generically
collapse equivalence classes between columns. Enumerate S “ ta0 ă a1 ă
. . .u.

First we define X0 by

xn, iy X0 xm, iy ô pn Lai mq.

Let Coli “ txx, iy : x P ωu, i.e. the ith column of ω. For all i, denote
by Ti Ď Coli a transversal of X0 which hits all classes contained in the ith
column. Next, let pfiqiPω be a (mutually) 1-generic sequence of permutations
of ω over a Turing degree which computes every Li.

Then let X “ X0{Z where Z “ tTurvs, T0rfupvqs : u, v P ωu where we let
Turvs denote the vth element of Tu (i.e. Z collapses the vth class in the uth
column to the fupvqth class in the 0th column of X0).

Claim 4.21. For all i P S, Li ďc X.

Proof. This follows from the fact X0 encodes each Li for i P S as a column,
and the quotient X does not collapse equivalence classes from the same
column. �

Suppose towards a contradiction that g : Lj ď X for some j R S.

Claim 4.22. There is some k so that rangepgq Ď˚ Colk.

Proof. Let V be the set of finite sequences of injective partial maps ppiqiďm
so that for some x, y, letting gpxq X0 Tirns and gpyq X0 Tlrms, we have
pipnq “ plpmq Ø x��Lj y. Observe that if rangepgq is not almost contained
in a single column, then V is dense (i.e., for any finite sequence of injective
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partial maps ppiqiďm there is a sequence pqiqiďn with n ě m of injective
partial maps so pi Ď qi for i ď m, and pqiqiďn P V ). But then by genericity
of pfiqiPω, it will meet V , which contradicts g being a reduction of Lj to
X. �

Let i be fixed so that rangepgq Ď˚ Coli. Since rangepgq intersects only
finitely many columns, we can assume that it intersects the minimal possible
number of columns. If rangepgq Ď Coli, then Lj ďc Li, which is a contradic-
tion to Lj and Li being inequivalent light minimal equivalence relations. So,
suppose that rangepgq intersects Colk for k ‰ i. Let us consider the finite
equivalence relation Y “ Ljæg

´1pColkq. If all Y -classes were computable,
then we could adjust g to send each of these sets to a representative of the
same class in Coli contradicting that g uses the minimal possible number of
columns. So Y P F r I and Y ď Lj and Y ď Lk. But Lemma 2.20 shows
that there is a join Z of Id and Y . Then Id ăc Z ď Lj , Lk contradicting
that Lj and Lk are inequivalent light minimal equivalence relations. �

If a is light, then let Ma be the set of light minimal degrees below a. It
follows that for every second order countable graph G, there are parameters
e,b so that pG,P pGqq – pHe X Mb,Aq where A is the collection of sets
He XMb XMa for various light degrees a.

As remarked in Section 4.1, this suffices to conclude that the theory of
Light is computably isomorphic to second-order arithmetic. �
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