INVESTIGATING THE COMPUTABLE
FRIEDMAN-STANLEY JUMP
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ABSTRACT. We answer several questions about the computable Friedman-
Stanley jump on equivalence relations. This jump, introduced by Clemens,
Coskey, and Krakoff, deepens the natural connection between the study of
computable reduction and its Borel analog studied deeply in descriptive set
theory.

1. INTRODUCTION

Computable reducibility of countable equivalence relations is a natural com-
putability theoretic way of characterizing some equivalence relations as more com-
plex than others. For equivalence relations E and R on the natural numbers, we
say that F is computably reducible to R, written E < R, if there is a computable
function f so that

zEy o f(z) R fy)

This notion was first introduced by Ershov [Ers7l] and has seen a recent resur-
gence of interest [ABSM| [CCK], [FF12, [FFH"12] with special attention paid to
local structures of equivalence relations of a given complexity class such as the c.e.
equivalence relations (ceers) [GGOIl, [ASS20D, [ASS20al [ASTI] [ASTR| [ABS17, [AS16,
ALMT™14, [AB20, [BS16] and how they naturally arise from algebra [DRSMS20,
NS18, Mil71l [Khol8| [FKST16), [GKS16] or other levels of the arithmetical hierarchy
[CHM12, IMNNT14] or levels of the Ershov hierarchy [NY19, [BMSM™20].

Part of the motivation behind studying computable reducibility is that it is a
computability theoretic natural analog of the descriptive set theoretic notion of
Borel reducibility, intensively studied in descriptive set theory [FFS89] [Kanl [Gao08],
where the equivalence relations are on standard Borel spaces and the reducing
function is allowed to be Borel instead of computable.

In the context of computable reducibility, several notions of a jump have been
studied:

Definition 1.1. For E an equivalence relation:

o E' is defined by = E' y if and only if = y or p,(x) |, ¢,(y) |, and
ea(2) E y(y).

e E*isdefined by x E y if and only if [F,|g = [Fy]g, where F, is the finite
set with canonical index  and for any set S, [S]g is the E-closure of S,
i.e., the set of elements F-equivalent to a member of S.
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e E¥ is defined by = ET y if and only if [W,]g = [W,]g, where W; is the
ith c.e. set.

The first two jumps here were introduced by Gao and Gerdes [GGOI] and the
last one was introduced by Clemens, Coskey, and Krakoff [CCK]. The last two
here are finite and computable analogs of the Friedman-Stanley jump studied in
descriptive set theory.

Definition 1.2. For E an equivalence relation on the standard Borel space X, the
Friedman-Stanley jump E* of E is the equivalence relation on X*“ given by

fET g [ran(f)]p = [ran(g)]p.

Friedman and Stanley [FS89] showed that this jump operator is proper. That
is, E* >p FE for any Borel equivalence relation E. Clemens, Coskey, and Krakoff
[CCK] showed that E* > E for any hyperarithmetic (HYP in the sequel) equiva-
lence relation. They also showed that a Yi-complete equivalence relation is a fixed
point for the jump +, i.e., E = E*. Clemens, Coskey, and Krakoff [CCK] ask
several natural questions regarding features of the jump operator 4. In this paper,
we answer these questions.

Throughout the rest of this paper, the “jump” of an equivalence relation will
always refer to the computable Friedman-Stanley jump operator +.

1.1. Preliminaries. We assume that the reader is familiar with the fundamental
notions and techniques of computability theory.

All our equivalence relations have domain the set w of the natural numbers.
Equivalence relations are infinite, if they have infinitely many equivalence classes;
otherwise, they are finite. For a c.e. set A, the equivalence relation F 4 is given
by  E4 y if and only if z = y or x,y € A. A ceer of the form FE, is called
1-dimensional. )

The identity relation on w is denoted by Id. Note that Id™ is equivalent is to
=, where z =°¢ y if and only if W, = W,. Following [AS19, [ABSM], we say that:

e Fis light if Id < E;
e F is dark if E is infinite and not light;
e F is dark minimal if it is dark and all equivalence relations < E are finite.

The next lemma will be used a few times.
Lemma 1.3 ([ABSM| Lemma 1.13]). Let E be a dark minimal equivalence relation.
If W, intersects infinitely many R-classes, then W, must intersect every R-class.
For two equivalence relations F, R,

e the uniform join E® R is the equivalence relation defined by + F® R y if
and only if x =2k,y=2land k Elorx=2k+1,y=2l+1and k R
e the cross product E x R is the equivalence relation defined by

{x,y(E x R)}u,w)y < (x Eu A y Rw).
For a countable sequence (E;)ew, @; F; is given by (x,y) ®; E; (v, w) if and only
ifx =vandy E, w.
The following definition gives a convenient notation.
Definition 1.4. For sets X,Y and an equivalence relation E, we write X Cg Y
to mean [X]g € [YV]g. Similarly, we write X =g Y to mean [X]g = [Y]g and
X Cp Y tomean [X]g € [Y]&.
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For any set X and equivalence relation E, we write X/E for the set of E-
equivalence classes of members of X.

1.2. Questions of Clemens, Coskey, and Krakoff. For every ceer £, we have
ET <1d" [CCK] Proposition 4.1]. And certainly any light ceer satisfies Id* < E™.
This motivates the following definition:

Definition 1.5. A ceer E is light for the jump if Id* < E*+. We note that this is
the notion of highness for ceers using this jump operator.

Clemens, Coskey, and Krakoff [CCKl Question 1] ask for a characterization of
the c.e. sets A so that E4 is light for the jump. In Section [2] we give the following
solution:

Theorem 1.6. Fora c.e. set A, Ej = Id" if and only if A is not hyperhypersimple.
Thus, the property of being “light for the jump” is ¥9-complete.

This line of inquiry led us to wonder what the picture looks like for the double-
jump. That is, which sets A have the property that Id*™ < Er“, i.e. E4 is highy
for the computable FS-jump. And we also ask whether there are any ceers E so
that Id™" € E+t+. We answer these questions as well in Section

Theorem 1.7. For every co-infinite c.e. set A, Id™T < Ejf Yet there are infinite
ceers E so that Id™" €« ET+. A

In fact, every low dark minimal ceer satisfies Idt* £ Btk (where Etk s the kth
iterate of the +-jump of E), yet there are dark minimal ceers E so that IdTT <
Bt

Next, every infinite ceer E has the property that Id < E+ [CCK| Theorem
4.2], but there are infinite A equivalence relations E so that Id < E* [CCK|
Theorem 4.4]. Clemens, Coskey, and Krakoff ask [CCK| Question 6] what is the
least complexity of an infinite equivalence relation E so that Id € E*. In Section
we answer this with the following theorem:

Theorem 1.8. Every infinite 119 equivalence relation E satisfies Id < E*, but
there are infinite X9 equivalence relations E so that Id £ E7T.

Clemens, Coskey, and Krakoff [CCK] also examine the transfinite jump hierarchy,
which they defined as follows:

Definition 1.9. For ¢ € O and E an equivalence relation, ET¢ is defined by
induction as follows:

If a = 1 (the notation for 0), then E+* = E.

If a = 20 then B+ = (E+0)F,

If a = 3-5° then EVo = @, E+#e()

To avoid confusion with notations in O, we use the following definition for finite

iterates of the jump:

Definition 1.10. For n € w and E an equivalence relation, we let ET™ be the nth
iterate of the jump over E.

Clemens, Coskey, and Krakoff show [CCKl Theorem 3.1] that no jump fixed-
point can be hyperarithmetic (HYP). In fact, they show that if F is a jump fixed
point and X is a HYP set, then X <,, E [CCK| Theorem 3.10]. They ask if
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notations matter in the definition of the jump [CCK| Question 2] and if every
jump fixed point must be an upper bound under computable reduction (not just
m-reduction) for all HYP equivalence relations [CCK] Question 3]. We answer both
in the affirmative in Section Bl and Bt

Theorem 1.11. There are two notations a,b € O with |a| = |b] = w? so that 1a+e
and Id™° are icomparable.

On the other hand, if |a| = |b], then Id™® and Id™° are somewhat related as
follows:

Theorem 1.12. For every computable ordinal o, there is an equivalence relation
E which is 113, so that whenever a € O is a notation for a, we have Idt* < E.

