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ABSTRACT9

TransitionZero’s Solar Asset Mapper (TZ-SAM) is a global, satellite-derived dataset of utility-scale solar energy facilities
(facilities with an excess of 500kW nominal generating capacity) generated with a combination of machine learning and human
annotation. Our Q1 2024 dataset contains the location and geometry of 63,616 assets, along with estimated nominal generating
capacities. We estimate the construction date for over 80 % of these assets. The dataset contains 19,121 square kilometres of
solar energy facilities across 183 countries, with a total estimated nominal generating capacity of 711 GW. We make this and
future releases of this dataset publicly available for non-commercial use.
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1 Background & Summary11

Solar photovoltaic (PV) is the fastest growing power generation technology in history. In 2023, the world added almost 400 GW12

of solar generating capacity, a ten-fold increase on the 40GW capacity installed in 2013 a decade earlier[1, 2]. The International13

Energy Agency (IEA)’s net-zero scenario projects a substantial increase solar generation capacity, increasing from 1,200 GW14

in 2023 to an estimated 4,800 GW by 2030[3].15

16

Accurate and current facility-level data are crucial for managing intermittency, planning the grid, and identifying trade-offs17

with biodiversity, conservation, and land protection priorities due to the land-use and land-cover changes required for ongoing18

solar deployment. Currently available datasets of solar generating capacity do not fully meet these needs. Widely used19

aggregated statistics, for example those from the International Renewable Energy Agency (IRENA)[2], are country-level,20

and don’t provide the facility-level resolution required for policy, conservation, and engineering applications. Further, the21

year-lagged latency and cadence of this data cannot keep up with the needs of planners and operators that are changing with the22

speed of PV deployment.23

24

The most-complete openly-available facility-level inventories are the Global Energy Monitor (GEM)’s Global Solar Power25

Tracker (GSPT)[4] and the facility annotation in OpenStreetMap (OSM)[5]. The GSPT is a worldwide dataset of utility-scale26

PV and solar thermal facilities. It covers solar facility phases with capacities of 20 MW or more - with partial coverage of27

phases between 1 MW and 20 MW. GSPT’s gross operating generating capacity totals 551 GW - a considerable difference from28

the global aggregate total (as reported by IRENA[2]) of 1.4 TW - and much of this capacity is ‘uncertain’ or missing precise29

latitude and longitude coordinates. OSM is a free and open mapping platform. Data is crowd-sourced from amateur annotators,30

resulting in inconsistent conventions for facility footprint geometries, and sparse availability of additional features like gener-31

ating capacities. Certain geographies have much denser coverage of annotations - see Figure 1 for a map showing the distribution.32

33

Both GSPT and OSM inventories are curated by hand. This labour-intensive process results in compromises being made in34

tracked facility sizes and release schedules, and offers no guarantee of exhaustive coverage. In addition to the considerable35

challenge of keeping track of new developments manually, accurately matching announced solar facility projects with their36

on-the-ground facilities can be difficult - leading to unreliable location data critical for various user applications. This absence37

of precise facility location also hinders the ability to verify whether a project was indeed completed as anticipated, given38

instances where announced initiatives have been unexpectedly shelved.39
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40

With TZ-SAM we continue the work of using satellite imagery to build large-scale inventories of utility solar PV facilities.41

Kruitwagen et al.[6] published the first global inventory of this type, using the medium-resolution Copernicus Sentinel-2 and42

high-resolution Airbus SPOT satellites. They also enriched their data with estimates of generating capacity and installation date,43

which we also provide with our data. Their work, which we now improve upon and update, was built on the contributions of44

others, including Malof et al.[7] and Camilo et al.[8] who first used emerging Convolutional Neural Network (CNN) approaches45

to locate solar facilities in aerial imagery; Imamoglu et al.[9] who applied similar methods with medium-resolution satellite46

data; and particularly Yu et al.[10] who mapped solar facilities in the contiguous United States. Other recent work has focused47

on deployments for specific geographies, including, for example, Ortiz et al.[11] who map India or Xia et al.[12] who map China.48

