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ANALOGUES OF THE COUNTABLE BOREL EQUIVALENCE RELATIONS
IN THE SETTING OF COMPUTABLE REDUCIBILITY

ABSTRACT. Coskey, Hamkins, and Miller [CHM12] proposed two possible analogues of
the class of countable Borel equivalence relations in the setting of computable reducibil-
ity of equivalence relations on the computably enumerable (c.e.) sets. The first is based
on effectivizing the Lusin/Novikov theorem while the latter is based on effectivizing the
Feldman/Moore theorem. They asked for an analysis of which degrees under computable
reducibility are attained under each of these notions.

We investigate these two notions, in particular showing that the latter notion has a strict
dichotomy theorem: Every such equivalence relation is either equivalent to the relation of
equality (=ce) or almost equality (Ece

0 ) between c.e. sets. For the former notion, we show
that this is not true, but rather there are both chains and antichains of such equivalence
relations on c.e. sets which are between =ce and Ece

0 . This gives several strong answers
to [CHM12, Question 3.5] showing that in general there is no analogue of the Glimm-Efros
dichotomy for equivalence relations on the c.e. sets.

1. INTRODUCTION

Invariant descriptive set theory [Gao08] studies the complexity of equivalence relations
up to Borel reducibility. Such a theory serves as a theoretical framework for investigating
the complexity of classification problems naturally arising in mathematics. A fundamen-
tal subclass of Borel equivalence relations is that of countable Borel equivalence relations
(cbers), i.e., those whose equivalence classes are countable. By the Feldman/Moore theo-
rem [FM77], it turns out that cbers are exactly the orbit equivalence relations generated by
Borel actions of countable groups and this brings into the subject deep connections with
group theory, ergodic theory, and operator algebras (see, e.g., [JKL02, Kec19]). The Feld-
man/Moore theorem is a straightforward consequence of a classic uniformization result,
due to Lusin and Novikov, which ensures that all cbers have a uniform Borel enumeration
of each class.

Paradigmatic examples of cbers are the identity relation on a given standard Borel space
X , denoted Id(X), and the eventual equality on the Cantor space 2ω , denotedE0. It follows
from Silver’s dichotomy [Sil80] that, if X is uncountable, then Id(X) is Borel reducible
to any cber on X . Moreover, the Glimm-Effros dichotomy [HKL90] states that E0 is a
successor of Id(2ω) in the Borel hierarchy, i.e., every Borel equivalence relation is either
reducible to Id(2ω) or E0 reduces to it. Beyond E0, the Borel hierarchy of cbers is much
wilder: e.g., Loveau and Velickovic [LV94] proved that it contains both infinite chains and
antichains. Yet, there exists a universal cber E∞ to which all cbers reduce [DJK94].

Coskey, Hamkins, and Miller [CHM12] suggested to effectivize set theoretic Borel
equivalence relations by restricting the focus to their computably enumerable (c.e.) in-
stances. By identifying c.e. sets with their indices, this restriction allows to project equiva-
lence relations from 2ω to ω. So, e.g., Id(2ω) andEce0 translate, respectively, to the equality
of c.e. sets, denoted by =ce, and to the almost equality of c.e. sets, denoted by Ece0 .
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In [CHM12], two effective analogues of the class of cbers are proposed. Roughly (for-
mal definitions will be given below): the c.e. orbit equivalence relations, which are based
on effectivizing the Feldman/Moore theorem, are those arising from a computable group
acting, in a suitable way, on the c.e. sets; the equivalence relations enumerable in the
indices, on the other hand, are based on effectivizing the Lusin/Novikov theorem.

Coskey, Hamkins, and Miller [CHM12] proved that, contrary to the Borel case, the
two notions do not align. They showed that the equivalence relation Ece0 is enumerable in
the indices but no suitable action on the c.e. sets realizes it. They asked whether Ece0
is computably bireducible with a c.e. orbit equivalence relation. More generally, they
asked for a degree theoretic analysis of these notions under computable reducibility, the
most popular tool for classifying equivalence relations on ω. In this paper, we offer such
analysis. Our main theorem expresses a sharp and quite unexpected dichotomy:

Dichotomy Theorem. Up to computable reducibility, every c.e. orbit equivalence relation
is either equivalent to =ce or Ece0 .

Hence, c.e. orbit equivalence relations are much more well-behaved than their Borel
counterpart. This is in sharp contrast with the evidence that many desirable properties of
a poset fail for degree structures based on computable reducibility (such as Ceers [GG01,
AS19, ASS20] and ER [ABSM21]). On the other hand, the property of being enumerable
in the indices gives rise to a more complicated hierarchy: Theorems 4.1 and 4.3 state that,
between =ce and Ece0 , there are both infinite chains and infinite antichains of equivalence
relations which are enumerable in the indices. It follows that there is no analogue of the
Glimm-Effros dichotomy for equivalence relations on the c.e. sets, which gives a strong
solution to [CHM12, Question 3.5].

1.1. Preliminaries. We assume that the reader is familiar with the fundamental notions
and techniques of computability theory. In particular, we shall freely use the standard
machinery for priority arguments, (e.g., strategies, requirements, outcomes, injury, tree of
strategies), as is surveyed in [Soa87].

Group Actions. Let G be a group acting on some set X . Let π : G → SX be the induced
permutation representation. We say G has only finitely many actions if ran(π) is finite.
For any Y ⊆ X , we let Stab(Y ) = {g ∈ G : ∀x ∈ Y (g · x = x)}. We say G has isolated
actions if there is a finite set F ⊆ X so that Stab(F ) = ker(π). The orbit equivalence
relation EG on X is given by xEG y ⇔ (∃g ∈ G)(g · x = y). Equivalence classes of EG
are called G-orbits. For a set S ⊆ X , we let G · S be {g · x : x ∈ S}; if G · S consists of
a single G-orbit, we say that G acts transitively on S. Similarly, if S ⊆ X and g ∈ G, we
let g · S = {g · x : x ∈ S}.

The next few easy group theoretic lemmas will facilitate our classification of the c.e.
orbit equivalence relations.

