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Abstract. The study of the word problems of groups dates back to
Dehn in 1911, and has been a central topic of study in both group theory
and computability theory. As most naturally occurring presentations
of groups are recursive, their word problems can be thought of as a
computably enumerable equivalence relation (ceer). In this paper, we
study the word problem of groups in the framework of ceer degrees,
introducing a new metric with which to study word problems. This
metric is more refined than the classical context of Turing degrees.

Classically, every Turing degree is realized as the word problem of
some c.e. group, but this is not true for ceer degrees. This motivates
us to look at the classical constructions and show that there is a group
whose word problem is not universal, but becomes universal after taking
any nontrivial free product, which we call ˚-universal. This shows that
existing constructions of the Higman embedding theorem do not preserve
ceer degrees. We also study the index set of various classes of groups
defined by their properties as a ceer: groups whose word problems are
dark (equivalently, algorithmically finite as defined by Miasnikov and
Osin), universal, and ˚-universal groups.

1. Introduction

The study of algorithmic properties of groups originated with Dehn [10]
in 1911. Dehn introduced the notion of the word problem of a group, and
asked if a recursively presented (or even finitely presented group) might have
a non-solvable word problem. Novikov [20] and Boone [5] gave examples of
groups which are finitely presented yet have non-solvable word problem.

A modern solution to Dehn’s question uses the Higman embedding the-
orem [15]. Higman embedding states that any recursively presented group
can be effectively embedded into a finitely presented group. Using this, if
you want a finitely presented group with non-solvable word problem, you
first construct a recursively presented group G with non-solvable word prob-
lem then embed G into a finitely presented H. Since the word problem of
G reduces to that of H, the word problem of H is non-solvable as well.

For any fixed non-computable c.e. set A, one can let GA be the group with
presentation xtgi : i P ωu | tg2i “ 1 : i P ωuYtgi “ 1 : i P Auy, and HA be the
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finitely presented group given by the Higman embedding theorem. Clapham
[8] later noted that the Higman embedding can be performed so that the
Turing degree of the word problem of HA is the same as the Turing degree
of the word problem of GA. Putting this together, the degrees of word
problems of finitely presented groups are exactly the c.e. Turing degrees
(see also [12, 6, 4]). This seemed to be a somewhat complete answer to the
question of the complexity of word problems, but we argue that this is an
incomplete picture.

We introduce another metric with which to study word problems: The
degree structure of Ceers. Given a recursively presented group with com-
putable generating set X, we define the word problem WG of G to be an
equivalence relation of the set of words in X given by w WG v if and only
if w “G v. That is, two words are equivalent if they represent the same
element of the group. By fixing a bijection between the words in X and ω,
we can consider WG to be an equivalence relation on ω. Further, observe
that WG is a c.e. set. So, WG is a c.e. equivalence relation (ceer).

Definition 1.1. For two equvalence relations E and R on ω, we say that
E is computably reducible to R (written E ď R) if there is a computable
function f : ω Ñ ω so that @n,m pn E mØ fpnq R fpmqq

Let Ceers be the degree structure given by the collection of c.e. equiva-
lence relations under the partial order ď.

We pose that the structure Ceers is the right setting to measure com-
plexity of word problems WG of recursively presented groups G, rather than
the structure of Turing degrees. Here, the narrative is far subtler and more
interesting than in the Turing degree setting. For one, not every degree in
Ceers contains the word problem of a group [13]. Further, there are de-
grees that contain the word problem of groups, but not of finitely generated
groups [11]1.

Further, there are natural subclasses of Ceers that correspond to inter-
esting properties of groups.

Definition 1.2. [Miasnikov–Osin [19]] A (finitely generated) group G is
algorithmically finite if there is no infinite c.e. set of words whose natural
image in G consists of pairwise distinct elements.

This same notion (when G is infinite) was studied in the setting of Ceers:

Definition 1.3. [Andrews–Sorbi [2]] A ceer E is dark if it has infinitely
many classes, yet whenever W is an infinite c.e. set, there are a, b P W so
that a E b.

1[11] defined the class of hyperdark ceer degrees and showed that they cannot be realized
as the word problem of a finitely generated algebra of finite type. They then proceed to
construct a recursively presented semigroup with a hyperdark word problem. Using the
same idea, one can also construct a recursively presented group with a hyperdark word
problm.
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Miasnikov and Osin [19] and Khoussainov and Miasnikov [17] gave con-
structions of finitely generated recursively presented groups which are algo-
rithmically finite (i.e., have dark word problem).

In this paper, we show that there is a rich collection of algorithmically
finite groups. In fact, in Section 2, we show that the set of recursive pre-
sentations of finitely generated groups which are algorithmically finite is a
Π0

3-complete set.
Next, we change gears to understanding the complexity of having word

problem in a certain degree. Boone and Rogers [7] showed that the set of
finite presentations of groups which have solvable word problem is a Σ0

3-
complete set. As a corollary of this result, they show that there is no uni-
versal algorithm for solving the word problem of every finitely presented
group with solvable word problem. A modern approach would note that the
Σ0
3-completeness also follows from the construction sending a c.e. set A to

HA as above. We note that this same construction shows that the set of
finitely presented groups whose word problems are Turing equivalent to 01

is a Σ0
4-complete set.

There is a single largest degree in Ceers, which we call the universal
degree. We say that a group G has universal word problem if WG is in the
universal ceer degree. Analogously to considering finitely presented groups of
Turing degree 01, we consider the collection of finite presentations of groups
G so that WG is a universal ceer. We show that this is a Σ0

3-complete set in
Section 3.

We prove the Σ0
3-hardness of this set using Clapham’s result that we can

embed a recursively presented groupG into a finitely presented groupH with
the same Turing degree. In other words, we give a reduction of pΣ0

3,Π
0
3q to

(universal word problem, word problem of lower Turing degree than univer-
sal). Given that a primary thesis in this paper is that the structure Ceers,
being more refined than the structure of Turing degrees, is the right place
to study word problems, having to rely on Turing degree differences here is
unsatisfying.

