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Abstract. This paper gives an overview of results about the spectra

of computable (or recursive) models of strongly minimal disintegrated

theories. Spectra of strongly minimal disintegrated theories in finite

languages and in languages consisting of binary relation symbols will be

described.

1. Intro to Recursive Model Theory

We assume that all languages L are countable and recursive. An L-

structure A is recursive if |A| = ω and the atomic diagram of A is re-

cursive. An L-structure A is decidable if |A| = ω and the elementary

diagram of A is recursive. A is recursively (decidably) presentable if A

is isomorphic to a recursive (decidable) model.

If B ⊆ A, A is recursive, and the universe of B is a Σ1 subset of ω,

then B is recursively presentable.

Definition 1. A first order theory T is strongly minimal if every defin-

able subset of every model is a finite or co-finite subset of the model.

Example: a regular acyclic graph with finite valence (say, the theory

of a Cayley graph of a finitely generated group); a vector space (say,

the theory of (Q; +)); an algebraically closed field (say, the theory of

(C; +; ·; 0; 1)).
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Definition 2. For elements a, b ∈ M , we say b ∈ acl(a) if there is a

formula φ(x; y) so that φ(M ; a) is finite and M � φ(b; a), i.e., b is in a

finite a-definable set.

A set S ⊂M is inter-algebraic if for every a, b ∈ S, a ∈ acl(b).

A set S ⊂M is independent if each x ∈ S is not in acl(S \ {x}).
If M is a model, a maximal independent subset is called a basis for M .

The dimension of a set X is the size of a maximal independent subset.

In strongly minimal theories, the above are well-defined. That is, if B1

and B2 are maximal independent subsets of X, then |B1| = |B2|.
If S is inter-algebraic, then the dimension of S is 1.

Definition 3. Let φ(x) be a formula and T a strongly minimal theory.

Then the Morley rank of φ(x) is the maximal dimension of a tuple a ∈
M � T so that M � φ(a).

Consider the formula x+x = y in the theory of Q-vector spaces. This

formula has Morley rank 1. The formula x + y = z has Morley rank 2.

In each of our examples, the notion of dimension characterizes models.

This is not a coincidence.

Baldwin and Lachlan [1] proved that if T is strongly minimal1, then

each model of T is determined by its dimension. Moreover, if M is

countable, then dim(M) ∈ {0, 1, . . . ,ℵ0}.
Zil’ber conjectured that in fact our canonical examples of strongly min-

imal theories formed an exhaustive list. Zil’ber conjectured that every

strongly minimal theory was of one of three types: disintegrated (es-

sentially binary); locally modular (essentially a vector space); field-like

(essentially an algebraically closed field). But Hrushovski [2] shown that

the Zil’ber trichotomy is false. There are Hrushovski constructions which

build non-trichotomous theories.

These structures are inherently combinatorial in nature, and have no

algebraic content.

Definition 4. A strongly minimal theory is disintegrated if for every set

S, acl(S) =
⋃

a∈S acl({a}).

In the paper [3] it was proved the following

Theorem 1. If M � T and T is a disintegrated strongly minimal theory,

then the elementary diagram of M is model complete.

1They actually showed the result for ℵ1-categorical theories, but I will talk only

about strongly minimal theories
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So, over enough parameters, every formula is equivalent to an ∃-
formula, but not without parameters (see the example (N, S)).

Corollary 1. If M � T and T is a disintegrated strongly minimal theory,

and X ⊆Mn is any definable set, then X is recursive.

It is possible for some models of a theory to be recursively presentable

while some others are not.

Baldwin and Lachlan [1] showed that if T is strongly minimal, then

each model of T is determined by a single cardinal invariant, its dimen-

sion. Moreover, if M is countable, then dim(M) ∈ ω + 1, and if T is not

ℵ0 categorical, its countable models form a chain

M0 �M1 �M2 � . . . �Mω.

If T is strongly minimal, define SRM(T ) = {k ∈ ω + 1 | Mk is recur-

sively presentable}.

2. The Spectrum Problem

The following problem was posed in the paper [4].

Question 1. Which subsets of ω + 1 are spectra? In other words, for

which S ⊆ ω + 1 does there exist some T so that SRM(T ) = S?