Lemma 1.1. If G has non-isolated actions, then for any g ∈ G and F a finite subset of ω,
there is h ∈ G so that h � F = g � F and h ◦ g−1 /∈ ker(π).

Proof. Let h0 ∈ Stab(F ) r ker(π) and let h = h0 ◦ g. �

Lemma 1.2. If G has isolated actions and all G-orbits are finite, then G has only finitely
many actions.

Proof. Let F be finite so Stab(F ) = ker(π). Any f, g ∈ G that act the same on F have
f−1g ∈ ker(π), so π(f) = π(g). But since each x ∈ F has a finite G-orbit, there are only
finitely many total possible images for F for any action in G. �
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Lemma 1.3. Suppose G acts on some infinite set S transitively. Then, for any finite set
F ⊆ S, there is g ∈ G so that g · F is disjoint from F .

Proof. For each pair x, y ∈ F , the set of g ∈ G so that g · x = y is a coset of Stab(x).
Then, since S is infinite and G acts transitively, the Stab(x) must have infinite index.
By Neumann’s lemma [Neu54], a group cannot be covered by a finite union of cosets of
subgroups of infinite index.‡ �

Computable Reducibility. For equivalence relations E and F on ω, E is computably re-
ducible to F , written E ≤c F , if there is a computable function f so that xE y ⇔
f(x)F f(y). Henceforth, we refer to computable reductions as just reductions. We write
E ≡c F , if E and F reduce to each other.

Definition 1.4 ([CHM12]). Let (We)e∈ω be a uniform enumeration of all c.e. sets, and
denote by CE the collection of c.e. subsets of ω.

• If E is an equivalence relation on 2ω , then Ece is an equivalence relation on ω
given by

eEce i⇔WeEWi.

Note that every Ece is a quotient of =ce, i.e., =ce⊆ Ece.
• An action of a computable groupG on CE (note that the action is on the collection

of sets, not on indices for these sets) is computable in indices if there is computable
α : G× ω → ω so that

Wα(γ,e) = γ ·We.

We use the term c.e. orbit equivalence relation and the notation EceG to mean an
orbit equivalence relation of a group action on CE which is computable in indices.

• Ece is enumerable in the indices if there is a computable α : ω × ω → ω so that

i Ece j ⇔ (∃n)(Wα(i,n) = Wj).

It is easy to see that =ce reduces to Ece0 . To see that Ece0 does not reduce to =ce, it
suffices to observe that =ce is Π0

2 while Ece0 is strictly Σ0
3 (see [CHM12, Theorem 3.4]).

In fact, the following holds:

Theorem 1.5 (Ianovski, Miller, Ng, Nies [IMNN14]). Ece0 is a universal Σ0
3 equivalence

relation under computable reducibility.

Note that both the c.e. orbit equivalence relations and the equivalence relations enu-
merable in the indices are subclasses of Σ0

3 equivalence relations. Thus, they all reduce
to Ece0 . Finally, c.e. equivalence relations, widely investigated in literature (see, e.g.,
[GG01, AS19, ASS20, ASM22]), are called ceers.

In Section 2, we show that any action on CE which is computable in indices is induced
by a computable permutation group acting on ω. Using this, in Section 3 we prove the
dichotomy theorem that every c.e. orbit equivalence relation is equivalent to either =ce or
Ece0 . To do this, we show that every action comes in one of three types and we prove the
result for each of these types in subsections 3.1-3.3. Finally, in Section 4 we consider the
equivalence relations enumerable in the indices and show that there are infinite chains and
antichains of these between =ce and Ece0 .

‡We thank Meng-Che Ho for pointing out this slick proof.
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2. REDUCING TO COMPUTABLE PERMUTATION GROUPS

We begin by proving a simple yet fundamental lemma that describes how the Recursion
Theorem constraints the behavior of group actions which are computable in indices. From
this lemma it will follow that, without loss of generality, we may assume that any c.e. orbit
equivalence relation is naturally induced by a computable permutation group on ω (i.e., a
computable subgroup of S∞).

Notation. Throughout this section, we let α be a computable function witnessing that a
given group G acts computably in indices on CE.

Lemma 2.1. For each γ ∈ G and c.e. sets U, V
(1) U ⊆ V ⇒ γ · U ⊆ γ · V ;
(2) |V | = |γ · V |.

Proof. (1) Suppose that U ⊆ V and take any n ∈ γ · U . Let e be an index we control
by the Recursion Theorem. We copy U into We, unless we see n enter in Wα(γ,e) in
which case we copy V in We. We must have n ∈ Wα(γ,e) as otherwise We = U and
n ∈ γ · U = Wα(γ,e). Thus n ∈Wα(γ,e) and We = V . This shows n ∈Wα(γ,e) = γ · V .

(2) Suppose that |V | > |γ · V |. Since the action of γ must be injective on CE and (1)
holds, there is simply not enough room to accommodate all subsets of V into the subsets
of γ · V . To exclude that |V | < |γ · V |, just note that V = γ−1 · (γ · V ). �

Definition 2.2. For each γ ∈ G, let the function Fγ : ω → ω be given by

Fγ(n) = m⇔ γ · {n} = {m}.

Lemma 2.3. For all γ ∈ G, Fγ is a computable permutation of ω. Moreover, γ · V =
{Fγ(n) : n ∈ V } for each c.e. V .

Proof. We first observe that Fγ is a permutation of ω. Since γ acts injectively on CE,
Fγ must be injective. But since Fγ is necessarily the inverse of Fγ−1 , we see it is also
surjective. This permutation of ω is computable since we can just wait to see which number
enters Wα(γ,i) for a chosen i so that Wi = {n}.

Next, by Lemma 2.1(1), γ · V ⊇ {Fγ(n) : n ∈ V }. Applying the same to γ−1, we see
that γ · V = {Fγ(n) : n ∈ V }. �

This allows us consider the c.e. orbit equivalence relations in a more concrete fashion:

Definition 2.4. For G a computable subgroup of S∞, let

i RceG j ⇔ (∃γ ∈ G)(Wi = {γ(x) : x ∈Wj}).

