
ON ISOMORPHISM CLASSES OF COMPUTABLY ENUMERABLE

EQUIVALENCE RELATIONS

URI ANDREWS AND SERIKZHAN A. BADAEV

Abstract. We examine how degrees of computably enumerable equivalence relations (ceers) under
computable reduction break down into isomorphism classes. Two ceers are isomorphic if there is
a computable permutation of ω which reduces one to the other. As a method of focusing on non-
trivial differences in isomorphism classes, we give special attention to weakly precomplete ceers.
For any degree, we consider the number of isomorphism types contained in the degree and the
number of isomorphism types of weakly precomplete ceers contained in the degree. We show that
the number of isomorphism types must be 1 or ω, and it is 1 if and only if the ceer is self-full and
has no computable classes. On the other hand, we show that the number of isomorphism types
of weakly precomplete ceers contained in the degree can be any member of r0, ωs. In fact, for any
n P r0, ωs, there is a degree d and weakly precomplete ceers E1, . . . , En in d so that any ceer R in
d is isomorphic to Ei ‘D for some i ď n and D a ceer with domain either finite or ω comprised of
finitely many computable classes. Thus, up to a trivial equivalence, the degree d splits into exactly
n classes.

We conclude by answering some lingering open questions from the literature: Gao and Gerdes
[12] define the collection of essentially FC ceers to be those which are reducible to a ceer all of
whose classes are finite. They show that the index set of essentially FC ceers is Π0

3-hard, though
the definition is Σ0

4. We close the gap by showing that the index set is Σ0
4-complete. They also

use index sets to show that there is a ceer all of whose classes are computable, but which is not
essentially FC, and they ask for an explicit construction, which we provide.

Andrews and Sorbi [4] examined strong minimal covers of downwards-closed sets of degrees of
ceers. We show that if pEiq is a uniform c.e. sequence of non-universal ceers, then t‘iďjEi | j P
ωu has infinitely many incomparable strong minimal covers, which we use to answer some open
questions from [4].

Lastly, we show that there exists an infinite antichain of weakly precomplete ceers.

1. Introduction

Computable reduction, a natural computability-theoretic analog of borel reduction and first intro-
duced by Ershov [9], [10] as a computable representation for monomorphisms of numbered sets is
defined by letting a binary relation R on ω reduce to a binary relation S on ω (written R ďc S)
if there is a computable function f so that for every x, y P ω, xRy if and only if fpxqSfpyq. The
situation when R and S are equivalence relations, as in the borel theory, is of particular interest. In
this paper, we continue the trend from [1] – [6] of examining the structure of the set of computably
enumerable equivalence relations (ceers) under computable reduction. There has also been a study

2010 Mathematics Subject Classification. 03D25.
Key words and phrases. Computably enumerable equivalence relation; computable reducibility on equivalence

relations; halting jump.
The first author’s research was partially supported by NSF grant DMS-160022 and by Grant 3952/GF4 of the

Science Committee of the Republic of Kazakhstan. The second author’s research was partially supported by bina-
tional NSF grant DMS-1600625 entitled “Collaboration in Computability” and by Grant AP05131579 of the Science
Committee of the Republic of Kazakhstan.

1

2 U. ANDREWS AND S. BADAEV

of the relationship between ceers and the algebraic structures which have the ceer as its domain,
see e.g., [11][13]–[16].

We also consider isomorphisms defined as follows: R – S if there is a computable function f
which is a permutation of ω so that xRy if and only if fpxqSfpyq. In this paper, we examine the
question of how a ďc-degree splits into isomorphism classes. We show, in particular, that every
degree contains either exactly 1 or infinitely many isomorphism classes, but there are degrees with
“essentially” any finite number of isomorphism classes. Rigorously, this means that for any n,
there are ďc-classes which contain n ceers E0, . . . , En´1 which are each non-isomorphic and have
no computable classes so that any ceer R in the class is isomorphic to Ei ‘ D where D is a ceer
(possibly on a finite domain) comprised of finitely many computable classes.

We also use the idea of a weakly precomplete ceer [6] as the idea of a ceer which is far from having
any computable classes. Formally, a ceer E is weakly precomplete if it has no total computable
diagonal function, i.e., there is no total computable f so that for every x, x��Efpxq. Every two
classes in a weakly precomplete ceer are computably inseparable, so such ceers are far from having
computable classes. We examine some further properties of weakly precomplete ceers, but our main
use is in constructing the ceers Ei above, which we make weakly pre-complete, so that we cannot
have Ei ‘Di – Ej ‘Dj where Di and Dj are ceers with computable classes.

In sections 4, 5, and 6, we also answer some lingering questions in the literature regarding strong
minimal covers of some natural subsets of ceers under ďc, about the set of ceers which are ďc

a ceer with only finite classes (the essentially FC ceers in [12]), and about antichains of weakly
precomplete ceers.

2. Preliminaries

We begin with some standard definitions regarding ceers:

Definition 2.1. We let Idn represent the ceer given by congruence modulo n. Note that any ceer
with exactly n equivalence classes is ”c Idn.

We let Id represent the ceer given by equality, i.e., x Id y if and only if x “ y.

Definition 2.2 (The jump operation). For any ceer R, we define R1 to be the ceer given by xR1y
if and only if x “ y or ϕxpxqRϕypyq where both ϕxpxq and ϕypyq converge.

The following observation will be helpful for building isomorphisms between ceers.

Lemma 2.3. If ϕ is a reduction of X to Y which is onto the classes of Y , and both X and Y have
no finite classes, then X – Y .

Proof. We define a reduction f and a supplementary function g inductively in stages, so f “
Ť

i fi.
We ensure that each fi is a partial reduction of X to Y , and we ensure i P domainpfi`1q X
rangepfi`1q. We let f0 “ H. If i P domainpfiq, then we let gi “ fi. Otherwise, we enumerate
rϕpiqsY until we see some member j of rϕpiqsY r rangepfiq. We then add pi, jq to fi, to form gi.
Now, if i P rangepgiq, then we let fi`1 “ gi. Otherwise, we wait until we find some x so that
ϕpxq P risY (since ϕ is onto the classes of Y), and we enumerate rxsX until we find a member k
which is not in domainpgiq. We then add pk, iq to gi to form fi`1. On classes, f “ ϕ, so f is also a
reduction of X to Y . By construction, f is a bijection. �

ON ISOMORPHISM CLASSES OF CEERS 3

Definition 2.4. If E and R are ceers, then E ‘ R is the ceer defined by x E ‘R y if and only if
either x “ 2n and y “ 2m and n E m or x “ 2n` 1 and y “ 2m` 1 and n R m.

Observation 2.5. If E and R are incomparable, then the degree of E‘R does not contain a weakly
precomplete ceer.

Proof. Suppose A is weakly precomplete and A reduces to E ‘ R via f , then A reduces to either
E or R, since every pair of classes of A are computably inseparable. That is, tx | fpxq is oddu and
tx | fpxq is evenu provides a separation of two classes, unless one is empty. Thus f reduces A to
either E or R. Since E ‘ R does not reduce to E or R, there can be no weakly precomplete A in
the same degree as E ‘R. �

Observation 2.6. The degrees of weakly precomplete ceers are not closed upwards.

Proof. Let E be weakly precomplete and non-universal, which exists by [6]. Let R be any ceer
which is ďc-incomparable with E (see e.g., [3, Theorem 2.1]). Then consider E ‘ R. This cannot
be a weakly precomplete degree by Observation 2.5. �

We also remind the reader of a useful definition which first appears in [5].

Definition 2.7. A ceer E is self-full if E ăc E ‘ Id1. Equivalently (see [5]), and motivating the
name, E is self-full if whenever ϕ is a ďc-reduction of E to itself, ϕ is onto the classes of E (i.e.
for every j, impϕq X rjsE is non-empty).

We also note the following, which we will use to show hardness of an index set below:

Observation 2.8. For every binary Π0
3-predicate P px, yq there exists a computable binary function

g so that P px, yq ðñ Wgpx,yq is co-infinite.

Proof. By [18, Corollary 14-XVI], tx : Wx is co-finiteu is Σ0
3-complete set. Then, tă x, y ą:

P px, yqu ď1 tx : Wx is co-infiniteu by some computable function f . Define gpx, yq “ fpă x, y ą
q. �

3. Isomorphism-types inside degrees of ceers

Badaev and Sorbi [6] showed that there are infinitely many isomorphism types of universal weakly
precomplete ceers. It is natural to ask whether there are non-universal weakly pre-complete ceers
which are ďc-equivalent, but not isomorphic. We answer this question, introducing some techniques
(especially the strategy for D-requirements) which will appear in the following theorems.

Theorem 3.1. There are non-isomorphic weakly precomplete ceers which are equivalent and non-
universal.

Proof. We construct ceers E, F , and X so that E and F are equivalent, non-isomorphic, weakly
precomplete, and X ęc E. During the construction, we will choose sequences of numbers paiqi P ω

4 U. ANDREWS AND S. BADAEV

and pbiqiPω, and we satisfy the following requirements:

REÑF : For every pair i, j, i E j ô ai F aj

RFÑE : For every pair i, j, i F j ô bi E bj

WP i
E : If ϕi is a total function, then for some x, ϕipxq E x

WP i
F : If ϕi is a total function, then for some x, ϕipxq F x

Di : ϕi is not an isomorphism of E to F

NUi : ϕi is not a reduction of X to E

Note that the R-requirements are not subject to injury, but the others can be injured and re-
initialized. We begin by describing the strategies for each requirement:

REÑF : We need to do 2 things to satisfy this requirement: choose ak, and collapse to maintain
consistency. For the least k where ak is not defined, we choose ak to be a fresh number (i.e. larger
than any number mentioned in the construction). We collapse ai to aj in F if we see i E j. We
will ensure – see Corollary 3.6 – that no other requirement collapses a pair ai and aj (i.e. ai F aj
only happens if we already see i E j).

RFÑE: This is symmetric.

WP i
E: Choose a witness x to be fresh. Wait for ϕipxq to converge. Then E-collapse x with ϕipxq.

After this collapse, we no longer consider the requirement active.

WP i
F : This is symmetric.

Di: Let x, x1, z be fresh. We wait for a stage t where ϕipxq and ϕipx
1q converge and ϕipyq “ z

for some y. If ϕipxqF
tϕipx

1q, then we do nothing further (we will see that, unless injured, x��Ex
1)

and no longer consider the requirement active. Otherwise, by possibly reversing x and x1, we may
assume that ϕipxq��F

tz. Let w “ ϕipxq. We collapse x E y. We will see below that (unless injured)
z��Fw. After this collapse, we no longer consider the requirement active.

