
THE BOREL COMPLEXITY OF THE CLASS
OF MODELS OF FIRST-ORDER THEORIES

URI ANDREWS, DAVID GONZALEZ, STEFFEN LEMPP, DINO ROSSEGGER,
AND HONGYU ZHU

Abstract. We investigate the descriptive complexity of the set of models of
first-order theories. Using classical results of Knight and Solovay, we give a
sharp condition for complete theories to have a Π0

ω-complete set of models.
We also give sharp conditions for theories to have a Π0

n-complete set of models.
Finally, we determine the Turing degrees needed to witness the completeness.

1. Introduction

We characterize the possible Borel complexities of the set of models of a first-
order theory. For a single formula φ, Wadge [Wa83, I.F.3 and I.F.4], using a result
by Keisler [Ke65], showed that if φ is an ∃n-formula which is not equivalent to a ∀n-
formula, then the set of models of φ is a Σ0

n-complete set under Wadge reduction.
We extend this result to considering (possibly incomplete) first-order theories T and
giving conditions on T determining the complexity of Mod(T ), the set of models
of T .

We show that a complete theory T has no ∀n-axiomatization for any finite n if
and only if Mod(T ) is Π0

ω-complete. Prior to this result, showing that Mod(T ) is
Π0

ω-complete was difficult even for familiar theories, e.g., Rossegger [Ro20] asked
this for the theory TA of true arithmetic. We also show that for any finite n,
a (possibly incomplete) theory T has a ∀n-axiomatization if and only if Mod(T )
is Π0

n. If T does not have a ∀n-axiomatization, then T is Σ0
n-hard.

By Vaught’s proof [Va74] of the Lopez-Escobar theorem, showing that the set
of models of T is Σ0

n (or Π0
n) is equivalent to showing that T is equivalent to

a Σin
n -formula (or Πin

n -formula, respectively). Also, Wadge’s argument shows that
if the set of models of T is Σ0

n and not Π0
n, then it must be Σ0

n-complete. Thus, an
equivalent way to present our main results is in terms of when a first-order theory T
is equivalent to a formula in Lω1ω. For example, it follows that a first-order theory
is equivalent to a Πin

n -sentence if and only if it has a ∀n-axiomatization.
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This is related to Keisler’s result [Ke65] that was recently reproved by Harrison-
Trainor and Kretschmer [HK23] that if a first-order formula is definable by an
infinitary Πin

n -formula, then it must already be definable by a ∀n-formula. In fact,
our result applied to a single formula implies this via an easy application of com-
pactness. This result shows that, though infinitary logic can express much more
than finitary logic, it cannot express things more efficiently, i.e., in fewer quanti-
fiers, than finitary logic. We do note that Keisler’s result holds not only for formulas
equivalent to Πin

n -formulas in Lω1ω, but also for formulas in admissible fragments
of L∞ω, whereas our proof does not yield this generality.

Interestingly, all three proofs are quite different. Keisler used games and satu-
rated models, Harrison-Trainor and Kretschmer used arithmetical forcing, and we
use iterated priority constructions. One advantage of our technique is that, while
combinatorially quite complicated, the metamathematics involved are quite tame.
This suggests that our results are a consequence of, if not equivalent to, compact-
ness. By contrast, Wadge’s result that Mod(φ) is Σ0

n-complete if φ is ∃n and not
equivalent to a ∀n-formula relies upon Borel determinacy. A second advantage is
that we can determine the exact complexity of an oracle needed to compute the
continuous reduction witnessing that Mod(φ) is Σ0

n-complete. Finally, the main
advantage is that we consider theories, not simply formulas.

2. Preliminaries

Given a Polish space X, the Borel hierarchy on X gives us a way to stratify
subsets of X in terms of their descriptive complexity. A natural space is the space
of countably infinite structures in a countable relational vocabulary τ which we
can view as a closed subspace of 2N as follows. Fix an enumeration of the atomic
τ -formulas (φi(x0, . . . , xi))i∈N; then given a τ -structure A with universe N, define
its atomic diagram by

D(A)(i) =
{

1 A |= φi[xj 7→ j : j ≤ i],
0 otherwise.

and let Mod(τ) ⊆ 2N be the set of atomic diagrams of τ -structures with universe N.
Then it is easy to see that Mod(τ) is a closed subset of Cantor space and thus a
Polish space via the subspace topology.

For a first-order theory T , Mod(T ) = {D(A) : A |= T} is a canonical subset
of Mod(τ), and it is natural to ask how complex Mod(T ) is in terms of its Borel
complexity. It is not hard to see that Mod(T ) can be at most Π0

ω: It follows from
Vaught’s proof [Va74] of the Lopez-Escobar theorem [Lo65] that an isomorphism-
invariant subset of Mod(τ) is Π0

α if and only if it is definable by a Πin
α -formula in

the infinitary logic Lω1ω for α < ω1. Note that we use the notation Πin
α to refer

to formulas in Lω1ω at that complexity, and we use ∀n to refer to Lωω-formulas
with n quantifier blocks beginning with a ∀. Since Mod(T ) is the set of models
of the infinitary formula

∧∧
φ∈T φ, and every φ is ∃n for some n ∈ N, we get that

Mod(T ) is at most Π0
ω.