49

We consider the task of inferring nominal generating capacity of a solar facility as separate to the task of locating the facility50

in satellite imagery. Capacity estimation models are well established, but make heavy use of parameters that must be estimated.51

Ong et al.[13], for example, measured the relationship between land-use intensity (i.e. the land use per unit of solar capacity)52

and the stated factors of: PV Module Efficiency, Array Configuration, and Tracking type[13]. They focus solely on the US up53

to 2012, and rely on an array of sources such as official/developer documents and third party reports. In this work, we build an54

extensive training and validation set for capacity estimation, and train an estimator with fixed-effects by country.55

56

In this work we develop a machine learning and human-validation pipeline similar to Kruitwagen et al. and deploy it on57

a global corpus of Sentinel-2 imagery as recent as 31st March 2024. We prepare a validated, enriched dataset by grouping58

polygon detections, estimating installation dates, and nominal generating capacities. Methodological enhancements relative59

to Kruitwagen et al. include quarterly compositing for improved pipeline performance and installation date estimation; an60

extensive training and test set for estimating nominal generating capacity; new validation tooling for distributed, parallel61

hand-validation; and new deployment tooling to greatly reduce the cost of a global survey. The resulting dataset has 144,62162

polygons detections, which we group into 63,616 assets with a gross estimated capacity of 711 GW. Installation dates have been63

inferred for over 80 % of these assets. Our dataset is made freely available for non-commercial use1, and is being integrated64

into future releases of the GSPT. We also intend to release periodic updates of this dataset, with this dataset being the first in a65

series.66

67

Datasets such as ours are vital for meeting the dual challenges of the 21st century - ensuring sufficient energy is available to68

meet development and welfare needs for all peoples, while transitioning to a net-zero energy system quickly enough to constrain69

anthropogenic climate change. The ongoing provision of this dataset will allow us to track progress towards these goals in70

near-real-time. The open-access nature of our data makes it available for all of society’s stakeholders including planning and71

policy-making, engineering, and investment applications.72

73

2 Methods74

Our dataset is developed using a machine learning algorithm and satellite data to identify solar energy facilities and estimation75

their generating capacities and construction dates for facilities built after 2017. This pipeline can be deployed globally, enabling76

an exhaustive view of the geographical distribution and power generation potential of utility-scale solar facilties worldwide. By77

building a new, custom dataset of nominal facility generating capacities, we can better estimate generating capacities from78

country to country, facilitating detailed research for how the energy transition is unfolding around the globe. Our methodology79

for producing this dataset can be summarised as follows:80

1. Solar Facility Detection:81

(a) Construct a training set of known solar facilties and satellite imagery.82

(b) Train a deep semantic segmentation model to predict the location and shape of a solar facility from a composite83

Sentinel-2 image.84

(c) Deploy this model on imagery covering the land surface of the Earth and process the results into candidate solar85

facility polygons.86

(d) Manually prune False Positive (FP)s from the proposed detections.87

1https://zenodo.org/records/11368204 or https://solar.transitionzero.org
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2. Solar Facility Construction Dates:88

(a) Run semantic segmentation inference through the historical imagery back-catalog for each facility.89

(b) Estimate the earliest date in which each plant is detected.90

3. Solar Facility Capacities:91

(a) Construct a training set of solar facility polygons with known capacities.92

(b) Build a model to estimate the capacity of a solar facility from shape and country information.93

(c) Apply this to our validated solar facility detections.94

2.1 External Datasets95

We describe 3 distinct models in this section: Solar Facility Detection and Segmentation model, Solar Construction Date96