NUi: Take two fresh numbers x, y. Wait for ϕipxq and ϕipyq to converge. If ϕipxq��Eϕipyq, then
collapse x X y. We will see below that reinitializing lower-priority requirements will suffice to
guarantee that ϕipxq��Eϕipyq remains true.

Construction. We fix some priority ordering in order type ω of theWP , D andNU -requirements.
As they are not subject to injury, we do not include REÑF and RFÑE-requirements in our priority
order. We deal with each of D, WP , and NU -requirements at infinitely many stages, one at
every stage s ą 0 of the construction. And we deal with the R-requirements at each stage of the
construction. WP i

E and WP i
F -requirements can have a parameter x. Di-requirements can have

parameters x, x1, and z. NUi-requirements can have parameters x and y. When a requirement is
initialized, each parameter is set to be undefined and the requirement is set to be active. We say
that a requirement requires attention if any of its parameters are undefined, or if it is an active
WP i-requirement and ϕipxq has converged, or it is an active Di-requirement and ϕipxq, ϕipx

1q

converge and some ϕipyq “ z, or if it is an active NUi-requirement and ϕipxq and ϕipyq have both
converged.

ON ISOMORPHISM CLASSES OF CEERS 5

When a strategy for a WP , D, or NU -requirement acts, it re-initializes all lower-priority D, WP ,
or NU -requirements. Any re-initialized requirement becomes active immediately.

Stage 0. Initialize each WP -, D-, and NU -requirement. Set E0 “ Id, F 0 “ Id.

Stage s`1. Let s “ xs0, s1y and let Q be the strategy with priority equal to s0. If Q does not require
attention, then end the stage. Otherwise, we say that Q acts, thus reinitializing all lower-priority
requirements. We consider cases depending on which type of requirement Q is:

Case 1. Suppose Q is a WP i
E-requirement. If the parameter x is not yet defined, define it to be

a fresh number (in particular rxsEs “ txu and x is not a parameter of any other requirement).
Otherwise, we have x is defined and ϕipxq converges. Then we E-collapse x with ϕipxq and declare
WP i

E to be inactive.

Case 2. Suppose Q is a WP i
F -requirement. We act exactly as in case 1, but with F -collapse.

Case 3. Suppose Q is a Di-requirement. If x, x1 and z are undefined, then select them to be
distinct fresh numbers. Otherwise, we have ϕipxq, ϕipx

1q converged and ϕipyq “ z for some y. If
ϕipxqFϕipx

1q, we declare Di to be inactive and do nothing else. Otherwise, by possibly switching
the roles of x and x1, we may assume that ϕipxq��F

sz. We E-collapse x with y and declare the
requirement Di to be inactive.

Case 4. Suppose Q is a NUi-requirement. If x and y are not defined, then we select them to be
fresh numbers. Otherwise, we have ϕipxq and ϕipyq both converged. If ϕipxq E ϕipyq, then we
declare NUi to be inactive. Otherwise, we X-collapse x and y and declare NUi to be inactive.

In any case, we finish the stage with the following:

Coding Step: Define as and bs to be fresh numbers. Lastly, if we have E-collapsed x and y, and
ax and ay are defined, then F -collapse ax and ay. Similarly, if we have F -collapsed x and y, and
bx and by are defined, then E-collapse bx and by. We apply this as many times as necessary, but
at stage s ` 1, we have only defined finitely many values of ax and bx, so this only causes finitely
many collapses.

Verification. We proceed through a sequence of lemmas to show that all requirements are
satisfied.

Definition 3.2. Let Q be a WP , D or NU -requirement. We say that x is a Q-number at stage s
if x is a parameter of an active Q-requirement.

We say that x is an REÑF -number at stage s if it is defined to be ai for some i so that i is the
least member of risE at stage s.

We say that x is an RFÑE-number at stage s if it is defined to be bi for some i so that i is the least
member of risF at stage s.

In each case, we say that the number x is active at stage s.

Lemma 3.3. Let x and y be distinct active numbers at stage s. Then x��Esy and x��F sy.

Proof. This is clearly true at stage 0. Suppose s ` 1 is the least stage at which this lemma fails.
Let x, Q1, y, and Q2 witness this. Let us consider the action at stage s which brought about this
situation. At stage s, we must have done more than just defining new parameters, because all new
parameters are chosen to be fresh. In particular, if z is fresh, then rzsEs “ rzsF s “ tzu, so it cannot
contribute to violating our lemma.

6 U. ANDREWS AND S. BADAEV

There are two parts of the construction at stage s: The action in each of the 4 cases, and then the
coding step. We verify that after each of these actions, we have not violated our lemma.

In each of the 4 cases where we can cause a collapse, we have a requirement Q-which collapses
one of its parameters z to some other element w. We then declare Q to be inactive. By inductive
hypothesis, rzsE and rzsF contains only one active number, namely z. Thus, since z is not active
at stage s` 1 since Q becomes inactive, we have added no new active numbers to rwsE or rwsF .

Lastly, we have to check that our collapses during the coding step do not cause us to violate this
lemma. These are of the form of F -collapsing ai with aj if we have E-collapsed i with j or of the
form of E-collapsing bi with bj if we have F -collapsed i with j. We consider the former case as the
latter case is the same. We can assume that prior to E-collapsing i with j, both were least in their
E-classes. Thus, both ai and aj were active. It follows that raisF and rajsF had only one active
element, namely ai and aj . But since i and j have collapsed, one has stopped being active. So the
newly formed class raisF Y rajsF still contains only one active element.

�

Lemma 3.4. Let x “ bi. Then for every s ą i there exists a j ď i so that xEsbj and bj is active
at stage s.

Let x “ ai. Then for every s ą i there exists a j ď i so that xF saj and bj is active at stage s.

Proof. We prove the first claim. Let j be the least number in risF s . Then j ď i and bj is active.
By the coding step of our construction, iF sj implies biE

sbj . �

Lemma 3.5. Let x be a number mentioned before stage s. Suppose that x is not Es-equivalent to
any active number at stage s. Then at all stages t ą s, x is not Et-equivalent to any active number
at stage t.

Similarly for F -equivalence.

Proof. Suppose otherwise, and consider the first stage t ą s at which x becomes Et-equivalent
to an active number at stage t. This cannot be caused by an assignment of parameters, since all
parameters are assigned to be fresh. By the same analysis as in Lemma 3.3, any active z which
is collapsed with x must simultaneously become inactive. Similarly, this cannot be caused by
collapsing bi with bj for the sake of coding, because x cannot already be in rbisE or rbjsE , since
these each contain active members. �

Corollary 3.6. For every i, j ă s, iEsj if and only if aiF
saj. For every k, l ă s, kF sl if and only

if bkE
sbl.

Proof. We prove only the first claim as the second is symmetric. By the coding step, iEsj implies
that aiF

saj . To see the reverse, suppose that i��Esj and let i0 be least in risEs and j0 be least in
rjsEs . It follows by the coding step that ai0F

sai and aj0F
saj . Then ai0 and aj0 are both active

numbers at stage s. It follows by Lemma 3.3 that they cannot be F s-equivalent. Thus ai��F
saj . �

It follows that the R-requirements are satisfied.

Lemma 3.7. Every requirement is re-initialized only finitely often.

Proof. Straightforward by induction in priority of the requirements. �

ON ISOMORPHISM CLASSES OF CEERS 7

Lemma 3.8. Suppose that x and y are numbers considered before stage s and x��Esy. Suppose
that Q is a requirement which is deactivated at stage s (thus all lower-priority requirements are
reinitialized at stage s). Suppose further that no requirement of higher priority than Q acts after
stage s. Then x��Ey. Similarly for F .

Proof. Case 1: Neither x nor y are Es-equivalent to any active number. Then by Lemma 3.5, this
is true at every t ą s. Then at any stage t ą s we cannot collapse x with y because neither are
equivalent to any active numbers.

Case 2: Suppose that either x or y is Es-equivalent to a Q̂-number at stage s for Q̂ a WP , D or
NU -requirement of higher priority than Q. WLOG, we suppose this is true of x. Suppose towards
a contradiction that xEy. Let t ą s be the stage at which we cause this collapse. Since Q̂ does not
act after stage s, we know that x is also Et-equivalent to a Q̂-number at stage t, and thus cannot
be Et-equivalent to any other active number by Lemma 3.3. Thus, the collapse must be caused by
an active number Et-equivalent to y.

Case 2a: Suppose that y is not Es-equivalent to an active number at stage s. Then by lemma 3.5,
this is true at stage t also, so the collapse cannot occur at stage t.

Case 2b: Suppose that y is Es-equivalent to bj for some j. Then by Lemma 3.4, y is Et-equivalent
to some active bk for some k. Thus, it is not equivalent to a Q1-number at stage t for Q1 any WP , D
or NU -requirement. Since x cannot be equivalent to any bl (since Lemma 3.4 shows that it would
then be Et-equivalent to two active numbers contradicting Lemma 3.3), the collapse can also not
occur due to the coding.

Case 2c: Suppose that y is also Es-equivalent to a Q1-number at stage s for Q1 a WP , D or
NU -requirement of higher priority than Q. Then, y is also Et-equivalent to a Q1-number at stage
t, and thus cannot be Et-equivalent to any other active number by Lemma 3.3. Thus, since neither
Q1 nor Q̂ can act at stage t, we cannot cause the collapse at stage t.

Case 3: Suppose that xEsbi and y is not Es-equivalent to any active number. Then Lemma 3.4
shows that rxsEt contains an active number for every t ą s whereas Lemma 3.5 shows that y is
never Et-equivalent to an active number, so x and y can not be Et-equivalent for any t ą s.

Case 4: We have xEsbi and yEsbj for some i, j. Then the only cause of the collapse of xEy is
due to the coding step, since neither can ever be Et-equivalent to any other active number. But
then we can consider why we collapse iF j. By cases 3, the only possibility is that this, in turn was
due to Case 4, namely due to a coding step. But the coding step at any given stage is finite and
originates in a collapse for a WP , D, or NU ,-requirement, which we have ruled out in the cases
above.

�

Lemma 3.9. WP i
E and WP i

F -requirements are satisfied.

Proof. Consider the last time the requirement is reinitialized. When it next chooses its witness
x, this choice is permanent. If ϕipxq does not converge, then the requirement is satisfied. Other-
wise, once it converges, the requirement will act (since no higher priority requirement can act) by
collapsing x with ϕipxq satisfying the requirement. �

Lemma 3.10. The Di-requirement is satisfied.