However, for a fixed theory T , it turns out to be quite difficult to establish that
Mod(T ) is not simpler. The main theorem of this paper establishes a complete
characterization of first-order theories T where Mod(T ) is Π0

ω-complete. To es-
tablish this notion of completeness, we use Wadge reducibility; a subset X1 of a
Polish space Y1 is Wadge reducible a subset X2 of a Polish space Y2 (denoted as
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X1 ≤W X2) if there is a continuous function f : Y1 → Y2 such that for all y ∈ Y1,
y ∈ X1 if and only if f(y) ∈ X2. A set X ⊆ Y is Γ-hard for a pointclass Γ if for
every Z ∈ Γ, Z ≤W X, and X is Γ-complete if X ∈ Γ and X is Γ-hard. We are also
able to provide sharp bounds on the Turing degree of the continuous function wit-
nessing the reduction. Wadge [Wa83] showed that there is only one Wadge degree of
a Σ0

α-set which is not Π0
α and vice versa. We refer the reader to Kechris [Ke95] for

more on Wadge reducibility and a thorough introduction to descriptive set theory.

3. Theories without bounded axiomatization

Definition 3.1. A first-order theory T is boundedly axiomatizable if there is some n
so that T has a ∀n-axiomatization.

Our main result for theories that are not boundedly axiomatizable is the following
Theorem 3.2. A complete first-order theory T has a Π0

ω-complete set of models
if and only if T is not boundedly axiomatizable.

In fact, Theorem 3.2 follows directly from the following more technical fact.
Theorem 3.3. Let T be any complete first-order theory for which there is a col-
lection of complete theories {Tn}n∈ω such that for all n ∈ ω, T ̸= Tn but T ∩ ∃n =
Tn ∩ ∃n. Then the collection of models of T is Π0

ω-complete. Indeed, for each Π0
ω-

set P , there is a continuous function mapping any p ∈ P to a model of T , and any
p /∈ P to a model satisfying Tn for some n.

We show in the next example the necessity of the assumption of completeness
for the theory T in Theorem 3.2.
Example 3.4. Let Lk be disjoint relational languages, and for each k, let φk

be an Lk-sentence which is ∃k and not equivalent to any ∀k-sentence. Let L be⋃
k Lk ∪ {Ri | i ∈ ω}, where each Ri is unary. Let T say that the set of realizations

of each Ri is disjoint, and at most one is non-empty. Further, let T say that any
relation from Lk can only hold on tuples from the set of realizations of Rk. Let T
further say that if Rk is non-empty, then φk holds. It is direct to see that T has no
∀n-axiomatization for any n and yet Mod(T ) is Σ0

ω.
We defer the proof of Theorem 3.3 to Section 5. Here we state some corollaries

of Theorem 3.2:
Corollary 3.5. For any completion T of Peano arithmetic PA, in particular for
true arithmetic, the set of models of T is Π0

ω-complete. □

This follows from an observation of Rabin [Ra61] (which he suspects to have been
known before) that no consistent extension of PA can be boundedly axiomatizable.

While Example 3.4 shows that Theorem 3.2 cannot be generalized to hold for
incomplete theories, for many incomplete theories, one can use Theorem 3.3 to
get a similar result. One simply has to find a suitable completion T and suitable
theories Tn. One example of such a theory is PA.
Corollary 3.6. Peano arithmetic has a Π0

ω-complete set of models.
Proof. Let T = TA, and let Tn be a consistent completion of TA ∩ ∃n, where BΣ0

n,
the bounding principle for Σ0

n-formulas, fails. That such Tn exists for every n follows
from a result by Parsons [Pa70], see also [Ka91, Theorem 10.4]. Using Theorem 3.3
with this T and (Tn)n∈ω, we get that Mod(PA) is Π0

ω-complete. □
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Answering our question about other theories of arithmetic, Enayat and Visser
[EVta] showed that no complete sequential theory can be boundedly axiomatiz-
able. The sequential theories were first defined by Pudlák [Pu83] and rephrased by
Pakhomov and Visser [PV22] as follows:

Definition 3.7. Given a theory T , we denote by AS(T ) (adjunctive set theory) the
extension of T by a new binary relation symbol ∈ and the axioms

• AS1: ∃x∀y (y /∈ x), and
• AS2: ∀x∀y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

A theory is sequential if it allows a definitional extension to AS(T ).

Note here that Adjunctive Set Theory does not even require Extensionality.
Pudlák’s original definition was in terms of being able to define Gödel’s β-function,
which then allows for a weak coding of sequences. (Note that any extension of a
sequential theory is again sequential.) Examples of sequential theories include PA−

(by Jeřábek [Je12]) and essentially all versions of set theory, but not Robinson’s Q
(by Visser [Vi17]). Thus Enayat and Visser’s result [EVta] yields that Mod(T ) is
Π0

ω-complete for essentially any “foundational” complete theory, in particular, any
completion of PA−.

Finally, note that our reduction in Theorem 3.3 produces models of different
theories Tn for different x in the Σ0

ω-outcome, depending on how we witness that
x /∈ P . We note that it is necessary to use infinitely many theories in the Σ0

ω-
outcome, since the union of Mod(Ti) for finitely many theories Ti is always Π0

ω,
and we are reducing a Σ0

ω-hard set.

4. Theories with bounded axiomatization

In this section, we will present results on the Wadge degrees of models of first-
order theories with bounded axiomatization via the quantifier complexity of their
axiomatizations. Our proofs will rely on the following lemma that will rely on
theorems of Knight and Solovay. We delay its proof to Section 5.

Lemma 4.1. Suppose n ≥ 1 and T+ and T− are distinct complete theories such
that T− ∩ ∃n ⊆ T+ ∩ ∃n. Then for any P ∈ Σ0

n, there is a Wadge reduction f
such that f(p) ∈ Mod(T+) if p ∈ P , and f(p) ∈ Mod(T−) otherwise. In particular,
Mod(T+) is Σ0

n-hard, and Mod(T−) is Π0
n-hard.