Estimation model, and the Solar capacity Estimation model. The development or validation of which require the following97

external datasets:98

Satellite Data We utilised the "Sentinel-2" dataset from the European Space Agency (ESA) Copernicus Sentinel mission for99

satellite images. This dataset includes images from Sentinel-2A and Sentinel-2B satellites, offering a resolution of 10 metres100

and a 5-day revisit period at the equator. The data is accessible free of charge on the Copernicus Open Access Hub; we access it101

via the Google Cloud Platform public cloud storage bucket. We process quarterly sets of sentinel-2 images into composites for102

both our training and inference datasets. We filter for cloud coverage and atmospheric conditions prior to compositing, allowing103

us to avoid the overhead of multiple rounds of model inference per location. We start by selecting Sentinel-2 image tiles based104

on cloud coverage and date. We then filter these images to select the least cloudy and most recent images and generate a simple105

median composite from up to 5 images. The time span for creating composite images can be adjusted to suit specific tasks.106

Larger time spans may improve image quality but might lose recent information. Since dataset recency is one of the aims of107

this tool, we default to quarterly (i.e. 3-month) composites unless otherwise specified.108

Solar Polygon Data We used OSM, a free and open crowd-sourced mapping tool, as our primary training set for solar plant109

geometries. This platform allows users to map solar facilities or even individual solar panels, providing detailed data. The110

quality and completeness of this data varies based on local user activity. We scrape over 2 million solar installation geometries111

from OSM. Of these, we retain only those larger than 1,000 m2. This results in a training set of around 122 k polygons. We112

further collect a globally distributed set of 20,000 ’hard negative’ images that do not contain solar plants to reduce the number113

of FPs generated by the model at inference time. A summary illustration of the data collected and its global distribution can be114

found in Figure 1. For evaluating model performance we use the test-set developed by Kruitwagen et al. This high-quality115

timestamped polygon dataset is formed by exhaustive manual inspection of large areas of interest in satellite imagery. This116

dataset covers approximately half a million km2 of globally-diverse areas-of-interest and identifies 7,263 solar projects. Testing117

against this dataset allows us to understand our false negative rate: how many solar facilities exist that we are unable to detect.118

Figure 2 shows a sample of the areas selected for manual inspection across Europe.119

Asset Level Solar Capacity Data Our primary source for asset level solar capacity data used in our modelling is from120

OSM. Capacity values, attached to either solar ‘nodes’ or ‘ways’ under tags capacity, plant:output:electricity, or genera-121

tor:output:electricity, require a degree of processing prior to use. We apply a range of checks to extract outliers and ensure122

consistent units and formatting. For a sample of a few hundred cases we were able to cross-check these values with those of123

GEM listed plants validating the process. This yielded several thousand solar facilities from OSM with both a listed capacity124

and defined boundary polygon.125

Aggregate Level Solar Capacity Data Aggregate level, either country or global, data is used in this study for benchmarking126

and validation purposes. There are three sources used: GEM’s GSPT, Standard & Poor’s (S&P)’s Global Commodity Insights127

(GCI) and IRENA. As previously discussed GSPT is an asset level dataset with global coverage of solar facility phases128

exceeding a capacity of 20 MW or more and partial coverage of assets between 1 MW and 20 MW. Assets are tracked via129

government data, company statements, media reports and other non-governmental organisations[14]. New data releases are130

produced on a bi-annual update schedule. The GCI is an information provider for the energy and commodities markets. It131

provides project level capacity estimates and installation forecasts with information sourced from market surveys and industry132

reports. Lastly, IRENA provides national level statistics based on official government data either sourced from national reports,133

surveys or via informed estimates based on analysis and is updated on an annual basis with a year delay in reported data[15].134
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2.2 Solar Facility Detection and Segmentation135

To develop our utility solar PV asset database we utilised a CNN based approach. A CNN is a machine learning technique that136

is typically applied to image data which itself is capable of learning features. This is combined with a UNet architecture which137

is capable of utilising these learned features to generate a segmentation mask. This will, for example, define the likelihood of138

any given pixel belonging to the solar PV class. In this section we will outline the approach utilised in developing the solar PV139

segmentation model and the results of this process.140

Model Training Our training process uses CNN for image processing tasks. We utilise two libraries: segmentation_models.pytorch141

and TorchGeo. We train our models using a Sentinel-2 image and solar mask derived from OSM datasets. Our best model142

uses the UNet++ encoder-decoder architecture with ResNet-50 encoder. This encoder is pretrained on Sentinel-2-derived143

