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Abstract: Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant
interest to physically active adults and those experiencing chronic health conditions. This in vitro
study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an
inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutri-
ents) and control (control medium)] were fed separately into a human GI tract model (stomach, small
intestine, and colon). In the colonic phase, the GI contents were combined with fecal inocula from
three healthy human donors. GI permeability was evaluated with transepithelial electrical resistance
(TEER) in a Caco-2 (apical)/THP1-Blue™ (basolateral) co-culture model. The apical side received
sodium butyrate (positive control) or Caco-2 complete medium (negative control) during baseline
testing. In the 24 h experiment, the apical side received colonic simulation isolates from the GI
model, and the basolateral side was treated with Caco-2 complete medium, then 6 h treatment with
lipopolysaccharide. TEER was assessed at 0 h and 24 h, and inflammatory markers were measured at
30 h in triplicate. Paired samples t-tests were used to evaluate endpoint mean difference (MD) for
AG1 vs. control. TEER was higher for AG1 (mean ± SD: 99.89 ± 1.32%) vs. control (mean ± SD:
92.87 ± 1.22%) following activated THP1-induced damage [MD: 7.0% (p < 0.05)]. AG1 maintained
TEER similar to the level of the negative control [−0.1% (p = 0.02)]. No differences in inflammatory
markers were observed. These in vitro data suggest that acute supplementation with AG1 might
stimulate protective effects on GI permeability. These changes may be driven by SCFA production
due to the pre-/probiotic properties of AG1, but more research is needed.

Keywords: gut barrier; gut integrity; dietary supplement; synbiotic; foundational nutrition

1. Introduction

The intestinal epithelia, which lines the inner surface of the gastrointestinal (GI) tract,
serves several crucial functions in the body. Optimizing the function of the GI epithelia
is emerging as a vital concern for human health and well-being [1]. Nutrients such as
macronutrients, micronutrients, phytochemicals, and other functional molecules are selectively
transported across the epithelial cells and into the bloodstream, providing the body with
the necessary components for energy production and overall functioning [2]. Furthermore,
this epithelial layer acts as a physical and immunological barrier that prevents the entry of
harmful substances such as pathogens, toxins, and undigested food particles from entering the
bloodstream and causing systemic inflammatory response [3,4]. Therefore, a well-functioning
GI epithelial layer is essential for maintaining overall gastrointestinal health and gut barrier
integrity, preventing systemic inflammation and a myriad of negative health conditions [1].
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The gut epithelial barrier is comprised of various cell types held tightly together by
tight junction (TJ) complexes. The TJ complex includes several proteins, such as claudins,
occludins, and zonula occludens (zonulins) proteins. The TJ complex regulates the size and
selectivity of the gaps between cells and plays a central role in regulating the paracellular
permeability of the barrier [5,6]. As our understanding of GI permeability continues to
expand, the body of literature suggests a convincing association between impaired GI
permeability and chronic health conditions spanning from autoimmune diseases such as
inflammatory bowel disease (IBD) to metabolic disorders, cardiovascular disease, and
even neurodegenerative conditions [7–10]. Although the mechanisms are not completely
understood, the aforementioned conditions are likely related to GI permeability through
inflammation, a common characteristic of these conditions [7–10]. Inflammatory cytokines
(i.e., TNF-α and IFN-γ) in the gut have negative impacts on TJ proteins, leading to increased
GI permeability that may exacerbate systematic inflammation and negatively impact these
disease states [9,11]. Beyond diseased populations, exercise-induced GI permeability and
cell damage have been linked to impaired nutrient absorption, heightened inflammation,
and GI distress [12–15]. Taken together, there is compelling evidence that mitigating GI
damage and permeability is essential for overall health, performance, and the prevention
of chronic health conditions [1].