The next lemma, which follows directly from Lemma 2.3, ensures that focusing only to
c.e. orbit equivalence relations of the form RceG is not restrictive:

Lemma 2.5. For every c.e. orbit equivalence relationEceG , there is a computable subgroup
H of S∞ so that EceG = RceH .

3. THE DICHOTOMY THEOREM FOR C.E. ORBIT EQUIVALENCE RELATIONS

This section is devoted to the proof of the dichotomy theorem: We show that every RceG
is either Σ0

3 complete (and thus, by Theorem 1.5, equivalent to Ece0 ) or reduces to =ce.
First, we note that every RceG lies above =ce.



COUNTABLE BOREL EQUIVALENCE RELATIONS IN THE SETTING OF COMPUTABLE REDUCIBILITY 5

Theorem 3.1. There is a reduction f of =ce to itself so that, if Wi 6= Wj , then Wf(i)

is not computably isomorphic to Wf(j). In particular, we have that f reduces =ce to any
RceG .

Proof. We will construct a sequence of sets (Vk)k∈ω so that Wi = Wj implies Vi = Vj
and Wi 6= Wj implies Vi and Vj are not computably isomorphic. To do so, we shall satisfy
the following requirements:

Ri,j : If Wi = Wj , make Vi = Vj ;
Dni,j : Make Vj 6= ϕn(Vi).

TheR-strategies have two outcomes:∞ < f . Similarly,Dni,j-strategies have outcomes:
d < w. We place these outcomes on a tree of strategies T meeting the following condi-
tions: Every path contains an Ri,j-node α before any Dni,j strategy. Every path extending
α a f contains strategies for Dni,j , for each n. No Dni,j-strategy extends α a∞.

The strategy to meetR-requirements. ForRi,j-strategies, we use the usual computable
approximation to determine if Wi = Wj . When the length of agreement of Wi,s and Wj,s

changes, we take outcome∞ and act as follows: we replace Vi,s by Vi,s ∪ (Vj,s ∩ [0, `])
and Vj,s by Vj,s ∪ (Vi,s ∩ [0, `]), where ` denotes the length of agreement of Vi,s and Vj,s.
On all other stages, let x be the least element so Wi,s(x) 6= Wj,s(x). We say this is an
(i, j)-stage if x ∈Wi,s rWj,s and it is a (j, i)-stage if x ∈Wj,s rWi,s.

The strategy to meet D-requirements. A Dni,j-strategy α acts as follows: Assume that
this is an (i, j)-stage (if it is a (j, i)-stage instead, reverse the role of i and j using ϕ−1n in-
stead ofϕn). Also, suppose there areM numbers restrained by higher priorityD-strategies.

First, we choose M + 1 new numbers Kα
m for m < M + 1 and restrain Kα

m from
entering any set Vk. We wait for ϕn(Kα

m) to converge for each m and take outcome w.
Once ϕn(Kα

m) converges for each m, we take outcome d and act as follows: If there are
m0 < m1 < M + 1 so that ϕn(Kα

m0
) = ϕn(Kα

m1
), then we do nothing since ϕn is

not a computable permutation. Otherwise, we choose one number ϕn(Kα) which is not
restrained by a higher priority D-strategy. We act depending on the value of ϕn(Kα):

(a) If ϕn(Kα) = Kβ
e for a lower priority β (i.e., a strategy β being injured by our

taking outcome d) or if ϕn(Kα) is not chosen as Kβ
e for any β, then we place

ϕn(Kα) into Vj .
(b) If ϕn(Kα) = Kα, then we place Kα into Vi (this is the case where it being an

(i, j)-stage matters).

The verification: The verification is based on the following lemmas.

Lemma 3.2. If α places a restraint against Kα
m entering any set, and α has not acted

or been injured, then Kα
m has not entered any set. If α acts under case (a) and is never

injured, then Kα
m still never enters any set.

Proof. Since Kα
m is not in any Vi, it cannot enter any Vi via action for anR-strategy. Only

a higher priority D-strategy or α itself would put Kα
m into any set. In the former case, α

would be injured by this, and in the latter case, α acts. If α acts under case (a), then α also
does not put Kα

m into any Vi. �

Lemma 3.3. If α puts Kα
m into Vi by case (b), then either α is injured or Kα

m never enters
Vj (symmetrical if the stage is a (j, i)-stage).
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Proof. For Kα
m to enter Vj , there must be some sequence of sets Vk0 , . . . Vkn so that Vi =

Vk0 , Vj = Vkn and at some stage after stage s, we must approximate that Wkm = Wkm+1

with lengths of agreement at least Kα
m. But consider the length of agreement ` of Wi,s

and Wj,s. We had ` ∈ Wi,s rWj,s since it was an (i, j)-stage. If the length of agreement
changed, then α would have been injured. But then we must see ` enter each successive
Wkm+1

until we see ` enter Wkn = Wj , so the length of agreement would change after
all. �

Lemma 3.4. If α is on the true path, then α ensures that its requirement is satisfied.

Proof. If α is anR-requirement, it need only succeed if the true outcome is infinite. In this
case, as the length of agreement between Wi,s and Wj,s goes to infinity, we ensure that
more and more of Vi and Vj agree on a cofinal set of stages, ensuring that Vi = Vj .

Next, suppose that α is a Dni,j-requirement. We consider a stage s late enough that α
is never injured after s and α acts at stage s if it ever will. If the true outcome is w, then
ϕn is not a permutation and the requirement is satisfied. If the true outcome is d, we must
consider the two cases above: In case (a), Lemma 3.2 shows that ϕ(Kα

m) ∈ Vj rVi and in
case (b) Lemma 3.3 shows that ϕ(Kα

m) ∈ Vi r Vj (symmetrical if it is a (j, i)-stage). �

This concludes the proof that f reduces =ce to any RceG . �

We just proved that =ce is the least c.e. orbit equivalence relation. To calculate the
complexity of allRceG ’s and obtain the dichotomy result, we shall now separate three cases:
(i) G has only finitely many actions; (ii) There is an infinite G-orbit; (iii) The actions in
G are not isolated. Lemma 1.2 guarantees that there are no other cases to be considered.