SSL4EO-S12 dataset using a Momentum Contrast task. These weights are published under the CC-BY-4.0 licence by Wang et144

al[16]. We split the data into non-overlapping subsets, allowing us to train and predict on distinct geographical regions. Our145

segmentation model serves two purposes: finding solar facilities (detection) and drawing boundaries around them (segmenta-146

tion). We measure its performance on both tasks across multiple size bins, noting that performance is likely to be a strong147

function of plant size. We evaluate our models on the detection task using plant-level recall, and on the segmentation task148

using the Intersection Over Union (IOU) and pixel-level precision. We want to generate the most complete (i.e., highest recall)149

dataset possible. This is a trade off against precision. The lower the precision, the more time and resources will be spent on150

manual verification work. Following experimentation, we opt to binarise our predictions at a threshold of 0.95. This yields high151

precision for the 1-100+ MW ranges while maintaining a relatively high plant recall. From this we expect to find around 70 %152

of plants between 1 and 20 MW and 90 % of plants above 20 MW.153

154

Model Inference For a global inference run we collect satellite images for the entire land surface of the earth between +70155

and -60 latitude. We process around 3 million image chips, each covering a 2.5 by 2.5 km square, with our best performing156

segmentation model and apply a threshold to produce a binary mask. We process this mask with an erode-dilate step to smooth157

borders and remove very small predictions. We convert each contiguous detection into a geo-referenced polygon and save it to158

our database for further processing. This pipeline processes around 100 TB of Sentinel-2 data for a global deployment. We run159

inference in 16 hours on 2,000 CPUs at an approximate cost of £600 per run.160

Manual Pruning Each global inference run produces several hundred thousand polygons. We expect our model to generate161

FPs. For large polygons (100+ MW) we expect around 10 % of detections to be false. For small polygons (<1 MW) this rises to162

around 90 %. To maximise the utility of our dataset, every polygon we publish is reviewed either manually or by reference with163

existing polygon datasets. Due to the scale of the task we built an in-house labelling tool which allowed for user processing164

speeds of up to 3,000 images per hour. The outputs of this validation step are a human verified label for a given polygon -165

True, False or Unknown. An illustration of the tool as presented to the labellers is displayed in Figure 3. Instructions and logs166

are provided in the terminal while the user is presented with 2 images for each polygon: a close up fit to the polygon size,167

and a wider shot to provide contextual information. The first release of this dataset required approximately 400,000 manual168

validations, at around 10 full days worth of labelling work. While this is significant, it is far less than the manual work required169

to construct a traditional asset-level dataset of a similar size.170

2.3 Solar Construction Date Estimation171

Much of the tooling developed for the Solar Facility Detection and Segmentation task was of use in the estimation of solar172

construction dates. By analysing the confidence of our solar detections over time, across a set of defined periods, we were173

able to infer plant construction. The value of this attribute is to allow for interpretations of changes in global, national and174

region-level solar capacity over time. It also has downstream applications for estimating the efficiency and expected retirement175

date of a facility. An inherent limitation of this approach is that construction date estimates are only available from 2017176

onwards, owing to the relatively recent deployment dates for the Sentinel-2 satellites.177

Model Training For model training we opted to develop our own training set due to the increased confidence this provided178

us in precise construction dates. To achieve this we made use of a modified version of the quicklabel tool (see Figure 3) to179

present the user with a series of Sentinel-2 based images for known solar plants. For this task 1,000 composite images were180

sampled from our validated correct solar detections back through time until 2017. We generate annual composites for each year181

from 2017 to 2022 inclusive, and quarterly composites for 2023 and beyond. The user is then required to annotate the first182

instance/period that a completed solar facility is present. Labelled data is then split into a training set that was used to develop183

the model and a testing set which was used to evaluate model performance. Model selection was an experimental process and184

best results were produced by monitoring segmentation overlap of the historical mask with the most recent prediction. When185

this overlap increases above 10 %, we mark the plant as constructed.186
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Model Inference At inference time we submit a list of positive assets as confirmed by the capacity model and already pruned187

via our manual verification process. This selective approach substantially reduces the cost compared to applying a global188

inference run at each historical time point. For each facility we estimate the construction date by determining an upper and189

lower bound. The upper bound is the date of the image in which the plant was first seen in a constructed state, and the lower190

bound is the date of the image in which the plant was last seen in an unconstructed state.191