Theorem 1.13. For every HYP equivalence relation E, there is a notation a € O
so that E < Id*®. In particular, if E is a fired point of the jump, i.e., E = ET
then E is an upper bound for every HYP equivalence relation.

2. CEERS WHICH ARE LIGHT FOR THE JUMP

In this section, we examine which ceers E are light for jump, i.e., A" < EF. We
begin by introducing a purely combinatorial notion which will capture a ceer being
light for the jump.

Definition 2.1. A ceer F is singly light for the jump if there is a uniformly c.e.
sequence (V;);e, so that, V; €g U#i V; for every i € w. That is, there is an z € V;
so that [z]g N V; = I for every j # i.

This definition naturally captures a ceer being light for the jump in a way given
by a map from w into c.e. sets.

Lemma 2.2. Fiz a ceer E. Then, E is singly light for the jump if and only if there
exists a function f so that the map g which sends ¢ to an index for Ujewi W)

gives a reduction of Id" to E*.

Proof. Suppose first that E is singly light for the jump. We let Wy ;) = V. Since
V; contains an element whose E-class is not intersected by any Vi with k # j, the
image Ujewi Wy of a c.e. set W; determines whether j € W;. Thus, this gives a
reduction of Id™ to ET.

Next, suppose that there is a function f as given. If every element of Wy ;) were
to be E-equivalent to a member of Wy () for some k # j, then the g-image of w
and w ~ {j} would be the same, so g would not be a reduction of Id* to E*. Thus
the family V; = Wy shows that E is singly light for the jump. (]

More surprisingly, we show that any ceer which is light for the jump is singly
light for the jump. Before this, let us establish a useful lemma that constrains the
behavior of any reduction from Id™ to some E7.

Lemma 2.3. Let h: Id" < E*, for a ceer E. The following hold:
(1) if W; < W, then Wiy €SB Whiys
(2) if W; is infinite, then Wy =E UWani finite Wh(a)-
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Proof. (1): Suppose x € [Wyi)]g ~ [Wh(j)]e. Then, we use an index e we control
by the recursion theorem and we let W, = W, unless = € [Wh(j)] E, in which case
we make W, = W;. This gives a contradiction.

(2): We already have Uy cw, finite Wh(a) SE Whi) by the first item. Suppose
that y € [Wy(;)]e. Then, we use an index e we control by the recursion theorem
and we begin enumerating Wi,(;) into W, until we see y € [W,(oy]g. At this point,
we stop enumerating any new elements into W,. We thus get a finite set W, and
ye [Wh(e)]E' O

Theorem 2.4. A ceer is light for the jump if and only if it is singly light for the
Jump.

Proof. If E is singly light for the jump, then it is light for the jump by Lemma [2.2

Let E be a ceer which is light for the jump and fix h to be a reduction of Id™
to E+. We will construct a sequence (V;);e,, of c.e. sets witnessing that F is singly
light for the jump.

We define a function from c.e. sets F' to c.e. sets W (F') by taking an index e
we control by the recursion theorem and enumerating F' into W.. Then we let
W(F) = Wiy(). At a given stage s, we let W(F)s = Wy, We observe that
for any index i of F', we have W(F) = W},(;. Moreover, by Lemma we may
assume that for every s we have W (F), € W(G), for any finite sets F' € G.

We fix a sequence of equivalence relations F which limit to E and we assume
that at most one pair of classes collapses at any given stage s. Our construction is
designed to meet the following requirements:

P; : (3z € V;)(x is not E-equivalent to any y € Vj, for j # ).

Strategy. Intuitively, the strategy to satisfy P; acts as follows: We choose a
number a; and begin with a set B; = ¢J. We want to exploit the fact that
W(B;) Sg W(B; u {a;}). So, we choose a number z which we believe is in
W(B;u{a;})N[W(B;)]r and we put this z into V;. If we see z become E-equivalent
to a member of set V; with j > ¢, then this is because some set B; U {a;} which does
not contain a; has z € [W(B; u {a;})]r. We now give up on z and update our pa-
rameter B; to contain B;u{a;} and try to use the fact that W(B;) S W(B;u{a;})
for this new larger set B;, and we choose a new number z. If this happens infinitely
often, and each choice of z ends up in | j>i[Vj] £, then we will have built a set B;
not containing a; so that W(B;) = W(B; u {a;}) contradicting the fact that h is a
reduction of Id™ to E*.

If we see z go into Uj<z’[Vj]Ev it is possible that this E-class is the only one
distinguishing between [W(B;)]g and [W(B; v {a;})]g. So, we put a; into B; and
choose a new parameter a;. Now this class is already in W(B;), and since (J;_; V;
will be finite, we will have to do this only finitely often, so the above strategy will
eventually find us a z € Vi \ ;.. [Vj]Ee-

Construction. The strategy for the P; requirement will have parameters a;, B;
and z;. These should be understood as follows: B; is a finite set which does not
contain a;. We want to use the fact that W(B;) # W(B; u {a;}) to find an
FE-class which “represents” a;. The parameter z; defines an element which is in
Vi~ [Ujxi Vile at the current stage. To refer to the value of a parameter at the
end of stage s, we give it a superscript s.
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The strategy for P; requires attention at stage s+1 if its parameter z; is undefined
or is contained in [(J;; Vjs]e, or if it has been injured since it last acted. At any
given stage, the highest priority strategy which requires attention acts. All lower-
priority strategies are injured. For bookkeeping reasons, if a strategy is injured, it
keeps its parameters but just knows that it is injured. The strategy acts as follows
when acting at stage s + 1:

Step (I). If the strategy has been injured since it last acted or if it has never acted
before, then it chooses new parameters as follows: If it currently has parameters
a; and B; defined, then it lets the parameter B; have value B} u {a]}. Otherwise,
it lets the parameter B; have value . It also chooses a new parameter a; to be a
fresh number which has never before been considered.

Step (II). If z; is currently defined we run the module TryTheNumber(z;). Other-
wise, we run the PickANumber module.

We now describe the module TryTheNumber(c):

(1) If ¢ B w for every w € J;; Vjs, then we let 251 = ¢ and enumerate ¢
into V;.

(2) If ¢ Es w for some w € V; ¢ with j < 4, then we let D = B; U {a;} and we
pick a new number b. We then reset the parameters B; = D and a; = b.
We then call the PickANumber module with these new parameters.

(3) If ¢ E5 w for some w € V; with j > 4, then we let D = B; u {a;} U B;.
We reset B; to be D and we call the PickANumber module with the new
parameters (note that a; has not changed).

‘We now describe the PickANumber module:
Find the first t > s so that [W(B; v {a;})t]e, # [W(Bi):]e. and let ¢ be

s

the least element of W (B; u {a;}): \ [W(DB;)t]g.. We then call the module
TryTheNumber(c).

Verification. Note that we only ever enumerate a number into V; if it is already
in W(B; u {a;}) and we only ever grow the set B; U {a;} (either by putting a; into
B; in case the strategy is injured or in case 2 of the TryTheNumber module, or by
keeping a; the same and growing B; in case 3 of the TryTheNumber module), so we
always have V; ; € W(B} u {af})..

Lemma 2.5. If the strateqy P; begins the PickANumber module, it eventually ter-
minates in case (1).

Proof. It suffices to see that the stategy cannot take outcome (2) or (3) of the
TryTheNumber module infinitely many times. Every time it takes outcome (2) or
(3), we have a new element w € (J,; Vj,s so that w € [W(B;)]g,. Note that ¢ was
in W(B;u{a;}):~[W(B;)t] e, before the change of parameters, but c € [W(B;)]x&.
after the change of parameters. Since ¢ Es; w, we also see w has entered the set
[W(B;)t]r,- Note that since we only ever grow B;, once something is seen to
be in W(B;), it remains there. Since |J;,; Vj,s is finite at a given stage of the
construction, this process must eventually stop. [l

Lemma 2.6. At every stage s, if i < j and a; is defined, then a; ¢ B; u {a;}.

Proof. This is by induction on stages. When a; is chosen, it is chosen new so this
holds at that stage. Similarly, a; is chosen new so a; # a;. At later stages, elements
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can enter B; by either adding a; to B, in outcome (2) of the TryTheNumber module
or by adding {ay} U By, for some k > j into B;. But a; ¢ {ax} u By by the inductive
hypothesis. O

Lemma 2.7. Every strategy eventually settles with a parameter z; ¢ [\, .; Vile-
Thus, every V; is finite and contains an element which is not E-equivalent to a
member of any other V;.