8 U. ANDREWS AND S. BADAEV

Proof. Consider the last time the requirement is reinitialized. When it next chooses its witnesses
x, x1, z, this choice is permanent. If ϕipxq or ϕipx

1q do not converge or no ϕipyq converges to equal
z, then ϕi is not a bijection and the requirement is satisfied. Now, suppose ϕipxq, ϕipx

1q converge
and ϕipyq converges to equal z, and let t be the first stage after this when this requirement is next
considered by the construction. If ϕipxqF

tϕipx
1q, the requirement does nothing. As x and x1 were

active at stage t, they were not Et-equivalent. By Lemma 3.8, we see x��Ex
1. Otherwise, (possibly

after reversing x and x1), we have ϕipxq “ w��F sz. Then we E-collapsed x with y. It suffices to
show that w��Fz. Since z is not equivalent to any ai, w and z do not collapse at stage t. Since w
and z are certainly considered at stage t, the Di-requirement becomes inactive at stage t, and we
have supposed that no higher priority requirement acts after stage t (as this would reinitialize the
Di-requirement), Lemma 3.8, guarantees that w��Fz.

�

Lemma 3.11. The requirement NUi is satisfied.

Proof. Consider the last time that NUi is reinitialized. When it next picks its witnesses x, y, this is
permanent. If ϕipxq or ϕipyq never converge, then the requirement is satisfied. Otherwise, consider
the next stage s where NUi acts. If ϕipxqE

sϕipyq then simply not X-collapsing x and y guarantees
that the requirement is satisfied. So, we must consider the case that ϕipxq��E

sϕipyq and we must
show that ϕipxq��Eϕipyq. This follows immediately by Lemma 3.8

�

Thus, every requirement eventually succeeds, and we have built ceers E and F as needed. �

Theorem 3.12. There are non-universal weakly precomplete ceers Ei for i P ω so that they are
equivalent and pairwise non-isomorphic.

Proof. This is the same argument as the previous theorem with no new complications. We construct
infinitely many ceers, but the requirements each mention at most two ceers and are handled with
strategies identical to the previous argument. �

Definition 3.13. For a ceer E, we define NpEq to be the number of isomorphism types inside the
ďc-degree of E. We define N˚pEq to be the number of isomorphism types of weakly precomplete
ceers inside the ďc-degree of E.

Theorem 3.14. NpEq “ 1 if and only if E is self-full and has no computable classes. Otherwise,
NpEq “ ω.

Proof. We prove the theorem in cases:

Lemma 3.15. If E is self-full and has no computable classes then NpEq “ 1.

Proof. Suppose X ”c E. Then consider the reductions E ďc X ďc E. Since E is self-full, it follows
that the composed reduction is onto the classes of E, therefore, the reduction E ďc X is onto the
classes of X. Thus, X cannot have any computable classes either, so all of the classes of X are
infinite. Thus E – X by Lemma 2.3. �

Lemma 3.16. If E has no computable classes and is non-self-full, then NpEq “ ω.

ON ISOMORPHISM CLASSES OF CEERS 9

Proof. Consider the set of equivalence relations E‘ Idn for various n. These are all non-isomorphic
because E‘Idn has exactly n computable classes, yet they are all ďc-equivalent by non-self-fullness
of E. �

Lemma 3.17. If E has a computable class, then NpEq “ ω.

Proof. Suppose, towards a contradiction, that NpEq “ k and let E0, E1 . . . , Ek´1 be representatives
of every isomorphism type in the degree of E.

Claim 3.18. For some i ă k, there are infinitely many m so that Ei has a finite class of size m.

Proof. For each m P ω, let Rm be the ceer formed by replacing a computable class in E by a class
of size m. Let F pmq be the i ă k so that Rm – Ei. By the pigeonhole principle, there is an infinite
set of m on which F is constant. �

Without loss of generality, we assume E0 has this property.

Claim 3.19. For all positive n P ω, there is an Ei with infinitely many finite classes, but none of
size ď n.

Proof. For each n ą 0, consider the ceer Qn formed by taking E0 and fattening every point by n
numbers. That is, we say xQny if and only if

X

x
n

\

E0

X

y
n

\

. �

For each i ă k, let li P ω be greater than the size of the smallest finite class of Ei, if there is one,
and 1 otherwise. Applying the previous claim with n “ Σiăkli gives Qn, a new isomorphism type
in the degree of E.

�

�

It may seem like a very weak argument that NpEq is infinite in Lemmas 3.16 and 3.17. One might
argue that appending finitely many computable classes to E may yield a new isomorphism type,
but it does not give a substantively different isomorphism type. We will see that for some ceers E,
the only way to produce other isomorphism types in the same degree is to append finitely many
computable classes to E.

Corollary 3.20. There is a weakly precomplete ceer E so that for any X, X ”c E implies X – E.

Proof. It is shown in [6] (or see Theorem 6.3) that there are weakly precomplete ceers E which
are dark, i.e., Id ęc E . It is shown in [5] that all dark ceers are self-full. Lastly, since the classes
of weakly precomplete ceers are computably inseparable, no class can be computable. So, a dark
weakly precomplete ceer E has NpEq “ 1 by Lemma 3.15. �

Theorem 3.21. The range of N˚ is r0, ωs.

Proof. The fact that 0, 1 and ω are in the range follows from Observation 2.5, Lemma 3.15, and
Theorem 3.12. For n P p1, ωq, we give the following construction:

We build ceers E0, . . . , En, and we will make E0 “ En. Towards this, whenever we give instructions
to E0-collapse some pair, it is understood that we simultaneously En-collapse and vice-versa. We
also build functions πi for i “ 1, . . . , n so that πi reduces Ei´1 to Ei. Thus π “ πn ˝ πn´1 ˝ ¨ ¨ ¨ ˝ π1

10 U. ANDREWS AND S. BADAEV

is a reduction of E0 to itself. We attempt to ensure that the set of weakly precomplete ceers in the
degree of E0 is exactly tE0, . . . , En´1u, and these are pairwise non-isomorphic, thus N˚pE0q “ n.
We build these ceers with the following requirements (where we consider i, i1 ă n distinct and any
j, k P ω):

Ci : Pick numbers ai`1j for each j so that jEik if and only if ai`1j Ei`1a
i`1
k .

WP i
j : If ϕj is a total function, then it has an Ei-fixed point.

Di,i1

j : ϕj is not an isomorphism from Ei to Ei1 .

T i
j,k : If Wj intersects infinitely many Ei-classes which do not contain any element of the form ail,

then Wj intersects rksEi .

Sj : If ϕj is a reduction of E0 to E0, then for some k, rimpϕjqsE0 X primpπ
kqsE0 r rimpπk`1qsE0q

contains infinitely many classes.

See Lemmas 3.32 and 3.33 for why the requirements, especially T i
j,k and Sj , suffice for the theorem.

Intuitively, π gives us a nested layering of E0 by smaller copies of itself, and Sj shows that any ceer
R equivalent to E0 must in its reduction to E0 intersect one annulus infinitely. We then stratify
that annulus in terms of the Ei’s and see that one of these strata must be hit infinitely. Then T i

j,k

shows that the entirety of this copy of Ei must be hit, which is enough for us to analyze the ceer
R.

We enumerate all WP , D, T and S-requirements in order type ω as Q0 ă Q1 ¨ ¨ ¨ .

At this point, the strategies for Ci, WP i
j , and Di,i1

j should be familiar. We highlight the strategies

for T i
j,k and Sj and their conflict.

T i
j,k-strategy: Wait for Wj to enumerate a number x which is not Ei-equivalent to any number

mentioned by a higher-priority requirement and is also not Ei-equivalent to any element of the form
ail. Then collapse kEix.

Sj-strategy: Througout the description, we let l be maximal so that yl is defined.

Step 1: Pick new y0, y1, and keep y0��E0y
1 and that neither y0 nor y1 will ever be equivalent to an

element of the form ank for any k (this will be automatic via Lemma 3.25, which is analogous to
Lemma 3.3). Wait for ϕjpy

0q and ϕjpy
1q to converge. Once this happens, go to step 2.

Step 2: If for some k we have trϕjpy
0qsE0 , rϕjpy

lqsE0u “ trπky0sE0 , rπ
kylsE0u, then go to step 3.

Otherwise, we have two cases: If ϕjpy
0qE0ϕjpy

lq already, then we simply maintain that y0��E0y
l and

do nothing. Otherwise, we collapse y0 with yl, and we will not be forced to collapse ϕjpy
0q with

ϕjpy
lq. We reinitialize lower priority requirements to ensure that they will not cause ϕjpy

0q and

ϕjpy
lq to E0-collapse. We do nothing further.

Step 3: Choose a new number y that is not equivalent to any element of the form ank and assign

this to be yl`1. Wait for ϕjpy
l`1q to converge, then go back to step 2 (with the newly increased

value of l).

ON ISOMORPHISM CLASSES OF CEERS 11

The possible outcomes of one Sj strategy are either infinite cycling through step 2 and step 3, or it
gets stuck in step 1, 2, or 3. If it cycles through steps 2 and 3 infinitely often, this will force that for
a single k, every m satisfies ϕjpy

mqE0π
kym (see Lemma 3.30). Further, since ym��E0πpdq for every d,

we have that πkym��E0π
k`1d for every d. Thus this gives that rimpϕjqsE0Xrimpπ

kqsE0rrimpπk`1qsE0

is infinite as needed. If it gets stuck in step 1 or step 3, then ϕj is not total, and if it gets stuck in
step 2, then we diagonalize ensuring that ϕj is not a reduction of E0 to itself.

Now, note that Sj has infinitely many parameters if it cycles through steps 2 and 3 infinitely often,
which is inconsistent with T i

j,k-strategies (it causes no problems to D or WP -strategies as these can

only cause a collapse involving at least one new number, whereas T i
j,k-strategies use numbers chosen

by Wj). In particular, if Wj enumerates tym | m P ωu chosen by a higher-priority Sj-requirement,
it would not be able to be satisfied. This problem is fixed by allowing a high enough priority
T i
j,k-requirement, say it is requirement Qp to only respect values ym for m ă p. In other words,

the lower-priority T -requirement may steal the S-requirement’s parameter yk for k ě p. Still, only
finitely many T -strategies may steal this parameter, so if S cycles through 2 and 3 infinitely often,
it will eventually define each ym.

The remainder of the proof is handled via the usual priority machinery.

Construction. We build equivalence relations Es
0, E

s
1, . . . , E

s
n´1 as approximations to the equiv-

alence relations E0, E1, . . . , En´1. WP -requirements can have a parameter x. D-requirements can
have parameters x, x1, and z. T -requirements can have a parameter r. S-requirements can have,
as parameters, a finite sequence of numbers y0, . . . , yl.