The following sets are known to be spectra: no models; all models; {0}
(Goncharov [4]); {0, 1, . . . , n} (Kudaibergenov [5]); {0, 1, . . .} (Khous-

sainov, Nies, Shore [6]); {1, 2, . . . ,ℵ0} (Khoussainov, Nies, Shore [6]); {1}
(Nies [7]); {1, 2, . . . , n} (Nies, Hirschfeldt unpublished); {1, 2, . . .} (Nies,

Hirschfeldt unpublished); {ℵ0} (Hirschfeldt, Khoussainov, Semukhin, [8]);

{0,ℵ0} (Andrews [9]).

Also of interest is the following

Question 2 (Lempp). Which subsets of ω + 1 are spectra of theories in

finite languages?

The following sets are known to be spectra in finite languages: no mod-

els; all models; {0} (Herwig, Lempp, Ziegler [10]); {0, 1, . . . , n} (Andrews

[11]); {0, 1, . . .} (Andrews [11]); {ℵ0} (Andrews [11]).

For these results, we needed a Hrushvski construction, while each an-

swer on question 1 (aside from {0, ω}) and the result from [10] was in a

disintegrated theory.

Question 3. What are the spectra of disintegrated theories in finite lan-

guages?
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The answer to this question was obtained in paper [12].

Theorem 2. If T is strongly minimal and disintegrated in a finite lan-

guage, then either every model of T is recursive, no model of T is recur-

sive, or only the prime model of T is recursive.

The remainder of this section will be dedicated to discussing this theo-

rem. In next section this question will be discussed in infinite languages.

Lemma 1. If T is disintegrated and strongly minimal in a finite language

L, then there is a strongly minimal theory T ′ in a finite language L′

comprised of only Rank 1 and Rank 0 relation symbols so that T and T ′

are interdefinable.

Sketch of the proof. Take a relation in our language R(x). Let k =

MR(R). We may assume R cannot be split into 2 pieces of the same

Morley rank.

Let a be a tuple of maximal dimension in a model so that M � R(a).

Then a = a1 ∪ . . . ∪ an where each ai is inter-algebraic (every element is

algebraic over every other element). Let ψi(ai) be a formula witnessing

this inter-algebraicity, and let S(x) be the statement
∧

i ψi(ai). Then S

has Morley rank k.

Since S∧¬R and R∧¬S both have smaller Morley Rank (irreducibility

of R), we remove R from our language and replace it with {ψi} ∪ {S ∧
¬R,R∧¬S}. Each symbol has lower Morley rank. This procedure stops

when all symbols have rank 0 or 1. �

But we need the reduction to respect the recursiveness of the models!

Lemma 2. If T is disintegrated and strongly minimal in a finite language

L, then there is a strongly minimal theory T ′ in a finite language L′

comprised of only Rank 1 and Rank 0 relation symbols so that T and

T ′ are ∆1-interdefinable (i.e., T and T ′ are interdefinable and recursive

models of T are recursive models of T ′ and vice versa).

Proof. This is just the last lemma plus the corollary 1. �

We note that here we very strongly use the fact that the language

is finite. Otherwise, you would need some uniformity in that corollary,

which we do not have.

We have now reduced to the case where every symbol in the language

is Rank 1 or Rank 0. We still need to show that either every model, no

model, or only the prime model is recursive.
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Lemma 3. If T is disintegrated strongly minimal in a finite language

comprised of all Rank 1 and Rank 0 relation symbols, then either every

model, no model, or only the prime model is recursive.

The content of this proof will be incredibly important for what follows,

as it truly analyzes the structure of the models. It shows us how to picture

models of a general disintegrated strongly minimal theory. Much of the

analysis first appears in the [10] paper.

Given a relation symbol R(x) of rank 1, define the relations

(R, i, j)(a, b) := ∃xR(x) ∧ xi = a ∧ xj = b.

For a generic a (i.e. a /∈ acl(∅)), there are only finitely many b so that

(R, i, j)(a, b) or (R, i, j)(b, a). Fix the finite sets of elements

AR,i,j := {x | ∃∞y(R, i, j)(x, y)}; BR,i,j := {x | ∃∞y(R, i, j)(y, x)}.