Proof. We proceed by induction. We may assume that every strategy P; for j <+
has found such parameters z; by stage s. Since these parameters never change after
stage s, those strategies never act after stage s and the P;-strategy is never injured
after stage s. The P;-strategy can then only take outcome (2) of the TryTheNumber
module finitely often as there are only finitely many members of Vj for j < i.

Let t > s be a stage late enough that the P;-strategy never takes outcome
(2) of the TryTheNumber module after stage ¢. Then the parameter a; at stage t is
permanent. Further, note that a; never enters B; after stage ¢. This cannot happen
via outcome (2), since outcome (2) never happens after stage ¢ and a; never enters
B, via outcome (3) by Lemma[2.6]

Considering the limiting value of B;, since a; ¢ B;, we see that [W(B;)]r &
[W(B; u{a;})]e. Let ¢ be the least element of W(B; u {a;}) ~ [W(B;)]r and let
u > t be a stage large enough that [W(B¥),]g, n [0,c] = [W(B;)]g n [0,c] and
[W(BY v {a!}u]le, N [0,c] = [W(B; v{ai})]g n [0,¢]. Then when we next run
the PickANumber module after stage u, we pick this value of ¢ and we cannot take
outcome (2) of TryTheNumber(c) because u > ¢ and we cannot take outcome (3) as
this would put ¢ into [W(B;)]g. Thus we must take outcome 1 so ce V;.

Now we argue that c ¢ [Uj# Vjle. Suppose towards a contradiction that ¢ £ w
for w € V; with j # ¢. Then the P; strategy requires attention and since every
higher priority strategy has settled, it gets to act. It then runs the TryTheNumber(c)
module and must take outcome (2) or (3) depending on whether j < i or j > 4. This
cannot take outcome (2) as u > t. If it takes outcome (3), then we see c € [W(B;)]g
contradicting the choice of c. O

This concludes the proof that the property of being light for the jump coincides
with the property of being singly light for the jump. O

We now shift the focus to the case of 1-dimensional ceers. Indeed, it is natural
to ask for which c.e. sets A is E4 light for the jump ([CCK| Question 1]). Clemens,
Coskey, and Krakoff proved the following: on the one hand, if A is not hyperhy-
persimple then E4 is light for the jump [CCKl Theorem 4.8]; on the other hand, if
A is quasi-maximal, then E4 is not light for the jump [CCKl Theorem 4.17]. This
is not a characterization, as there are sets which are hyperhypersimple yet are not
quasimaximal [Rob67]. But the next corollary settles the problem.

Corollary 2.8. For any c.e. set A, E4 is light for the jump if and only if A is
nonhyperhypersimple.

Proof. If A is nonhyperhypersimple, then E4 is light for the jump by [CCKl The-
orem 4.8].

Suppose FE4 is light for the jump. Then F4 is singly light for the jump. Let
V = (V;)icw witness this. We may assume that every V; has an element z; which is

not in | J;,; V; and z; ¢ A. This is because all of A constitutes a single class in Ey,
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so omitting one set from the sequence of V; suffices to guarantee this. We may also
assume that at every stage at most one number is enumerated into at most one set
V.
We now define the sets X; defined as follows: z € X if
(1) z€ V; and V; is the first set in V which z enters.
(2) @s>2Vw<z)(weVis >we A uJju Vis)

The first condition implies that X = (X;);e, is a uniformly c.e. array of disjoint
sets. Since every V; contains a member which is not contained in A u iz V;, the
second condition ensures that each X, is finite. Finally, for each V;, let z be the
least member of V; \ (A U J;,; V;). Then z € X;. Thus X witnesses that A is not
hyperhypersimple. (Il

Corollary 2.9. The index set of ceers which are light for the jump is ¥9-complete.

Proof. Tt is easy to calculate that being light for the jump is a X% problem. To
conclude, it is sufficient to recall that the index set of nonhyperhypersimple c.e.
sets is X9-complete (see [Yat66, [Yat69], where the result is announced, and [Soa87,
Theorem XII 4.13] where it is proved) and then use Corollary (]

We finish our discussion of which ceers are light for the jump by focusing on a
special class of ceers which will also be considered in the next section: dark minimal
ceers, i.e., dark ceers E so that R < F implies that R is finite. Dark minimal ceers
are of special interest for the theory of ceers. For example, we code graphs onto the
dark minimal ceers to show that the theory of the partial order of ceers is as rich
as possible, being computably isomorphic with first-order arithmetic [ASS20b].

Proposition 2.10. No dark minimal ceer is light for the jump.

Proof. Towards a contradiction, suppose that there exists h : Id™ < E¥, for a
dark minimal ceer E. Lemma 2) guarantees that, if W; is infinite, then W, (;
must intersect infinitely many E-classes, as otherwise there would be finite c.e. sets
W, € Wy, € W; so that [W,]g = [Ws]E, a contradiction. So, let W,, and W,, be
the evens and the odds, respectively. Since E is dark minimal, by Lemma [1.3] we
obtain that [Wy,;)]e = [Wh(j)]e = w, a contradiction. O

3. THE HIGHER JuMP HIERARCHY OF CEERS

We now turn our attention to higher jumps applied to ceers. We first consider
the 1-dimensional case where, contrary to the picture for the single jump, every co-
infinite c.e. set A has the property that F4 has the highest possible double-jump.
Of course, we focus on the co-infinite c.e. sets because, if A is co-finite, then E4
has only finitely many classes.

Theorem 3.1. If A is a co-infinite c.e. set, then L ARERS Ejjr.

Proof. We describe an algorithm h for reducing Id ™% to Ej*. Let F: w — w be so
F(n) is the nth element of w ~\ A. Note that F is A9, so we fix also Fy a uniformly
computable sequence of functions limiting to F'.

We arrange it so that for any index e, h(e) is an index for a uniformly c.e. family
consisting of w, all finite sets, and w ~ {F(k)} for each k so that W), = W; for some
i € W.. We observe that this is a reduction from Id"" into ET+.

Fix an index e and we must uniformly produce the uniform family which is to be
its image under h. Begin with a uniform enumeration of w and all finite sets. We
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add to this a sequence of sets V;%. If i enters W, then make V%, active. If VZ] Rt
active for some j and Fs1(k) # Fs(k), then we deactivate Vijk, make ij = w and
we activate Vj AR O] Vlj . is active at stage s and both s and the length of agreement

between W; and Wy, at stage s are > ¢, then we enumerate [0, ¢] \ {Fs(k)} into Vijk.
It is straightforward to check that this gives a uniform enumeration of the de-
scribed family. O

Next we see that, unlike the 1-dimensional case, there are ceers which are not
high,, for the computable Friedman-Stanley jump for any n. That is, Id™™ £ E+7,
We do this by considering the low dark minimal ceers. Dark minimal ceers have
been used heavily in the literature, and we now note that there are dark minimal
ceers which are also lowf] .

Lemma 3.2. There are low dark minimal ceers.

Proof. The construction of a dark minimal ceer E has requirements of two types:
Ren: If We is intersects infinitely many E-classes, then it intersects [n]g.
Zm: E has > m classes.
To these, we can add the lowness requirement:
L.: If for infinitely many stages s we have pZs(e) |, then ¢ (e) converges.

L-requirements only place restraint on some finite collection of E-classes preventing
collapse. This fits in the finite injury construction of a dark minimal ceer, as given
in [AS19] (i.e., to a lower-priority requirement, this restraint is no different than
the restraints placed by higher-priority Z-requirements). ([l

Recall that all dark minimal ceers FE have the property that if W, intersects
infinitely many FE-classes, then W, must intersect every E-class. The following few
lemmas use this property to bound the complexity of the jumps of dark minimal
ceers.

Lemma 3.3. If E is a dark minimal ceer, then for each k € w, the set of i so that
Wi/E has size > k is a AY(E) set.
Further, the set of triples (i, j, k) so that |W;/E| =k and W; =g W; is AY(E).
In particular, if E is a low dark minimal ceer then these sets are both AY.

Proof. The quotient W;/E has size at least k if and only if 3z1, ...z, € W; /\k;éj Tk Eaﬁj.
This is ¢(E).