We say that a WP -requirement demands attention if it is active and either x is undefined or
ϕjpxq has converged. We say that a D-requirement requires attention if it is active and either
its parameters are undefined or ϕjpxq, ϕjpx

1q have converged and some ϕjpyq “ z. We say a
T i
j,k-requirement requires attention if it is active and either r is undefined or some number x has

been enumerated into Wj so that x is not Es
i -equivalent to any ail or any number less than r.

We say that an Sj-requirement requires attention if it is active and either y0 is undefined or,

for l being greatest so that yl is defined, we have both ϕjpy
0q and ϕjpy

lq converged and either

trϕjpy
0qsE0 , rϕjpy

lqsE0u “ trπ
ky0sE0 , rπ

kylsE0u for some k or ϕjpy
0q��E0ϕjpy

lq.

When a requirement is initialized, each parameter is set to be undefined and the requirement is
set to be active. For a WP , D, T or S requirement Q, let #pQq be the number m so that the
requirement is Qm. At stage s`1 “ xm, ky, we consider the requirement Qm, thus each requirement
is considered infinitely often.

Stage 0. Initialize all requirements. For every i ă n, set E0
i “ Id.

Stage s` 1. Denote by Q the requirement that we consider at stage s` 1. If Q does not require
attention then go to the next stage, otherwise we execute the strategy for Q below, followed by the
coding step:

Case 1. Q is the WP i
j -requirement for some i ă n and j P ω.

Case 1.1. If a parameter x for WP i
j is not defined then choose x to be a fresh number.

Reinitialize all lower priority requirements.

12 U. ANDREWS AND S. BADAEV

Case 1.2. If x is the parameter for WP i
j and ϕs

jpxq has converged, then collapse xEs`1
i ϕjpxq,

reinitialize all lower-priority requirements, and declare the WP i
j -requirement to be inactive.

Case 2. Q is the Di,i1

j -requirement with i, i1 ă n, i ‰ i1 and j P ω.

Case 2.1. If no parameters for Di,i1

j are defined then pick three fresh numbers x, x1, z and

set them to be the parameters for Di,i1

j . Reinitialize all lower-priority requirements.

Case 2.2. If the parameters x, x1, z for Di,i1

j are defined and ϕs
jpxq, ϕ

s
jpx

1q are converged, and

for some y, ϕs
jpyq “ z, then: If ϕjpxqE

s
i1ϕjpx

1q, we declare Di to be inactive and do nothing

else. Otherwise, by possibly switching the roles of x and x1, we may assume that ϕipxq��E
s
i1z.

We Ei-collapse x with y and declare the requirement Di,i1

j to be inactive. We re-initialize all
lower-priority requirements.

Case 3. Q is the T i
j,k-requirement with i ă n and j, k P ω.

Case 3.1. If k P rW s
e sEi,s then declare T i

e,k-requirement to be inactive.

Case 3.2. If k R rW s
e sEi,s and r is not defined, then choose r to be a fresh number. Reinitialize

all lower-priority requirements.

Case 3.3. If there is an x in Wj so that x is not Ei-equivalent to any number less than r and
also not Ei-equivalent to ail for any l, then Ei-collapse x with k. We declare Q to be inactive
and reinitialize all lower-priority requirements. If this number x is already Ei-equivalent
to a higher-priority Sj-requirement’s parameter ym, then we undefine the Sj-requirement’s

parameters ym
1

for every m1 ě m. (In Lemma 3.22, we will see that this can only happen if
m ą #pQq.)

Case 4. Q is the Sj-requirement. If Sj does not require attention, then do nothing. Otherwise:

Case 4.1. The parameter y0 is not defined. Then choose y0 and y1 to be fresh numbers.
Reinitialize all lower priority requirements.

If the parameter y0 is defined, then let l be largest so that the parameter yl is defined.

Case 4.2. We have ϕjpy
0q and ϕjpy

lq both converged and trϕjpy
0qsEs

0
, rϕjpy

lqsEs
0
u “ trπky0sEs

0
, rπkylsEs

0
u

for some k. In this case, define the parameter yl`1 to be fresh and initialize all lower priority
requirements R so that #pRq ě l.

Case 4.3. We have ϕjpy
0q and ϕjpy

lq both converged and trϕjpy
0qsEs

0
, rϕjpy

lqsEs
0
u ‰ trπky0sEs

0
, rπkylsEs

0
u

for any k, and ϕjpy
0q��E

s
0ϕjpy

lq. Then E0-collapse y0 and yl and reinitialize all lower priority
requriements. Declare Sj to be inactive.

Coding Step: For each i “ 1, . . . n, choose distinct fresh numbers to be ais. For each i ă n, if we
have Ei-collapsed j with k, and ai`1j and ai`1k are defined, then Ei`1-collapse ai`1j and ai`1k . Note

that since we have only finitely many ai`1j -values defined, this causes only finitely many collapses.

Verification.

Lemma 3.22. If a T -requirement undefines an S-requirement’s parameter ym, then #pT q ă m.

ON ISOMORPHISM CLASSES OF CEERS 13

Proof. It must be that xEiy
m, but x��Eiz for every z ď r. Thus ym ą r. In particular, ym was

chosen to be a parameter after the T -requirement assigned the parameter r. So when ym was
assigned in Case 4.2, the T -requirement was not reinitialized, thus #pT q ă m. �

Lemma 3.23. Each requirement is reinitialized only finitely often.

Proof. Suppose towards a contradiction that Q is the highest priority requirement reinitialized
infinitely often. There must be a single higher priority requirement R which reinitializes Q infinitely
often. Let s be a stage after which R is never reinitialized. If R is a WP , D or T -requirement, then
it can act only once more, after which it becomes inactive. Thus R must be an S-requirement. For
R to injure Q, it does so in Cases 4.1, 4.2 or 4.3 infinitely often. It can do so in Cases 4.1 and 4.3
only once after stage s, as it is not reinitialized after stage s. Thus, it must infinitely often injure
Q via Case 4.2. In this case, it infinitely often increases the maximal l for which al is defined. We
need only show that after finitely many stages, this l will permanently exceed #pQq. Otherwise,
infinitely often, we must have a T -requirement with #pT q ă #pQq which undefines R’s parameter

y#pQq. But each such #pT q can do this only once. This is because a T i
j,k-requirement acts in Case

3.3 by making k P rW s
e sEi,s . But then it can never be in Case 3.3 again, as it would be in Case 3.1

instead. Thus, each T -requirement with #pT q ă #pQq can undefine R’s parameter y#pQq at most
once, so it will eventually be permanently defined and R will not reinitialize Q after that.

�

Definition 3.24. Let Q be a WP i
j -requirement. We say that x is an i-active Q-number at stage s

if x is a parameter of Q at stage s. Let Q be an active Di,i1

j -requirement with parameters x, x1, z.

Then we say that x, x1 are i-active Q-numbers at stage s and z is an i1-active Q-number at stage
s. Let Q be an S-requirement and x be a parameter of Q. We say that x is a 0-active and n-active
Q-number at stage s.

We say that x is an i` 1-active Ci-number at stage s if it is defined to be ai`1x for some x so that
x is the least member of rxsEi at stage s. If i` 1 “ n, we also say that x is 0-active.

Lemma 3.25. Let x and y be distinct i-active numbers at stage s. Then x
�
�Es
i y.

Proof. This is clearly true at stage 0. Suppose s ` 1 is the least stage at which this lemma fails.
Let x, Q1, y, and Q2 witness this. Let us consider the action at stage s which brought about this
situation. At stage s, we must have done more than just defining new parameters, because all
new parameters are chosen to be fresh. In particular, if z is fresh, then rzsEs

i
“ tzu, so it cannot

contribute to violating our lemma.

There are two parts of the construction at stage s: The action in each of the 4 cases, and then the
coding step. We verify that after each of these actions, we have not violated our lemma.

In each of cases 1,2, and 4 where we can cause a collapse, we have a requirement Q which Ei-
collapses one of its parameters z to some other element w. We then declare Q to be inactive.
By inductive hypothesis, rzsEi contains only one i-active number, namely z. Thus, since z is not
i-active at stage s` 1 since Q becomes inactive, we have added no new active numbers to rwsEi .

In case 3 where Q “ T i
j,k where we cause collapse, we collapse k (which may be equivalent to an

active number for another requirement) with x, which is ą r and not equivalent to ail for any l.
Since x ą r, it is not equivalent to any parameter for a higher-priority WP or D requirement.

14 U. ANDREWS AND S. BADAEV

If it is equivalent to the parameter of a higher-priority S-requirement, then we undefine the S-
requirement’s parameter. Similarly, if it is equivalent to a lower-priority requirement’s parameter,
then we undefine this parameter via reinitialization. Either way, we add no new i-active numbers
to the Ei-class of k.

Lastly, we have to check that our collapses in the coding step do not cause us to violate this lemma.
These are of the form of Ei-collapsing ax with ay if we have Ei´1-collapsed1 x with y. We can
assume that prior to Ei´1-collapsing x with y, both were least in their Ei´1-classes. Thus, both
ax and ay were i-active. It follows that raxsEi and raysEi had only one i-active element, namely ax
and ay. But since x and y have collapsed, one has stopped being active. So the newly formed class
raxsEi Y raysEi still contains only one i-active element.

�

Lemma 3.26. Let x “ ai`1k . Then for every s ą k there exists a j ď k so that xEs
i`1a

i`1
j and ai`1j

is i` 1-active at stage s.

Proof. Let j be the least number in rksEi . Then j ď k and ai`1j is i` 1-active. By the coding step,

jEik implies ai`1j Ei`1a
i`1
k . �

Lemma 3.27. Let x be a number mentioned before stage s. Suppose that x is not Es
i -equivalent to

any i-active number at stage s. Then for all t ą s, x is not Et
i -equivalent to any i-active number

at stage t.

Proof. Consider the first stage at which x becomes Ei-equivalent to an i-active number. This
cannot be caused by our assignment of parameters, since all parameters are assigned to be new. By
the same analysis as in Lemma 3.25, any active z which is collapsed with x must simultaneously
become inactive. Similarly, this cannot be caused by collapsing for the sake of coding, as this
collapses two Ei-classes which already contain i-active numbers by Lemma 3.26. �

Corollary 3.28. For every i ă n and j, k ă s, jEs
i k if and only if ai`1j Es

i`1a
i`1
k .