3.1. Case (i): G has only finitely many actions. Since all equivalence relations RceG ’s
arise from permutation groups, we may assume that G is finite. To facilitate our analysis,
we introduce the following equivalence relation which turns out to be equivalent to =ce.

Definition 3.5. Let Enset be given by i Enset j if and only if i = 〈i0, . . . in−1〉 and j =
〈j0 . . . jn−1〉 and {Wik : k < n} = {Wjk : k < n} where 〈·, . . . , ·〉 is an n-ary pairing
function.

Lemma 3.6. If G has only finitely many actions, then RceG reduces to Enset for some n.

Proof. Let g0, . . . gn−1 be group elements representing all distinct actions inG. We obtain
a reduction ofEG toEnset by the map which sends any c.e. setWi to an index for the family
{g0 ·Wi, . . . gn−1 ·Wi}. �

We now need to show that Enset reduces to =ce.

Theorem 3.7. For each n, Enset reduces to =ce.

Proof. Let h be a function which sends i = 〈i0, . . . , in−1〉 to a c.e. index for the set

Vi = {(k, ρ0, . . . , ρn−1) : each ρi ∈ 2k and (∃π ∈ Sn)(∀i < k)(ρi ⊆Wσ(i))}.
It is immediate that if i Enset j then Vi = Vj . On the other hand, if Vi = Vj , then

for every k there is some πk ∈ Sn so that (∀l < n)(Wil � k = Wjπk(l)
� k). Hence,

by the pigeonhole principle, there is some permutation π ∈ Sn so that (∀l < n)(Wil =
Wjπ(l)

). �

Putting together Lemma 3.6, Theorem 3.7, and Theorem 3.1, we get that c.e. orbit
equivalence relations induced by finite permutation groups are as simple as possible:

Theorem 3.8. If G contains only finitely many actions, then RceG ≡c =ce.
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3.2. Case (ii): There is an infinite G-orbit.

Theorem 3.9. If there is an element n ∈ ω so that the G-orbit of n is infinite, then RceG is
Σ0

3 complete.

Proof. We will do our coding within the orbit of n, which forms an infinite c.e. set. Using
a computable bijection between this set and ω, we assume with no loss of generality that
G acts transitively on ω.

We fix R a Σ0
3 equivalence relation defined by i R j if and only if ∃nX(i, j, n) for a

Π0
2 relation X . We construct a uniformly c.e. sequence of sets Vi = Wf(i) for i ∈ ω so

that i R j if and only if f(i) RceG f(j). That is, there is an n so that X(i, j, n) if and only
if there is some g ∈ G so that Vi = g(Vj).

The requirements and their interaction. For every i < j ∈ ω and n ∈ ω, we have the
following requirements:
Pni,j : If X(i, j, n), then make Vj = g(Vi) for some g ∈ G. If ¬X(i, j, n) then ensure

that either ϕn is not a permutation of ω or Vj 6= ϕn(Vi).
Each strategy has three outcomes: ∞ < d < w. Outcome ∞ represents X(i, j, n),

outcome d represents ¬X(i, j, n) and we succeed in diagonalizing to ensure Vj 6= ϕn(Vi),
and outcome w represents ¬X(i, j, n) and we never get a chance to diagonalize since we
are waiting for ϕn to converge.

We put these strategies on a tree so that, if τ is given the requirement Pni,j , then we place
no strategy Pki′,j or Pkj,i′ below τ a ∞. We do this so that for every σ ∈ {∞, d, w}ω and
j ∈ ω, either there is precisely one τ so that τ a∞ ≺ σ and τ is a Pki,j-strategy for some
i < j and k, or for every i < j and k, there is some τ so that τ is a Pki,j-strategy and either
τ a d ≺ σ or τ a w ≺ σ.

When first visited, a Pni,j-strategy will choose an element g ∈ G which it will use in
its infinite outcome. Its choice of g must be consistent with the rest of the construction.
In particular, if it applies the infinite outcome, it does not want to cause injury to any
higher priority requirement’s diagonalization. Namely, for the purpose of diagonalizing,
a strategy Pn′i′,j′ will choose a number K and it may put K into Vi′ and attempt to keep
K out of Vj′ . On the other hand, under the infinite outcome, for the purpose of ensuring
Vj = g(Vi), Pni,j will act by putting g−1(Vj) into Vi and putting g(Vi) into Vj . We must
ensure that the cumulative effect of these infinite outcomes will not ruin the Pn′i′,j′ -strategy
diagonalization. That is, that they will not put ϕn′(K) into Vj′ .

To ensure this, we will define the set F of numbers currently relevant to the construction.
That includes all those K’s which might enter some set for the sake of a diagonalization
and also all those numbers N so that N entering any V` might possibly cause ϕn(K) to
enter Vj′ by the actions of all the currently active strategies. Then, we will rely on Lemma
1.3 to choose an element g ∈ G so that g · F ∩ F = ∅.

Definition 3.10. At all stages s of the construction, for any given node α, we define the set
of α-restrained pairs as follows: If α restrains a number n from entering a set Vj , then the
pair (n, j) is a restrained pair. In addition, we say a pair (m, k) is α-restrained if there is a
sequence of currently active nodes on the tree β0, . . . βn such that each βi is either so that

• For each i, either βi a∞ � α or α <L β or α a d � β or α a w � β.
• If i < j, then βi taking outcome∞ does not injure βj .
• If m were in Vk and then each of these βi were to take their infinite outcomes, in

order, it would cause n to enter Vj .
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The strategy to meet Pni,j at node τ . When initialized, let F be the set of numbers men-
tioned so far in the construction, including every n which is in an α-restrained pair for
any α and every requirement’s parameter K or ϕn(K) (if already defined). We will show
in Lemma 3.12 that this is a finite set. Applying Lemma 1.3, choose a g in G so that
g · F ∩ F = ∅.

• When we approximate that X(i, j, n) holds, this strategy will attempt to make
Vj = g(Vi). In this case, we take the outcome ∞ and the node acts by putting
g−1(V sj ) into Vi and g(V si ) into Vj ;

• When we approximate that ¬X(i, j, n) holds, we employ the following strategy
towards ensuring Vj 6= ϕn(Vi). We first choose a new number K, in particular K
is not in any α-restrained pair for any currently active α. Moreover, after placing
this restraint, there should be no τ -restrained pair (m, l) with m ∈ Vl. We prove
in Lemma 3.13 that such a K can be chosen. We place the restraint that K should
not enter Vi, and wait for ϕn(K) to converge. While we wait, we take outcome w.