Nutritional interventions to improve and preserve the function and integrity (e.g., of
the gut epithelium have garnered attention from practitioners, researchers, and consumers
alike [16–20]). AG1® (AG1) is a novel foundational nutrition supplement that contains vita-
mins, minerals, prebiotics, probiotics, phytonutrients, whole food concentrates, adaptogens,
and other functional nutrients. In a previous study utilizing the Simulator of the Human
Intestinal Microbial Ecosystem (SHIME®) inoculated with feces from healthy donors, we
demonstrated the ability of AG1 to undergo fermentation, producing significant increases
in acetate, propionate, and total short-chained fatty acids (SCFAs) [21]. SCFAs have been
shown to reduce permeability (i.e., improve GI integrity) of the intestinal barrier in part
by stimulating the production of TJ proteins, promoting the formation of the protective
mucin layer in the gut, and exerting a local anti-inflammatory effect in the gut [22–24].
Furthermore, AG1 contains two well-studied probiotic species, Lactobacillus acidophilus
(3.6 B CFU) and Bifidobacterium bifidum (3.6 B CFU), which exhibit the capacity to strengthen
the intestinal epithelium through a variety of mechanisms [25,26]. Taken together, it is
plausible that due to the combination of ingredients contained in AG1 (e.g., prebiotics,
probiotics, phytonutrients) along with initial in vitro data, AG1 supplementation may
promote the maintenance of epithelial integrity and function.

Studies examining GI permeability in humans face challenges due to many factors that
influence human GI permeability with significant variability among individuals (e.g., ge-
netic factors, diet, physical activity level, lifestyle, and underlying health conditions) [27–29].
This variability, along with the inherent limitations (e.g., standardization, invasiveness) of
various measurement techniques (e.g., lactulose–mannitol test, endoscopy, plasma biomark-
ers), can make it challenging to draw conclusions stemming from a nutritional, exercise,
or lifestyle intervention [30–33]. Specifically, these methods are traditionally included in
human studies assessing GI permeability and working with human subjects has several
challenges (compliance, dropouts, etc.); the lactulose–mannitol test can exhibit significant
inter-individual variability due to specimen collection time and disease conditions [34],
and endoscopy is invasive and costly. Conversely, Transepithelial Electrical Resistance
(TEER) is a widely used model in cell biology and physiology to measure the integrity
of epithelial cell layers [35]. TEER is a highly controlled methodology used in vitro that
limits the factors that may influence results associated with the other methods discussed
above [35]. The TEER measurement assesses the tightness and barrier function of these
epithelial cell layers by measuring the electrical resistance across them [35]. An intact and
well-functioning epithelial barrier will have high electrical resistance, while a compromised
barrier will have low resistance [35]. Utilizing co-cultures of enterocyte-like cells (Caco-2)
and THP1 macrophages, an in vitro model for gut epithelial inflammation has been shown
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to reliably assess the influence of an intervention of GI permeability while elucidating its
effect on the local inflammatory response [36–38].

The purpose of this investigation was to examine the effects of AG1 on an in vitro
model of GI permeability and inflammation. To accomplish this, we co-cultured Caco-
2/THP1 cells with fermented AG1 and non-AG1 colonic suspensions from the Simulator
of Human Intestinal Microbial Ecosystem (SHIME®) model. This design allows for an
evaluation of the effect induced by the product and the fermentation-derived metabolites
produced by the gut microbiota during the digestive steps on the gut epithelial cells.
The primary endpoints of this study were related to gut barrier integrity (TEER) and
immune markers (pro- and anti-inflammatory cytokines and chemokines) in an in vitro
Caco-2/THP1 co-culture model. We hypothesized that co-culturing Caco-2/THP1 cells
with fermented AG1 colonic suspensions following an inflammatory challenge would
beneficially impact GI permeability compared to control.

2. Materials and Methods
2.1. Test Product

AG1 was compared to the blank vehicle for the experiment. Briefly, the blank vehicle in
the upper gastrointestinal tract (UGIT) simulation was devoid of AG1 but contained gastric
and small intestine media, while the colon simulation contained the UGIT suspension, colonic
medium, and fecal inoculum [21]. AG1 (Carson City, NV, USA) is a novel foundational nutri-
tion supplement that contains vitamins, minerals, phytonutrients, probiotics, and prebiotics in
powder form. Specifically, AG1 contains 7.2 billion colony-forming units (CFU) of a probiotic
blend of Lactobacillus acidophilus (UALa-01) and Bifidobacterium bifidum (UABb-10). A dose of
12 g per serving is recommended, but a dose of 6 g per reactor was used for this experiment
to mitigate physical complications that would potentially affect the biological and mechanical
factors of the GI model. Due to biological factors, a supportive media (PD001 [a carbohydrate-
depleted background nutritional medium representative for the colon environment; ProDigest,
Ghent, Belgium]) was used as a vehicle and was described elsewhere [21]. The list of ingredi-
ents present in AG1 is available online [39]. AG1 has undergone third-party verification and
evaluation via NSF testing (Ann Arbor, MI, USA) to confirm that the supplement meets strict
safety, quality, purity, and label accuracy standards [40].