In order to apply Lemma 4.1 to incomplete theories, we use the following Lemma
which allows us to find completions satisfying the hypotheses of Lemma 4.1.

Definition 4.2. A level-sentence set for L is either the set of ∃n- or the set of
∀n-sentences in L for some n.

For a level-sentence set Λ, we let ¬Λ be the set of sentences equivalent to the
negation of a sentence in Λ

Lemma 4.3. Let Λ be a level-sentence set for L. Let A be a set of finitary sentences
and φ a finitary sentence such that A ̸⊢ φ ↔ ψ for any ψ ∈ ¬Λ. Then there
are complete consistent theories T+ ⊇ A ∪ {φ} and T− ⊇ A ∪ {¬φ} such that
ThΛ(T−) ⊆ ThΛ(T+). Furthermore, if T is any theory consistent with A ∪ {φ} ∪
ThΛ(A ∪ {¬φ}), then T+ can be chosen to contain T .

Proof. The lemma follows from the following two claims that allow us to choose
such T+ and T−.
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Claim 4.4. The theory A ∪ {φ} ∪ ThΛ(A ∪ {¬φ}) is consistent.

Proof. Suppose that A ∪ {φ} ∪ ThΛ(A ∪ {¬φ}) is inconsistent. By compactness,
there is ψ ∈ ThΛ(A ∪ {¬φ}) such that A ∪ {φ} ⊢ ¬ψ. But then A ⊢ φ ↔ ¬ψ as
well as ¬ψ ∈ ¬Λ, a contradiction. □

Now, choose T+ to be any complete extension of A ∪ {φ} ∪ ThΛ(A ∪ {¬φ}).
Observe that if T is any theory consistent with A∪ {φ} ∪ ThΛ(A∪ {¬φ}), then T+

can be chosen to contain T .

Claim 4.5. The theory Th¬Λ(T+) ∪A ∪ {¬φ} is consistent.

Proof. Suppose not, then by compactness, there is ψ ∈ Th¬Λ(T+) such that A ∪
{¬φ} ⊢ ¬ψ. But then ¬ψ ∈ ThΛ(A ∪ {¬φ}) ⊆ T+, contradicting that T+ is
consistent. □

Let T− be a completion of Th¬Λ(T+) ∪ {¬φ}. Observe that T− and T+ satisfy
the lemma. □

Corollary 4.6. Let Λ be a level-sentence set, and let T be a theory which is not Λ-
axiomatizable (i.e., ThΛ(T ) does not imply all of T ). Then there are complete the-
ories T0, T1 such that T ⊆ T0, T is inconsistent with T1, and ThΛ(T0) ⊆ ThΛ(T1).

Proof. Let A = ThΛ(T ), and let φ ∈ T be so that A ̸⊢ φ. Observe that A ̸⊢ φ ↔ ψ
for any ψ ∈ Λ, since otherwise ψ would be in ThΛ(T ) = A, contradicting A ̸⊢ φ.

Observe also that T ∪ Th¬Λ(A∪ {¬φ}) is consistent. Otherwise, there would be
a formula ψ ∈ Λ so that T ⊢ ψ, thus ψ ∈ A, and A∪ {¬φ} |= ¬ψ. But then A ⊢ φ,
which is a contradiction. So, we can apply Lemma 4.3 to the triple ¬Λ, A, φ to get
two complete theories T− ⊇ A ∪ {¬φ} and T+ ⊇ T with Th¬Λ(T−) ⊆ Th¬Λ(T+).
Finally, let T0 = T+ and T1 = T−. □

Lemma 4.7. Let T be a theory without a ∀n-axiomatization. Then Mod(T ) is
Σ0

n-hard.

Proof. By Corollary 4.6, we have complete theories T0 ⊇ T and T1 inconsistent
with T so that Th∀n(T0) ⊆ Th∀n(T1). Thus Th∃n(T1) ⊆ Th∃n(T0), and applying
Lemma 4.1 shows that Mod(T ) is Σ0

n-hard. □

Lemma 4.8. Let T be a theory without an ∃n-axiomatization. Then Mod(T ) is
Π0

n-hard.

Proof. By Corollary 4.6, we have complete theories T0 ⊇ T and T1 inconsistent
with T so that Th∃n

(T0) ⊆ Th∃n
(T1), and applying Lemma 4.1 shows that Mod(T )

is Π0
n-hard. □

Theorem 4.9. Let T be a theory and n ∈ ω. Then Mod(T ) ∈ Π0
n if and only if T

is ∀n-axiomatizable.

Proof. If Mod(T ) ∈ Π0
n, then it is not Σ0

n-hard. So, by Lemma 4.7 it must have
a ∀n-axiomatization. On the other hand, if T is ∀n-axiomatizable, then Mod(T ) ∈
Π0

n, as the infinitary conjunction over all sentences in the axiomatization is Πin
n . □

For ∃n-axiomatizable theories, the situation is not as simple as the one for ∀n-
axiomatizable theories seen in Theorem 4.9. If A is a ∃n-axiomatization of T , then
Mod(T ) = Mod(ψ), where ψ =

∧∧
φ∈A φ. However, ψ will in general not be Σin

α ,
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but rather Πin
α+1. Combining this with the contrapositive of Lemma 4.8, we can get

the following

Proposition 4.10. Let T be a theory and n ∈ ω. If Mod(T ) ∈ Σ0
n, then T is

∃n-axiomatizable. On the other hand, if T is ∃n-axiomatizable, then Mod(T ) ∈
Π0

n+1. □

We now give examples of ∃n-axiomatizable theories of different Wadge degrees
showing that the bounds in Proposition 4.10 cannot be improved.