Once we see ϕn(K) converge, we check if we can place a restraint keeping
ϕn(K) from entering Vj . That is, we check if, once we place this restraint we
would have an α-restrained pair (m, l) with m already in Vl. If so, we do nothing.
If not, we place K into Vi and we place the restraint that ϕn(K) should not enter
Vj . In this case, we take outcome d.

Verification: The verification is based on the following lemmas.

Lemma 3.11. If α is a Pni,j-strategy on the true path with true outcome∞, then i EG j.

Proof. Let s be a stage when α is last initialized. Then α chooses a group element g.
Infinitely often, when α is visited, it puts g−1(V sj ) into Vi and g(V si ) into Vj . This ensures
that Vj = g(Vi) and thus i EG j. �

Lemma 3.12. At each stage s, there are only finitely many α-restrained pairs.

Proof. We note that if β � γ a ∞, then we do not have γ as a Pki,j-strategy and β as a
P li′,j-strategy orP lj,m-strategy. Thus, if we put an element into Vj for some j, and via some
sequence of infinite outcomes, that causes some other element to appear in Vj , this must
have been due to some injury among the requirements. As there are only finitely many
currently active requirements, this can happen only finitely often. Thus, among the finitely
many sets Vi currently under consideration, the set of pairs (m, j) which might cause α’s
restrained number n to enter the set Vj that it is restrained from, is a finite set. �

Lemma 3.13. At any stage s, active node α, and i ∈ ω, there are only finitely many K so
that α placing a restraint against K entering Vi would cause there to be an α-restrained
pair (x,m) with x already in Vm.

Proof. As in Lemma 3.12, each x entering Vm can cause at most finitely many numbers
to enter Vi via a sequence of infinite outcomes of currently active nodes. As there are
only finitely many numbers at stage s already in

⋃
m∈ω Vm, this makes only finitely many

K have the property that a restraint against K entering Vi would cause there to be an
α-restrained pair (x,m) with x already in Vm. �

Lemma 3.14. At every stage of the construction, if α is an active node restraining a from
entering to Vb, then there is no α-restrained pair (m, l) so that m is in Vl.

Also, there is no α-restrained pair (m, l) so that m = Kβ for some β a d 6<L α a d
which is an Pcl,l′ -strategy.
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Proof. We prove both claims by simultaneous induction. We begin our induction at the
moment when α places its restraint. At this point, no α-restrained pair (m, k) can have m
in Vk. If the restrained pair is (K, i), this is true because K is chosen to be new. If the
restrained pair is (ϕn(K), j), we ensure this condition before placing the restraint. The
second condition is ensured at this moment because when α places its restraint, it takes
outcome w or d and thus the only active nodes β which currently have a parameter Kβ

must have β a d to the left of α a d.
As moments of the construction go by, we have to check that we preserve the inductive

hypotheses. We have four types of actions to consider:
(1) New strategies choosing g ∈ G.
(2) Other strategies taking the infinite outcome.
(3) Other strategies taking their outcome d.
(4) Other strategies choose a new K.

When a new strategy chooses its g ∈ G, it does so in a way to ensure that it maintains
this inductive hypotheses. In particular if β is choosing its parameter g, then this is the
first time β is visited since (re)initialization. Thus β is the rightmost active node. Thus to
violate the inductive hypothesis, g would have to move either an element in one of the Vj’s
or some Kγ to some element which is α-restrained. But g is chosen not to do this.

When other strategies take the infinite outcome, either this outcome injures α or this
one step was already considered as a possible step before this happened. In particular, if
this puts m into Vl, then it is because m′ was already in Vl′ . Then (m, l) cannot be an
α-restrained pair, because then (m′, l′) would have been an α-restrained pair contradict-
ing the inductive hypothesis. Thus the first condition is preserved. As there can now be
only fewer α-restrained pairs and no new parameters Kβ have been chosen, the second
condition is maintained as well.

When other strategies take their outcome d, they may put their number K into their
set Vi. By the second condition of the inductive hypothesis, we have preserved the first
condition of the induction hypotheses. As there can now be only fewer α-restrained pairs
and no new parameters Kβ have been chosen, the second condition is maintained as well.

When other strategies choose a new K, they do so in order to maintain these inductive
hypotheses. In particular, K is chosen to not be in any α-restrained pair. This preserves
the second condition, and the first condition is unchanged. �

Lemma 3.15. If α is a Pni,j-strategy on the true path with true outcome d or w, then
Vj 6= ϕn(Vi).

Proof. If the true outcome is w, then ϕn is not total, so we consider the case where the true
outcome is d. In this case, there are two possibilities to consider.

In the first possibility, we keep the restraint K shall not enter Vi. This is because we
see, when visiting α a d, that if we were to restrain ϕn(K) from entering Vj we would
already have some α-restrained pair (m, l) with m in Vl. Since all strategies right of α are
reinitialized, as are all strategies below α a w or α a d, this means that the strategies
whose infinite outcomes are needed to move m ∈ Vl to ϕn(K) ∈ Vj are just those β so
that β a ∞ � α. Since we assume α is on the true path, the outcome β a ∞ will occur
infinitely often, eventually we will see ϕn(K) ∈ Vj . By the first part of Lemma 3.14, we
will never see K enter Vi, so we have successfully diagonalized.

In the second possibility, we put K into Vi, and we place restraint ϕn(K) should not
enter Vj . By the first part of Lemma 3.14, ϕn(K) never enters Vj and we have successfully
diagonalized. �
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Lemma 3.16. For every i < j, i R j if and only if f(i) RceG f(j).