Proof. In the Coding stage, we guarantee that jEs
i k implies that ai`1j Es

i`1a
i`1
k . To see the reverse,

suppose that j
�
�Es
i k and let j0 be least in rjsEs

i
and k0 be least in rksEs

i
. It follows by construction

that ai`1j0
Es

i`1a
i`1
j and ai`1k0

Es
i`1a

i`1
k . Then ai`1j0

and ai`1k0
are both active numbers at stage s. It

follows by Lemma 3.25 that they cannot be Es
i`1-equivalent. Thus ai`1j ���Es

i`1a
i`1
k . �

Lemma 3.29. Suppose that x and y are numbers considered before stage s and x
�
�Es
i y. Suppose

that Q is a requirement which is deactivated at stage s (thus all lower-priority requirements are
reinitialized at stage s). Suppose further that Q is never reinitialized after stage s. Then x��Eiy.

Proof. Case 1: Neither x nor y are Es
i -equivalent to any i-active number at stage s. Then by

Lemma 3.27, this is true at every t ą s. Then at any stage t ą s we cannot collapse x with
y by a WP , D, or S-strategy or during the coding step because neither are equivalent to any
active numbers. Lower priority T -requirements will have parameters r ą x, y. Thus these cannot
cause the collapse either. No higher priority T -requirement can cause the collapse as this would
reinitialize Q.

1We define 0´ 1 “ n´ 1.

ON ISOMORPHISM CLASSES OF CEERS 15

Case 2: Suppose that either x or y is Es
i -equivalent to an i-active Q-number at stage s for Q a

higher-priority WP , D or S-requirement. Without loss of generality, we suppose this is true of
x. Suppose that xEiy. Let t ą s be the stage at which we cause this collapse. Since Q does not
act after stage s, we know that x is also Et

i -equivalent to an i-active Q-number at stage t, and
thus cannot be Et

i -equivalent to any other i-active number by Lemma 3.25. Thus, the collapse
must be caused by an active number Et-equivalent to y or a T -requirement. It cannot be due to a
T -requirement by the same reason as in case 1. So we now have three cases to consider:

Case 2a: Suppose that y is not Es
i -equivalent to an i-active number at stage s. Then by lemma

3.27, this is true at stage t also, so the collapse cannot occur at stage t.

Case 2b: Suppose that y is Es
i -equivalent to aij for some j. Then by Lemma 3.4, y is Et

i -equivalent

to some i-active aik for some k. Thus, it is not Et
i -equivalent to a Q1-number at stage t for Q1 any

WP , D or S-requirement. Since x cannot be equivalent to any ail (since Lemma 3.26 shows that it
would then be Et

i -equivalent to two i-active numbers contradicting Lemma 3.25), the collapse can
also not occur due to the coding.

Case 2c: Suppose that y is also Es
i -equivalent to an i-active Q1-number at stage s for a higher-

priority WP , D or S-requirement. Then, y is also Et
i -equivalent to a Q1-number at stage t, and

thus cannot be Et
i -equivalent to any other active number by Lemma 3.25. Thus we cannot cause

the collapse at stage t.

Case 3: Suppose that xEs
i a

i
j and y is not Es

i -equivalent to any i-active number. Then Lemma 3.26

shows that rxsEt
i

always contains an i-active number for every t ą s and Lemma 3.27 shows that y

is never Et
i -equivalent to an i-active number. Thus x and y can not be Et

i -equivalent for any t ą s.

Case 4: Both xEs
i a

i
j and yEs

i a
i
k. Then the only cause of the collapse of xEiy is due to the coding

step, since neither can ever be Et
i -equivalent to any other i-active number and T -requirements only

use numbers not equivalent to ail for any l. But then we can consider why we collapse jEi´1k. By
cases 1-3, the only possibility is that this, in turn was via a coding step. But the coding step at
any given stage is finite and originates in a collapse for a WP , D, T , or S-requirement, which we
have ruled out in the cases above.

�

Lemma 3.30. Each requirement is satisfied.

Proof. Suppose towards a contradiction that Q is the highest priority requirement which is not
satisfied. Let s be a stage after which Q will not be reinitialized. We consider the cases:

Q “WP i
j : Once the parameter x is chosen after stage s, this is permanent. Either ϕjpxq diverges

or we collapse xEiϕjpxq. Either way, the requirement is satisfied.

Q “ Di,i1

j : Once the parameters x, x1, z are chosen after stage s, this choice is permanent. If

ϕjpxq or ϕjpx
1q do not converge or no ϕjpyq converges to equal z, then ϕj is not a bijection and the

requirement is satisfied. Otherwise let t be the first stage we consider Q after these convergences are
witnessed. Similarly, if ϕjpxqE

t
i1ϕjpx

1q, then Lemma 3.29 guarantees that x��Eix
1 and the requirement

is satisfied. Otherwise, (possibly after reversing x and x1), we have ϕjpxq “ w
�
�Et
i1z. Then we Ei-

collapsed x with y. Thus it suffices to show that w��Ei1z. This follows directly from Lemma 3.29.

Q “ T i
j,k: Once the requirement chooses its parameter r after stage s, this is permanent. Suppose

Wj intersects infinitely many Ei-classes which do not contain any element of the form ail. Then Wj

16 U. ANDREWS AND S. BADAEV

will enumerate a number x which is not Ei-equivalent to any number ail and also not Ei-equivalent
to any number less than r. Thus, once we consider the requirement after such a number x is
enumerated into Wj , we will either already have k P rW t

e sEi,t or we will collapse x with k.

Q “ Sj : We have two cases to consider:

Case A: The sequence of parameters y0, y1, . . . which are never removed is infinite. In this case,
each of these yl are i-active permanently. It follows that yl��Eiy

l1 for each pair l, l1. For each one, we
have trϕjpy

0qsE0 , rϕjpy
lqsE0u “ trπ

ky0sE0 , rπ
kylsE0u for some k. We next check that this k is the

same for each l.

Claim 3.31. If k ă k1, then πkpylq��E0π
k1

pzq for any z.

Proof. Suppose otherwise that πkpy0qE0π
k1

pzq. Then since π is a reduction of E0 to itself, we get

that y0E0π
k1´kpzq. But πk

1´kpzq is a number of the form anw for some w. But then y0 is 0-active
and equivalent to another 0-active number of the form of anw by Lemma 3.26, which contradicts
Lemma 3.25. �

It follows that for each l we have ϕjpy
lqE0π

kpylq for the same number k. Note that we cannot have,

for instance that ϕjpy
0qE0π

kpy1q and ϕjpy
1qE0π

kpy0q, because then the condition trϕjpy
0qsE0 , rϕjpy

lqsE0u “

trπky0sE0 , rπ
kylsE0u will fail for l “ 2. By the claim, we have that ϕjpy

lq R rimpπk`1qsE0 . Since

yl��E0y
l1 for each pair, we get that πkpylq��E0π

kpyl
1

q, and we have that impϕjq X primpπ
kqsE0 r

rimpπk`1qsE0q contains infinitely many classes.

Case B: We only have finitely many stable parameters y0, y1, . . . y
l. By Lemma 3.22, there is a stage

s1 after which yl`1 is never defined. At a stage t ą s1, when the requirement is considered, it must
either have ϕjpy

lq diverge, ϕjpy
0qEt

0ϕjpy
lq, in which case it does nothing, but y0��E0y

l, since both

remain 0-active permanently, or it must have ϕjpy
0q��E

t
0ϕjpy

lq. In this latter case, we E0-collapse y0

with yl. By Lemma 3.29, we see ϕjpy
0q��E0ϕjpy

lq, so ϕj is not a reduction of E0 to itself, and the
requirement is satisfied.

�

Lemma 3.32. E0, . . . , En´1 are all equivalent, yet non-isomorphic weakly precomplete ceers. They
are all non-self-full.

Proof. By the requirements Ci, we have E0 ďc E1 ďc ¨ ¨ ¨ ďc En “ E0, thus they are all equivalent,

and by requirements Di,i1

j , they are non-isomorphic. By the requirements WP i
j , they are all weakly

precomplete. Since En´1 ďc En and En´1 fl En, we see by Lemma 2.3 that the reduction πn is not
onto the classes of En. Therefore, the map π is not onto the classes of E0. But then π is a reduction
of E0 to itself which is not onto the classes of E0, showing that E0 is non-self-full. Self-fullness is
a property of degrees, so no Ei is self-full. �

Lemma 3.33. A ceer R is equivalent to E0 if and only if it is isomorphic to a ceer of the form
Ei ‘ D where D is a ceer with either finite or infinite domain and is comprised of finitely many
computable classes.

Proof. Suppose R is of the form Ei ‘D where D is a ceer comprised of finitely many computable
classes. Then R ”c Ei ‘ Idn where n is the number of classes in D. But since Ei is non-self-full,
we have that Ei ‘ Idn ”c Ei.

ON ISOMORPHISM CLASSES OF CEERS 17

Suppose R ”c E0. Then let ϕj be the reduction given by E0 ďc R ďc E0, and let ψ be the reduction

of R to E0. Note that impϕjq Ď impψq. By Sj , for some k, rimpϕjqsE0 X rimpπ
kqsE0 r rimpπk`1qsE0

is infinite, and, therefore, K “ rimpψqsE0 X rimpπ
kqsE0 r rimpπk`1qsE0 is infinite too. Let k be

least so that rimpψqsE0 X rimpπ
kqsE0 r rimpπk`1qsE0 is infinite. Then impψq intersects only finitely

many E0-classes from ω r rimpπkqsE0 with witnesses, say, c1, c2, . . . , cn1 . Since K is the union of
the sets Km “ rimpψqsE0 X rimpπ

k ˝ πn ˝ ¨ ¨ ¨ ˝ πm`1qsE0 r rimpπk ˝ πn ˝ ¨ ¨ ¨ ˝ πmqsE0 , one of them
is infinite. Let m be the biggest such number. Then impψq intersects only finitely many E0-classes
from rimpπkqsE0 r rimpπk ˝ πn ˝ ¨ ¨ ¨ ˝ πm`1qsE0 . Let d1, d2, . . . , dn2 be witnesses of these classes.