2.2. SHIME® Model, Gastric Phase, Intestinal Phase, and Colonic Simulation

Briefly, we employed the SHIME® model which is jointly registered by ProDigest and
Ghent University in Belgium [41]. This model was chosen as it emulates the chemical and
physiological conditions of the human gastrointestinal tract to simulate realistic conditions
anticipated in humans. AG1 was exposed to a gastric phase in which the test product
was subjected to normal stomach physiological conditions. Following the gastric phase,
physiological conditions were shifted towards conditions of the duodenum briefly and
then transferred to a dialysis membrane to emulate absorption of the digested fraction.
The non-absorbed fraction was subsequently transferred to a mixture of colonic medium
and human fecal inocula from three healthy adults (normal weight BMI, free from diseases
associated with impaired gut microbiome status, and no antibiotic medication used in the
prior four months). Colonic simulations were performed under physiological conditions
of the proximal colon for 48 h. For more detailed information on the methodology, please
refer to our previous publication [21]. The study was conducted in accordance with the
Declaration of Helsinki and approved by the Ethics Committee of the University Hospital
Ghent (reference number ONZ-2022-0267). It is the metabolic output from the colonic
simulation that was applied to the subsequent cell culture experiments.

2.3. Caco-2 and THP1-Blue™ Cells

Caco-2 cells (HTB-37; American Type Culture Collection; passage number 48) were
maintained in Dulbecco’s Modified Eagle Medium (DMEM) containing glucose and glu-



Microorganisms 2024, 12, 1263 4 of 11

tamine and supplemented with HEPES and 20% (v/v) heat-inactivated (HI) fetal bovine
serum (FBS).

THP1-Blue™ (InvivoGen, San Diego, CA, USA) cells were maintained in Roswell Park
Memorial Institute (RPMI) 1640 medium containing glucose and glutamine, supplemented
with HEPES, sodium pyruvate and 10% (v/v) HI-FBS. Cells were incubated at 37 ◦C in a
humidified atmosphere of air/CO2 (95:5, v/v).

2.4. Caco-2/THP1-Blue Co-Culture Model

The co-culture experiment was performed as previously described [36]. Briefly, Caco-2
cells were seeded in 24-well semi-permeable inserts (0.04 µm pore size) and cultured for 14 days,
with three medium changes/week as described [42]. THP1-Blue™ cells were seeded in 24-well
plates and treated with PMA (P1585, Sigma-Aldrich, St. Louis, MO, USA) for 48 h [42].