Proof. We claim by induction that i R j if and only if f(i) RceG f(j). We assume the
condition for all pairs (i′, j′) with i′, j′ < j and consider pairs (i, j) with i < j. Suppose
there is some i < j with i R j. Then there must be some i′ < j so that a Pni′,j-strategy
τ is on the true path with true outcome∞. Then i′ < j and i R i′. By Lemma 3.11, the
τ -strategy ensures f(i′) RceG f(j). By inductive hypothesis, we have f(i) RceG f(i′) RceG
f(j). Suppose that there is no i < j with i R j. Then every Pni,j-strategy with i < j has
true outcome w or d. Thus Lemma 3.15 ensures that these strategies along the true path
ensure that ϕn is not a bijection between Wf(i) and Wf(j). Together, these ensure that
f(i)�

�RceG f(j) for each i < j. �

This concludes the proof that, if there is an infinite G-orbit, then RceG is Σ0
3 complete. �

3.3. Case (iii): G has non-isolated actions. We first give a small reduction of our group
G which maintains the properties we assume in this case and makes it computable to find
indices for G-orbits.

Lemma 3.17. If G is a computable group of permutations of ω so that 1G is not isolated
and all G-orbits are finite, then there is a computable subgroup G′ of G so that 1G′ is not
isolated and there is a computable function f sending a ∈ ω to a canonical index for the
G-orbit of a.

Proof. We constructG′ as a c.e. subset ofG as follows. We act in stages to satisfy require-
ments:

• 1G′ is not isolated.
• The G′-orbit of s will not grow after stage s.

To satisfy requirements of the second kind, we enumerate the orbit of the first s numbers
a at stage s. That is, we take the setGs of elements ofG′ that we have enumerated by stage
s. Then, we compute the orbit of a in the finitely generated group generated by Gs. Call
this set Oa. We then place a restriction that we will, in the future, only consider elements
g in G which have the property that ∀x ∈ Oa g(x) ∈ Oa. We note that a finite intersection
of such subgroups forms an open subgroup HS of G and so has the same properties that
1Hs is not isolated and all orbits are finite.

A requirement of the first kind states that G′ ∩ Stab({0, . . . n}) has at least two ele-
ments. We find some element other than 1G of the restricted group Hs (restricted due to
requirements of the second kind) which is in Stab({0, . . . , n}). We enumerate this element
into G′. By proceeding as such, we enumerate a subset ofG and we let G′ be the subgroup
generated by these. �

Now we are ready to handle the case where G has non-isolated actions:

Theorem 3.18. If G has non-isolated actions then RceG is Σ0
3 complete.

Proof. We may assume that each G-orbit is finite, as otherwise the result follows from
Theorem 3.9. We fixR a Σ0

3 equivalence relation given by ∃nX(i, j, n). Applying Lemma
3.17, we have a computable subgroup G′ of G with uniformly computable orbits. In the
proof below, we will construct a sequence of sets Vi = Wf(i) and ensure that if iRj then
f(i) EceG′ f(j) and if i�Rj then Vi 6= ϕn(Vj) for every n. Thus we may replace G by G′

and simply assume that G has uniformly computable finite orbits.
We again have strategies Pni,j placed on a tree with outcomes {∞ < d < w}.
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Pni,j : If X(i, j, n), then make Vj = g(Vi) for some g ∈ G. If ¬X(i, j, n), then ensure
that Vj 6= ϕn(Vi).

A Pni,j-strategy α, after taking the d-outcome, will specify a computable set Sα of
quadruples (a, b, k, `). This will be formed by taking the union of the Sβ for higher priority
strategies which have last take their d-outcomes and possibly adding some new quadruples.
A quadruple (a, b, k, `) in a set Sα is understood as saying that the possible actions sending
Vk to V` must send a to b. A potential map g from Vx to Vy is said to be consistent with Sα
if for all quadruples (a, b, x, y) ∈ Sα, we have g(a) = b.

A Pni,j-strategy will take outcome w when first visited. Whenever the approximation to
X says that X(i, j, n) holds, it will take outcome∞. Otherwise, it takes either outcome w
or d, depending on whether a certain computation converges.

The strategy to meet a Pni,j-strategy at node τ . When first visited, τ sets Sτ to be the
union of Sβ for higher priority β. Then it chooses some gτ ∈ G so that g is a potential
map from Vi to Vj which is consistent with this Sτ . The strategy at τ then chooses a new
number K and a pair of group elements g0, g1 each potential maps from Vi to Vj which
are consistent with Sτ so that g0(K) 6= g1(K). In choosing K to be new, we mean that
K is chosen to be in a different G-orbit than any number previously mentioned in the
construction. Then τ restrains any element from the orbit of K from entering any set V`.
The strategy τ will continue to take outcome w until either the appoximation to X says
that X(i, j, n), in which case it takes outcome∞ or we see ϕn(K) ↓, in which case it will
take outcome d. As long as it takes outcome w, it takes no further action.

When taking the outcome d for the first time since last taking outcome w, τ checks if
ϕn(K) is in Vj,s. If so, it does nothing and maintains its restraint against K entering Vi.
If, on the other hand ϕn(K) is not in Vj,s, then it puts K into Vi and restrains ϕn(K) from
entering Vj . For every single set V`, τ then puts exactly one member of the G-orbit of K
into V`. This is done inductively as follows:

(1) We put g0(K) into Vj unless ϕn(K) = g0(K), in which case we put g1(K) into
Vj .

(2) For each k, if there is a β so β a ∞ � τ and β is an Pmi′,k-requirement, then the
number which we put in Vk is the gβ-image of the number that we put into Vi′ .

(3) For each k, if there is no β as such, then we choose any hk ∈ G a potential map
from Vi to Vk which is consistent with Sτ and we put hk(K) into Vk.

Finally, we increase Sτ so that for every pair (k, `), we put (a, b, k, `) into Sτ where a is
the number we have put into Vk and b is the number we put into V`.

When taking the infinite outcome or if τ is injured, τ immediately places the entirety
of the G-orbit of K into every set V`. If it has no parameter K chosen yet, then there is
no clean-up to do here, and it does nothing. It also reverts its Sτ to being the union of the
Sβ for higher priority β. Note that τ does not perform any action on taking outcome∞ to
ensure that g(Vi) = Vj . In lieu of this, every strategy right of τ cleans up after themselves
whenever they are injured, and strategies under the outcome τ a ∞ respect τ ’s choice of
gτ when they put numbers into Vj .