2.4 Solar Capacity Estimation192

We train an additional model to estimate the capacities of the facilities we detect. The Alternating Current (AC) capacity of a193

plant is calculated using the following formula:194

CAC = A× I ×η ×GCR× ILR (1)

where CAC is the AC capacity of the plant, A is the Plant Footprint (m2), the total area occupied by the solar plant. I is the195

Nominal Solar Irradiance (applied at 1 kW
m2 ), the amount of solar power received per unit area. η is the Panel Efficiency (10-20196

%), the efficiency with which the solar panels convert solar irradiance into electrical power. GCR is the Ground Coverage Ratio197

(GCR), the ratio of the total panel area to the total plant footprint, typically ranging from 20-80 %. ILR is the Inverter Loading198

Ratio (ILR), the ratio of the AC capacity to the Direct Current (DC) capacity of the plant. Previous work in the area tended199

to use global assumptions for the panel efficiency, GCR and ILR. We conducted an analysis into these assumption finding200

that GCR varies substantially country-to-country and for different plant sizes (see Figure 4). As a direct result we applied201

improvements upon this previous approach by using a model that accounts for these factors.202

Model Training To achieve these improvements we generate a dataset of over 7,000 solar facility polygons linked to capacities203

from OSM. Around a third of these were contributed by labelling organised by GEM. OSM is known to have occasional data204

reliability issues. We clean the dataset by first deriving the approximate GCR of each plant and removing any plants that fall205

outside of the range 5-95 %. We also exclude plants below 1,000 m2. Finally, we manually inspect any remaining outliers206

and remove any that are clear annotation mistakes. The resulting dataset allows us to study solar plant ground coverage ratios207

in detail. We use 5-fold cross-validation to estimate the expected performance of our model on unseen data, with each fold208

containing a similar distribution of solar facility sizes and country locations. We optimise model performance against the Root209

Mean Squared Error (RMSE) validation metric.210

Model Inference Given a geo-referenced solar asset in the form of a polygon or multipolygon we are able to make an211

inference on its associated capacity. This is designed such that it can work efficiently with the output of our Solar Facility212

Detection and Segmentation model or any other polygon based dataset.213

3 Data Records214

This section provides details on the data records associated with this work. It includes a description of each data file, its215

format, and its location in the repository. Each external data record is cited numerically within the text and referenced in216

the main reference list. Additionally, data citations are placed in the Methods section, specifying the data-collection or217

analytical procedures used. Our analysis-level dataset provides a comprehensive view of global asset-level solar installations,218

incorporating our detections and known solar facility geometries from external datasets. The analysis-level datasets mask219

underlying complexities, which we expose in the raw_polygons and sources files. These files capture overlapping and220

clustered geometries, essential for tracking raw detections and providing detailed sourcing information. Our clustering process221

combines overlapping and nearby geometries from various sources, including large solar facilities from OSM and validated222

geometries from Kruitwagen et al.[6]. Each cluster in the analysis-level dataset corresponds to a single row. To facilitate223

traceability and sourcing, we provide the raw polygons and a source file detailing the contents of each analysis-level polygon.224

Our files are located in the following file formats and online repositories, specific contents can be found in listed tables:225

analysis_polygons.gpkg226

Description: Our primary "analysis-ready" dataset with geometries, capacities, and construction dates.227

Format: GeoPackage (.gpkg)228

Location:229

https://zenodo.org/records/11368204/files/2024Q1_final_analysis_polygons.gpkg230

Table: 1231

analysis_polygons.csv232

Description: A .csv version of analysis_polygons.gpkg, facilitating parsing without geospatial software.233