Before setting up the co-culture, the TEER of the Caco-2 monolayers was measured
(=0 h time point). Then, the Caco-2-bearing inserts were placed on top of the PMA-
differentiated THP1-Blue™ cells (Figure 1), as previously described [36,38]. The apical
compartment (containing Caco-2 cells) was treated with 12 mM sodium butyrate (NaB)
(B5887, Sigma-Aldrich, St. Louis, MO, USA) as a positive control or Caco-2 complete
medium (CM) as a negative control. The experimental portion of this model utilized the
AG1 and blank-treated fecal inoculum from colonic batch simulation (described above).
Briefly, colonic suspensions were collected following the 48 h of colonic simulation, filter-
sterilized (0.22 µm), diluted (1:5, v/v) in CM, and given apically to the co-cultures. Cells
were incubated for 24 h, after which the TEER was measured (=24 h time point). Then, the
basolateral supernatant was discarded, and cells were stimulated at the basolateral side
with CM containing 500 ng/mL ultrapure LPS (tlrl-eklps, Escherichia coli K12, InvivoGen,
San Diego, CA, USA). After 6 h of LPS stimulation (=30 h of apical treatment of the co-
cultures with colonic suspensions), the basolateral supernatant was collected to measure
the secretion of anti- and pro-inflammatory cytokines and chemokines (human IL-1β,
IL-6, IL-8, IL-10, TNF-α, CXCL10 and MCP-1 by Luminex® multiplex (Thermo Fisher
Scientific, Waltham, MA, USA)) and NF-κB activity using the QUANTI Blue reagent (rep-
qbs, InvivoGen, San Diego, CA, USA), according to the manufacturer’s instructions. All
treatments were performed in triplicate.
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Figure 1. Schematic overview of the Caco-2/THP1-Blue™ co-culture model. Caco-2-bearing inserts were
placed on top of the PMA-differentiated THP1-Blue™ cells. Transepithelial electrical resistance (TEER)
was measured using electrodes placed in the apical (Caco-2 cells) compartment and basolateral (THP1-
Blue cells) compartment. Individually, the sodium butyrate (positive control), Caco-2 complete medium
(negative control), AG1 treated fecal inoculum, and blank treated fecal inoculum were added to the apical
compartment for 24 h, followed by a 6 h addition of lipopolysaccharide to the basolateral compartment.
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2.5. Statistics

Samples from the colonic batch incubations were conducted in triplicate as biological
replicates for all cell assays. Differences in TEER and immune markers between the blank
control and AG1 on the average of all donors were assessed using a two-tailed, paired
t-test using the average of the individual donors as replicates (n = 3). To better visualize
the TEER change scores and compare the AG1 and blank-treated colonic suspensions, we
normalized the 24 h TEER values to the blank control media (CM) values. The CM value
was normalized to 100%, and the same constant was added to all three individual donors
24 h TEER values before calculating the change scores. A p-value of < 0.05 was considered
statistically significant. All statistics were performed using GraphPad Prism version 10.0.2
for Mac (GraphPad Software, San Diego, CA, USA).

3. Results

Following the 24 h culture, a significant endpoint difference in TEER was observed for
the AG1 (raw TEER mean and standard deviation: 82.37 ± 1.32) treated colonic suspensions
compared to the blank control (raw TEER mean and standard deviation: 75.35 ± 1.22)
colonic suspension [mean difference AG1 vs. blank control: 7.02% (95% CI: 2.41, 11.63)]
(Figure 2A). The control colonic suspensions decreased TEER [−7.13% (95% CI: −10.17,
−4.10)] compared to the CM (activated macrophages challenge in the complete medium
devoid of fecal inoculum) control (Figure 2B). Furthermore, AG1 maintained TEER [−0.11%
(95% CI: −3.94, 3.18)] at the level of the CM control (Figure 2B).
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the AG1 and control. Similarly, both colonic suspensions increased the anti-inflammatory 
(Figure 3B,C) and pro-inflammatory cytokines (Figure 3D,E) relative to the LPS+ control. 
A trend was observed with higher values for IL-6 (p = 0.0973) and IL-10 (p = 0.0714) for 
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Figure 2. Effects of colonic suspensions on transepithelial electrical resistance (TEER) of the Caco-
2/THP1-Blue co-cultures. TEER was measured 24 h after pre-treatment of the co-cultures, and each
24 h value was normalized to the 0 h initial value. Twenty-four-hour TEER values are presented in
(A), and normalized change scores to complete medium (CM) are presented in (B). The dotted line
labeled NaB (sodium butyrate) represents the % of the initial value for NaB following 24 h of incubation
devoid of fecal inoculum. The dotted line labeled CM represents the experimental control TEER value
following the co-culture with activated macrophages devoid of fecal inoculum. Data are plotted as
mean ± standard deviations. Statistical analysis included a two-tailed, paired t-test using the average of
the individual donors as replicates (n = 3). * These values are normalized to the CM values.