This causes us to ask if some form of Clapham’s theorem could be true in
ceers. Perhaps if G is a recursively presented group which is non-universal,
then G effectively embeds in a finitely presented group H whose word prob-
lem is also non-universal. While we do not fully resolve this question, we
show that no construction similar to the Higman embedding construction
can possibly work. In particular, Higman embedding is based on using
free products and HNN extensions as introduced by Higman, Neuman, and
Neuman [16]. Ostensibly, free products should be the simpler of these two
constructions. In Section 4, we construct a recursively presented group G
which has non-universal word problem, yet any non-trivial free product of
G has universal word problem. We call such groups ˚-universal groups.

In Section 5, we then show that although the free product of non-universal
groups may be universal, and indeed ˚-universal groups exist, cross-products
do not suffer this fate. If G and H have non-universal word problem, then
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GˆH has non-universal word problem. Even infinite sums have this prop-
erty: IfGi is a uniform sequence of groups with non-universal word problems,
then ‘iGi still has non-universal word problem.

We use this to show that even among the groups whose word problems
have Turing degree 01, the property of universality is Σ0

3-complete.
Finally, in Section 6, we show that the collection of ˚-universal groups is

d-Σ0
3-complete.

Remark on finite generation: When we can, we prove results about finitely
presented groups. For finitely presented, or even finitely generated, groups,
the ceer degree of the word problem does not depend on the presentation.

Proposition 1.4. Suppose G “ xS | Ry “ xS1 | R1y such that S and S1 are
both finite. Then the word problem of G with respect to S and S1 are of the
same degree (ceer degree if both R and R1 are c.e.).

Proof. Fix (non-uniformly) a representative for each s1 P S1 as a word in S.
This induces a computable map from pS1q˚ Ñ S˚, which is a reduction from
the word problem of G with respect to S to the word problem of G with
respect to S1. �

Note that for infinitely generated groups, the ceer degree does depend on
the presentation. For instance, for every co-infinite c.e. set A, the recursive
presentation of the group GA “ xgi | tg

2
i “ 1 | i P ωu Y tgi “ 1 | i P Auy

gives a group isomorphic to ‘iZ{2Z, yet the ceer degree of GA, and even
the Turing degree of GA, depend on the set A.

Remark on indexing and index sets: There is a computable enumeration
of all ceers pEiqiPω, a computable enumeration of all finite presentations
of groups, and a computable enumeration of all recursive presentations of
groups. Further, these enumerations have universality properties so that,
given a computable enumeration of an equivalence relation, one can effec-
tively find an index in our enumeration of an equivalence relation in the
same ceer degree, and in fact the same equivalence relation on ω. Similarly
for the enumerations of group presentations. We implicitly use these enu-
merations when we discuss the index set of ceers with some property or the
index set of recursive presentations of groups with some property.

2. The index set of darkness

2.1. Algebra preliminaries. Following [17, §4.1], we first recall some def-
initions and basic facts about the polynomial ring as an algebra and the
Golod–Shafarevich theorem.

Let pR,`, ¨q be a ring and K a field. recall that R is called an (associative)
algebra over K if there is a scalar multiplication function ˚ : K ˆRÑ R so
that pR,`, ˚q is a vector space over K and k ˚ pr ¨ sq “ pk ˚ rq ¨ s “ r ¨ pk ˚ sq.
We will abuse notation and write both the ring multiplication and scalar
multiplication as ¨.
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Let p be a prime. We will consider the non-commutative polynomial ring
F “ pZ{pZqrx, ys as an algebra over the field Z{pZ. A polynomial is homo-
geneous if every term in it has the same degree. Every polynomial can be
written as a sum of homogeneous polynomials called its homogeneous com-
ponents. Let Fk be the subspace consisting of all homogeneous polynomials
of degree k and 0, we have that F is a direct sum (as vector spaces) of Fk,
namely F “

À

kPω

Fk.

A subset of F is called homogeneous if every element of it is homoge-
neous, and an ideal of F is called homogeneous if it can be generated by a
homogeneous set. Let I be a homogeneous ideal, then a polynomial is in I
if each of its homogeneous components is in I. As a consequence, we have
F {I “

À

pFk ` Iq{I. Also note that Fk and hence pFk ` Iq{I are finite, so
F {I is computable.

Golod and Shararevich [14] gave various conditions under which F {I has
infinite dimension. We will need the following variation. The condition on
nk will be referred to as the Golod–Shafarevich condition for the rest of this
section.

Theorem 2.1 (Golod–Shafarevich theorem [17, Theorem 4.3]). Let I be a
homogeneous ideal generated by a homogeneous set H, and nk be the number
of homogeneous polynomials of degree k in H. Let 0 ă ε ď 1. If n0 “ n1 “ 0
and for every k ě 2 we have

nk ď ε2p2´ 2εqk´2,

then the dimension (as a Z{pZ vector space) of A “ F {I is infinite.

2.2. Rings. In [17], various algorithmically finite algebraic structures are
constructed. The definition is the same as saying that the word problem of
said (infinite) structure is dark, which we define here (see also Definition 1.2
and 1.3).

Definition 2.2. A ceer E is light if there is some infinite c.e. set S so that
i��Ej for any i ‰ j from S.

A ceer E is dark if it has infinitely many classes and is not light.
We say a computable algebraic structure (for instance, a ring or a group)

is dark if its word problem is dark as a ceer.

In the following theorem, we follow the strategy from Khoussainov–Miasnikov
[17] where they construct a residually finite group with a dark word problem.

Theorem 2.3. The index set of finitely generated computable ring presen-
tations whose word problem is dark is Π0

3-complete.

Proof. It is well-known that every c.e. ring presentation is isomorphic to a
computable presentation via the padding trick. Indeed, if xS | r1, r2, ¨ ¨ ¨ y
is a c.e. ring presentation where ri gets enumerated at stage si, then xS |
r1` s11´ s11, r2` s21´ s21, ¨ ¨ ¨ y is a computable presentation that defines
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an isomorphic ring. Thus, it suffices to construct c.e. presentations in this
proof.