Now, consider the c.e. set W “ ti | πk ˝πn ˝ ¨ ¨ ¨ ˝πm`1piq P rimpψqsE0u. Then this W hits infinitely
many Em-classes which are not in the range of πm. By the T -requirements, it intersects every
Em-class. Thus, impψq contains impπk ˝ πn ˝ ¨ ¨ ¨ ˝ πm`1q along with finitely many more classes
rcjsE0 , rdksE0 . Hence, in R, the set of i so that ψpiq P impπk ˝ πn ˝ ¨ ¨ ¨ ˝ πm`1q is c.e. and the set
of i so that ψpiq is in

Ť

rcjsE0 Y
Ť

rdksE0 is c.e., and this gives a finite partition of ω into c.e. sets.
Therefore, these sets are computable. Thus R is equivalent to the uniform join of E0 restricted to
the set impπk ˝πn ˝ ¨ ¨ ¨ ˝πm`1q and a ceer with finitely many computable classes. But E0 restricted
to the set impπk ˝ πn ˝ ¨ ¨ ¨ ˝ πm`1q is isomorphic to the ceer Em by Lemma 2.3. �

�

Corollary 3.34. There is a weakly precomplete ceer E so that for any ceer R, R ”c E if and only
if R is isomorphic to E ‘X where X is a c.e. equivalence relation (on a possibly finite universe)
comprised of finitely many computable classes.

Proof. Apply the previous construction with n “ 1. Note that we have no D-requirements, and
thus we have to work slightly harder to ensure non-self-fullness. It suffices to ensure that the class
of 0 is not equivalent to any a1j , and to do this it suffices by Lemma 3.27 to begin the construction
by mentioning the number 0. �

4. Ceers reducible to one with finite classes

Theorem 4.1. The index set of the collection of ceers reducible to one with only finite classes is
Σ0
4-complete.

Proof. This proof is a standard priority construction using a tree of strategies. This is somewhat
unusual in the study of ceers, where most arguments are finite injury arguments.

It is easy to estimate that the desired index set is Σ0
4. To prove the theorem we fix a Σ0

4-complete
set S “ ti | DjWgpi,jq is co-infiniteu and consider requirements:

Pj,k : If rk, ωq Ď
č

mďj

Wgpi,mq, then ϕj is not a reduction of E to a ceer with only finite

classes.

Pj,k-strategy: Step 1: Let x0 be a fresh number.

Step 2: Wait for ϕjpxlq to converge for every xl which has been chosen. If ϕj is injective on the
set of chosen xl, then go to step 3. Otherwise, we will have xl1 , xl2 so that we keep xl1��Exl2 , yet
ϕjpxl1q “ ϕjpxl2q showing that ϕj is not a reduction of E to any ceer.

18 U. ANDREWS AND S. BADAEV

Step 3: Collapse each defined xl to be E-equivalent to x0. Let n be least so xn is not yet defined.
Choose xn to be fresh and go back to Step 2.

We put these strategies on a tree as usual for an infinite-injury construction. We will omit some
details of the construction in favor of clarity. We fix a tree of strategies with nodes t8, fuăω. Each
strategy on level xj, ky of the tree will be a Pj,k-strategy. If a node β is a Pj,k-strategy, and β ľ α8
where α is a Pj,k1-strategy, then we say β is redundant and it never acts.

When visited, a Pj,k-strategy will have outcomes 8 ă f . A stage is expansionary for β, a Pj,k-node
if the least element of rk, ωq r

Ş

mďj Wgpi,mq is larger at the current stage then at the last stage
when β was visited. β only acts on stages where β is visited which are expansionary for β. If it acts
and it goes to step 3 (thus choosing a new xn), it will take the outcome 8. Otherwise, it takes the
outcome f . As usual, we define the current path by the outcomes taken by nodes visited, and if we
visit a node left of β, then we re-initialize β. This concludes the description of the construction.

Note that since the strategies each work with fresh elements xi and only collapse them to other
elements chosen by that strategy, if α chooses xl and xn and does not choose to collapse xl with
xn, then xl��Exn.

Lemma 4.2. Suppose that for every j, Wgpi,jq is co-finite. Then no ϕj is a reduction of E to a
ceer whose classes are finite.

Proof. Fix j and let k be least so that rk, ωq Ď
Ş

mďj Wgpi,mq. Let tp be the true path, let α be
the Pj,k-strategy on tp. Let s be a stage large enough that no node left of α is visited after stage
s. Thus, at any α-expansionary stage t ą s, we define x0 to have its final value. We consider two
cases: α8 ĺ tp or αf ĺ tp. In the first case, ϕi is injective on the set txl | l P ωu, but we make each
of these E-equivalent. Suppose E ďc R is witnessed by the reduction ϕj . Then tϕjpxmq | m P ωu
either defines more than one R-class, in which case ϕj is not a reduction of E to R, or it defines
an infinite subset of one class, showing that R has an infinite class.

In the second case, the strategy gets stuck in step 2: This means that either ϕj is not total or for
some l ă k, we have ϕjpxlq “ ϕjpxkq, but we never collapse xl and xk. Thus, ϕj is not a reduction
of E to any ceer. �

Lemma 4.3. Suppose that for some j, Wgpi,jq is co-infinite. Then E is reducible to a ceer with
finite classes.

Proof. Let j be least so that Wgpi,jq is co-infinite. Then for every j1 ě j and any k1, any Pj1,k1-
strategy has only finitely many expansionary stages. Thus, each strategy can only create finite
classes. Thus, the only strategies which can create infinite classes in E are the strategies on the
true path which are Pj1,k1-strategies with j1 ă j. But there are only finitely many of these which
are not redundant – at most one for each j1 ă j. Thus E is a ceer with at most j infinite classes.
But note that each of these classes are computable: The strategy chooses x0 ă x1 ă x2 ă . . . and
this forms the class. We can let R be the ceer formed by replacing each of these classes by a single
point. It is easy to see that E ďc R, and R has only finite classes. �

�

Gao and Gerdes [12] gave an indirect proof that there is a ceer E all of whose classes are computable,
but E is not reducible to any ceer with only finite classes. They do this by showing that the index
set of ceers with all computable classes is Π0

4-complete, but the index set of ceers reducible to one

ON ISOMORPHISM CLASSES OF CEERS 19

with only finite classes is Σ0
4 (they only show Π0

3-hardness). They ask for a direct construction of
such a ceer.

Observation 4.4. The proof of Theorem 4.1 gives a direct construction of a ceer with computable
classes which does not reduce to one with only finite classes.

Proof. For any i R S, the ceer E produced in the previous construction has computable classes
(again, since the classes are chosen as x0 ă x1 ă x2 ă . . .), but does not reduce to a ceer with only
finite classes. �

5. Strong minimal covers of sets of degrees of ceers

We now turn our attention to some questions about least or minimal upper bounds for some
subsets in the structure of ceers. Gao and Gerdes [12] asked whether Id1 is a least upper bound of
tId1k | k P ωu and Andrews and Sorbi [4] asked whether there is a minimal upper bound for the set

tIdpnq | n P ωu.

Definition 5.1. If S is a subset of a preodered set xP,ďy, we say that c P P is a strong minimal
cover of S if c R S and for every x P P , x ď c ðñ either x ” c or Dy P S px ď yq.

As usual, we write shortly x ” y if x ď y& y ď x and write x ă y if x ď y& y ę x.

Obviously, every strong minimal cover of S is an upper bound for S. We will deal with internally
unbounded subsets of a preodered set P , i.e. subsets S that have a following property: @x P SDy P
Spx ă yq. For instance, the sets tIdn | n P ωu and tIdpnq | n P ωu are internally unbounded.

Lemma 5.2. (i) Let S be a subset of a preodered set xP,ďy that has a least upper bound b and a
strong minimal cover c. If b P S then b ă c , otherwise, c ” b.

(ii) If S is internally unbounded set then

‚ a strong minimal cover of S is a minimal upper bound of S;
‚ if S has two incomparable strong minimal covers then S has no least upper bound.

Proof is obvious.

Theorem 5.3. Let pEiq be a uniform c.e. sequence of non-universal ceers. Then t‘iďjEi | j P ωu
has infinitely many incomparable strong minimal covers.

Proof. We build infinitely many ceers Rk. Throughout the construction, we will have some columns
of Rk reserved for coding. If we reserve the jth column of Rk as a coding column for Ei, then for
every x, y, we ensure that xj, xyRkxj, yy if and only if xEiy. We say that a column is destroyed if
every number in the column is equivalent to a number in a smaller column. We will ensure that if
x, y are in different coding columns, then x��Rky.

We construct pRkqkPω to satisfy the following requirements:

Cn,k : There is an Rk-coding column for En, i.e., there is a j so that @x, ypxj, xyRkxj, yy Ø xEnyq

Pi,j,k : If Wi intersects the closures of infinitely many non-destroyed columns in Rk, then Wi

intersects rjsRk
.

De,k,k1 : The function ϕe does not give a reduction of Rk to Rk1 if k ‰ k1.

20 U. ANDREWS AND S. BADAEV

For convenience, we choose to build each Rk so that the first column of Rk is exactly E0 and the
second column is exactly E1. These two columns are coding columns, and this is not subject to
injury.

Cn-strategies: Pick a new column and decide to code En into this column. Restrain this column
from being destroyed by a lower priority Pi,j-requirement.

Pi,j-strategies: Wait for some x to enter Wi which is in a column ą j which is not restrained by
any higher-priority strategy from being destroyed. At this point, collapse the entire column of x to
be equivalent to j. We say this column has been destroyed.

De,k,k1-strategies: We first pick a new column j of Rk. As long as it appears that ϕi gives a
reduction of Rk into restrained columns of Rk1 , we will threaten to code a universal ceer on this
column of Rk. We will argue below that we do not succeed in this coding (in brief, this is because
the restrained Rk1-columns will together be equivalent to a finite uniform join of the non-universal
Ei’s, but the universal degree is uniform-join irreducible [5]), but the threat will suffice to guarantee
that ϕe is not a reduction of Rk into the restrained columns of Rk1 . If the image of ϕe contains two
classes in non-restrained columns, then we will explicitly diagonalize. We fix T a universal ceer.

Step 1: We use a parameter n, which begins with n “ 1. We choose a0 “ xj, 0y and a1 “ xj, 1y. If we
see a stage s so that tai | i ď nu Ď domainpϕs

eq and for each x, y ď n, axRkay Ø ϕepaxqRk1ϕepayq,
then we Rk-collapse each pair ax, ay with x, y ď n so that xT sy. We choose the least element of
the jth column which is not Rs

k equivalent to any ai with i ď n, and let this be an`1, we increment
n “ n ` 1. While we wait for these convergences and equivalences, at stage s, we collapse any
element of txj, iy | i ď su r tai | i ď nu with a0 (while doing this, we do not say D is acting, and
we do not reinitialize lower priority requirements – we do that when we increment n or act as in
step 2). If, for some x, y, ax��

Rs
kay, ϕepaxq and ϕepayq converge and are not in columns of Rk1 which

are restrained by higher priority requirements, then we go to step 2.