Example 4.11. For k ≤ 2, there are ∃k-axiomatizable ℵ0-categorical theories of
Wadge degree Π0

k+1.

Proof. For k = 1, let τ be the signature consisting of one unary relation symbol P ,
and let T be the theory saying that P is infinite and coinfinite. T is easily seen to
be ∃1-axiomatizable, ℵ0-categorical, and Mod(T ) is Π0

2-complete.
For k = 2, let τ be the signature consisting of a single binary relation symbol R.

Let T say that R is symmetric and for every x, there is at most one y so R(x, y).
Finally, let T say that there are infinitely many x satisfying ∃yR(x, y) and infinitely
many x satisfying ¬∃yR(x, y). Then T is ℵ0-categorical, ∃2-axiomatizable, and
Mod(T ) is Π0

3-complete. □

Example 4.12. There is a finitely ∃3-axiomatizable ℵ0-categorical theory of Wadge
degree Σ0

3.

Proof. Consider the theory of the linear ordering 2 · Q + 1 + Q together with its
successor relation S. This theory is ℵ0-categorical and is axiomatizable by the
axioms for linear orderings, the definition of the successor relation, and the following
∃3-formula:

(⋆)
∃x [(∀y < x) (∃z(S(y, z) ∨ S(z, y)) ∧ (∃u S(y, u) → ∀v ¬S(v, y))) ∧

(∀y > x)(∀u > x) (¬S(y, u) ∧ ¬S(u, y)) ∧ ∃z z > x]
One can easily verify that L ∼= 2 · Q + 1 + Q for any countable linear ordering L
satisfying (⋆), thus this is a finite ∃3-axiomatization for an ℵ0-categorical theory. It
was shown in [GRta, Theorem 3.3] that the isomorphism class of 2 ·Q+1+Q is Σ0

4-
complete in the space of linear orderings (without successor relation). Now, towards
a contradiction, assume it is not Σ0

3-hard in Mod({≤, S}). Then Lemma 4.7 gives
a Πin

3 (≤, S)-sentence φ such that Mod(φ) = Iso(2 · Q + 1 + Q,≤, S). But clearly φ
translates into a Πin

4 (≤)-formula, contradicting that Iso(2 · Q + 1 + Q,≤) is Σ0
4-

complete in Mod({≤}). □

We next show that 3 is minimal possible in Example 4.12. This is similar to a
result of Arnold Miller [Mi83] that states that no countable structure can have a
Σ0

2-isomorphism class.

Proposition 4.13. Let φ be a consistent Σin
2 -sentence. Then φ has a finitely

generated model. In particular, if T is a complete relational theory and Mod(T ) ∈
Σ0

2, then Mod(T ) = ∅.

Proof. Suppose φ is Σin
2 , i.e., of the form

∨∨
i∈ω ∃xθi(x), where θi is a conjunction of

∀0
1-sentences. Assume without loss of generality that (A, a) |= θi(a) for some i, then

every substructure of (A, a) satisfies θi(a) and thus the substructure of A generated
by a satisfies φ.
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Now assume that T is a complete relational theory and Mod(T ) ∈ Σ0
2. Then

by Lopez-Escobar, Mod(T ) = Mod(φ) for a Σin
2 -formula φ. It then follows from

the above argument that T has a finite model A. Hence Mod(T ) = Iso(A) by the
completeness of T . Hence, T does not have a countably infinite model and Mod(T )
is empty. □

Next we show that Examples 4.11 and 4.12 can be generalized to higher quantifier
levels.

Lemma 4.14. Let n ≥ 2. Let T be an ∃n-axiomatizable theory so that Mod(T ) is
Σ0

n-complete (or Π0
n+1-complete, respectively). Let T ′ be the ∆0

2-Marker extension
of T (see [AM, Lemma 2.8]). Then T ′ is an ∃n+1-axiomatizable theory so that
Mod(T ) is Σ0

n+1-complete (or Π0
n+2-complete, respectively).

Proof. We focus on the case where Mod(T ) is Σ0
n-complete, with the Π0

n+1-complete
case being similar. Note that Mod(T ′) is Σ0

n+1, since from a structure B, it is ∆0
3(B)

to check that it is a ∆0
2-Marker extension of a structure B̂, with B̂ being uniformly

∆0
2(B). Finally, B is a model of T ′ if and only if B̂ is a model of T , which is Σ0

n(B′).
Putting all together, we get that Mod(T ′) is Σ0

n+1.
Since Mod(T ) is Σ0

n-complete, there is a continuous reduction of Pn = {k ⌢ p |
k ∈ p(n), p ∈ 2ω} to Mod(T ). We will convert this into a continuous reduction of
Pn+1 = {k ⌢ p | k ∈ p(n+1), p ∈ 2ω} to Mod(T ′). Since Pn+1 is a Σ0

n+1-complete
subset of ωω, this shows Mod(T ′) is Σ0

n+1-complete.1
Let g be the continuous map reducing Pn to Mod(T ), and let D be an oracle

which computes g. Given k ⌢ p, g(k ⌢ p′) is uniformly computable from D ⊕ p′.
Then D⊕p can uniformly compute a copy of the ∆0

2-Marker extension of g(k ⌢ p′).
This yields the Σ0

n+1-hardness of Mod(T ′).
It is straightforward to check that if T is ∃n-axiomatizable for n ≥ 2, then T ′ is

∃n+1-axiomatizable. □

Since Marker extensions preserve ℵ0-categoricity and finite axiomatizability, we
generalize Examples 4.11 and 4.12 to higher quantifier levels.