AG1-treated and control colonic suspensions increased NF-κB activity compared to
the LPS+ control (Figure 3A). However, no significant differences were observed between
the AG1 and control. Similarly, both colonic suspensions increased the anti-inflammatory
(Figure 3B,C) and pro-inflammatory cytokines (Figure 3D,E) relative to the LPS+ control. A
trend was observed with higher values for IL-6 (p = 0.0973) and IL-10 (p = 0.0714) for AG1
vs. blank control fecal inoculum. Results for the chemokines were variable, with CXCL10
non-significantly increasing (Figure 4A) and no change in MCP-1 or IL-8 (Figure 4B,C,
respectively) for AG1 vs. control.
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Figure 3. Effects of colonic suspensions on NF-KB (A), interleukin-6 (B), interleukin-10 (C), interleukin-
1 beta (D), and tumor necrosis factor-α (E). Immune biomarkers were measured 6 h after LPS
treatment on the basolateral side of the Caco-2/THP1-Blue co-cultures after pre-treatment of the
apical side for 24 h with the colonic suspensions. The black dotted line labeled LPS+ represents
the experimental control value following the LPS challenge devoid of colonic suspension. Data are
plotted as mean ± standard deviations. Statistical analysis included a two-tailed, paired t-test using
the average of the individual donors as replicates (n = 3).
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Figure 4. Effects of colonic suspensions on CXCL10 (A), monocyte chemoattractant protein-1 (B), and
interleukin-8 (C). Immune biomarkers were measured 6 h after LPS treatment on the basolateral side
of the Caco-2/THP1-Blue co-cultures after pre-treatment of the apical side for 24 h with the colonic
suspensions. The black dotted line labeled LPS+ represents the experimental control value following
the LPS challenge devoid of colonic suspension. Data are plotted as mean ± standard deviations.
Statistical analysis included a two-tailed, paired t-test using the average of the individual donors as
replicates (n = 3).
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4. Discussion

We aimed to assess the effects of AG1 and the metabolites produced following 48-h of
colonic fermentation on gut wall functioning and immune markers following an inflamma-
tory challenge using a Caco-2/THP1 co-culture model. Our results suggest that colonic
fermentation of AG1 protected against inflammation-induced barrier disruption compared
to blank control colonic suspensions. We did not observe between-group differences in any
of the measured pro- or anti-inflammatory biomarkers following the LPS challenge. The
protective aspects of gut barrier function in the AG1 group compared to the blank control,
following activated macrophages-induced inflammatory challenge, were likely driven by
the fermentation of prebiotics [43], subsequent increases in SCFAs [44], and changes to the
gut microbial community from pre- and probiotics [45,46].

The main finding of this investigation demonstrated that AG1 improved gut barrier
function by attenuating intestinal permeability following an inflammatory challenge. This
can likely be explained by our previous work [21], which reported significant increases in
SCFA production, a major byproduct of microbial fermentation [47], following AG1 treat-
ment. Specifically, total SCFAs, propionate, and acetate were significantly increased during
the 0–24 h and 0–48 h timepoint for AG1 compared to the blank control. A donor-specific
effect for butyrate was observed where butyrate was higher at all three time points (0–1 h,
0–24 h, and 0–48 h), yet only statistically significant in 2 of the 3 donors [48]. The current
experiment used stool from the same healthy donors in our previous studies [21,48], and
thus, it is reasonable to expect similar metabolic conditions in the current experiment. SCFAs
have been shown to modulate host health via tissue-specific pathways like glucose home-
ostasis, immunomodulation, and obesity, but the most compelling impact is on gut barrier
integrity [49]. Data from animal (mice, rats, and pigs) studies using challenge models of
disease (chronic kidney disease, autoimmune hepatitis, diet-induced metabolic dysfunction,
peritonitis, diarrhea, and acute liver failure) demonstrate that SCFAs restore normal barrier
function [50–53] and maintain epithelial integrity [54,55] through their beneficial effects on
tight junction proteins. Butyrate, one of the SCFAs, is an important energy source for intestinal
epithelial cells [56] and is known to regulate TJ assembly [57], thus positively enhancing the
intestinal barrier. Further, the immunomodulatory effect of the SCFAs has also been known
to enhance the intestinal barrier by regulating inflammatory processes and preserving the
functionality of the TJ proteins [58]. Taken together, it is reasonable to conclude that the
beneficial impacts AG1 had on the intestinal barrier in this study are potentially, in part,
mediated by the SCFAs produced during the fermentation of AG1.