The index set of finitely generated computable ring presentations whose
word problem is dark is Π0

3 as it can be described by @m, pWm is infiniteq ùñ
pDi, j P Wm, iEj). Note that since iEj is Σ0

1, Di, j P Wm, iEj is Σ0
1. The

complexity lies in determining if Wm is infinite, which is Π0
2.

Given a Π0
3 set S, we can effectively fix a sequence of c.e. sets Ui such

that i P S iff for every n, U
rns
i , the n-th column of Ui, is finite. We will build

a c.e. ring presentation Ai “ pZ{pZqrx, ys{Ii such that its word problem is
dark iff i P S. Note that pZ{pZqrx, ys has a c.e. presentation, so it suffices
to find a c.e. generating set Hi of Ii. The Hi we build will only contain
homogeneous polynomials and satisfy the Golod–Shafarevich condition. We
will start with Hi “ H. In order to not overburden notation with subscripts,
from here on we will suppress the subscript i, referring instead to H as we
describe a uniform construction producing an Hi for each i. Below, when
we refer to Hs, this refers to the part of the set H which is enumerated by
stage s.

We have the following list of requirements:

Ln: If U rns is infinite, construct an infinite c.e. subset Tn Ď pZ{pZqrx, ys
such that every two words in Tn are not equal in A.

Dm: Ensure there are two words u, v inWm which are equal in A whenever
Wm is infinite.

Of course, the Dm-requirements contradict the Ln-requirements if some
U rns is infinite. If n is least so that U rns is infinite, we will ensure that the
Ln-requirement makes A light. On the other hand, if every U rns is finite,
then we will ensure that all Dm-requirements succed, ensuring that A will
be an infinite algebra whose word problem is dark. We order the priority of
the requirements by L1, D1, L2, D2, . . . .

For the requirements Ln at stage s, if an element gets enumerated into
U rns, we choose a large k and find a monomial in Fkr pHsq (recall that pHsq

denotes the ideal generated by Hs) and enumerate it into Tn. Note that
this is always possible if we maintained the Golod–Shafarevich condition
for Hs. We then protect degree k, i.e., require that no lower priority Dm-
requirements add any (homogeneous) polynomial of degree ď k to H. Note
that Ln will not injure any other requirements, nor does it add relations to
H. Tn consists of only monomials. If the Ln-strategy is reinitialized (which
happens only due to the action of a higher-priory Dm-requirement), then
we simply reset Tn to be empty and the strategy starts anew.

For the requirements Dm at stage s, let ks be the maximum of the degrees
that a higher priority Ln-requirement protects, or m ` 10, whichever is
larger. Dm checks if there are two words f, g in Wm,s such that f ´ g “ 0
in As{pFks`1q. If not, it simply waits. If there is, Dm acts by adding each
homogeneous component of f ´ g into H. Each of the relations added will
have degree ą ks. Note that this respects the higher priority requirements.
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Once a Dm has acted, it will not act again. Dm will never get injured,
although it may injure lower priority Lm.

Lemma 2.4. The resulting algebra A satisfies the Golod–Shafarevich con-
dition, thus is infinite.

Proof. We choose ε “ 1{4. Note that only Dm adds relations to H, and
every Dm will add at most 1 relation of each degree k ě m` 10. Thus, the
number nk of polynomials of degree k in H is at most k ´ 10. So we have

nk ď k ´ 10 ď p1{4q2p3{2qk´2

satisfying the Golod–Shafarevich condition. �

Lemma 2.5. If i P S, then A “ Ai is dark.

Proof. If i P S, then every U rns is finite. We argue that each Dm-strategy
succeeds. Fix m. There is a stage that all the higher priority Ln-strategies
stabilize, thus ks also stabilizes. Note that As{pFksq is a finite dimensional
vector space over the finite field Z{pZ, so is finite. If Wm is infinite, then
Dm will eventually see two words x, y PWm such that x´y “ 0 in As{pFksq.
Thus, if Wm is infinite, the Dm-strategy will be able to act, making sure that
Wm does not contain all distinct elements, and the requirement is satisfied.
Since every Dm-requirement is satisfied, A is dark. �

Lemma 2.6. If i R S, then A “ Ai is light.

Proof. If i R S, then there is some smallest n such that U rns is infinite. There
is a stage such that all higher priority Dm-strategies have stabilized as they
each act at most once, and thus the Ln-strategy will not be reinitialized
after this stage. Then Ln will build an infinite Tn consisting of nontrivial
monomials, one for each degree. If f, g P Tn are two monomials, then f and
g are not in H, so f ´ g ‰ 0 and f and g are distinct. Thus Tn witnesses
the lightness of A. �

�

2.3. Groups. We are now ready to prove the Π0
3-completeness of the set of

finitely generated computable dark group presentations. We will utilize the
construction in the previous subsection with a slight change. The group we
construct will be the subgroup generated by 1` x and 1` y in the group of
units of A. However, a priori, 1`x and 1`y may not be invertible in A. We
ensure they are invertible by adding the relations x10 “ y10 “ 0 when we
initialize the construction. With these relations, 1` x (and similarly 1` y)
is invertible with inverse 1´ x` x2 ´ x3 ` ¨ ¨ ¨ ´ x9.

We will see that we can maintain the Golod–Shafarevich condition with
these two relations added. Furthermore, we recall that the ring F is non-
commutative. This is important as setting x10 “ y10 “ 0 does not trivialize
F20, which contains non-zero elements like x5y5x5y5.
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Theorem 2.7. The index set of finitely generated computable group presen-
tations whose word problem is dark is Π0

3-complete.

Proof. We will follow the proof as the ring case, with the following changes.

(1) When initializing the construction, before any requirements act, we
let H “ tx10, y10u (instead of H “ H).

(2) For every i P ω, instead of building Ai, we will build (a c.e. pre-
sentation of) Gi which is the subgroup of the group of units of Ai,
generated by 1` x and 1` y.

(3) When constructing Tn, whenever Ln acts, instead of putting u “
xj1yj2xj3 . . . into Tn, it puts v “ p1` xqj1p1` yqj2p1` xqj3 . . . into
Tn.