Example 4.15. For every n ≥ 1, there is an ∃n-axiomatizable ℵ0-categorical the-
ory T so that Mod(T ) is of Wadge degree Π0

n+1.
For every n ≥ 3, there is a finitely ∃n-axiomatizable ℵ0-categorical theory T so

that Mod(T ) is of Wadge degree Σ0
n.

Example 4.16. For any n ≥ 3, there is an ∃n-axiomatizable ℵ0-categorical the-
ory T so that Mod(T ) is a properly ∆0

n+1-set.

Proof. Fix T0 to be an ∃n−1-axiomatizable ℵ0-categorical theory so that Mod(T0)
is Π0

n-complete. Fix T1 to be an ∃n-axiomatizable ℵ0-categorical theory so that
Mod(T1) is Σ0

n-complete. Let T have a unary predicate U and say that the set
of elements realizing U is a model of T0 and the set of elements realizing ¬U is a
model of T1. Then T is ∃n-axiomatizable and Mod(T ) is D2(Σ0

n)-complete. □

1To see that Pn+1 is Σ0
n+1-complete, first note that it is Σ0

n+1. If there was D such that Pn+1
is Π0

n+1(D), then Pn+1 would be ∆0
n+1(D). Hence, we would get that for any C computing D that

n ∈ C(n+1) if and only if n ⌢ χC ∈ Pn+1 and this would be ∆0
n+1(C), hence computable from

C(n). But this would contradict that the Turing jump is proper. So, by Wadge’s lemma, Pn+1 is
Σ0

n+1-complete.
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We observe that a special case of Theorem 4.9 implies a case of a theorem of
Keisler [Ke65, Corollary 3.4], recently reproved by Harrison-Trainor and Kretschmer
[HK23].

Theorem 4.17. If a finitary first-order formula φ is equivalent to ψ ∈ Πin
n , then

there is a ∀n-formula θ such that φ ≡ θ.

Proof. By adding constants, we may assume that φ is a sentence. Since φ is equiv-
alent to ψ, we get that Mod({φ}) ∈ Π0

n. Thus Theorem 4.9 shows that φ has
a ∀n-axiomatization. Compactness implies that φ is equivalent to a single ∀n-
sentence. □

Combining our results from this section we get the following characterization.

Theorem 4.18. Let T be a theory and n ∈ ω. Then the following are equivalent.
(1) T has a ∀n-axiomatization but no ∀n−1-axiomatization.
(2) The Wadge degree of Mod(T ) is in [Σ0

n−1,Π0
n].

Note that the intervals [Σ0
n−1,Π0

n] contain ℵ1-many different ∆0
n Wadge degrees.

Question 4.19. Which ∆0
n-Wadge degrees are the degree of Mod(T ) for some

(complete) finitary first-order theory?

5. Proofs of the two technical results

In the present section, we will prove Theorem 3.3 and Lemma 4.1. We will first
prove Theorem 3.3 and then introduce some minor modifications to the proof to
prove Lemma 4.1.

The proof of Theorem 3.3 relies on theorems of Knight [Kn87] and Solovay
(see [Kn99]) Those proofs proceed via worker arguments, a framework for (possibly
infinitely) iterated priority constructions. Recently, applications of such systems
have been found in descriptive set theory by Marks/Montalbán (in preparation)
and Day/Greenberg/Harrison-Trainor/Turetsky [DGHTta].

A Scott set S is a subset of 2ω that is closed under Turing reducibility, join, and
satisfies weak König’s lemma, i.e., if T ∈ S codes an infinite binary tree, then there
is a path f through T such that f ∈ S. An enumeration of a countable Scott set S
is a set R ∈ 2ω satisfying S = {R[n] | n ∈ ω}, i.e., S equals the set of columns of R.
If A = R[i], then we say that i is an R-index for A.

Marker (see Macintyre/Marker [MM84]) showed that if X computes an enumer-
ation R of a Scott set S, then X also computes an effective enumeration, i.e., an
enumeration where the closure properties of the Scott set are witnessed by com-
putable functions. In particular, there is a computable function f(a, b) so that if
φa(R[b]) is an infinite tree T , then R[f(a,b)] is a path through T .

We are now ready to state Knight’s theorem and Solovay’s refinement.

Theorem 5.1 ([Kn87, Theorem 1.1]). Let T be a complete theory. Suppose R ≤T

X is an enumeration of a Scott set S, and e ∈ ω is so that for each n, ΦX(n−1)

e is
an R-index for T ∩ ∃n. Then T has a model B with B ≤T X.

Theorem 5.2 ([Kn99, Theorem 2.5]). Let T be a complete theory. Suppose R ≤T

X is an enumeration of a Scott set S, with functions tn which are ∆0
n(X) uniformly

in n, such that for each n, lims tn(s) is an R-index for T ∩ ∃n, and for all s, tn(s)
is an R-index for a subset of T ∩ ∃n. Then T has a model B with B ≤T X.
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In fact, Solovay showed that this is sharp:

Theorem 5.3 ([Kn99, Corollary 3.5]). If T is a completion of PA, the degrees of
non-standard models of T are the degrees of sets X which compute enumerations R
of a Scott set, equipped with functions tn which are ∆0

n(X) uniformly in n, such that
for each n, lims tn(s) is an R-index for T ∩ ∃n, and for all s, tn(s) is an R-index
for a subset of T ∩ ∃n.

5.1. Proof of Theorem 3.3. The proof of Theorem 3.3 has two parts. First, we
fix a Π0

ω-set P , theories T and {Tn}n∈ω, and show how to obtain the Scott set S
and how to produce functionals tn such that, using an input p ∈ 2ω, we satisfy
Theorem 5.2 and thus output a model of T if p ∈ P and a model of some Tn

otherwise.
The second part concerns the uniformity of the construction. As stated in the

literature, it is not immediately apparent that we can go from the premises to the
conclusion in Theorem 5.1 and Theorem 5.2 in a way that is continuous in p. We
will thus take a closer look at the worker method to see that these results are
uniform.