Format: Comma-Separated Values (.csv)234

Location:235
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https://zenodo.org/records/11368204/files/2024Q1_final_analysis_polygons.csv236

Table: 2237

sources.csv238

Description: A table mapping the IDs of the analysis-ready dataset to the source specific IDs comprising them.239

Format: Comma-Separated Values (.csv)240

Location:241

https://zenodo.org/records/11368204/files/2024Q1_final_sources.csv242

Table: 3243

raw_polygons.gpkg244

Description: A table mapping the source IDs to the raw geometries comprising them.245

Format: GeoPackage (.gpkg)246

Location:247

https://zenodo.org/records/11368204/files/2024Q1_final_raw_polygons.gpkg248

Table: 4249

4 Technical Validation250

The integration of segmentation, capacity and construction date modelling have been used to create an exhaustive and rich dataset of the251

world’s solar energy facilities. By training the capacity model on a diverse range of solar installations we have created an accurate and252

scalable approach to deliver global capacity estimates. Here we discuss the validation of our approach and the resulting dataset and present253

considerations for improvement and any avenues that may be taken in further work.254

Segmentation Model Despite the low-resolution limitations of satellite images, which impede the detection of smaller installations,255

the CNN segmentation model demonstrates a promising capacity for distinguishing solar arrays within varied landscapes. Additional256

considerations such as atmospheric conditions like cloud cover at times impeded image clarity and may have subsequently biased the model257

towards predictions of larger installations. Image compositing was introduced to overcome the limitations of atmospheric conditions and258

low-resolution imagery. Composite images substantially improved modelling performance but brought introduces a temporal lag whereby259

sufficient imagery must accumulate before a sufficiently clear composite can be made.. In some cases a composite may consist of several260

images which can result in recent changes - such as the development of a solar facility - being lost. The effectiveness of this model to capture261

very recent solar developments, say in the last few months prior to deployment, is still being explored.262

263

Model performance is assessed against a range of metrics and for varying plant capacity values against the test dataset developed by264

Kruitwagen et al. This gives us a strong indication of what to expect from our model in practice. We were able to optimise our model to265

maximise recall while minimising precision loss based on these results. We show the results in Figure 5 where the IOU, precision and266

plant-level recall are broken into multiple bins according to plant size. The majority of global capacity is covered by the 20-100 MW and267

100 MW+ bins, while the 1-10 MW and 10-20 MW bins contain large numbers of plants not published elsewhere. The total number of268

detection’s are dominated by these smaller bins. After model inference our dataset underwent a manual pruning effort to remove FP from the269

dataset - however some challenges remain due to the difficulty of manually validating detections in 10 m satellite imagery. To estimate final270

FP prevalence throughout the data a subset of approximately 2,000 detections were selected at random from our positively labelled solar271

assets. Each of these were validated through a higher degree of scrutiny utilising high-resolution imagery - yielding a rate of FPs at around 1 %.272

273

Capacity Model The capacity modelling framework offers a detailed methodology for estimating the power output potential of identified274

solar facilities and offers an approach that goes above scaling of a bounded polygon area. The DC capacity of a solar panel is the product275

of its size, local solar irradiance, and its efficiency. For a solar facility made up of multiple arrays, the total surface area of the arrays is276

often expressed as the ground area of the plant multiplied by its GCR — the ratio of array area to ground area. For utility-scale solar that is277

connected to the grid we are often concerned with its AC capacity, which is additionally dictated by the size of its inverter - standard practice278

in this case being to size the inverter 10-30 % smaller than the DC capacity of the plant. Our model expands upon previous efforts to estimate279

capacity by recognition of the influence country and plant size have on the GCR (see Figure 4). To evaluate the performance of our model we280

apply the RMSE metric which is a measure of the difference between the predicted and actual values. It is calculated by taking the square281

root of the average of the squared differences between the predicted and actual values. We select the model with the best RMSE on plants282

between 0.01–0.1 km2 (around 1–10 MW) since this is the region where we expect our pipeline to be most useful. Secondly, we select for283

models with good performance on larger plants and less complexity. Table 5 shows our model performance according to the RMSE metric284