Define ER,i,j(a, b) := (R, i, j)(a, b)∧a /∈ AR,i,j∧b /∈ BR,i,j or ¬(R, i, j)(a, b)∧
(a ∈ AR,i,j∨b ∈ BR,i,j). Note that if ER,i,j(a, b) then a, b is inter-algebraic.

Definition 5. For any element a ∈ M � T , define Nbhs(a) inductively

as follows Nbh0(a) = {a}; if b ∈ Nbhs(a) and ER,i,j(b, c) or ER,i,j(c, b),

then c ∈ Nbhs+1(a). We define Nbh(a) =
⋃

s∈ω Nbhs(a).

Lemma 4. If a, b ∈ M and X ⊂ M , then Nbh(a) ∼= Nbh(b) over X if

and only if (∀s)(Nbhs(a) ∼= Nbhs(b) over X).

Proof. It is following from König’s Lemma. �

Lemma 5. Fix a /∈ acl(∅). Then the set of elements inter-algebraic with

a is exactly Nbh(a).

Proof. Build isomorphisms. �

Lemma 6. Fix a ∈ M not in acl(∅). For any b ∈ M , b /∈ acl(∅) if and

only if Nbh(a) ∼= Nbh(b) over B :=
⋃

R,i,j(AR,i,j ∪BR,i,j).

Proof. Build isomorphisms. �

Finishing the proof Theorem 2. Fix a recursive model M of dimension

> 0. Every ER,i,j is recursive by the Corollary 1. So, Nbhi(x) is uniformly

recursive for x ∈M . Thus Nbh(x) is uniformly recursively enumerable.

Let us prove that acl(∅) is recursively enumerable. Fix a /∈ acl(∅).
Then x ∈ acl(∅) if and only if ∃i Nbhi(x) 6∼= Nbhi(a) over B. This is Σ0

1.

Now the k-dimensional model is comprised of a copy of acl(∅) and k

copies of Nbh(a). This makes the model either a recursively enumerable

subset of M or a recursive expansion of M .
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3. The Spectrum Problem

This section will be dedicated to discussing of the next

Theorem 3 ([13]). If T is strongly minimal and the language is com-

prised of binary relation symbols, then SRM(T ) is one of the following

seven: ∅, [0, ω], {0}, {1}, {0, 1}, {ω}, [1, ω].

Lemma 7. If T has a recursive model of dimension ≥ 2, then T is ∆1-

interdefinable with a theory T ′ so that the language of T ′ is comprised of

relation symbols of rank ≤ 1.

Proof. Fix a, b ∈ M � T where a, b are independent and M is the recur-

sive model of dimension ≥ 2. Then R(x, y) has Morley rank 2 if and only

if M � R(a, b). So, if M � R(a, b), replace R by ¬R, which has Morley

rank ≤ 1. �

Note that if T has no recursive model of dimension≥ 2, then SRM(T ) ⊆
{0, 1}, and all 4 such sets are spectra of disintegrated strongly minimal

theories in binary languages.

For each relation Ri(x, y) denote Ei(a, b) := ERi,0,1(a, b). Note that

Ei(a, b) implies that a, b are inter-algebraic.

Definition 6. Define the neighborhoods Nbhk(a) inductively as follows

Nbh0(a) = {a}; if b ∈ Nbhk(a) and Ei(b, c) for i ≤ k + 1, then c ∈
Nbhk+1(a); we define Nbh(a) =

⋃
k Nbhk(a).

Note that (essentially) the same argument as last time shows that

lemma 5 is true in this case (i.e. if a /∈ acl(∅) then the set of elements

inter-algebraic with a is exactly Nbh(a)).

Fix M a recursive model of dimension ≥ 2.

Lemma 8. For any a ∈M , Nbh(a) is a recursively enumerable set.

Proof. The definition is Σ0
1 over the definition of Ei, which is recursive,

except for deciding Ai := {a ∈ M | ∃∞zRi(a, z)} and Bi := {b ∈ M |
∃∞zRi(z, b)}.