Part 1. Given a Π0
ω-set P , we can fix a decreasing sequence of Π0

n-sets Pn such that
P =

⋂
n≥1 Pn. Since our construction will heavily depend on it, we will describe

the Borel codes of P (and of the sets Pn) fairly explicitly: Fix a (computable) basis
{Ui}i∈ω for the topology of 2ω. The Borel code for Pn will be a Borel code (i.e.,
a tree) Cn of nodes σ ∈ ωn+1 such that each τ ∈ ωn has an extension in Cn; the
interpretation is that

(5.1) Pn =
⋂
j1

⋃
j2

· · ·
⋂
jn

⋃
⟨j1...jnj⟩∈Cn

Uj

if n is odd, and

(5.2) Pn =
⋂
j1

⋃
j2

· · ·
⋃
jn

⋂
⟨j1...jnj⟩∈Cn

Uj

if n is even (where U is the complement of U). We will assume that P2 ⊇ P3 . . . ;
and so P =

⋂
n≥2 Pn has Borel code

C =
⋃

n≥2
(⟨n⟩ ̂Cn).

(Note that the labeling function is implicit in our coding and thus can be sup-
pressed.)

Next, we fix an enumeration R of a Scott set S containing T ∩ ∃k for each k and
{Tn ∩∃k}n,k∈ω. Let Y = C⊕R⊕T ⊕

⊕
n∈ω Tn. We will describe a computation Φe

satisfying the hypotheses of Theorem 5.1, namely, that Φ(Y ⊕p)(n−1)

e is an R-index
for Tp ∩ ∃n for a complete theory Tp. Furthermore, we will ensure that if p ∈ P
then Tp = T ; and if p /∈ P then Tp = Tn for some n ∈ ω. Note that we are applying
Theorem 5.1 with the oracle X = Y ⊕ p.

We describe the index e by giving a uniform method of computing an R-index
for T ∩ ∃n from (Y ⊕ p)(n−1). For n = 1, we output a fixed index for T ∩ ∃1.
For n ≥ 2, Φ(Y ⊕p)(n−1)

e depends on whether p ∈ Pn−1. Since membership of p in
each basic open set Ui is p-computable, it is easy to verify by induction from (5.1)
and (5.2) that membership of p in Pn−1 is (C ⊕ p)(n−1)-computable, given that
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checking membership in each infinite union and intersection takes one more jump
to decode.

For n ≥ 2, let Φe be the algorithm defined as follows. Given an oracle of the
form (Y ⊕ p)(n−1), let k0 be the least k < n such that p /∈ Pk if such k exists,
and n otherwise. Let Φ(Y ⊕p)(n−1)

e (s) output the least R-index of Tk0 ∩∃n. Note that
finding this index is not effective in R and Tk0 but is effective in (R⊕Tk0)′ ≤T Y ′ ≤T

(Y ⊕ p)(n−1) (needing one jump here is why we treat the case n = 1 differently).
We have just produced a uniform sequence of computations, thus we can find

a single index e (note that Y and p are used in the oracle, but not in identifying
the index) and can use Theorem 5.1 to obtain a model Mp computable from Y ⊕ p
such that Mp |= T if p ∈ P , and Mp |= Tn for some n ∈ ω otherwise. It remains
to show that we can produce the model Mp continuously from p.

Part 2. We have to show that there is a continuous map p → Mp, where Mp is the
structure produced by Theorem 5.1 for p. We refer to the proof in Knight [Kn87],
though these remarks on uniformity apply also to the proof of Solovay’s result.
Knight presents a worker argument. That is, for each n ∈ ω, Knight gives (uni-
formly) a procedure for an algorithm computing a sequence of computations us-
ing X(n−1). These computations depend on the computations being given by other
oracles, chiefly X(n). There is an application of the recursion theorem to show that
there is in fact a single index i so that each worker X(n) can be taken to be doing
its computations via the same index ΦX(n)

i , and thus each worker uses the correct
approximations to the computations of the other workers.

As the description of what each worker is doing (relative to all the others) is
uniform, and the recursion theorem is uniform, the entire construction is uniform.
That is, there is computable function σ(e, j) so that whenever T,X, e satisfies the
hypothesis of the theorem with R = ΦX

j , then σ(e, j) is an index (equal to the i in
the previous paragraph – σ comes from the uniformity of the recursion theorem) so
that ΦX

σ(e,j) is the atomic diagram of a model B so that M models the theory T .

5.2. Proof of Lemma 4.1. The proof is almost the same as the proof of Theo-
rem 3.3, except that one of our approximation functions will not be constant, so
we use Theorem 5.2. The only difference is in the first step, i.e., how we obtain the
sequence of functions tn to apply this theorem. We use C ⊕R⊕ p as an oracle for
computing Mp, where C is a Borel code for the Σ0

n-set P and R is an enumeration
of a Scott set which contains both T+ and T−. Let P =

⋃
i∈ω Pi, where the Pi are

∆0
n. Note that Marker’s theorem shows that R can compute another enumeration

of the same Scott set which is effective, so we may assume that we can uniformly
compute R-indices for T+ ∩ ∃n and T− ∩ ∃n.

