

Capturing CO2 from Thin Air

Supported By

www.airviewengineering.co.uk

Info@airviewengineering.co.uk

The World Needs Carbon Removal Technologies

Existing engineered Carbon Dioxide Removal (CDR) Solutions simply do not Scale Fast Enough

Compared to Existing DAC Systems

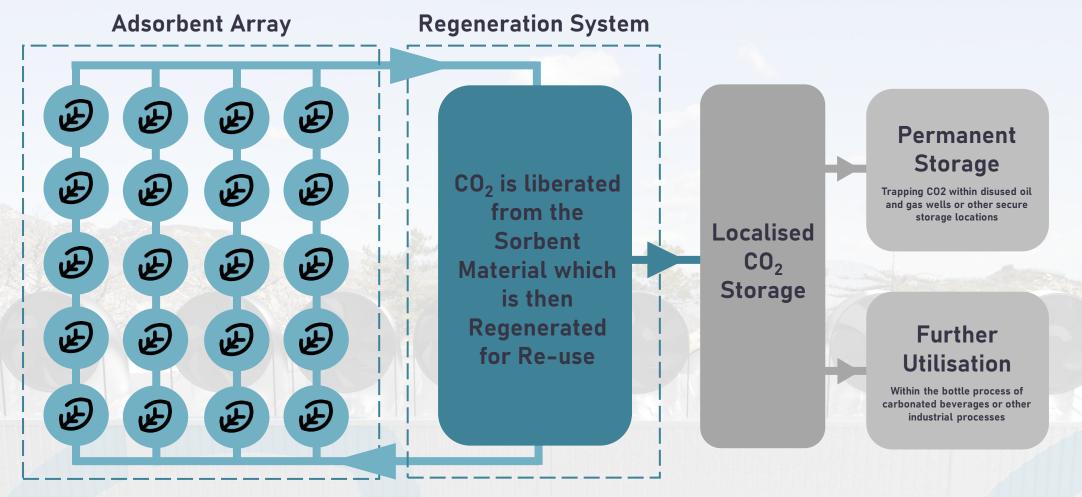
+ 4x Faster to Deploy

+ up to 50% Less CAPEX

+ Fully Modular and Scalable

Our Approach to DAC

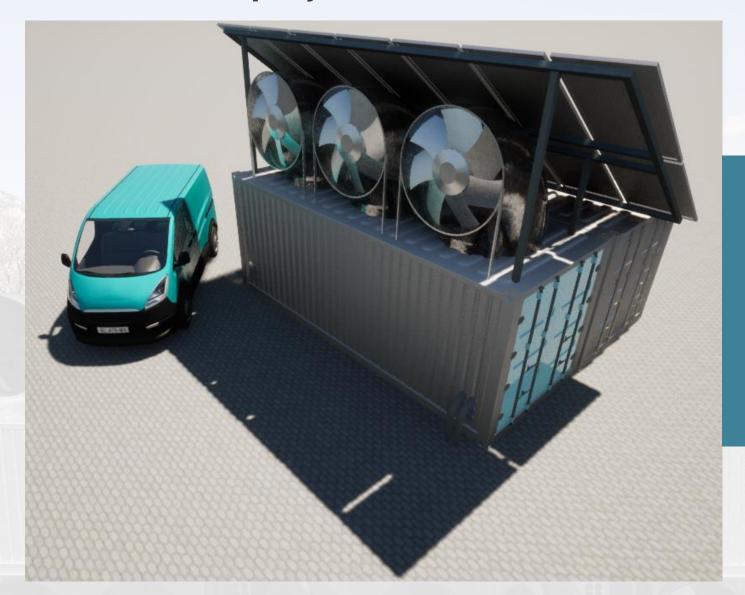
Intrinsically Modular



Rapidly Deployable

Modular System Architecture

- 1. Material Loaded within the Adsorbent System Array is exposed to Ambient Air where it begins to capture CO₂
- 2. Once the Material is fully saturated with CO₂ it is then moved removed from each system and transferred to the Arrays respective Regeneration System
- 3. At the same time Material is loaded back into the Array from a reserve hopper.
- The Material is exposed to varying temperatures and pressures to liberate the CO₂ from the Adsorbent Material for subsequent storage.
- 5. The freshly regenerated material is moved to the storage hopper for later use