In addition to prebiotics, probiotics have been shown to exert a significant impact on
gut barrier function [59]. Several species, like Bifidobacterium bifidum [25] and Lactobacillus
acidophilus [26,60], have been reported to improve TEER, positively influence TJ proteins,
and restore epithelial function in both animal and human cell models. Additionally, these
probiotics are important in the production of SCFAs [61,62] which can have indirect benefi-
cial effects on the gut barrier function through previously described mechanisms. There
are, however, some nuances with probiotics that can influence their efficacy. Many studies
report that the number of viable bacteria that survive the GI tract and make it to the colon
diminishes due to a plethora of factors beyond the scope of this manuscript [63]. Generally
speaking, however, L. acidophilus and B. bifidum are reported to survive the journey as
they are metabolically equipped to handle harsh environments [64,65]. Of course, the
survivability and subsequent health benefits likely to arise from the probiotic species are
also dependent on the dose the frequency of dosing. Based on the label claim and corrected
for the dosing used in the model, a total of 3.6B CFU underwent digestion and subsequent
delivery to the colonic microbiota along with other undigested components of the prod-
uct (likely protein and fibers which were not quantified) only one time (acutely). Other
aspects of the probiotic, like the type of bacteria and even the specific strain can also impact
survivability as well as efficacy of the probiotic.

AG1 is a synbiotic blend containing prebiotic phytonutrients and a probiotic blend of
Lactobacillus acidophilus (UALa-01) and Bifidobacterium bifidum (UABb-10). Direct effects on
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gut barrier integrity from cell models have been evaluated by Hsieh et al., 2015 [25] and Al-
Sadi et al., 2021 [26] where they demonstrated significant improvements in TEER following
B. bifidum or L. acidophilus supplementation, respectively. A study assessing the effects of L.
acidophilus DDS-1 in young and aging C57BL/6J mice demonstrated increases in acetate,
propionate, and butyrate [62]. In 103 adults with chronic constipation, supplementation
with 2 billion CFUs B. bifidum (CCFM16) for 28 days demonstrated increased SCFA concen-
trations compared to control, specifically acetate and butyrate [61]. Therefore, while the
maintenance of GI epithelial function in the current study may be largely attributed to the
prebiotic influence and production of SCFAs, it is likely that the probiotic species contained
in AG1 in part contributed to the heightened TEER measurements. Future in vitro studies
with larger sample sizes are needed to confirm these findings, and in vivo studies are
necessary to determine how AG1 impacts SCFA production in humans. Moreover, studies
assessing the additional mechanism of action (e.g., tight junction proteins) are needed to
understand how AG1 exerts beneficial effects on the intestinal barrier.

This study had several limitations that must be taken into consideration when in-
terpreting the results. This was a proof-of-concept study with a small sample size (n = 3)
and an acute intervention phase. The increase in anti-inflammatory cytokines (trend for
significance) following AG1 treatment is of interest to further understand the effect of
AG1 on the intestinal barrier, but the small sample sizes led to large variability in the pro-
and anti-inflammatory endpoints and larger studies are needed to adequately assess the
immunomodulatory effects of AG1. Similarly, this was an acute investigation assessing an
acute dose of AG1 on the intestinal barrier and immunomodulation. Longer-term studies
are needed to confirm these findings and examine how chronic ingestion of the synbiotic
may affect gut barrier integrity and the immune response to both acute (e.g., exercise, med-
ication) and chronic stressors (e.g., stress, poor dietary choices, disease). That being said,
the TEER model employed in this study is well-controlled and a reliable assessment of GI
integrity in vitro. Another strength of this study design is that the colonic suspensions were
taken from the SHIME model, where the test products underwent a complete simulation of
the human gastrointestinal tract before being added to the fecal inoculum. This allowed
for physiologically relevant concentrations of the test product’s metabolites to be used for
incubation and subsequent exposure to epithelial cells in the TEER experiment.

The data from this experiment, when paired with previous work, suggest that acute
supplementation with AG1 might exert protective effects on the intestinal barrier integrity,
likely via SCFA production. However, these findings must be further investigated using
larger sample sizes in vitro and clinical settings.
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