Note in particular that the effect of (3) on other requirements is exactly
the same as in the ring construction. Namely, the strategy protects the
degree k. Only the single Ln-strategy is concerned with the content of the
enumerated set Tn. The rest of the construction is unchanged.

Lemma 2.8. Gi has a computable presentation.

Proof. We will use 1 ` x and 1 ` y as the generators in the presentation.
Their inverses are 1´ x` x2 ´ x3 ` ¨ ¨ ¨ ´ x9 and 1´ y ` y2 ´ y3 ` ¨ ¨ ¨ ´ y9.
Thus, for every word in 1` x and 1` y, we can computably find its images
in Ai. This allows us to computably enumerate all the relations that hold
on 1`x and 1`y from the c.e. presentation of Ai. We then use the padding
trick to obtain a computable presentation. �

Lemma 2.9. Gi is infinite.

Proof. We first check that Ai is infinite since it still satisfies the Golod–
Shafarevich condition. Starting with H “ tx10, y10u only changes the single
number n10 in the Golod–Shafarevich condition, and it is straightforward
to check that the Golod–Shafarevich inequality is still maintained. So Ai is
infinite.

We claim that the image of Gi generates Ai as a Z{pZ-vector space. That
is, Ai can be obtained by taking the additive closure of Gi. Indeed, 1, the
identity of the group, spans F0; x “ p1 ` xq ´ 1 and y “ p1 ` yq ´ 1 spans
F1; and every degree k monomial xj1yj2xj3 . . . is equivalent to p1`xqj1p1`
yqj2p1 ` xqj3 . . . modulo Fk´1. Since Z{pZ has characteristic p, if Gi were
to be finite, then its span would also be finite, but Ai is infinite. �

Lemma 2.10. If i P S, then Gi is dark.

Proof. Any c.e. subset of Gi is also a c.e. subset of Ai, and if two elements
are equal in Ai then they must be equal in Gi. By Lemma 2.5, if i P S then
Ai is dark, and so is Gi. �

Lemma 2.11. If i R S, then Gi is light.
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Proof. The lightness of Gi will be witnessed by Tn where n is the small-
est number with U rns infinite. As before, after all higher priority Dm-
strategies stabilize, the Ln-strategy will act infinitely many times and Tn
will be infinite. Suppose towards a contradiction that two elements of Tn
are equal. Then we have v “ p1 ` xqj1p1 ` yqj2p1 ` xqj3 . . . and v1 “

p1` xqj
1
1p1` yqj

1
2p1` xqj

1
3 . . . being equal. Without loss of generality, sup-

pose the degree of v is higher. Working in Ai, we have v ´ v1 “ 0. Thus,
each of the homogeneous components of v ´ v1 equal zero. In particular,
the homogeneous component of the highest degree, u “ xj1yj2xj3 ¨ ¨ ¨ “ 0.
However, Ln put v “ p1 ` xqj1p1 ` yqj2p1 ` xqj3 . . . into Tk in the group
construction because it would have put u “ xj1yj2xj3 . . . into Tk in the ring
construction. This only happens if u ‰ 0 at that stage and Ln will protect
the degree of u, making u nontrivial, a contradiction. Thus every pair of
elements in Tn are distinct, witnessing the lightness of Gi. �

�

3. The index set of universality

We next explore the index set of finitely presented groups whose word
problem is universal. We note that the property of a ceer being universal is
a Σ0

3-complete property [3]. Yet this result holds for any ceer degree which
contains ceers with infinitely many classes:

Theorem 3.1 ([3]). Let E be an equivalence relation with infinitely many
classes, then the index set of ceers which are equivalent to E is a Σ0

3-complete
set.

Thus we might expect the same to hold in the setting of finite presen-
tations of groups, yet we know that for some ceer degrees, the set of finite
presentations of groups which land in that degree is empty, thus computable.
We are only able to characterize this index set for the universal degree.

Theorem 3.2. The index set of finitely presented groups whose word prob-
lem is universal is Σ0

3-complete.

Proof. We first describe the intuition of the proof. The first step is to
construct, for any Σ0

3 set S, a uniform sequence pEiqiPω of ceers so that Ei

is universal (as a ceer) if i P S and low (as a Turing degree) if i R S. We
then consider a uniform procedure to embed each Ei into the word problem
of a finitely presented group H i and show that the dichotomy still holds for
H i. If i R S, then the word problem for H i cannot be universal since it is
low. If i P S, then the effective embedding of Ei into the word problem of
H i will show that the word problem for H i is universal.

Lemma 3.3. For any Σ0
3 set S, there is a uniform sequence of ceers Ei so

that Ei is universal if i P S and Ei has low Turing degree if i R S.
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Proof. We note that this construction is similar to the one in [1, Theorem
5.2]. Fix a universal ceer U . We can effectively find indices for a sequence

Wi of c.e. sets so that i P S if and only if DjpW
rjs
i is infiniteq.

We construct Ei as a uniform join Ei “ ‘jX
j . We have requirements as

follows:
Ck: If W

rks
i is infinite, then there is some j so that Xj “ U .

Lm: If ϕ
Ei

s
m,spmq Ó for infinitely many s, then ϕEi

m pmq Ó.
We order their priority by C0, L0, C1, L1, . . . .
We want to construct Ei so that if no column of Wi is infinite, then we

satisfy every Lm-requirement, and if k is the least such that W
rks
i is infinite,

then Ck is satisfied. Thus, Ei is universal in the Σ0
3-outcome, and we ensure

that Ei has low Turing degree in the Π0
3-outcome.

To satisfy Ck, if a new number is enumerated into Srks, we act by:

‚ If Ck is not yet initialized, we initialize it by choosing a new param-
eter j so that the set Xj is not restrained by any higher priority Lm,

and let Xj
s “ Us.

‚ If Ck is already initialized, we let Xj “ Us, i.e., make Xj catch up
with the current Us.