To check if (i,j, k) is so that |W;/E| = k and W; =g W;, we can in a AJ(E)
way check that |W;/E| = k and |W;/E| = k by the above. Then, if this is the case,
we can in a E-computable way find elements z1, ...z € W; so that A z; Exj and
Y1, .. Yr € Wy so that A y; Eyj. Then we need only check in a E-computable way
that /\isk x; £ y,(;) for some permutation o. ([

Lemma 3.4. If E is a dark minimal ceer, then E+¥ is AJ(E).
In particular, if E is a low dark minimal ceer then ET+ is A,

Proof. Let V;,V; be two uniformly c.e. families of c.e. sets (given by appropriate
indices, i.e., V; = {W,,: m € W;}). Then W; cg+ W, if and only if the following
hold:

1We emphasize that we are using lowness in the sense of the Turing jump on sets, not any of
the equivalence relation jumps from Definition
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(1) (VS eVi)(Vkew)[|S/E| =k - (3F e V;) (F =g 5)]

2) (3S € V) (Vk € ) [|S/E| > k — (35 € V;)(Vk € w)(|S/E| > k)].

The conditions |S/E| =k and F =g S in (1)) are AY(E) by Lemma Thus,
the condition is II3(E). Similarly, using Lemma is AJ(E). Thus,
Wi =g+ W, ori ETT jis a A}(E) condition. O
Corollary 3.5. If E is a dark minimal ceer, then for any k > 2, the equivalence
relation E1F is Hgk—l(E)' In particular, if E is a low dark minimal ceer then ETF
8 Hgk_l,

Proof. This is by induction with base case k = 3: E+tT+ is 119 over ET+, which is

AY(E), so is TIY(E). Then ET¢+D) = (E+k)+ is 11 over EFF which is T19,_, (E)

by induction, so E¥FHD is 119, (E). O

Below, in Corollary we will show that Id™" is not y, ;. It follows from

this that if F is a low dark minimal ceer and k > 2, then Idjrl; £ E*+F. Thus we
will have the following theorem.

Theorem 3.6. If E is a low dark minimal ceer, then E is not high, for the com-
putable Friedman-Stanley jump for any n € w.

We now see that the assumption of lowness is necessary here, since there are
dark minimal ceers so that Id™* < E++.

Theorem 3.7. There is a dark minimal ceer E so that IdtT < B+,

Proof. Along with the ceer E, we construct uniformly in each j,k,T € w, a finite
sequence of c.e. sets U} - for n < N(j, k,z) and satisfying the following:

Q, ks : Forevery n < N(j,k,Z), Ul z =w:

— If z is a 2k-tuple which is E-distinct and W; = W, then
N(j,k,z _
Uit = [2le.
N(jk,2) _

— Otherwise, |Uij(jiki)/E| is odd or Uj,,m-c =

From the success of these requirements, we give a reduction of Id*™ to E*+T.
Given a uniformly c.e. family V; = {W;: j € W;}, we map this to a family F; which
contains each set U}, - for each j € W;, k € w and T € w?* and n < N(j, k, 7).
We also include an enumeration of w and sets Xz for every Z of odd size where X;
enumerates [Z]g unless we see that Z is not E-distinct, in which case Xz enumerates
w. It is easy to check that the sets enumerated as X; are exactly w and every FE-
closed set Y so that |Y/E| is odd. Further, if W}, is represented in V;, then there is
some j € W; so that W; = Wy. In this case, UJ%(’JQ’]C’@ for various Z will enumerate
every E-closed set Y so that |Y/E| has size 2k. So, this gives the necessary reduction
to witness that Id*T < B+,

It remains to verify that we can construct a dark minimal ceer F along with the
uniform sequence of sets U} - satisfying the Q-requirements.

We have the full set of requirements for m, n, o, j, k € w and z € w?*

T : E has at least m equivalence classes.
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Pr.o : If W, intersects infinitely many E-classes, then W,, intersects [o]g.
Qjrz : Enumerate a c.e. set U so that:
— If Z is not E-distinct, then U = w.
— If z is E-distinct and W; = Wy, then U = [Z]g.
— If 7 is E-distinct and W; # Wy, then [U/E] is odd.

We note that whenever a Q; ;. z-requirement is reinitialized, we will let the con-
structed set be w and have the strategy begin constructing a new set U. This
explains the finite sequence of sets U}, - and N (4, k, Z) will be the number of times
this strategy is reinitialized.

We enumerate the strategies in order type w. Whenever a P-strategy causes
collapse, all lower-priority strategies are reinitialized.

The strategies for Z and P-requirements are familiar from the usual construction
of a dark minimal set: Z-requirements simply choose a new tuple and place restraint.

P, o-strategies seek to find an element of W,, which is not (currently) E-equivalent
to any restrained number. Then it F-collapses this number with o.

Q; .z strategies act as follows: If it ever sees some x; E x;, then it just stops and
makes U = w, and the requirement is satisfied. Nonetheless, the strategy restrains
the tuple Z. We begin by enumerating [Z]g into U. We use the IIJ approximation
to the statement W; = Wj.. That is, at every stage, we have a computable guess as
to whether or not W; = Wj,. If we infinitely often guess that W; = Wj,, then they
are equal. When our guess switches from saying W; = W), to saying that they are
not equal, we take a new number y, and we add y to U. Further, we place restraint
on the number y so that lower priority requirements will not collapse y with any
element of z. If we later guess that W; = W}, then we collapse y with zo. We then
undefine the parameter y and unrestrain it (it is restrained automatically anyway
by our restraint on z).

The construction is put together via standard finite injury machinery. At every
stage s, the first s strategies get to act in order.

Lemma 3.8. At every moment of the construction, the set of parameters of y for
various Q-requirements and the set of restrained elements for I-requirements are
all E-distinct.

At every moment of the construction, if Q; jz s higher priority than Qg j g,
then the latter’s parameter y' (if defined) is not E-equivalent to any x € Z.

Proof. These statements are preserved by the choice of parameters, since they are
chosen new. Collapse occurs only via action from P or Q-requirements. In the
former case, Py, collapses some member z of W,, to 0. This z was not equivalent
to any element restrained by a higher-priority requirement, and since all lower-
priority requirements are reinitialized, we have added no restrained number to the
class of 0. Next we consider collapse caused by a Qj; z-strategy. Since O, z
previously restrained y, the inductive hypothesis shows that no other parameter 3/’
for a Q'-requirement or an element restrained by an Z-requirement was equivalent
to y. Since after the collapse of y with xg, this y is no longer the parameter for
Qj k,z, we have added no such element to the class of zo. Thus the first statement
is proved.

It remains to see that a collapse caused by a Qo jo0 zo-strategy does not cause
a violation of the second statement. By the first statement, no two y-parameters
could have been equivalent. So, the only way this could have caused the violation
is if 2 Es v' and y° Eg zo. But by inductive hypothesis, the former implies
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Qo o zo is lower priority than Qy j z and the latter implies Q; ; z is priority than
Qo jo zo. Thus we would have Q; ;z being lower priority than Q; j 7, so this is
not a violation of the second statement after all. O

Lemma 3.9. Every strategy succeeds.

Proof. Since only P-requirements reinitialized lower priority requirements, and each
can act at most once, every requirement is reinitialized only finitely often.

We first see that every Z,,-strategy succeeds. Take a stage after which the
strategy is not reinitialized and consider the tuple restrained by the strategy. By
the previous Lemma, each of its restrained elements are F-distinct, so the strategy
succeeds.

Next, consider a Py, ,-strategy. Let s be a stage large enough that the strategy
is not reinitialized after stage s. Let a be the full tuple of elements restrained by
higher-priority Z-strategies (which has settled by stage s). Let Q;, j, z, for ¢ < K
be the collection of higher-priority O-strategies. Suppose that W, /E is infinite, and
let t > s be a stage after which W), contains at least [au|J, i Tq|+ K +1 E-distinct
elements. At any such stage, at most K Fy-classes are restrained as parameters y
by higher priority Q-strategies, so there must be an unrestrained member of W, ;
which the strategy will collapse with o and thus be permanently satisfied.