Verification: The verification is based on the following lemmas.

Lemma 3.19. The choice of Sα is consistent and coherent. That is, for every pair k, `,
there is an element g ∈ G which is a potential map from Vk to V` which consistent with
Sα. Similarly, if δ a∞ � α, then gδ is consistent with Sα.
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Proof. We prove this by induction on stages.
As every Sβ contains all the Sγ for γ higher priority, when Sα is first defined, it is set

to equal some Sβ already defined, so it is consistent by inductive hypothesis. Similarly, if
δ a∞ � α, then also δ a∞ � β or β = δ, thus the second condition is also maintained
when Sα is first defined. Thus, we only need to check that when Sα grows due to taking
action in the d outcome, the inductive hypotheses are maintained.

Let α be a Pni,j-strategy. It is immediate that coherence is maintained for the pair i, j,
witnessed by either g0 or g1. It is immediate that coherence is maintained for all pairs i, k
where k is in case (3), since we chose an element hk ∈ G which was consistent with Sα to
decide which element of the G-orbit of K to put into Vk. For all k in case (2), the second
inductive hypothesis shows coherence for the pair i, k. Namely, we have two maps gβ

and hk each consistent with Sα, and their composition is also consistent with Sα. Finally,
composing two maps between Vi and Vk and Vi and V`, we see that Sα is coherent for
every pair k, `.

Finally, we chose our elements to enter Sα so as to be consistent with gβ for all β with
β a∞ � α in the second bullet. �

This implies that when a node α is first visited, it can choose its parameter gα.

Lemma 3.20. If a node α places a restraint against a number n entering the set Vi, then
either α is injured, lifts the restraint, or n does not enter Vi.

Proof. When α places a restraint, it is either in outcome w or d. Note that the restraint is
lifted if it ever enters outcome∞. So, the only strategies which can act, supposing that α
is not injured and the restraint is not lifted are those to the right of α a ∞, which are all
currently reinitialized, or nodes β so that β a ∞ � α. In any case, numbers only enter
sets due to clean-up or diagonalization for elements K chosen after this restraint is placed.
In particular, those elements are disjoint from the G-orbit of the restrained element, so in
neither the diagonalization nor the clean-up can they cause the restrained number to enter
any set. �

Lemma 3.21. Suppose τ is on the true path and is a Pni,j-strategy. If X(i, j, n), then there
is an element g ∈ G so that g(Vi) = Vj . If ¬X(i, j, n) then ϕn(Vi) 6= Vj .

Proof. We first consider the case where X(i, j, n) holds.
Consider the first stage s0 at which τ is visited after its last initialization. Then it

chooses an element gτ ∈ G. By choice of gτ as being consistent with Sτ , it is consistent
with all elements which have already entered Vi and Vj . That is, if a higher priority strategy
β has placed x into Vi and y into Vj in the same orbit, then it put the quadruple (x, y, i, j)
into its set Sβ , and so we have gτ (x) = y.

No node to the left of τ ever acts again. The cumulative future effect of nodes right of
τ a∞ or above τ a∞ are that they place entireG-orbits into Vi and Vj . Finally, we have
to consider which elements might enter Vi and Vj due to strategies below τ a ∞. These
place some number x into Vi, then, via the second bullet, they place gτ (x) into Vj . Thus
they also agree with gτ . Thus Vj = gτ (Vi).

Next, we consider the case where ¬X(i, j, n). Consider the stage when τ takes outcome
w after its last initialization and after its last time taking outcome ∞. Then it chooses a
number K and places restraint that no element in the G-orbit of K enter any set. If ϕn(K)
diverges, then the requirement is satisfied, so we may assume it converges. There are two
cases, and Lemma 3.20 shows that ϕn(K) ∈ Vj if and only if K /∈ Vi in either case. �
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As above, let f be so that Vi = Wf(i) for all i. Then, the fact that f is a reduction
follows by induction as in Lemma 3.16. �

3.4. Concluding. Recall that, by Lemma 1.2, the three cases considered are exhaustive
and, by Lemma 2.5, each c.e. orbit equivalent relation is of the form RceG . Hence, putting
Theorems 3.1, 3.9, and 3.18 together, we finally obtain the desired dichotomy:

Dichotomy Theorem. Up to computable reducibility, every c.e. orbit equivalence relation
is either equivalent to =ce or Ece0 .

4. EQUIVALENCE RELATIONS ENUMERABLE IN THE INDICES

We now give examples of degrees which contain equivalence relations which are enu-
merable in the indices. We concentrate on the interval between =ce and Ece

0 .
Contrasting with our dichotomy theorem for the case of a c.e. orbit equivalence relation,

we show that there are both infinite chains and infinite antichains of equivalence relations
which are enumerable in the indices. This gives several strong answers to [CHM12, Ques-
tion 3.5] showing that there is no analogue of the Glimm-Efros dichotomy for equivalence
relations on the c.e. sets.

Theorem 4.1. There is an infinite chain of equivalence relations which are enumerable in
the indices between =ce and Ece

0 .

Proof. For any number i, let F (i) be the least number in ωrWi and undefined ifWi = ω.
For each ceer X , let RX be the equivalence relation defined as follows:

i RX j ⇔Wi = Wj or (0 ∈Wi ∩Wj and F (i) X F (j)).

Lemma 4.2. Let X be a ceer where every class is infinite. Then the relation RX is enu-
merable in the indices.