To satisfy Lm, whenever ϕ
Ei

s
m,spmq Ó holds, we place a restraint on the use

of this computation.
Whenever we act (including placing restraint), all lower-priority strategies

are reinitialized.
The construction is put together as a standard finite injury argument. In

the Σ0
3-outcome, there is a least k such that W

rks
i is infinite. Choose a stage

such that every previous (finite) column W
r`s
i and every higher priority Lm

has stabilized. Then at the next stage s that W
rks
i acts, it will choose a new

column j, which will also stabilize for the rest of the computation. Since

W
rks
i will act infinitely often and never be injured, we will have Xj “ U ,

making Ei universal.
In the Π0

3-outcome, we argue that every Lm is satisfied, making Ei low:
Fix Lm and choose a stage so that every higher priority Ck and Lm1 has
stabilized. Then if it acts again, it will restrain its use and never get injured,
satisfying the Lm requirement. �

Clapham showed that any group G with a c.e. presentation can be em-
bedded into a finitely presented group H such that the word problem of G
and H have the same Turing degree [9], see also [18, Chapter IV.7]. The
construction is explicit and one can check that it is uniform (in the index
of the c.e. presentation) and effective. We note that the fact that this is
effective uses the fact that the Matiyasevich theorem is effective.

For each ceer Ei, we give an embedding of Ei into a finitely presented
group H. First, we construct the recursively presented group Gi with gen-
erators tgk | k P ωu and relations tg2k “ 1 | k P ωu Y tgkgj “ gjgk | j, k P
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ωuYtgj “ gk | j E
i ku. Essentially Gi is the Z{2Z-module generated by the

classes of Ei. the map n ÞÑ gn gives an embedding of Ei into the word prob-
lem of Gi. The Turing degree of the word problem of Gi is the same as the
Turing degree of Ei. Finally, form the groups H i by employing Clapham’s
theorem on Gi. If i P S, then the word problem of H i is universal as it
embed the word problem of Gi, and thus Ei; and if i R S, then the word
problem of H i has the same Turing degree as the word problem of Gi and
Ei, so is low and cannot be universal. �

We note that we used Clapham’s result to get the non-universality of
H i for i R S by using the Turing degree. This is somewhat unsatisfying,
since it does not seem to support the thesis that the ceer degrees give us
a refined setting to explore complexity of word problems. We will resolve
this complaint below in Corollary 5.9 showing that even within the Turing
degree of 01, universality is still Σ0

3-complete.
In the next section, we explore to what extent we could hope to prove

this theorem using a ceer-version of Clapham’s result.

4. ˚-universal groups

By work from Della Rose, San Mauro, and Sorbi [11], we know that
there are recursively presented groups whose ceer degree contains no word
problem of a finitely generated group.2 So, we know that there is no version
of Clapham’s result which preserves ceer degree. What would be needed
in the previous section is a version of Clapham’s result simply preserving
non-universality. We explore that notion here.

Since Higman embedding, including Clapham’s version, is built upon the
operations of free product and HNN-extension, we explore whether these
preserve non-universality.

Definition 4.1. A recursively presentable group G is a ˚-universal group
if the word problem of G is not a universal ceer, yet whenever H is a non-
trivial group, the word problem of the free product G ˚ H is a universal
ceer.

Note that applying Higman embedding (even ala Clapham) to a ˚-universal
group will produce a universal group, since some of the steps require taking
free products.

Next we see that the quantification over all non-trivial groups H is not
necessary, and we can instead consider only G ˚ Z{2Z.

Lemma 4.2. Let G,H be groups and g0, . . . , gn P G, 1H ‰ h P H. Write
Z{2Z “ xay. Then g0ag1a . . . agn “ 1 in G˚pZ{2Zq iff g0h

´1g1h . . . h
p´1qngn “

1 in G ˚H.

2See footnote 1 in the introduction.
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Proof. We induct on n. When n “ 0 the statement is clear, when n “ 1
both g0ag1 and g0h

´1g1 are never 1, and when n “ 2 we have g0ag1ag2 “ 1
iff g1 “ g0g2 “ 1 iff g0h

´1g1hg2 “ 1.
Suppose n ě 3 and g0ag1a . . . agn “ 1. Then there is some 1 ď i ď

n´ 1 so that gi “ 1. Thus, we have 1 “ g0ag1a . . . agi´1agiagi`1a . . . agn “
g0ag1a . . . agi´1gi`1a . . . agn. By induction hypothesis, this implies that

g0h
´1g1h . . . h

p´1qpi´1q
gi´1gi`1h

p´1qi . . . hp´1q
pn´2q

gn “ 1.

On the other hand, we have gi “ 1, so

g0h
´1g1h . . . h

p´1qpi´1q
gi´1h

p´1qigih
p´1qpi`1q

gi`1h
p´1qpi`2q

. . . hp´1q
n
gn

“g0h
´1g1h . . . h

p´1qpi´1q
gi´1gi`1h

p´1qpi`2q
. . . hp´1q

n
gn

“1.

The reverse direction is similar. �

Corollary 4.3. A group G is a ˚-universal group iff the word problem of
G is not a universal ceer but the word problem of G ˚ pZ{2Zq is a universal
ceer.

Proof. The only if direction is clear. For the if direction, supposing the word
problem of G ˚ Z{2Z is universal, it suffices to show that the word problem
G˚H is universal for every nontrivial H. Given a nontrivial H, we construct
a reduction from the word problem of G ˚ Z{2Z to G ˚H.

Fix (non-uniformly) a nontrivial element h P H. Define the reduction
f from the word problem of G ˚ Z{2Z to the word problem of G ˚ H by

fpg0ag1a . . . agnq “ g0h
´1g1h . . . h

p´1qngn. Suppose u “ g0ag1a . . . agn and

v “ g10ag
1
1a . . . ag

1
n1 , so we have fpuq “ g0h

´1g1h . . . h
p´1qngn and fpvq “

g10h
´1g11h . . . h

p´1qng1n1 . We observe that u´1v “ g´1n a . . . ag´11 ag´10 g10ag
1
1a . . . ag

1
n1

and

pfpuqq´1fpvq “ g´1n hp´1q
pn`1q

. . . h´1g´11 hg´10 g10h
´1g11h . . . h

p´1qng1n1 .