Finally, we consider a Q; ; z-strategy. We consider the three cases: If  is not
FE-distinct, then this is seen at some point and we set U = w. If T is F-distinct
and W; = Wy, then infinitely often, we add some n to U, but then we collapse this
n in with . So, U = [Z]g. If W; # Wy, then let s be the least stage so that
the strategy is not reinitialized after stage s and the approximation says W; # Wj
for all t > s. Let y be the parameter chosen at stage s. Then we need only see
that y ¢ [Z]g. We consider what strategy might cause this collapse. It cannot be a
higher priority P-requirement, since the strategy is not reinitialized after stage s.
It cannot be lower priority P, ,-requirements since both z and y are restrained by
Q;.5,z, S0 neither can be Fy-equivalent to the chosen element z € W,,. It cannot be a
Q-requirement, since the lower-priority strategy’s parameter y cannot be equivalent
to either the higher-priority strategy’s y or x, by the previous Lemma. [

This concludes the proof of Theorem O

4. DARK JUMPS

In the remaining three sections, we move out from the realm of ceers and consider
equivalence relations of higher complexity. In particular, we now ask how complex
an infinite equivalence relation F must be for its jump to be dark. Clemens, Coskey,
and Krakoff [CCK| Theorem 4.2] show that E* is light for every infinite ceer F
and there are infinite A equivalence relations F so that E™* is dark. Here we prove
that X9 is the lowest arithmetical complexity of an equivalence relation E such that
E* is dark (thus answering [CCK| Question 6]).

First, we show that the jump of every infinite IIS equivalence relation is light.
Theorem 4.1. If E € 1Y is infinite, then Id < E*.

Proof. We let Es be computable approximations to E so that xFy if and only if
there are infinitely many stages s so that « Es y. We construct a uniform sequence

of c.e. sets Wy, for j € w, so that W;, ¢ W;,_,, for each j € w.
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We let W;, = {0}. We define W, as follows:

xe W, if and only if (Yy < 2)(3s = x)(3z € Wy, )(y E; 2).
Lemma 4.2. If [0,z) Sg W;,, then x € W;

Li+1°

Proof. For each y < x, there is a 2 € W;, so that y £/ z. Thus for infinitely many s
we have y Fy z, witnessing € W, . ]
Lemma 4.3. Each W, is a finite initial segment of w.

Proof. We prove this by induction. This is true for j = 0.
Fix an element y ¢ [W;,]g. This exists because Wj; is finite and E has infinitely
many classes. Then let s be a stage large enough that Wi, = Wi s and every

z € W;, and ¢t > s we have y B{ z. Then no x > s can ever enter Wi Il

It follows that Wy, &g W;,,, for each j, so j — i; is a reduction of Id to Et. O
On the other hand, there are X9 sets whose jumps are dark.
Theorem 4.4. There exists an infinite X3 equivalence relation E so that Id £ E*.

Proof. We construct E as a c.e. set via a finite injury argument over 0’. We have
requirements:
R; : If W; is infinite, then it contains two entries which are E Jr—equivaulent.
Q; : There are z1,...x; which are E-inequivalent.

The R-requirements ensure that there is no reduction from Id to E*, while the
O-requirements obviously ensure that F is infinite. We place these requirements in
order-type w. A Q-requirement acts by placing a restraint. At every stage s, we
allow the first s requirements to act in turn. In fact, R-requirements may act at
infinitely many stages and cause infinitely many FE-collapses.

The strategy for an R,-requirement is as follows: Let & be the tuple of elements
restrained by higher-priority Q-requirements. Using 0’, we seek a set Z of 3- 2% +
1 numbers in W,. If there are not this many, then W, is not infinite and the
requirement is satisfied. From these numbers, we use 0’ to find four that agree on
the (current) classes of Z. That is, for each of these 3 - 2/l + 1 indices j € W,, and
x € T, we use 0’ to ask if any member (there will be only finitely many) of [z]g, is
in W;. Then by the pigeon-hole principle, there are four that give the same answer
for every x € Z. Fix these indices: j, k,l, m. If there are two indices i, € {j, k,I, m}
so that W; and W, are contained in [Z]g,, then 0’ sees this and the requirement
will be automatically satisfied, so no further action is taken. So, we may suppose
W, Wy, W, are each not contained in [Z]g,. Note that the family {W,, Wy, Wi}
must contain two finite sets or two infinite sets. We begin with working with the
pair j, k and, until proven otherwise, we guess that W; and W}, are both infinite.

Then, we perform the following Collapse(j, k) module:

At each stage s greater than every = € T, we ask 0’ if there is a y > s which
is in W; and we ask if there is a y > s which is in Wj. We distinguish two
cases.
(1) If the answer is no to either, then we stop this module and we call the
FoundFiniteSet module instead.
(2) Assuming case didn’t happen, we now act to ensure that every
z < s is either in both or neither of [W}]g, and [Wy]g,. We act suc-
cessively for each z € (max(Z), s). If z is not least in its Es-equivalence
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class, then we have already ensured this when previously considering
a number y < s which is Fs-equivalent to z, so we do nothing. Other-
wise, we ask 0" if z € [W}]g, and if z € [Wy]g,.
(a) If it is in neither or both, we do no action.
(b) If it is in one and not the other, then we find the least n > s in
the other set and we E-collapse the interval [z, n].

‘We now describe the FoundFiniteSet module:

(1) If this is the first time we call this procedure, say having found that W; is
finite, then we simply return to the Collapse(k,!) module (we just assume
Wi and W are infinite until we see otherwise).

(2) If this is the second time we call this procedure, say having found that W;
and Wy, are finite, then we simply collapse [max(Z) + 1, max(W;, Wy)] to a
single E-class.

Note that since every collapse involves an interval, the classes of F are intervals
as well.

A Q; strategy acts as follows: Let Z be the tuple restrained by Q,_; (or z = & if
j =0). Wait to find a stage s and a number y < s so that y is the greatest element
of [max(z +1))]g, and [y]e. = [y]E._,- Once such a y is found, the strategy places
a restraint on the tuple zy.

The strategies are interwoven in priority order: Rg < Qg < R1 < Q1 < «--.
Whenever an R-strategy runs a FoundFiniteSet module, all lower priority strate-
gies are reinitialized. This is the only source of injury. At each stage s, we allow
the requirements to act in order until one of them ends the stage. A Qj-strategy
which is still waiting to find a y or which acts by declaring its restraint Ty ends the
stage, and a R, -strategy which runs a FoundFiniteSet module ends the stage.

Lemma 4.5. Suppose that a Qy strategy restrains a tuple Ty at stage s, and t > s.
Then either the strategy has been reinitialized between stages s and t or Ty are the
largest members of the first |Ty| Ei-equivalence classes. In particular, [2]g, = [#]E,
for every z € Ty.

Proof. The result holds by induction for every z; € . Namely, T is restrained by
the strategy Q;_1 at a stage r < s. By inductive hypothesis applying the claim to
the Q;_i-strategy, x; is the greatest number in the ¢ + 1th E;-class as needed. We
must consider the F-class of y. Since y Es max(Z) + 1, we need only show that as
long as the Qj has not been reinitialized, no number > y ever becomes equivalent
to y.

Since [y]g,_, = [y]E., each higher priority R-strategy (without loss of generality,
suppose it is running the Collapse(j, k) module) has considered the class [y]g,
on its previous pass and found that it intersected either both or neither of W;
and Wj. Thus, at any future stage ¢t > s where [y]g, = [y]E., as long as the
strategy remains in the Collapse(j, k) module, this strategy will never have a need
to collapse any element with y. If the strategy takes the FoundFiniteSet module,
then the Qp-strategy is reinitialized and the desired result holds. Thus, no higher
priority strategy can ever cause the E-class of y to grow.

Consider the collapses caused by lower-priority R-strategies at a stage t > s
and suppose that we have [y]g, = [y]z.. The strategy collapses finite intervals of
numbers [z,n] which are greater than the largest element in the restrained tuple.
Since y is the largest number in its E;-equivalence class, no number in this finite
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interval can be equivalent to y, so this collapse does not add any elements to y’s
FE-class. ([

Lemma 4.6. Fach strategy is satisfied.

Proof. Each strategy may injure lower priority requirements at most twice (each
time it runs the FoundFiniteSet module), so every strategy is reinitialized only
finitely often.

Suppose towards a contradiction that the first strategy that fails is a R,,-strategy.
Fix Z to be the numbers restrained by higher-priority O-strategies. Then R,, begins
by choosing indices j, k,I. Note that for any = € Z, we have [z]g, " W; = J
[z]e, " Wi, = F o [z]g, n W, = & where s is the stage when j, k,! were chosen
after the last time the R,-strategy is reinitialized. But by the previous claim,
[z]e, = [2]E, so

[.’Iﬁ]EﬁWj=®©[$]E0Wk=®©[$]EﬁVVl=®.