Proof. Until we see 0 enter Wi, we only enumerate i into the collection of indices equiv-
alent to i. Once we see 0 enter Wi, we take our approximation y to F (i) and for every
x ∈ [y]X , we enumerate all c.e. sets (Y ∪ [0, x − 1]) r {x} into the family. If at a later
stage we see y enter Wi, we take our new approximation y′ to F (i) and for every old set
we choose an x′ > x so x′ X y′ and x′ hasn’t already been enumerated into the set and
we move to enumerating (Y ∪ [0, x′ − 1]) r {x′}. In addition, we add a new column for
each set (Y ∪ [0, z− 1])r {z} for any c.e. Y and z X y′. If we change our approximation
to F (x) infinitely often, each sets in our enumerated family is ω, which is exactly Wi.
Otherwise, each set settles on something equivalent to Wi. Similarly, the last time we add
columns, we add representatives of every c.e. set equivalent to Wi. �

We apply the above lemma to the case of the ceer Idn given by equivalence modulo n.
For n ≥ 1, let Rn be the equivalence relation given as RIdn . It follows that each Rn is
enumerable in the indices. The map k 7→ l where Wl = {x+ 1 : x ∈Wk} reduces =ce to
Rn for each n as these sets do not contain 0. It suffices to show that Rn <c Rn+1 for each
n. The map k 7→ l where Wl = {(n + 1)x + y : nx + y ∈ Wk with 0 ≤ y < x} gives a
reduction of Rn to Rn+1. Finally, observe that Rn+1 has precisely n+ 1 classes which are
properly Σ0

2. Namely, these are the classes of sets which contain 0 but are not total. But
Rn only contains n such classes, so it follows that Rn+1 6≤c Rn. �

Theorem 4.3. There is an infinite antichain of equivalence relations enumerable in the
indices between =ce and Ece

0 .
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Proof. We define the function F (i) to be the least number k so that 2k + 1 is not in Wi.
We will construct a sequence (Xn)n∈ω of ceers with infinite classes. Then we define a
sequence An of equivalence relations as follows:

i An j ⇔Wi = Wj or (both |Wi ∩ Evens| and |Wj ∩ Evens| are ≥ 2)

or (both Wi and Wj contained only 1 even number 2k and 〈F (i), k〉 Xn 〈F (j), k〉)).

As in Lemma 4.2, each An is enumerable in the indices. In particular, whenever we
believe Wi contains no even numbers, we only enumerate the index i as being equivalent
to i. When we believe that Wi contains exactly 1 even number, we use the enumeration
from Lemma 4.2, and as soon as we see that Wi contains at least two even numbers, we
just enumerate indices for all c.e. sets containing at least two even numbers.

We note that there are four kinds of indices to consider:

• Oddish indices: These are i so that Wi ⊆ Odds. In this case, [i]An = [i]=ce ,
so [i]An is properly Π0

2. Using these indices and a function k 7→ ` where W` =
{2x+ 1 : x ∈Wk} is a reduction of =ce to each An.

• Proper k-Coding indices: These are i so thatWi contains only one even number 2k
and Odds 6⊆ Wi. Then [i]An = {j : j is also a k-coding index and 〈F (i), k〉 Xn

〈F (j), k〉)}. In this case [i]An is properly Σ0
2.

• Full k-Coding indices: These are i so that Wi contains only one even number 2k
and Odds ⊆Wi. In this case, [i]An is properly Π0

2.
• Big indices: These are i so that Wi contains ≥ 2 even numbers. In this case [i]An

is Σ0
1.

The basic idea of this argument is the following lemma:

Lemma 4.4. Suppose that f is a reduction of An to Am. Then there is a computable
function g so that for every k, if i is a Proper k-Coding index, then f(i) is a Proper g(k)-
coding index.

Proof. Since the only classes which are properly Σ0
2 are those of proper l-coding indices,

we see that if i is a Proper k-Coding index, then f(i) is a Proper l-coding index for some
l. We need only show that l depends only on k.

Suppose towards a contradiction that i and j are both Proper k-Coding indices yet f(i)
is a Proper l-Coding index and f(j) is a Proper l′-Coding index with l′ 6= l. By the
Recursion Theorem, we build an c.e. set with index e as follows: We put 2k into We and
we wait to see 2m enter Wf(e) for some m. If we later see 2` enter Wf(e), we extend We

to equal Wj and end the construction. On the other hand, if we see some 2`′ enter Wf(e),
we extend We to equal Wi and end the construction.

If we were to never see any 2m enter Wf(e), then we have a Proper k-Coding index
which is not sent to a Proper l-Coding index for any l, which we have already observed
is impossible. In either of the other cases, we have ensured that e An i if and only if
f(e)��Amf(i) contradicting f being a reduction. �

We now build the ceers Xn to satisfy requirements:

Rkn,m : ϕn is not a reduction of An to Am.

We fix a ceer E which has infinitely many infinite classes and begin the construction
with every Xn being equivalent to ⊕i∈ωE.
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The strategy to meet oneRkn,m-requirement. Suppose that the pth requirement in terms
of priority is Rkn,m. Choose a column ω[k] which has never been mentioned in the con-
struction (in particular Xn,s � ω[k] = E). We make Xn,s+1 � ω[k] = Idp+2, and we
restrain lower priority requirements from further collapsing Xn � ω[k]. We choose a num-
ber K which is a proper k-coding index (i.e., we choose an index for the set {2k}). We
wait to see g(k) converge. That is, we wait to see 2l enter Wf(K) for some l. Once we
see this l, there are two cases: If Xm � ω[l] is restrained by a higher priority requirement,
then Xm � ω[l] already has fewer than p+ 2 classes. Otherwise, it is not restrained and we
can make Xm � ω[l] = Id1. In either case, we have satisfied the requirement since, were
ϕn to be a reduction of An to Am, then each of the p+ 2 non-equivalent proper k-coding
indices in An would be sent to proper l-coding indices in Am, but this cannot be injective
on classes by the pigeon-hole principle (we use p+ 2 to ensure that p+ 2 > 1 even when
p = 0). In any case, whenever we act, we injure all lower priority requirements. These
strategies fit together as a standard finite-injury construction. �
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[LV94] Alain Louveau and Boban Veličković. A note on Borel equivalence relations. Proceedings of the

American Mathematical Society, 120(1):255–259, 1994.
[Neu54] Bernhard H Neumann. Groups covered by permutable subsets. Journal of the London Mathematical

Society, 1(2):236–248, 1954.
[Sil80] Jack H Silver. Counting the number of equivalence classes of Borel and coanalytic equivalence rela-

tions. Annals of Mathematical Logic, 18(1):1–28, 1980.
[Soa87] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic.

Springer-Verlag, Berlin, 1987.