Since the signs of the powers of h in pfpuqq´1fpvq alternate, we may
apply the previous lemma to get u “ v iff u´1v “ 1 iff pfpuqq´1fpvq “ 1 iff
fpuq “ fpvq, so f is a reduction. �

Finally, we give a direct construction showing the existence of ˚-universal
groups.

Theorem 4.4. There exists ˚-universal groups.

Proof. We give a direct construction of a group G. G will be an abelian
group with generators txi | i P ωu. Throughout the construction, we will
add 4 types of relations, each of the form xj “ wpx0, . . . , xj´1q, to the
presentation of our group. These are:

(1) xj “ 1.
(2) xj “ xi for some i ă j.

(3) xj “ x´1i for some i ă j.
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(4)
ź

kPS

xk “ 1 for some i ă j, which is equivalent to xk1 “

¨

˝

ź

kPSrtk1u
xk

˛

‚

´1

,

where S is a subset of natural numbers and k1 “ maxS. (In fact,
S is always either all even or all odd indices of a level j, explained
below.)

At any stage, whenever we consider a word, we always reduce it using the
relations already enumerated up to that stage, by replacing the left-hand
side of the relation by the right-hand side.

From the previous Corollary, it suffices to make G ˚ Z{2Z have universal
word problem. Let a be the non-identity element of Z{2Z. We will give a
sequence of words pviqiPω in the letters txi | i P ωu Y tau. We will ensure
that vi WG˚Z{2Z vj if and only if i U j for a fixed universal ceer U .

We fix the words

vi :“
10i`1´1
ź

k“10i

axk.

Note the role of a is in separating the elements xk of G so they do not
combine in the free product G ˚ Z{2Z.

At the beginning of the construction, for every j, we add the following
relations to G:

10j`1´2
ź

k“10j
k: even

xk “ 1

10j`1´1
ź

k“10j`1
k: odd

xk “ 1

Note that after reducing vi using these relations, the x2` with the largest
even index becomes the inverse of the product of all the previous x2`1 and
similarly for the last x2``1.

For each k P r10j , 10j`1q aside from the last two elements (which we
consider already determined by the two added relations in G), we say xk is
a level j generator. We may at a later stage say that xk is no longer a level
j generator. This happens in 2 possible ways:

‚ We already collapsed it to being equivalent to some level i generator
for i ă j or to being equivalent to 1.

‚ We have caused xk to cancel in the word vj with its neighbor. As
such, it will contribute nothing to the word vj anymore, and we will
say that it is no longer level j. Rather, we will say that it is free.

At any stage of the construction, we say xi and xj are consecutive if in the
current form of vi (after reduction using the relations already enumerated
up to this stage), they are separated by only an a. For instance, x11 and
x12 are initially consecutive in v1 “ ax10ax11ax12 ¨ ¨ ¨ . But if the relations
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x13 “ x15 “ 1 and x12 “ x´114 (making x12 free) get enumerated, then
we have the current v1 becomes ax10ax11ax16 ¨ ¨ ¨ , so x11 and x16 are now
consecutive. The same applies to consecutive even or odd xi, for instance,
x10 and x16 become consecutive even generators in the example.

At any stage s, if we see i ă j become U -equivalent, then we take some
consecutive 10i`1´10i generators that are currently level j generators. Note
that we verify in Lemma 4.5 that we will have enough current level j gen-
erators. We will collapse these to being equivalent to the level i generators
and all the other level j generators to being equivalent to 1. This will ensure
directly that vj “ vi in G ˚ Z{2Z.

We also construct an auxiliary ceer X and have the requirements:

Re : ϕe is not a reduction of X to WG.

This will ensure that WG is not a universal ceer, though we ensure that
i ÞÑ vi is a reduction of U to WG˚Z{2Z, so that WG˚Z{2Z is a universal ceer.

In order to satisfy requirement Re, we act as follows:
Pick two new numbers a, b and wait for ϕepaq and ϕepbq to converge. Then

consider the word w “ ϕepaq ¨ϕepbq
´1. Let Gs be the currently built G, and

we observe that Gs is abelian and finitely presented so has computable word
problem. We use the currently placed relators on Gs to simplify w as much
as possible. In particular, for each j, we do not have x10j`1´1 or x10j`1´2

appearing in w.
Our goal is to ensure that aXb if and only if w ‰ 1 in G. Let K be

greatest so that there are letters in w at level K. We proceed based on the
following cases:

Case 0: If w “ 1, we do not do anything (so  aXb) and we are done with
this requirement.

Case 1: There are free letters appearing in w. We will verify in Lemma
4.7 below that this ensures w ‰ 1, so we simply cause aXb and we are done
with this requirement.

Case 2: K ď e, we act under the assumption that there will be no future
collapse in U X r0,Ks2. That is, we look at the subgroup of G generated
by txi | i ă 10K`1u. Since we have w ‰ 1, we will assume that there is no
future collapse among these letters, so we collapse aXb.

The idea is that the subgroup generated by txi | i ă 10K`1u will only
change if a higher priority requirement acts or if U changes on r0, es2, either
of which will happen only finitely often, so we are willing to rely on this and
re-start the requirement (with a new choice of a and b) if there is such a
change.

Case 3: K ą e. We let wK “
ś

kPr10j ,10j`1q x
ek
k be the subword of w

comprising the level K generators and consider further cases.
Case 3a: There are consecutive even letters: x2n and x2n1 so that e2n ‰

e2n1 .
We write vi “ α ¨ x2nx

a
`x2n1x

a
m ¨ β (or vi “ α ¨ xamx2nx

a
`x2n1 ¨ β if x2n1 is

the level K generator with the largest even index).We collapse x` “ xm “ 1
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and we collapse x2n “ x´12n1 . Observe that x` and xm are now no longer level
k generators but are just 1, and x2n and x2n1 are now free. We observe that
x2n and x2n1 do not cancel out in w and now w contains a free generator as
in case 1. We collapse aXb and get the same victory as in case 1.