So, on these classes, the three sets agree.

First suppose that both of W; and Wj, are infinite. We now check that the
Collapse(j, k) module ensures that W; =g Wj. Fix z > max(Z) (ie., a class
distinct from the ones considered above) and suppose that z € [W;]g. Then at some
stage s > z we have z € [W;]g,. Then at this stage, we ensure that z € [Wy]g,. This
covers every class by the previous claim, so j E* k satisfying the R,, requirement.

Similarly, if exactly one of W; or W is finite (without loss of generality, assume it
is W;), and W; is infinite then the Collapse(k,{) module ensures that Wi, =g W.
If two of the sets, say W; and W), are finite, then the FoundFiniteSet module
ensures that W, =g W}, since they must both intersect the class of max(z) + 1
(since they were chosen to not be contained in [Z]g, = [Z]g) and no larger class.
Thus, the strategy succeeds after all.

Next, suppose towards a contradiction that Q; is the first strategy that fails.
From the above lemma, we need only show that the wait to find a y as needed
must end. At each stage t, let y; = max([max(Z) + 1]g,). This would work for our
choice of y unless [max(z) + 1]g, # [max(z) + 1]g,_,. This can only happen due
to the action of a higher priority R-requirement, since Q; ends the stage since it
is waiting to find its y. We can suppose, without loss of generality, that the higher
priority strategy is in a Collapse(j, k) module, since the Collapse(k,!) module is
symmetric and it can run the FoundFiniteSet module at most twice. Then growing
the E-class of max(Z) + 1 must be because max(Z) + 1 was seen to be in exactly
one of [W;]g, , or [Wi]g, ,. But this can happen only once in the Collapse(j, k)
module, since after stage t it is in both. Thus, after finitely many stages, we must

have [max(Z) + 1]g, = [max(Z) + 1]g,_, and Q; can choose its element y. O
This concludes the proof of Theorem O

5. JUMPS DEPEND ON NOTATIONS

We now consider the transfinite jump hierarchy. Clemens, Coskey, and Krakoff
[CCK| Question 3] ask whether the degree of E+® depends on the notation a € O
or only the ordinal |a|. We show that it does indeed depend on the notation, but
we give a bound on how much it can depend on the notation.

Notation. To avoid having towers of exponentials to represent successor ordinals,
we introduce the function P(z) = 2° and we write P(*)(z) for the kth iterate of
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the function P on x. Note that if n is a notation for the ordinal «, then P*)(n) is
a notation for the ordinal a + k.

The following observation follows directly from the definitions.

Observation 5.1. For any notations a <o b, there is a computable function fap
s0 that f,p, witnesses E7¢ < ETY for any equivalence relation E. Further, f.; can
be uniformly found from the notations a and b.

The following lemma will be used to manage possible reductions into E+* where
|a| is a limit ordinal.

Lemma 5.2. For any equivalence relation E, the classes of EY are computably
inseparable.

Proof. Suppose towards a contradiction that [¢]g+ and [j]g+ are separated by the
computable set A. That is, [i]g+ € A and [j]g+ n A = . By the recursion
theorem, we can take an index e so that W, = W; if e ¢ A and W, = W; if e € A.
In either case, this gives a contradiction. O

We first consider ordinals < w?, and show that the notation does not matter in
this case.

Lemma 5.3. Let a be an ordinal < w? and a,b € O have |a| = [b| = o.. Then for
any E, we have Ete = Etb,

Proof. The proof is by induction on a. We note that if the result is shown for
a, then for any notation b with |b| > « and any notation a with |a|] = «, then
Ete < B+ To see this, take the notation ¢ with ¢ <o b and |¢| = a. Then
Ete=Ete < BP0 We call this the “reduction form” of the inductive hypothesis.

The lemma clearly holds for all finite a. The set of « for which this is true is
also clearly closed under successor. It suffices to show the result for limit ordinals
a < w?

Let @ = 3-5" and b = 3 -5’ be notations for w - n. Let ¢ be least so that
lpi(c)| = w - (n—1) and d be least be so that |¢;(d))| = |@i(c)|. For every k > c,
0i(k) = P (p;(c)) for some 2. Similarly, for every k > d, ¢;(k) = P%)(¢;(d)) for
some z.

We build a reduction of ET® to ET as follows: We send the first ¢ columns
of E*% to the columns d through d + ¢ — 1 of E*’. This can be done by the
reduction form of the inductive hypothesis since the first ¢ columns of E¢ are all
E79 for some g with |g] < w- (n — 1) and the images are of the form E*" where
|h| = w-(n—1).

Next, we send the cth column of E*+® to the (d+c)th column of E+? which again
we can do by the reduction form of the inductive hypothesis. To figure out how
to send the ¢ + 1th column, we find the number k so that ¢;(c + 1) = P%* (p;(c)).
Then we find the first unused column e in E® so that ¢;(e) = PY(d) with [ > k.
We can then use the reduction from E+¢ to E+? to uniformly find a reduction from
EPP© o gPO@), Repeating as such, we uniformly send every column of ET¢
into E*? giving the needed reduction. (I

Next we see that notation does matter at w?.

Theorem 5.4. For any notation b for w? there exists another notation a for w? so
that Id™® € Id™°.
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There are two notations a,b for w? so that 1d** and 1d™° are incomparable.

Proof. Let b =3 -5 be a given notation for w?.

We take a = 3 - 5° for an index e which we control by the recursion theorem.
For each z, we let ¢.(z) = P(3 - 5%) for an infinite sequence of indices 4, which we
control by the recursion theorem. Until we determine otherwise, we define, stage
by stage that g;,..,(0) = P(3-5") and @, (s + 1) = P(pi, (5)):

We perform the following actions for the sake of diagonalization. To ensure that
¢k is not a reduction of Id™® to Id™, we wait for ¢ (¢k,0)) to converge, say to
{m,n). Since |P(3-5%)| is a successor ordinal, Lemma shows that the classes
of TAHPB9) are computably inseparable. Thus we know that if ¢y, is a reduction,
then it must send the entire kth column into the mth column of Id*°. But the
mth column of Id*? is equivalent to Id*%(™), So, at the stage s when we see that
o (Ck,0)) = (m,n), we make @;, (s + 1) = ¢;,(s) +o ¢j(m) +o 1. This ensures
that [P(3 - 5| > |o;(m)].

For each column, we will only perform this operation once (for all ¢ > s, we set
@i, (t+1) = P(g;, (t))). Thus, if 3-5% is a notation for some limit ordinal less than
w?, then 3 - 5%+ is also a notation for a limit ordinal less than w?. Thus, this is
true for all 2 by induction and thus a is a notation for w?. ) )

Suppose towards a contradiction that ¢y is a reduction of Id*® to Id*°. Then
on the kth column, ¢y gives a reduction of Id+PF3'5%) to Id7%7 ) Let ¢ be so
¢ <o P(3-5%) and |¢| = |p;(k)|. Then Id*¢ = 1dT#/*) 1y Lemmam But then
(Idjrc)‘.F <IdTP65") < 1at%iM) = 1q7¢. But then Id™° m-bounds every HYP set
[CCKL, Theorem 3.10], but this is a contradiction since Id"* is itself HYP.

Running the same strategy in the reverse direction, we can construct a and b so
that Id7® and 1d*® are incomparable. O

We next see that for any computable ordinal «, the equivalence relations 1d*® for
a with |a| = a form a reasonably well bounded collection of equivalence relations.
We will need the following observation:

Observation 5.5. There is a computable function x — 2 - x which sends a nota-
tion a for a to a notation for 2 - «. Further, x <o 2-0 x for every x € O.

Proof. This is done via transfinite recursion and the recursion theorem. We define
2.0 P(a) to be P® (2.0 a) and we define 2 - (3-5°) as 35" where p;(z) =
20 Pe (.23) u

Theorem 5.6. For any recursive ordinal a, Id+® S=xy where =xp is the equiv-
oa o

alence relation of equality of X0 sets (given by a notation c€ O).
Further, this is uniform in the notation a.