Innovate UK

£411,000 Grant from Innovate UK to develop a Pilot Facility

Pilot Scale Deployment

Construction of a Small-Scale Pilot Facility will commence in spring 2024

Deployment Opportunities

- Integrated within existing structures / processes
- Next to roads / locations with concentrated emissions
- Confined areas with small available footprint
- Large open areas

Revenue Generation

Our Modular approach to DAC opens up Two Main revenue generation streams

Selling Captured CO₂ to Consumers

Captured on their site

Captured at our own facility

Offsetting and Storing Captured CO₂ on a customers behalf

Additional Comparative Benefits

Can be deployed right alongside where the CO₂ is to be Sequestered or Utilised

Provides businesses that utilise CO_2 with a plug & play solution for mining their own supply

Scalable System Architecture allows DAC System deployments in locations previously thought ineligible

- Minimizes the amount of energy required to transport the captured CO₂
- Not dependent upon any one method of Sequestration
- Removes their dependance on their current
 CO₂ supply chain
- Far greener alternative of CO₂ supply than current methods
- Systems can easily be deployed in urban environments and scaled to meet the required demand
- Can be easily integrated into existing processes and locations

Major Commercial Milestones

September 2021

Part of the 2021 European

Climaccelerator Program

(€25,000)

August 2022

Part of the 2022 Airminers

Launchpad Cohort

February 2021
Allocated £11,500 from
AgorIP through Swansea
University

March 2022
Awarded £36,000 from
MEECE towards the
development of Adsorbent
Materials

January 2023
Won an Innovate UK
Smart Grant
(£411,000)

AgorIP - https://climaccelerator - https://climaccelerator.climate-kic.org/: MEECE - https://www.meece.org.uk/: AIRMINERS - https://airminers.org/accelerate: Innovate UK - https://www.meece.org.uk/: AIRMINERS - https://airminers.org/accelerate: Innovate UK - https://www.ukri.org/councils/innovate-uk/

Past Technological Milestones

September 2021

Constructed and tested our desk based (Stage 1) prototype

January 2022

Design of our 0.5-meter diameter large scale (Stage 2) prototype finalized, and construction commenced

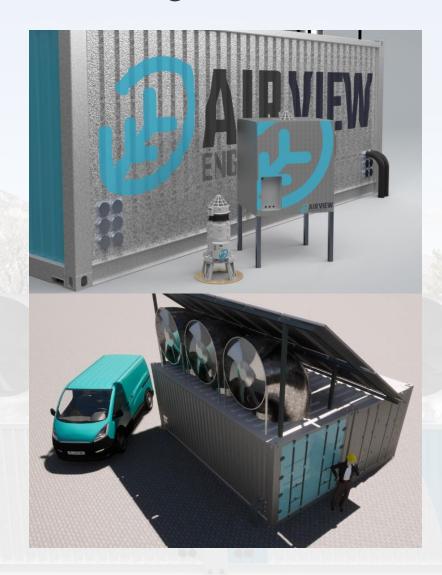
March 2022

Construction of our Stage 2 prototype completed

March 2022

6-month Adsorbent materials research contract with Swansea University awarded by MEECE

June 2022


Novel method of Pneumatic Adsorbent movement validated

October 2022

Materials Research Contract commenced (still ongoing)

Technological Milestones - Next 18 Months

April 2023

18 Month Innovate UK Funded Project commenced

June 2023

Finalized designs of both Adsorbent & Regeneration sub-systems produced and evaluated in VR ready for construction to begin

October 2023

Construction and preliminary testing of both initial prototype subsystems completed

February 2024

Finalized Sub-Systems are combined and Insitu testing is completed. Final design adjustments are completed, and the finalized designs are ready for Pilot Plant construction to begin

July 2024

Pilot Plant Construction is completed and ready for evaluation

September 2024

Pilot Plant efficiency evaluated, and manufacturing outline constructed to begin the move towards the mass manufacturing of larger DAC Units

Our Team

Simon Oliver MEng

Significant prior experience of business management, advanced engineering practices and Industry 4.0
Technologies

Matthew Tucker MEng

Mechanical Engineer with extensive experience in the production of computational models capable of predicting Adsorbent behaviour.

Intent on expanding the team over the next 18 Months

3x Mechanical Engineers

2x Software Engineers

Chemical Engineer

Operations Manager

Mechanic & Assembly Professional

Marketing and Partnerships Lead

Please reach out if you have any questions or want more information

Capturing CO2 from Thin Air
Supported By

