

Unique combination of Direct Air Capture and Water Electrolysis to produce the highest quality CDR Credits alongside Green Hydrogen

Parallel Carbon's Team

Founders

Ryan Anderson, CEO

PhD Materials Science 10+ years in CCUS Mineral Chemistry Techno-Economics

Aránzazu Carmona, CTO

PhD Electrochemical Eng. Process Engineering Regulatory affairs Manufacturing

Partners & Supporters

Barriers to Successful, Affordable DAC Technology

Dependence on Voluntary Carbon Markets

Temperature-, pressure-, and electro-swing DAC require new manufacturing to scale

Growing from 1kt to just 1Mt DAC capacity by 2030 requires manufacturing CAGR of 70% (similar to EV manufacturing growth) Compatibility with Intermittent Energy

Carbon-free power is intermittent today, but a grid connection creates emissions.

2

DAC for CDR must account for emissions from the grid's marginal power source. Even in 2030 'clean' grids, DAC would emit.

Low DAC utilization leads to increased capex costs, but firm power increases opex

Solar-DAC has cheap power, but capex per ton increases. Geothermal-DAC runs 24/7, spreading capex, but causing opex to soar.

Premium prices for carbon credits will fall as competition accelerates

Diversified and additional revenue streams reduce financial uncertainty and improve bankability

Parallel Carbon's DAC uses passive, 24/7 CO₂ uptake ensuring minerals are prepared when power arrives

Parallel Carbon Solves Current DAC Challenges

Business Model to Profitably Sell H₂ and Remove CO₂

Scaling DAC means surmounting huge obstacles – We simplify deployment, targeting 2GtCO2/yr DAC Capacity Installed by 2040

Designed to leverage massive, established supply chains and the global energy transition

Carbonate rock

- 10% Earth's surface
- 4Gt/yr just to produce cement

Only 15Mt CaCO₃ required per gigaton of DAC

Designing DAC for low capex...

What differentiates our capex?

- 1. Highly reactive minerals reduce air contactor size
- 2. Excellent economies of scale for aqueous processing
- 3. Modular electrolyzer shared by two production processes

...Unlocks low DAC opex, and...

...Creates the most affordable DAC and green hydrogen

Parallel Carbon's technology overcomes critical barriers for gigaton-scale adoption

Carbon Removal < \$ 100 / ton CO₂

Green Hydrogen < \$ 1 / kg H₂

Our Seed Round Will Scale Us 100,000x in 18 Months

	Prototype 🖂	Pre-Pilot	Commercial Pilot	FOAK
Goal	Prove the science	Optimize the engineering	Field test with partners	Full-scale Demo
Year	2021–22	2023–24	2025–26	2027–2028
TRL	1 → 4	4 → 6	6 → 7	8 → 9
Scale	g/d	kg/d → t/d	t/d → kt/y	60 kt CO ₂ /y
Enabling Capital	Pre-Seed (£150k)	Seed (£3.1m)	Series A + Other (£10–15m)	Series B + Other (£40–60m)

(\$1b)

Traction to Date and the Plans for Our £3.1m Seed Fundraise

We've proved the science...

From Concept to TRL 4 in 2 years

Proved Electrolyzer back-end

>80% efficient with commercial electrocatalysts Novel membraneless design: low opex, low ohmic resistance, impurity tolerance - uniquely suited to our dual use case

Demonstrated aqueous process

Regenerating sorbent without drying saves 300–800 kWh/tCO₂ relative to competing approaches

Proved passive low energy capture

Proved 4x faster passive carbonation with our electrochemically regenerated sorbent: 85% in carbonation in 18 hours

Secured IP

International patent filed for end-to-end protection of Parallel Carbon's process.

...Next we'll optimize the engineering Scaling to 1 ton/day and TRL 6 in 2024

Building 1tCO₂/day + 50kgH₂/d integrated pilot

100tCO₂/yr production to optimize material handling 150kW electrolyser stack for continuous operation

Hiring

Growing the team with 7 core hires across engineering and operations

Financing & offtake

Raising \$3.1m seed round In Q2 2023 AMCs / Grant funding applications worth >\$0.5m in process Establish offtake partnership for H₂ & CO₂ (LOIs already secured)

Engineering

Begin front-end engineering and design for first commercial demonstration

Secure supply chains including renewable power provider, electrolyzer manufacturing partner, and project EPCs

Appendix

Parallel Carbon's Cost Curve – \$100/tCO₂ + \$1/kgH₂ by 2030

Parallel Carbon's Ongoing DAC Development

A look at our fully integrated lab-scale prototype

Green H₂ Differentiation Appendix

Problem:

Wind and solar are too costly for electrolytic hydrogen

Breakeven Power Price Curve for \$1/kgH₂

Electrolyzers need <\$10/MWh power to make hydrogen from renewables Problem: Wind and solar are too intermittent for direct air capture

High-temp and high-capex DAC only operate affordably with continuous^{*} clean power

> *<mark>24/7 Carbon-Free Energy</mark> is not widely available

Breakeven Power Price Curve for \$180/tCO₂

Solution: Combine H₂ and DAC processes to share equipment

We make green hydrogen AND carbon removal cost-effective* <u>without</u> subsidies

*with readily-deployable intermittent wind and solar power

Breakeven Power Price Curve for $\frac{1}{kgH_2} + \frac{180}{tCO_2}$

Macro Factors Appendix

CDR Demand

Existing (775kt)

- Aviation
- Tech
- Banks/Finance
- Insurance
- Consumer

Growing (1–2Gt, 2030)

- Marketplaces
- Energy/Industrials
- Governments

Exponential Demand Growth Volume sold (tCO_2)

Supplier Pricing Power Price (\$/tCO₂)

*data from cdr.fyi

*Early stage DAC price average = \$1200/tCO₂

H₂ Demand

Existing (100Mt, 2021)

- Refining
- Ammonia
- Methanol
- Iron & Steel

Growing (180Mt, 2030)

- Freight
- Aviation
- Shipping
- Energy Storage

Competing at Industrial-Scale Requires < \$1/kgH₂

*Source: The U.S. Hydrogen Demand Action Plan, Energy Futures Initiative Feb. 2023

Geological CO₂ storage basins offer gigatons of potential, but DAC must be co-located to avoid transport costs

Geothermal electricity is locationally mismatched from most CO₂ storage, and expensive compared to wind and solar PV

Intermittent renewable electricity overlaps gigatons of CO₂ storage while providing low-cost power