Step 2: If ϕepaxqR
s
k1ϕepayq, then we destroy the jth column of Rk by making every element of

raxsRs
k

equivalent to x0, 0y and every other element equivalent to x1, 0y.

Otherwise, we destroy the jth column of Rk by making every element equivalent to x0, 0y. In
addition, we will destroy the columns of ϕepaxq and ϕepayq in Rk1 as follows: If ϕepaxq and ϕepayq are
in different columns of Rk1 , then destroy the column of ϕepaxq by making every element equivalent
to x0, 0y and destroy the column of ϕepayq by making every element equivalent to x1, 0y. Lastly,
if ϕepaxq and ϕepayq are in the same column of Rk1 , then we destroy the column by making every
element in rϕepaxqsRs

k1
equivalent to x0, 0y and every other number in the column equivalent to

x1, 0y.

Construction. We construct a supplementary partial computable function dpe, k, k1, sq along with
building the ceers Rk. We fix an ordering of all requirements in order type ω and fix a computable
correspondence between the stages of the construction and the requirements so that: at any stage
s ` 1 of the construction, we deal exactly with one of the requirements; every requirement is
considered at infinitely many stages.

We fix a universal ceer T and its approximation T s. Let Es
n be a computable approximation of a

uniformly c.e. sequence En of non-universal ceers.

ON ISOMORPHISM CLASSES OF CEERS 21

Reinitializing a Cn,k-strategy means that a coding column of equivalence En in Rk, if any, is stopped
being a coding column. Reinitializing a De,k,k1-strategy at stage s` 1 means to set dpe, k, k1, s` 1q
undefined. Reinitializing a Pi,j,k-strategy means doing nothing.

Stage 0. Initialize all requirements. For every k, set R0
k “ Id.

Stage s` 1 for Cn,k-requirement with n ą 1. If Rk has no chosen coding column for En, then pick
a new, say jth, column in Rk with j ą 1 and declare this column to be the chosen coding column
of En in Rk. Restrain the jth column of Rk from being destroyed by a lower priority requirement.

Correct all coding: for every n1, k1, if the j1-th column of Rk1 is a coding column of En1 , and xEs`1
n1 y,

then Rk1-collapse xj1, xy with xj1, yy.

Stage s`1 for Pi,j,k-requirement. If the equivalence class rjsRs
k

does not intersect W s
i and there are

x and j1 ą 1 so that xj1, xy P rW s
i sRs

k
, j ă j1, and the j1-th column in Rk is not yet destroyed and

not restrained by a strategy of higher priority from being destroyed, then Rk-collapse j with the
entire j1-th column. This means that we add xj, xj1, zyy into the computable equivalence relation
Rs`1

k for every z. We say that the j1-th column in Rk has been destroyed. Reinitialize all strategies
of lower priority.

Stage s` 1 for De,k,k1-requirement. We distinguish the following three cases.

Case 1. If dpe, k, k1, sq is not defined, then pick a new column j ą 1 in Rk and define dpe, k, k1, s`
1q “ xj, 1y, denote xj, 0y and xj, 1y by a0 and a1. Restrain the jth column of Rk from being
destroyed by a lower priority requirement. Reinitialize all strategies of lower priority.

Case 2. If dpe, k, k1, sq is defined and equals xj, ny, n ě 1, tai | i ď nu Ď domainpϕs
eq and, for each

x, y ď n, axR
s
kay Ø ϕepaxqR

s
k1ϕepayq, then check whether there exist x, y so that:

(1) 0 ď x ă y ď n,
(2) ax��

Rs
kay,

(3) xϕepaxqy0 ą 1 and xϕepayqy0 ą 1,
(4) ϕepaxq and ϕepayq are not in columns of Rk1 which are restrained by higher priority require-

ments from being destroyed.

If so, go to Subcase 2.1, otherwise, go to Subcase 2.2.

Subcase 2.1.

(i) If ϕepaxqR
s
k1ϕepayq, then destroy the jth column of Rk by Rk-collapsing every element of

raxsRs
k

with x0, 0y and every other element of the jth column with x1, 0y. Define dpe, k, k1, s`

1q “ x0, 0y. Reinitialize all strategies of lower priority.
(ii) If ϕepaxq�

�Rs
k1ϕepayq and ϕepaxq and ϕepayq are in different columns of Rk1 , then: destroy

the jth column of Rk by Rk-collapsing every element of this column with x0, 0y; destroy
the column of ϕepaxq in Rk1 by Rk1-collapsing every element of the column with x0, 0y; and
destroy the column of ϕepayq by Rk1-collapsing every element of the column with x1, 0y.
Define dpe, k, k1, s` 1q “ x0, 0y. Reinitialize all strategies of lower priority.

(iii) If ϕepaxq�
�Rs
k1ϕepayq and ϕepaxq and ϕepayq are in the same column of Rk1 , then: destroy

the jth column of Rk by Rk-collapsing every element of this column with x0, 0y; destroy
the column of ϕepaxq in Rk1 by Rk1-collapsing every element of rϕepaxqsRs

k1
with x0, 0y and

every other element in the column with x1, 0y. Define dpe, k, k1, s` 1q “ x0, 0y. Reinitialize
all strategies of lower priority.

22 U. ANDREWS AND S. BADAEV

Subcase 2.2.

(i) Rk-collapse each pair ax, ay with x, y ď n so that xT sy;
(ii) choose the least xj, ay which is not yet Rk-equivalent to any ai with i ď n, define dpe, k, k1, s`

1q “ an`1 “ xj, ay.

Case 3. If Cases 1,2 do not hold, then Rk-collapse any element of txj, iy | i ď sur tai | i ď nu with
a0.

End of stage s ` 1. For each k perform the symmetrical and transitive closure of the set of pairs
that have been enumerated into Rk by the end stage s` 1. Go to the next stage.

Verification. The verification is done via the following lemmas. We say that a column is an active
column at stage s if it has not been destroyed by stage s. Obviously, columns 0 and 1 are active at
any stage.

Lemma 5.4. There is no stage s and numbers x and y in different active columns at stage s so
that xRs

ky.

Proof. We collapse elements within the same column at stages for C-requirements to correct coding
or in Subcase 2.2 or 3 at stages for D-requirements followed by performing End of stage. These col-
lapses are made without destroying columns. During other collapsing pairs of numbers of different
columns, at least one of these columns is destroyed, thus no longer is an active column.

�

We say that a column of Rk is a permanent coding column if it is chosen to code some En into Rk

by a Cn,k strategy which is never reinitialized after this choice.

Lemma 5.5. If x and y are in different permanent coding columns of Rk, then x��Rky.

Proof. From some stage onwards, both x and y are in active columns at stage s. Thus by the
previous lemma, x

�
�Rs
ky for each s, showing that x��Ry. �

Lemma 5.6. At any stage s, if x is in the jth column, and the jth column has been destroyed,
then x is equivalent to an element in an active column.

Proof. When we destroy a column, we make every element equivalent to an element in a smaller
column. Either this column is active, or it is destroyed, making every element equivalent to an
element in a smaller column. Since ω is well-ordered, and 0 and 1 are coding columns in each Rk,
we see that x is equivalent to an element in an active column. �

Lemma 5.7. Each strategy reinitializes lower priority strategies only finitely often. For every
e, k, k1, limsÑ8 dpe, k, k

1, sq is finite. And each requirement is satisfied.

Proof. We show the result by induction on the priority of requirements, identifying the claim that
limsÑ8 dpe, k, k

1, sq is finite with the requirement De,k,k1 . So, we may assume that every strategy of
higher priority than S reinitializes lower priority requirements only finitely often, is satisfied, and
all higher priority De,k,k1-requirements have limsÑ8 dpe, k, k

1, sq finite.

Let s0 be the least stage of the construction so that after stage s0 each strategy of higher priority
than S does not reinitialize lower priority strategies after stage s0. If S is a Cn,k-strategy, then
it never reinitializes lower-priority strategies and once it chooses a coding column after stage s0,

ON ISOMORPHISM CLASSES OF CEERS 23

this choice of column is permanent, and it succeeds in coding En into this column of Rk. If S is
Pi,j,k-strategy, note that it can reinitialize lower priority strategies at most once after stage s0. Note
that since each higher priority strategy only restrains at most one column of Rk, if Wi intersects
the closures of infinitely many non-destroyed columns of Rk, then it will intersect the closure of one
which is not restrained by a higher-priority requirement, and S will act satisfying the requirement.

Lastly, we consider the case that S is a De,k,k1-strategy. A value of the function λsdpe, k, k1, sq
may be undefined or be any natural number. Note that De,k,k1-strategy reinitializes lower-priority
strategies only by Subcase 2.1 and if it did so at stage s1 ` 1 ą s0 then dpe, k, k1, s1q equals to
some number xj, ny with n ě 1 while dpe, k, k1, s1 ` 1q “ x0, 0y. Besides, dpe, k, k1, sq “ x0, 0y for
all s ě s1 ` 1. Therefore, De,k,k1-strategy does not reinitialize lower-priority strategies after stage
s1 ` 1, since only Case 3 holds at these stages. Note that if we enter Subcase 2.1, we explicitly
diagonalize to ensure that S is satisfied. This only uses that x0, 0y��Rkx1, 0y for each k. Thus, we
have the result if the strategy ever enters Subcase 2.1 after stage s0.

Now, we prove that the De,k,k1-requirement is satisfied and limsÑ8 dpe, k, k
1, sq is finite, given that

it is not reinitialized after stage s0 and that after stage s0, S never enters Subcase 2.1. Since
dpe, k, k1, sq can’t be undefined in all stages after the stage s0, we can assume that dpe, k, k1, s0q is
defined due to Case 1. So, dpe, k, k1, sq is defined and is different from x0, 0y and Subcase 2.1 does not
hold for every s ě s0. Suppose towards a contradiction that limsÑ8 dpe, k, k

1, sq is infinite. Then
Subcase 2.2 holds infinitely often and ϕe reduces a universal ceer T to the closures of finitely many
columns of Rk1 . Each of these are restrained from being destroyed by a higher-priority requirement.
Since every higher-priority De1,l,l1-requirement has limsÑ8 dpe

1, l, l1, sq finite, its column is either
destroyed or contains only finitely many classes via co-finitely being in Case 3. Thus, each of
these columns in Rk1 is either destroyed, or is a permanent coding column, or has only finitely
many classes. Thus T ďc ‘iďmEi ‘ Idm for some m. But since the universal degree is uniform-
join irreducible [5], we must have that T ďc Ei for some i, but this contradicts each Ei being
non-universal.