Proof. We prove this by induction on the notation a. For the base of the induction,
let a =1, i.e., the notation for the ordinal 0. Then Id™* = Id and X9, = £§. We
can send n to an index for the ¥ set {n}. _

Next suppose that a = P(b). Then we assume Id ™ reduces to =59, sets. Then

Id** reduces to (=x9 b)*. Thus it suffices to show the following claim:
el

Claim 5.7. For any ce€ O, (=x0)T <=50 .
¢ P(2)(¢)
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Proof. Let (Sy)mew be a natural indexing of all $¥ sets. Let F' be a function which
sends i to a X0 -index for the set {m: 3k (S, = Sk A k€ W;)}, and observe

P@)(c)

that F'is a reduction. [

Finally, suppose that a = 3 - 5. Then by the assumed uniformity for all ordinal

notations < a, we have uniform reductions of each I+ ®) o =20 Since
‘0P

0
2:0pi

set, we see that each Id %" reduces to =50 . By coding on distinct columns,
o

we can uniformly turn X (k)—indices for a set into a X9, oq-index for the same

Le., using the fact that =yg  xId <=gy , we see that Idte <=xg . And again
-oa 'O(l -oa
this is uniform. O

Corollary 5.8. For every computable ordinal o, there is an equivalence relation F
which is 113, ., so that whenever a € O is a notation for o, we have dt* < E.

Proof. By Spector’s uniqueness theorem [Sac90, Thm 4.5], if |a| = |b|, then H(a) =
H(b). Further, this is uniform. Thus for any b with |b| = |a|, we can uniformly turn
a ¥ _,-index for a set into a X9, ,-index for the same set. Thus fixing any chosen

notation e for «, for any notation a for o, Id*® S=yy _and =y € g, .. O
oe oc

6. EVERY HYP EQUIVALENCE RELATION REDUCES TO SOME IpTe

Friedman and Stanley [FS89] proved that the collection of transfinite jumps of
the identity relation on reals form a cofinal family in the Borel hierarchy of all Borel
isomorphism relations. In this final section, we offer an effective analogue of this
result. Namely, we will prove that any HYP equivalence relation is bounded by
some Id ™.

As for many other places of this paper, our starting point is [CCK]. We give
a definition of a strong way to reduce a set A © w to an equivalence relation
E. This is similar to and inspired by [CCK| Definition 3.3]; whereas they aren’t
concerned with the image h(z) if x ¢ A (so long as it is F-contained in the image
of the reduction for an z € A), we demand only two possible images depending on
whether or not x € A.

Observe that the cross product E x Id (as defined in the preliminaries) is equiv-
alent to a uniform join of F with itself countably many times.

Definition 6.1. A set A strong subset reduces to EJ“_ if there is a computable
function h and a pair 4,j so that W; S W, h(z) ET j for every 2 € A, and
h(z) E* i for every z ¢ A.

This form of reduction is strong enough to give us a way to transfer set reductions
to Id*“ into equivalence relation reductions to Id*®. In the following lemma and
throughout this section, we focus on equivalence relations E so that F x Id <
E. This is a reasonable assumption since we are trying to build reductions into
equivalence relations of the form Id™ and all such equivalence relations satisfy
E x1d < E |[CCK| Corollary 2.9].

Lemma 6.2. Suppose that R is an equivalence relation and let A = {{x,y) :
x Ry}. Suppose that either A or the complement of A strong subset reduces to ET.
Suppose further that E x Id < E. Then R< ET.
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Proof. Let (h,i,7) witness that A or its complement strong subset reduces to E¥.

For each = € w, let (hy,iz,J,) witness that A or its complement strong subset
reduces to the xth column of (E x Id)T. That is, he(a) = {(z,y) | y € Wha)}
Wi, = {a,y) | y € Wi}, and W, = {Coy) |y e W)

For each z € w, let e, be a c.e. index for the set UyEw Wh, ey Bach Wi (e )
is contained in the yth column and either has the same E' x Id-closure as W;  or
Wj,. We now check that =+ e, is a reduction of R to (E x Id)*.

If a Rb, then {y |y Ra} = {y |y Rb}. Similarly, {y | y R a}. = {y | y & b}. So,
for every y, Wi, (¢a,yy) has the same E x Id-closure as Wy, (¢,y5), 80 €4 (E x Id)* .
If a B b then Wh,(¢a,ay) has the same E x Id-closure as Wj, (or W;, if it is the
complement of A which strong subset reduces to E¥), but W, (¢b,ay) has the same
E x Id-closure as W;_  (or W, if it is the complement of A which strong subset
reduces to Ejr) showing that e, Meb. Thus z — e, is a reduction of R to
(E x Id)™, which is equivalent to E™. O

We note the similarity between the above and the fact that every £ equivalence
relation E reduces to Id*. That is proved by sending = to [z]g. This is essentially
what we do here, but instead of putting y into the set when y is equivalent to =,
we put W; into the set if y is equivalent to x.

Below, it will be convenient to reduce into E x Id instead of E. The following
lemma shows how to return to E.

Lemma 6.3. Let R < E. Suppose that A strong subset reduces to R*, then A
strong subset reduces to ET. Similarly, suppose that A strong subset reduces to
R™T then A strong subset reduces to E+T.

Proof. Let g be areduction of R to E. Take (h, 1, j) witnessing that A strong subset
reduces to RT. Then we define f(n) = e, so that W,, = {g(z) | z € Wiy} Let
Wo = {9(z) | x € W;} and W, = {g(z) : « € W;}. Then (f,a,b) strong subset
reduces A to E7t.

The second case is the same, except we let f(n) be so W) = {em | m € W)}
where W, = {g(z) | x € W, }. O

In what follows, we will focus on the collection of sets which strong subset reduces
to an equivalence relation Id™%, since we now know that, by Lemma we can
transfer strong subset reductions to equivalence relation reductions. The following
easy fact will serve as the base of our induction.

Lemma 6.4. Every X! set strong subset reduces to Id*.

Proof. Fix S a c.e. set. Let ¢ be a c.e. index for the empty set and j be a c.e.
index for w. Let h(z) be an index for an enumeration which either gives ¢ or w
depending on whether or not we see x € S. ]

Next we give an induction which covers every arithmetical equivalence relation.

Lemma 6.5. Suppose that A strong subset reduces to E*. Further suppose that for
every n and p, the set {q | A((n,p,q))} is an initial subset of w. Finally, suppose
that E x Id < E. Then B(n) := IpV¥qA(n,p,q) strong subset reduces ETT.

Proof. Fix (h,i,) witnessing A strong subset reduces to E+. This shows A strong
subset reduces to every column of F x Id. That is, we have functions h, and indices
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i and j, as above so that W; ,W; < wlel, Wi, Sexia W, and he(y) (E x Id)Jr i
if y ¢ Aand hy(y) (E x1d)T j, ify e A
For each n, we let W, be a collection containing:
(1) For every y € w, a c.e. index for the set J,., Wj, v U,>, Wi.
(2) For every p € w, a c.e. index for the set | J,.., Wi, ((n.p,z>)-

Since for every pair n,p, the set of ¢ so that hy((n,p,z)) E¥ j, is an initial
segment of w, the sets in the second bullet are either already enumerated in the
first bullet or are exactly equal to |J ., Wj,-

Finally, take the map g : n — e,, let a be a c.e. index for just the sets in (1),
and let b be a c.e. index for the sets in (1) along with the set | J ., Wj,. Then
(g,a,b) strong subset reduces B to (F x Id)**. Thus, Lemma shows that B
strong subset reduces to ET+. (I

Theorem 6.6. For every n € w, every X3, ; and 119, | equivalence relation re-
duces to Id*".

Proof. We first show that for every n € w, every X9, _; set strong subset reduces
to Id*™. We use Lemma [6.4] as the base of this induction.

Let X be a X9, set. Write X(n) = IpVgA({n,p,q)). Rewrite this definition
as: X(n) = Ip¥q(Vm < qA({n,p,m))). We observe that Ym < qA((n,p,m)) is a
%9, set. Thus, it strong subset reduces to 1+t by inductive hypothesis and,
by Lemma X strong subset reduces to Id*". Note that the hypotheses that
Id*" ! x Id < Id™" ! holds by [CCK. Corollary 2.9].

Finally, applying Lemma shows that if R is a X9, _; or II3,_; equivalence
relation, then R < Id*™. O

Corollary 6.7. The equivalence relation Id™ is not s, , orx9, ;.