Here, for k < n, we let tpk be the algorithm that simply outputs the least index i
of R such that R[i] = T− ∩ ∃k = T+ ∩ ∃k. We let tpn be the algorithm that checks,
given s and using (p ⊕ C)(n−1), whether p ∈ Pt for t < s. If not, we output the
least R-index for T− ∩ ∃n. If so, we output the least R-index for T+ ∩ ∃n. Note
that the value of tpn(s) may change at most once as s increases. For k ≥ n, we
let tpk be the algorithm that checks using (p ⊕ C)(k) whether p ∈ P and outputs
the index for T+ ∩ ∃k if it is, and the index for T− ∩ ∃k otherwise. The fact that
T− ∩∃n ⊆ T+ ∩∃n guarantees that the premises for Theorem 5.2 are satisfied. The
rest of the proof is as in the proof of Theorem 3.3.
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6. The effectivity of the reductions

While the reductions in Theorem 3.2 and Lemma 4.8 are continuous, they are not
effective without oracles. In this section, we explore which oracles are necessary.
In fact, by proving Theorem 3.2 through Theorem 3.3, we have already taken a
non-computable step by choosing the theories Tn. We will see that we can improve
the oracle needed for the reduction in Theorem 3.2 by not doing this.

We introduce the following notion to formalize the question of which Turing
degrees are necessary to witness the hardness of the class Mod(T ).

Definition 6.1. We say that D witnesses the Γ-hardness of Y ⊆ 2ω if for every
Borel code C for a set X ∈ Γ, there is a Turing operator Φ so that ΦD⊕C⊕p ∈ Y if
and only if p ∈ X for every p ∈ 2ω.

If the index for the Turing operator Φ does not depend on C, then we say D
uniformly witnesses the Γ-hardness of Y .

A Turing degree d (uniformly) witnesses the Γ-hardness of Y if it contains a
set D (uniformly) witnessing the Γ-hardness of Y .

Theorem 6.2. Let T be a complete theory which is not boundedly axiomatizable.
Suppose R ≤T X is an enumeration of a Scott set S, with functions tn which are
∆0

n(X) uniformly in n, such that for each n, lims tn(s) is an R-index for T ∩ ∃n,
and for all s, tn(s) is an R-index for a subset of T ∩ ∃n.

Then X uniformly witnesses the Π0
ω-hardness of Mod(T ).

Proof. We are given a Π0
ω set P =

⋂
Pn with Borel code C so that each Pn is Π0

n

and an X computing the enumeration R. By Marker’s theorem [MM84], there is an
X-computable effective enumeration R̂ of S and it is ∆0

2(X) to transfer R-indices
to R̂-indices. Thus, we may assume that R is an effective enumeration of S.

We now give two sequences of functions up
n(s) and vp

n(s), each uniformly ∆0
n(X⊕

C ⊕ p). For each p and n, we ensure that lims u
p
n(s) is an R-index for T−

p ∩ ∃n for
a theory T−

p , and each up
n(s) is an R-index for a subset of T−

p ∩ ∃n. Similarly, for
each p and n, we ensure that lims v

p
n(s) is an R-index for T+

p ∩ ∃n for a theory T+
p ,

and each vp
n(s) is an R-index for a subset of T+

p ∩ ∃n. Thus, applying Theorem 5.2,
we build continuous maps α− : p 7→ M−

p |= T−
p and α+ : p 7→ M+

p |= T+
p , and we

will make one of these two reduce P to Mod(T ). Further, we will see that either α−

or α+ works for every Borel set P̂ with code Ĉ.
We will ensure up

n(s) = vp
n(s) = tn(s) whenever p ∈ P , so both α− and α+

produce models of T when p ∈ P . We will also ensure that either T−
p ̸= T for

every p, or T+
p ̸= T for every p.

The algorithm to determine up
n(s) and vp

n(s) each first finds the least k < n so
that p /∈ Pk. If no such k exists, then up

n(s) = vp
n(s) = tn(s).

We first describe the algorithm for up
n(s): Using our oracle (X ⊕ C ⊕ p)(n−1),

we first compute û = lims u
p
n−1(s) and t̂ = tn−1(s), then we check if R[û] = R[t̂].

If not, then we have already ensured that the theory T−
p ̸= T , and we simply

use the effectiveness of the enumeration R to find the R-index of any ∃n-theory
consistent with the ∃n−1-theory R[û]. If R[û] = R[t̂], then let T ∗ be the ∃n ∪ ∀n-
theory determined by this column. Then we next check if there is any ∃n-sentence ρ
so that T ∗ ̸⊢ ρ and T ∗ ̸⊢ ¬ρ. If not, then again there is only one completion, and
we let up

n(s) = tn(s). If there is such a ρ, then we use the effectiveness of the
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enumeration R to find two R-indices of ∃n-theories i− and i+ so that ρ /∈ R[i−] and
ρ ∈ R[i+].

We let up
n(s) = i− for all s.

The algorithm for vp
n(s) is exactly the same, except in the last case where we let

vp
n(s) = i+.

Note that in every case except the last case, we have ensured that up
n(s) is a

constant function which gives the index for a consistent ∃n-fragment of a theory
which is not equal to T ∩ ∃n.

Note that for any k, there exists infinitely many n > k so that there is more than
one consistent way to extend T ∩ ∃n to an ∃n+1-theory. Otherwise, T would be
boundedly axiomatizable. So in the algorithm computing up

n(s) and vp
n(s), if p /∈ P ,

then we are infinitely often in the final case. Thus, for every p /∈ P , T−
p ̸= T+

p .
We may suppose that there exists a p /∈ P so that T−

p = T , as otherwise α− is
our needed reduction. Let k be so that p /∈ Pk. This means that for every n > k,
whenever there is more than one extension of T ∩ ∃n to an ∃n+1-theory, we have
T ∩ ∃n+1 = R[i−].