Case 3b: There are consecutive odd letters: x2n`1 and x2n1`1 so that
e2n`1 ‰ e2n1`1. This is identical to Case 3a.

Case 3c: Every level K even generator appears in w with the same expo-
nent and every level K odd generator appears in w with the same exponent.
Then we add the relators

ź

x: even level K generators

x “ 1

ź

x: odd level K generators

x “ 1.

This amounts to removing the largest even and largest odd level K gen-
erators. This also causes reduction on vi, eliminating the last even term and
rewriting the second-to-last term based on the relation (and similarly for the
odd terms). As a result, vi maintains the same form, namely, vi “

ś

axk
with the last x2` equal to the inverse of the product of all the x2`1 of level
K and similarly for the last x2``1. Thus, after this action we have exactly
2 less level K generators and we have just ensured that wK “ 1G.

We now reconsider which case we are in, noting that the definition of K
has now dropped.

Verification. We first observe that we always have enough level j generators
that we can respond if we see i U j for some i ă j.

Lemma 4.5. At every stage, if j is currently the least member of its U -class,
then there are more than 10j level j generators.

Proof. Observe that only the requirements Re with e ă j can cause action
removing a levelK generator. Each such action can remove at most 4 levelK
generators (in case 2a or 2b). Note that even accounting for reinitialization,
which can come from injury due to higher-priority requirements acting or
due to U -collapse below j, these j requirements can act at most j ¨ 2j times,
so we have 10j`1 ´ 10j ´ 4 ¨ j ¨ p2jq remaining level K generators. Observe
that 10j`1 ´ 10j ´ 4 ¨ j ¨ p2jq ą 10j for any j ě 0. �

Lemma 4.6. At any stage, the group Gs is freely generated by the level i
generators for all i and the free generators.

Proof. Observe that all our relations are of the form xj “ wpx0, . . . , xj´1q,
and any xj appears on the left hand side of a relation at most once. �

Lemma 4.7. If x is free at stage s, then it never appears in any new relator.
In particular, if w is found for a requirement Re and w (after being simplified
at stage s) contains a free generator x in it, then w ‰ 1G.
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Proof. Observe that in no case do we ever add a relator involving an already
free generator. Thus if x is already free at stage s then G can be written as
GF ˆGA where GF is the subgroup of G freely generated by the generators
which are free at stage s and GA is generated by all those which are level j
generators for some j.

Since all future relators being added to G are purely within GA, this
splitting persists and the projection of w onto GF is already not 1, so w ‰
1G. �

Lemma 4.8. For any i and j, i U j if and only if vi “G˚Z{2Z vj.

Proof. If iUj, then we actively collapse generators in G to ensure that
vi “G˚Z{2Z vj . On the other hand, observe that the only relations that
involve both level i and level j generators for i ‰ j are of the form xn “ xm,
introduced when we respond to a i U j collapse. Thus, if i ��U j, then no
generators of level i and j are related, so we have vi ‰G˚Z{2Z vj . �

Lemma 4.9. There is no reduction from X to WG, so WG is not a universal
ceer.

Proof. Suppose towards a contradiction that ϕe is a reduction from X to
WG. Let s be the last stage where Re is initialized. Then a and b are chosen
to have their final values. We consider the outcome of the Re strategy. In
Case 0, we have  a X b but ϕpaq “ ϕpbq. In Case 1, Case 3a, or Case 3b,
Lemma 4.7 shows that a X b yet ϕepaq ‰G ϕepbq. In case 2, the assumption
that Re is never reinitialized shows that there is no more collapse in U below
e, so we have a X b if and only if w ‰G 1. Finally, Case 3c can happen only
finitely often as it causes K to drop and the strategy continues. �

�

5. Direct Products Do Not Achieve Universality

5.1. Preliminary on u.e.i. ceers. In studying the degree of the universal
ceer, it is often useful to consider a combinatorial characterization of this
degree.

Definition 5.1. A nontrivial ceer (i.e., having at least two classes) E is
uniformly effectively inseparable, or u.e.i. for short, if there is a computable
function ppa, b, i, jq such that if a��E b and rasE Ď Wi and rbsE Ď Wj , then
ppa, b, i, jq RWi YWj .

Theorem 5.2 ([1, Corollay 3.16]). A ceer which is u.e.i. is universal. Con-
sequently, a ceer E is universal if and only if there is a c.e. subset X which
is E-closed (i.e., y E x with x P X implies y P X) and the restriction of E
to X is u.e.i..

Observe that any nontrivial ceer which is a quotient of a u.e.i. ceer is still
u.e.i.. Thus, we have the following Lemma.

Lemma 5.3. Any nontrivial quotient of a u.e.i. ceer is universal.
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Note that not all non-trivial quotients of universal ceers are universal.
For instance, for X universal, consider X ‘ Y with Y non-universal. This
is universal, but has Y as a quotient.

5.2. Direct products and some applications. In contrast to the free
product in the previous section, we show that the direct product of groups
with non-universal word problems cannot have universal word problem.

For ceers A,B, we let AˆB be the ceer defined by

xa1, b1y AˆB xa2, b2y Ø a1 A a2 ^ b1 B b2.

Theorem 5.4. If A and B are ceers which are non-universal, then A ˆ B
is non-universal.

Proof. Suppose A ˆ B were universal, and fix a u.e.i. U and a reduction f
from U to AˆB. Let πA and πB be projections sending a pair xa, by to its
two coordinates. Define i A1 j if and only if πA ˝ fpiq A πA ˝ fpjq, so A1 is
a quotient of U . Observe that A1 reduces to A via πA ˝ f . Similarly define
B1. Note that i U j if and only if i A1 j and i B1 j, so at least one of A1

or B1 is nontrivial. This makes either A1 or B1 be universal by Lemma 5.3,
and thus one of A or B is universal. �

Since the word problem of GˆH is the product of the word problem of G
and the word problem of H, we get the same result for the group operation
ˆ.

Corollary 5.5. If G and H are groups with non-universal word problem
then GˆH has non-universal word problem.