(average of 5-fold cross-validation) for all samples across our testing set. We compare our model performance to that of the constant GCR285

model for plants across three bins: ≤0.01 km2, 0.01–0.1 km2, and >0.1 km2. These bins correspond to plants with capacities approximately286

of ≤1 MW, 1-10 MW, and >10 MW respectively. We see that our model outperforms the constant GCR model across the larger two bins287

while there is little to no difference in the smallest bin. This is a substantial improvement on the constant GCR model particularly in the larger288

bins which are of greatest importance as they correspond to a larger share of overall global solar PVcapacity. There are still limitations in this289

approach however as it relies only on geo-referenced polygons as a basis for capacity estimates. This can introduce complexities in cases with290

unusual or nuanced solar facility layouts - plants with unusually high or low ground coverage ratios will not have accurate capacity estimates.291
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Additionally, the model has no way to distinguish between plant technology types, e.g. dual-axis-tracking or fixed, plant in the same country292

which will impact solar capacity over a given footprint even with a known GCR (an example illustration in Figure 6).293

294

Construction Date Model Understanding the construction dates of solar facilities is crucial for various analyses, including assessing295

changes in solar capacity over time and estimating the potential lifetime of existing plants. We develop a model pipeline to predict the296

construction dates of solar plants using quarterly time series predictions spanning from 2017 to 2024. This approach provides valuable297

insights into the change of solar infrastructure. We estimate the construction date of a plant based on estimating an upper and lower bound298

where the range signifies the possible period in which the solar facility was constructed. For plants that were constructed before the launch299

date of Sentinel-2 in 2017, we produce only an upper bound. This process allows us to measure construction dates to the nearest quarter for300

more recent plants. The results of this work are assessed by way of an in-house developed validation set of 1,000 solar facilities. Figure 7301

shows the output of these results. The model predicts the exact period (year) 92 % of the time and the one-off-error (within ±1 year) of 97.8302

%. There are some limitations and caveats associated with our methodology that should be considered. For example, the predictions are303

based on quarterly composite images, which may be taken from any period within each quarter. This introduces uncertainty regarding the304

precise timing of plant construction within the detected quarter. Consequently, our predicted date represents the earliest quarter in which305

the plant was identified by the model, rather than the exact construction date. It is plausible that the plant could have been built earlier,306

potentially in the preceding quarter. Additionally, since our dataset begins in 2017, we cannot determine the construction dates of plants307

built prior to this year. This temporal constraint restricts the applicability of our model to historical solar infrastructure. If a solar plant is308

detected in every time frame considered, it is likely to have been built prior to 2017, and we are therefore unable to predict its construction309

date. Lastly, we provide an estimated error range or confidence interval associated with our predictions not a specific date. While we aim310

to provide construction dates to the nearest year or quarter, there may be inherent uncertainties in the model outputs, leading to a margin of error.311

312

TZ-SAM Dataset Overall our top-level datasets contain 63,616 assets, with a total area of 19,121 km2 and a total estimated capacity of313

711 GW. Each of these assets have been validated either by reference with an existing dataset, or by manual inspection. For each solar asset314

we provide a capacity estimate which ranges from 0.4 MW for the smallest asset and 5,044 MW for the largest. In total 87 % of these are315

provided with a construction date range. In order to validate our work we make efforts to compare our dataset to other asset and country level316

datasets that are available. Firstly, we analyse our data compared to GEM’s GSPT asset level dataset according to capacity ranges (see figure317

8). Solar PV facilities are split into the following groups based on their capacity sizes: 0-1, 1-10, 10-20, 20-100, 100+ MW. For the GSPT an318

asset can either be ‘exact’ where the location of the plant is precisely known and can be located on a map, or ‘approximate’ where the location319

of a plant is typically given as the centroid of its listed country or region. All of our own assets are exactly geo-located and we therefore320

compare to both stated values for clarity. In total we find 63,616 solar facilities at an estimated capacity of 711 MW compared to GEM’s321