We will show that α+ is a reduction. Suppose towards a contradiction that
p̂ /∈ Pm for some m and T+

p̂ = T . Let ℓ > k,m be so that T ∩ ∃ℓ does not imply
T ∩ ∃ℓ+1. Then the algorithms for T−

p and T+
p̂ choose different theories on level ℓ,

but T−
p = T , so T+

p̂ ∩ ∃ℓ+1 ̸= T ∩ ∃ℓ+1 contradicting T+
p̂ = T .

Note that which of α− or α+ gives a reduction is determined by whether frag-
ments of T are equal to approximations to it which are computed uniformly by X.
In other words, the reduction Φ reducing P to Mod(T ) computable from X⊕C⊕p
is uniform across pairs (P,C) where C is a Borel code for a Π0

ω-set P , but there is
non-uniformity across X and T . □

Note that by Theorem 5.3, if T is a completion of PA, a set X satisfies the
hypotheses of Theorem 6.2 if and only if it computes a nonstandard model of T .
We now observe that this bound is sharp.

Corollary 6.3. Let T be a completion of PA. If a Turing degree d computes a
non-standard model of T , then d uniformly witnesses the Π0

ω-hardness of Mod(T ).
Let T be a completion of PA−. If d does not compute a non-standard model

of T , then it does not witness the Σ0
2-hardness of Mod(T ). Moreover, if d does not

compute any model of T , then it does not witness the 2ω-hardness of Mod(T ).

Proof. Let T be a completion of PA. Let d compute a non-standard model of T .
Then Theorem 5.3 shows that d satisfies the hypotheses of Theorem 6.2, so d
uniformly witnesses the Π0

ω-hardness of Mod(T ).
Let T be a completion of PA−. Suppose that d witnesses the Σ0

2-hardness of
Mod(T ). Let P be the set of χ{n}, where n ∈ D′′ for some fixed D ∈ d, and
observe P is Σ0

2 with Borel code C ∈ d. There is a function Ψ so that Ψ(p) is
uniformly computable in D ⊕ p, and Ψ(p) is a model of T if and only if p ∈ P .
If the range of Ψ contains any non-standard model of T , then D ⊕ p computes a
non-standard model of T for some p ∈ P . But every p ∈ P is computable, so there
is a d-computable non-standard model of T . The alternative is that Ψ(p) is the
standard model of TA whenever p ∈ P . The standard model of TA has a Πin

2 -Scott
sentence, so this causes D′′ to be Π0

2(D): n ∈ D′′ if and only if Ψ(χ{n}) ∼= (N,+, ·),
which contradicts the fact that D′′ is Σ0

2(D)-complete.
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The final statement is immediate from the definitions. □

This gives a stark dichotomy for the Turing degrees. For example, if T is a
non-standard completion of PA, every Turing degree either uniformly witnesses the
Π0

ω-hardness of Mod(T ) or fails to even witness the 2ω-hardness of Mod(T ).
We now turn to the degree of the oracle needed for Lemma 4.7, with the same

result being true for Lemma 4.8:

Theorem 6.4. Let T be a (possibly incomplete) theory without a ∀n-axiomatization.
Let D be PA over T . Then D uniformly witnesses the Σ0

n-hardness of Mod(T ).

Proof. Computable from the degree d, we fix an effective enumeration R of a Scott
set S containing T . Next, we note that there are a pair of theories T0 and T1 as
in Lemma 4.7 inside S: There is a T -computable tree of viable choices for T0 ⊕ T1,
and the existence of any such pair shows that the tree is infinite. Next we apply
Lemma 4.1 to this pair T− and T+. Note that in Section 5.2, the oracle used is
exactly C ⊕ R ⊕ p, where R is an enumeration of a Scott set S which contains
both T− and T+. Thus we can take Ψ to be the construction sending p to Mp in
the proof of Lemma 4.1 applied to the pair T− and T+. □

We note that again this is optimal since, with T being an incomplete theory, it
may take a degree PA over T just to build any model of T .

Finally, we observe that ∅ does not witness Σ0
2-hardness for completions of even

very weak fragments of PA.

Definition 6.5. Let ∃≤
1 be the set of formulas in the language of Peano arithmetic

containing all bounded existential formulas. We let I∃≤
1 be the set of induction

principles for these formulas. For φ ∈ ∃≤
1 , the typical axiom in I∃≤

1 is of the form

(∀x(φ(x) → φ(x+ 1)) ∧ φ(0)) → ∀x φ(x).

Theorem 6.6 (Wilmers [Wi85]). If M |= I∃≤
1 , then M is computable if and only

if M ∼= N, the standard model of the natural numbers.

Theorem 6.7. Let T be a complete consistent extension of PA− + I∃≤
1 . Then

Mod(T ) is Π0
ω-complete, but ∅ does not witness the Σ0

2-hardness of Mod(T ). If T
is not TA, then ∅ does not witness the 2ω-hardness of Mod(T ).

Proof. By the recent work of Enayat and Visser [EVta], no complete consistent
extension of PA− has a bounded axiomatization, so Mod(T ) is Π0

ω-complete by
Theorem 3.2. Yet, by Theorem 6.6, ∅ computes no non-standard model of T . Thus
Corollary 6.3 shows that ∅ does not witness the Σ0

2-hardness of Mod(T ), and if T
is not TA, then ∅ does not witness the 2ω-hardness of Mod(T ). □

Shepherdson gave examples [Sh64] of computable non-standard models of quan-
tifier-free induction, which suggests that Theorem 6.7 might fail for completions
of PA−. We thus ask:

Question 6.8. Is there a completion T of PA− such that ∅ witnesses the Π0
ω-

hardness of Mod(T )?
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