This gives a way to give an example of a finitely presented group whose
word problem has Turing degree 01, yet is not universal.

Corollary 5.6. There is a finitely presented group whose word problem is
universal as a Turing degree, but not universal as a ceer.

Proof. Let a and b be c.e. degrees whose join is 01. Take two finitely
presented groups G and H so that the word problems of G is in the degree
a and the word problem of H is in the Turing degree b. This is possible by
Clapham [8]. Then GˆH has word problem with Turing degree 01, but is
not universal as a ceer. �

In fact for groups we get a version of Theorem 5.4 for infinitary sums:

Theorem 5.7. If pGiqiPω is a uniform sequence of recursively presented
groups so that the word problems of each Gi is non-universal, then the word
problem of ‘iGi is non-universal.

Proof. Let U be a u.e.i. and suppose that f is a reduction from U to W‘iGi .
For each j, define Ej by i Ej k if and only if πj ˝ fpiq WGj πj ˝ fpkq. Then
Ej is a quotient of U . For some j, we must have that Ej is a non-trivial
quotient as otherwise the image of f is contained in one class. But then this
Ej is universal and reduces to WGj . �
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Corollary 5.8. If G is ˚-universal and Hi are a sequence of non-universal
groups, then G‘‘iHi is ˚-universal.

Proof. By Theorem 5.7, the word problem of G ‘ ‘iHi is non-universal.
Observe that for any group K, the word problem of G ˚K reduces to the
word problem of pG ‘ ‘iHiq ˚ K, so the ˚-universality of G yields the ˚-
universality of G‘‘iHi. �

In Section 3, we showed that the index set of finitely presented groups
which are universal is a Σ0

3-complete set. Though the solution given there is
not completely satisfactory, since it relied on Turing degree in the case where
the constructed group is to have non-universal word problem, we now witness
the Σ0

3-completeness of universality for finitely presented groups within the
Turing degree of 01.

Corollary 5.9. Given a Σ0
3 set S, there is a sequence of finite presentations

of groups Hi so that Hi is universal if and only if i P S. Furthermore, the
Turing degree of the word problems of each Hi is 01.

Proof. From Theorem 3.2, we know that given a Σ0
3 set S, we can produce a

sequence of finitely presentations of groups Gi so that Gi is universal if and
only if i P S. Fix H to be the group from Corollary 5.6. Then the sequence
GiˆH is a sequence of finitely presented groups so that GiˆH is universal
if and only if i P S by Theorem 5.4. �

6. The index set of ˚-universal groups

Lastly, we consider the index set of ˚-universal groups.

Theorem 6.1. The collection of recursive presentations of ˚-universal groups
is a d-Σ0

3-complete set.

Proof. Though at first the definition of G being ˚-universal requires quan-
tifying over possible groups H and considering the universality of G ˚ H,
Corollary 4.3 shows that it is equivalent to the universality of G ˚Z{2Z and
the non-universality of G. Thus, the collection of recursive presentations of
˚-universal groups is a d-Σ0

3 set.
To show completeness, fix a pair S, T of Σ0

3 sets. Given a pair pi, jq, we
produce a group K which is ˚-universal if and only if i P S ^ j R T .

Fix uniform sequences of c.e. sets Vk and Uk so that i P S if and only if
there is some k so that Vk is infinite and j P T if and only if there is some k
so that Uk is infinite. We construct two sequences of groups pGkq and pHkq.
We ensure that if i R S then ‘kGk ‘ ‘kHk is low. If i P S and j P T then
there is some k so that Hk is universal. If i P S and j R T then each Hk is
non-universal and some Gk is ˚-universal.

Let p‘kGk ‘‘kHkqs be the group with the same generators as p‘kGk ‘

‘kHkq, but only the relators enumerated by stage s. We enumerate relators
declaring each group to be abelian at stage 0. Thus the word problems of
p‘kGk ‘‘kHkqs are uniformly computable.
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We have requirements as follows:
Ck: If Vk is infinite, then there is some ` so that G` is ˚-universal.
Dxk,k1y: If Vk is infinite and Uk1 is infinite, then there is some ` so that H`

is universal.
Lm: If ϕ

p‘kGk‘‘kHkqs
m,s pmq Ó for infinitely many s, then ϕ‘kGk‘‘kHk

m pmq Ó.
We order their priority by C0, L0, D0, C1, L1, D1 . . ..
To satsify Ck, when we see a new number enumerated into Vk, we act by:

‚ If Ck is not yet initialized, we initialize it by choosing a new param-
eter ` so that the presentation of the group G` is not restrained by
any higher priority Lm.

‚ If Ck is already initialized, we run one more step of the construction
in Theorem 4.4 to make G` be a ˚-universal group.

Observe that, regardless of outcome, every Gk is either ˚-universal, or is
finitely presented abelian so has computable word problem. In particular,
no Gk has universal word problem.

We act similarly for a Dxk,k1y-requirement. Namely, when initialized, it
chooses a new parameter ` and when we see new numbers enter Vk and Uk1 ,
we continue the coding to ensure that H` is a fixed abelian universal group.
In the infinite outcome, H` is universal, and in the finite outcome, it has
computable word problem.

To satsify Lm, whenever ϕ
p‘kGk‘‘kHkqs
m,s pmq Ó, we place a restraint on the

use of this computation, i.e., we place restraint against any new relators
entering the presentations of a Gk or Hk used in this computation.

Whenever we act, including placing restraint, all lower-priority require-
ments are reinitialized. The construction is put together as a standard finite
injury argument. If i R S, then there is no k so that Vk is infinite, then every
Lm-strategy eventually gets to succeed showing that ‘kGk‘‘kHk is low. If
i P S and j P T , then some D-requirement ensures that ‘kGk‘‘kHk is uni-
versal. Finally, if i P S and j R T , then one of the G` is ˚-universal. No Gk

has universal word problem, and since each D-requirement acts only finitely
often, each of the Hk have non-universal word problem. Thus ‘kGk‘‘kHk

is ˚-universal by Corollary 5.8. �
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