Proof. 1t is easy to see that there are equivalence relations which are X9, | and not
19, _; (consider 1-dimensional equivalence relations with a single class comprised
of a 39, _;-complete set) and similarly equivalence relations which are II9,_; and
not 9, ;. If Id™" were 9, 1, then every I19, ;-equivalence relations would have
to be £9,,_; by virtue of reducing to Id*". Similarly we get a contradiction if Id*"
were 119, ;. O

We note that Theorem[6.6]is sharp on the scale of the arithmetical hierarchy since
Id*" is a 19, equivalence relation and thus there is a AY,, equivalence relation which
does not reduce to Id™" [IMNNT14]. We can look closer using the Ershov hierarchy:

Theorem 6.8. There is a d-c.e. equivalence relation E so that E Idt.

Proof. We partition the odd numbers into countably many sets S, for e € w. Let
Z(e,iy be the ith element of S.. We construct a d-c.e. equivalence relation E by
stages. We never make any pair of even numbers F-equivalent. We may make
elements of S, be FE-equivalent to 4e or 4e + 2 or neither.

We satisfy the following requirements:

Re : @ is not a reduction of F to Id*.

The strategy for meeting the R-requirements is twofold. On the one hand, we ensure
that 4e E 4e + 2, for all e (in fact every pair of even numbers are E-inequivalent).
This action forces W, (4e) # Wy, (4e42), Otherwise . would not be a reduction.
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But, on the other hand, we use the z( ;’s to gradually copy We,_(4e) into W, (4c42)
and vice versa. Let’s discuss in more detail the module for diagonalizing against a
potential reduction ,:

Let eg = 4e and e; = 4e + 2.

(1) If at some stage s a number w appears in W,,_(c,), for k € {0,1}, we take
the least unused 2z ;5 and we let ex E 2. ;-
(2) We wait to see if w appears in W (ze.iy)- 1t this happens, we declare

ek Ez<e7i> and we let e;_p E 2 ; instead.

Now, towards a contradiction, suppose that there is a reduction ¢; from E to Id*.
Since the construction ensures that 45 ¥ 4j + 2, it must be the case that W, Go) #
W, 5. Without loss of generality, let v € W, (45 \ W, (4542). But then, by
item (1) of the module, we have that, at some stage s, 4 is E-collapsed with some
2¢j,iy- Observe that, after this collapse, v must enter in W, . i) (as otherwise,
we would have that W, i) F W, aj) but 45 E 24, a contrad1ct1on) When
this happens, by item (2), we make 4] Ez<w> and we let 4j + 2 E z(;;, instead.
This action guarantees that there is a stage at which v appears in W, (4;42) (as
otherwise, W, i) W ajr2) but 4j+2 E z¢;, i), contradicting the assumptlon
that v e W, 0i(45) N W, j(4j+2)

Finally, it immediately follows from the construction that F is d-c.e., since there
is no pair of numbers on which £ makes more than two mind changes. (Il

Theorem gives a nice way to represent the arithmetical equivalence relations
in terms of F'S-jumps, but it is not sharp at the even layers. For example, every 9
and TI9 equivalence relation reduces to Id™2, but Id*? is II and we should expect
to find a I equivalence relation that is universal for all ¥ and II3-equivalence
relations. The next lemma gives us an analogous result at the even layers of the
arithmetical hierarchy.

Lemma 6.9. Let Z be a universal I19-equivalence relation (which exists by [IMNN14],
Theorem 3.3]). Then every 9, and 113, equivalence relation reduces to Z+n,

Proof. We first observe that since Z is II9-universal and Z x Id is II9, we have
Z x1d < Z. Thus Z+% x Id < Z 7 for any a € O [CCK| Proposition 2.8].

As above, we will first show by induction that every X9, set strong subset reduces
to Z*™. As the base of our induction, we first show that every 9 set strong
subset reduces to Z+. To see this, we fix a B9 set A and we construct a II9-
equivalence relation Y and show that A strong subset reduces to Y. This suffices
by Lemma

We fix an computable approximation (Ag)sew to A so that x € A if and only if
x € Ay for all sufficiently large s. We build a reduction by sending every x to an
index e, which we control by the recursion theorem. We enumerate the complement
of [0]y into each W, . At stages s when = € Ag, we take a fresh number z and
enumerate z into W, . If at a later stage ¢t > s we have x ¢ A; then we make z Y 0.
In fact, we make [z]y = {z}. If we never see such a ¢, we will maintain z ¥ 0. If
x ¢ A then (W, ]y =w~\[0]y. If z € A, then [W,_]y = w. This shows that every
¥ set strong subset reduces to Z+.

As the step of our induction, we apply Lemma 6.5 as in the proof of Theorem [6.6]
using the fact that Z77 x Id < Z 7.
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Finally, Lemma [6.2) shows that every ¥ or IT9,, equivalence relation reduces to
zZ+n, (]

To move to transfinite levels in the HYP hierarchy, we show that we can handle
negations and effective unions.

Lemma 6.10. If A strong subset reduces to E7* then the complement of A strong
subset reduces to BT,

Proof. Let (h,i,7) witness that A strong subset reduces to E*. Then let W (a)
enumerate the collection of all c.e. supersets of Wj,(,). Let W, be an index for the
collection of all c.e. supersets of W; and W}, be an index for the collection of all c.e.
supersets of W;. Then (g,b,a) witnesses that the complement of A strong subset
reduces to BT, O

Lemma 6.11. Suppose that each member of (Ag)re. uniformly strong subset re-
duces to E* via (hy, iy, ji). Further suppose that E x Id < E. Let B(n) hold if
and only if Ik Ax(n). Then B strong subset reduces EtT.

Proof. As above, for each z, let g, be the function showing that A, strong subset
reduces to (E x Id)* using only the zth column. That is, W, ) = {{(z,y) | y €
Woan)}- g

We first show that B strong subset reduces to (E x Id)*+.

For each x € w, let W' be the set {(z,y) | y € W;_ }. Similarly for W7. Finally,
let V¥ =W7 o, W/

Let f(n) be a c.e. index for a set which contains indices for every V* and
also contains indices for the sets V* U Wy ). If n ¢ B, then for every n, g.(n)
is an index for W, so each set V* u W, () is a copy of V*. So, the family is
exactly the collection of V*’s. If n € B, then for some n we have W, ) = WY, so
VEu Wy, (n) = Uzew sz_

Finally, F x Id < FE gives the result by Lemma [6.3 ]

At this point, we can take effective unions and we can take negations. That’s all
we need to induct up the HYP hierarchy:

Lemma 6.12. Every HYP set strong subset reduces to I for some a € O.

Proof. We proceed by induction on notations for computable ordinals with the base
case done by Lemma

Formally, we show that for every notation c for an ordinal «, there is some a
so that every X0 set uniformly strong subset reduces to Id™* (i.e. we can find the
index of the witness (h, 4, j) uniformly from an index of A as a 3¥ set). Further our
construction will produce a computable function H going from c to the notation a.
Further, whenever ¢ <o d, we will have H(c) <o H(d).

Successor step. Suppose every X0 set uniformly strong subset reduces to Id*e.
Then every I19 set uniformly strong subset reduces to 1d*r(@ by Lemma Let
AbeaXxl,, set. Then A is an effective union of I1% sets. Thus A strong subset

reduces to 1d+P® @ by Lemma and this argument is uniform.
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Limit step. Let ¢ = 3-5°. Then we let a = 3-5¢ where @.(n) = H(p;(n)). Since by
the inductive hypothesis, we know that H(p;(n)) <o H(p;(n+1)) for every n € w,
we have a € O.

If Aisa X0 set, then it is an effective union of ¥ sets for b <o c. Each of

these uniformly strong subset reduces to 1qa+7(@ by the uniformity in Observation

and Lemma So, the effective union strong subset reduces to d+r (@) by
Lemma This argument is uniform, and we can let H(c) = P (a). O

Corollary 6.13. Every HYP equivalence relation reduces to Id+e for some a € O.
Proof. Combine the above with Lemma [6.2] O

Corollary 6.14. Every HYP equivalence relation reduces to =so for some a € O.
The degree of this only depends on the ordinal |al.

Proof. Combine the above with Lemma [5.8 O
Theorem 6.15. If E* < E, then E is > every HYP equivalence relation.
Proof. If ET < E, then E is above 1d+® for every a € O by [CCK], Propositions 2.3

and 2.7]. So this follows immediately from Lemma O
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