Thus we know that limsÑ8 dpe, k, k
1, sq is finite. Then we must always take Case 3 after some

s1 ą s0. Therefore, either ϕe is not a total function or the equivalence axRkay Ø ϕepaxqRk1ϕepayq
fails for some x, y ď limsÑ8xdpe, k, k

1, sqy1, and the strategy succeeds. Note that the Rk-closure of
xdpe, k, k1, sqy0 column consists of finitely many equivalence classes.

�

Lemma 5.8. Each Rk is a strong minimal cover for t‘iďjEi | j P ωu.

Proof. Since each Ei is coded into some column of Rk and these columns have disjoint Rk-classes,
we see that every ceer in t‘iďjEi | j P ωu is reducible to Rk. Now, suppose X ďc Rk via a
computable function f . Let Wi be the image of f . If it intersects the closures of only finitely many
non-destroyed columns, then we can reduce X to the uniform join of the finitely many Ei or finite
ceers coded on these columns. Thus X ďc ‘iďmEi‘ Idn for some m,n. But then X ďc ‘iďm`nEi.
Otherwise, Wi intersects the closures of infinitely many non-destroyed columns. Then, by the Pi,j-
requirements, Wi intersects every class. Since the reduction X ďc Rk is onto the classes of Rk, we
have that X ” Rk. �

�

24 U. ANDREWS AND S. BADAEV

We apply Theorem 5.3 combined with Lemma 5.2 to get several corollaries below. To prove them
we need to show that suitable sets of ceers are of the form covered by Theorem 5.3 and are internally
unbounded.

Note that our first corollary provides another proof that there are infinitely many incomparable
dark minimal ceers as in [5, Theorem 3.3].

Corollary 5.9. There are infinitely many strong minimal covers for tIdn | n P ωu and no least
upper bound.

Proof. We show that the ďc-downward closure of tIdn | n P ωu is the same as the ďc-downward
closure of t‘iďn Idi | n P ωu. The former is clearly internally unbounded, so we can apply Theorem
5.3 and Lemma 5.2 to yield the result.

To see that these two downward closures are equal, it suffices to see that the former is closed under
uniform-join, which follows from Idn‘ Idm ”c Idn`m. �

Corollary 5.10. There are infinitely many minimal upper bounds for tId1n | n P ωu and no least
upper bound.

Proof. Similarly, we need only show that the downward-closure of this collection is closed under
uniform join. It is not difficult to see that Id1n‘ Id1m ď Id1n`m. In fact, E1 ‘ R1 ď pE ‘ Rq1 holds
for all ceers by [4, Lemma 2.3] �

Observation 5.11. In fact, Id1 is also not a minimal upper bound of tId1n | n P ωu.

Proof. Consider the ceer ‘nPω Id1n. This is an upper bound of tId1n | n P ωu, and a direct reduction
shows that it reduces to Id1. But since jumps are uniform join irreducible [4], this is strictly below
Id1. �

The following answers a question from [4]:

Corollary 5.12. There are infinitely many strong minimal covers and no least upper bound to the
set tIdpnq | n P ωu.

Proof. Again, it suffices to show that for n ď m, Idpnq‘ Idpmq ďc Idpmq. This is true due to [4,
Lemma 2.3] that states: R1 ‘ S1 ďc pR ‘ Sq1 for any ceers R,S. Then by induction, we get:

Rpnq ‘ Spnq ďc pR‘ Sq
pnq for any n. Therefore

Idpnq‘ Idpmq ďc Idpmq‘ Idpmq ďc pId‘ Idqpmq “ Idpmq .

�

6. Observations on minimal ceers.

Gao and Gerdes [12] showed that: Id1 ăc Id2 ăc Id3 ăc ¨ ¨ ¨ ăc Id and for every n ą 1 and any ceer
R with infinitely many classes, Idn ăc R. Further, every ceer with finitely many classes is ”c to
one of Idn. This implies that, when we examine the notion of a minimal ceer, we should consider
minimality within the collection of ceers with infinitely many classes.

Definition 6.1. We call a ceer R with infinitely many classes to be minimal if, for every ceer S,
if S ďc R and S has infinitely many classes then S ”c R.

ON ISOMORPHISM CLASSES OF CEERS 25

Id is the natural example of a minimal ceer. The following minimality criterion was used by Andrews
and Sorbi [5] to construct minimal ceers, but it was not known to be an equivalence. We here show
the other implication.

Theorem 6.2. A ceer R with infinitely many classes is minimal if and only if R ”c Id or, for
every c.e. set W , if W hits infinitely many R-classes then it hits every R-class.

Proof. Let R be any minimal ceer and let a c.e. set W hit infinitely many but not all R-classes. Let
us show that R ”c Id. Pick a number a so that rasR XW “ H. We choose a computable function
f with range W and define a seer S by xSy ðñ fpxqRfpyq. Then S ďc R via the function f .
Since R is minimal and S has infinitely many classes it follows that xRy ðñ gpxqSgpyq for some
computable function g and all x, y. Note that a P ω r rimpf ˝ gqsR, and, therefore, a��Rpf ˝ gqpaq.

This immediately implies that a, pf ˝ gqpaq, pf ˝ gqp2qpaq are pairwise non-equivalent relative to R.
By iterating the function f ˝ g on a, we obtain an infinite c.e. sequence of numbers lying in distinct
R-classes. If h computably enumerates this sequence then h defines a reduction Id ďc R. Therefore,
Id ”c R by minimality of R.

Suppose now that R ”c Id or, for every c.e. set W , if W hits infinitely many R-classes then it hits
each of them. If R ”c Id then we have nothing to prove, so we suppose we are in the latter case.
If a ceer S has infinitely many classes and S ďc R via some computable function f then the range
W of f hits infinitely many R-classes, and, therefore impfq hits each R-class, i.e. S ďc R is an
onto-reduction. Hence, R ďc S. �

Theorem 6.3. There is an infinite ďc anti-chain of weakly precomplete minimal ceers.

Proof. Andrews and Sorbi [5, Theorem 3.3] showed that there are infinitely many incomparable
minimal dark ceers. They proceed to build these ceers Ei for i P ω via a finite injury argument
where each requirement may cause some collapses (respecting the restraint placed by higher priority
requirements) and may place a finite restraint, i.e., there are finitely many triples pa, b, jq which
represent that a and b are restrained from becoming Ej-collapsed by lower priority requirements.

We need only note that we can add a requirement of type WP i
j to ensure that Ei has a ϕj-fixed

point within this framework. These requirements need to place no restraint, and they obey such
restraints as long as the witness x chosen is distinct from any of the restrained classes.

�

References

[1] U. Andrews, S. Badaev, and A. Sorbi. A survey on universal computably enumerable equivalence relations. In:
A. Day, M. Fellows, N. Greenberg, B. Khoussainov, A. Melnikov, and F. Rosamond, editors, Computability and
Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, vol. 10010 of Lecture
Notes in Computer Science, pages 418–451. Springer International Publishing, 2017.

[2] U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. San Mauro, and A. Sorbi. Universal computably enumerable
equivalence relations. J. Symbolic Logic, 79(1):60–88, March 2014.

[3] U. Andrews and A. Sorbi. The complexity of index sets of classes of computably enumerable equivalence relations
J. Symbolic Logic, 81(4):1–21, Dec 2016.

[4] U. Andrews and A. Sorbi. Jumps of computably enumerable equivalence relations. J. Symbolic Logic, in prepa-
ration, 2017.

[5] U. Andrews and A. Sorbi. Joins and meets in the structure of computably enumerable equivalence relations. J.
Symbolic Logic, in preparation.

[6] S. Badaev and A. Sorbi. Weakly precomplete computably enumerable equivalence relations. Math. Log. Quart.,
62:111–127, 2016.

26 U. ANDREWS AND S. BADAEV

[7] C. Bernardi and A. Sorbi. Classifying positive equivalence relations. J. Symbolic Logic, 48(3):529–538, 1983.
[8] Yu. L. Ershov. Positive equivalences. Algebra and Logic, 10(6):378–394, 1973.
[9] Yu. L. Ershov. Theory of Numberings(Russian). Nauka, Moscow, 1977.

[10] Yu. L. Ershov. Theory of numberings. In E. G. Griffor, editor, Handbook of Computability Theory, volume 140
of Studies Logic Found. Math., pages 473–503. North-Holland, 1999.

[11] E. Fokina, B. Khoussainov, P. Semukhin and D. Turesky. Linear orders realised by c.e. equivalence relations.
Journal of Symbolic logic, 81(2): 463-482, 2016.

[12] S. Gao and P. Gerdes. Computably enumerable equivalence realations. Studia Logica, 67:27–59, 2001.
[13] A. Gavryushkin, B. Khoussainov and F. Stephan. Reducibilities among Equivalence Relations induced by Re-

cursively Enumerable Structures. Theoretical Computer Science. 612: p. 137-152, (2016).
[14] A. Gavryushkin, S. Jain, B. Khoussainov and F. Stephan. Graphs realised by r.e. equivalence relations. Annals

of Pure and Applied Logic. 165 (7-8), p.1263-1290. (2014).
[15] B. Khoussainov and A. Miasnikov. Finitely presented expansions of groups, semigroups, and algebras. Trans.

Amer. Math. Soc., 366(3):14551474, (2014).
[16] B. Khoussaiov. A journey into the theory of computably enumerable structures (invited tutorial). Proceedings of

the CiE 2018 conference, p: 1-19, Kiel, Germany, 2018.
[17] A. H. Lachlan. A note on positive equivalence relations. Z. Math. Logik Grundlag. Math., 33:43–46, 1987.
[18] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.
[19] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic, Omega Series.

Springer-Verlag, Heidelberg, 1987.

Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA

E-mail address: andrews@math.wisc.edu

URL: http://www.math.wisc.edu/~andrews/

Department of Fundamental Mathematics, Al-Farabi Kazakh National University, Almaty 050040,
Kazakhstan

E-mail address: Serikzhan.Badaev@kaznu.kz

mailto:andrews@math.wisc.edu
http://www.math.wisc.edu/~andrews/
mailto:Serikzhan.Badaev@kaznu.kz

	1. Introduction
	2. Preliminaries
	3. Isomorphism-types inside degrees of ceers
	REF:
	RFE:
	WPEi:
	WPFi:
	Di:
	NUi:
	Tij,k-strategy:
	Sj-strategy:
	Stage 0.
	Stage s+1.

	4. Ceers reducible to one with finite classes
	Pj,k-strategy:

	5. Strong minimal covers of sets of degrees of ceers
	Cn-strategies:
	Pi,j-strategies:
	De,k,k'-strategies:

	6. Observations on minimal ceers.
	References