Fix independent elements c1, c2 ∈ M . Then x ∈ Ai if and only if

Ri(x, c1) ∧ Ri(x, c2). Similarly for Bi. Thus, Ai and Bi are uniformly

recursive in i, and so Nbhk(a) is uniformly recursive, and Nbh(a) is re-

cursively enumerable. �

Note that if acl(∅) were also recursively enumerable, we would be able

to conclude like last time, but that’s not true anymore.
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Lemma 9. Let N be recursive strongly minimal structure. Let M � N

be a ∆0
∈ subset of N . Let A ⊆ M be any infinite recursively enumerable

set. Then there is a recursive copy of M .

Proof. Watch the ∆0
∈ approximation of χM(b) for elements b ∈ N . When

the approximation puts b ∈ M , we copy it into our structure. When it

puts b /∈ M , we need to ”un-copy” it. That is, we reassign it to being a

copy of an element in A. What do we need to verify? Let M0 be the rest

of the elements that we believe to be in M . Let φ(M0, b) be the quantifier-

free statement that we have committed to so far. We need to check that

for some element a ∈ A, M � φ(M0, a). Strong minimality gives us that

either b ∈ acl(M0), which implies b ∈M – so the approximation changes

back, or there is such an a. �

Lemma 10. If T has a recursive model of finite dimension ≥ 2, then

every model of dimension k ∈ [1;ω] is recursively presentable.

Proof. Fix N that model of finite dimension k ≥ 2. First we show the

result for M smaller than N .

Let M � N be a model of dimension ≥ 1. Let A = Nbh(a) for an

element a ∈ M \ acl(∅). As each Nbh(b) is Σ0
1, M is a union of a Π0

1 set

(acl(∅)) and a Σ0
1 set (

⋃
Nbh(b) where the union ranges over all b in a

basis for M), thus M is ∆0
2. If A is infinite, we are done. If A is finite,

we are done, since M is a co-finite subset of N , thus recursive.

Now, let us consider N �M . Let us show that the model of dimension

k + 1 is recursively presentable.

Let C be the structure Nbh(a) for a ∈ N \ acl(∅). C is a recursive

structure.

Take a copy of N ∪ C. Let R(c, d) hold for c ∈ C, d ∈ N if and

only if d � ∃∞zR(z, d) which holds if and only if R(c1, d)∧R(c2, d) for a

fixed independent pair c1, c2 ∈ N . Similarly, let R(d, c) hold if and only

if R(d, c1) ∧ R(d, c2). This gives a recursive presentation of the k + 1-

dimensional model. By inducting, we get every finite dimensional model.

As this extension is uniform, we get Mω recursively as well. �

Corollary 2. If T is a disintegrated strongly minimal theory with bi-

nary language, then SRM(T ) is one of the following 10: ∅, [0, ω], {0}, {1},
{0, 1}, {ω}, [1, ω] OR {0, ω}, {1, ω}, {0, 1, ω}.

We need to show that the last three are not spectra of disintegrated

strongly minimal theories with binary languages.

Lemma 11. If 0, ω ∈ SRM(T ) or 1, ω ∈ SRM(T ), then 2 ∈ SRM(T )

(and thus [1, ω] ⊆ SRM(T )).
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Proof. There are two cases.

Case 1. For every c ∈ acl(∅), c ∈
⋃

i(Ai ∪ Bi) or there is an i and a

d ∈ Ai ∪ Bi so Ei(d, c). Then acl(∅) is Σ0
1 in Mω, and so every Mk is a

Σ0
1subset of Mω.

Case 2. There is an element c so c /∈
⋃

i(Ai ∪ Bi) and c is not Ei

connected to any elements of Ai ∪Bi for each i. There are two subcases.

Case 2A. There is no element d so that for every x, ∃∞zR(x, z) if and

only if R(x, c)∧R(x, d). In this case, again aclMω(∅) is Σ0
1. Again, every

Mk is a Σ0
1 subset of Mω, thus is recursive.

Case 2B. There is d ∈ acl(∅) so for every x, ∃∞zR(x, z) if and only if

R(x, c) ∧R(x, d).

Let C = Nbh(a) for a ∈ Mω \ acl(∅). Then take M0 (or M1) and

append it by 2 (or 1) copies of C. Define R(a, b) to hold where a ∈ M0

and b ∈ C if and only if R(a, c) ∧ R(a, d). This gives a recursive copy of

M2. �

This lemma finishes the proof of the theorem 3.
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