24,024 facilities with stated capacity of 681 MW. Assets with “approximate” locations comprise 42 % of GEM’s total listed assets and 64 %322

of their listed capacity. Our overall estimated capacity is higher than GSPT, however the breakdown shows that this is attributed to greater323

capacity in the 0-20 MW ranges while our capacity for larger sized plants is lower. It can generally be observed that TransitionZero (TZ)324

capacity estimates are lower when adjusting for facility count within a given capacity group. Our predicted capacity per facility is on average325

between 76 % and 89 % that of GSPT depending on the group in question. Secondly we make efforts to compare to country level aggregate326

datasets. This is both in the form of direct comparisons, such as in Table 6 and Table 7 in addition to an analysis of solar PV development327

over time as in Figure 7. For direct comparisons against GSPT, GCI and IRENA we see that ours is close to that of GSPT in all of Global,328

USA, China and EU27+GB regions. As initially implied in Figure 8, this breakdown reinforces that we find more capacity when looking at329

<5 MW range but shows consistency across all regions. Our data shows markedly greater capacity relative to the GCI dataset in almost all330

categories except the USA in which results are comparable. IRENA serves as an approximate upper bound for capacity comparisons. Values331

are sourced from government or privately reported statistics or surveys and then validated based on expert opinion and trends. Despite this it332

demonstrates our relative model performance in each region, indicating that we perform relatively best in the USA, capturing 75 % of the333

IRENA stated capacity. In Table 7 compare our values against IRENA for the top 20 countries according to total capacity. We can also utilise334

our construction date estimates to form a regional trend analysis as illustrated in Figure 7. This highlights that we are capturing the relative335

development of solar in each region in line with IRENA’s published figures while operating at an improved recency with our dataset release336

from an annual to quarterly lag.337
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Figures & Tables372

Figure 1. A map visualising the distribution of our OSM sample set. This numbers 122 k in total. The top 3 countries by
sample count are USA (19 k), Japan (12 k), and Germany (10 k). In contrast (not displayed) by aggregate solar PV area the
largest country is China (2,500 km2) followed by USA (1,500 km2) and India (800 km2).

Figure 2. A sample of geometries covered in Kruitwagen et al.’s hand-labelled test set[? ]. Within each red geometry an
exhaustive search for utility solar facilities was performed which produced a high quality and high confidence data set for
testing purposes.
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Figure 3. An overview of the TZ Quicklabel tool. Developed in-house, it allowed for a substantial degree of customisation
which was required to complete the labelling task efficiently. Top left: the initial terminal display. Bottom right: a sample
image provided to the labellers for a given solar PV predicted polygon (note the polygon outlined in red).

Figure 4. A comparison of four countries and their associated mean GCR for solar PV facilities of different sizes.
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Figure 5. Performance of model by plant capacity and threshold.

Figure 6. Left: a dual axis facility. Right: a static facility. The static facility has a notably higher GCR and therefore greater
capacity. This is not directly captured however. GCR - and by extension capacity - estimates for both of these facilities are
based on the size of the facility and country of origin.
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Figure 7. A comparison of solar PV capacity expansion for the United States of America (USA), China (CHN) and Rest of
World (RoW). Expansion rates are compared between TZ and IRENA with values relative to start of 2023. Prior to 2023 TZ
construction date model runs were conducted at annual cadence, Since 2023 model runs are conducted at quarterly cadence.

Figure 8. A comparison of total identified solar PV capacity between TZ and GEM’s GSPT (filtered for operating plants only)
for different capacity ranges. The GEM dataset is split into facilities with “exact” and “approximate” location accuracy. These
two categories are combined in the 0-1 MW group for visibility.
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Figure 9. A demonstration of the construction date model performance on a set of 377 known utility scale solar PV facilities.
It achieves an accuracy of 92 % to the correct time period.

Table 1. Fields in analysis_polygons.gpkg.

Field Type Description

id INTEGER Unique ID for the asset.
geometry GEOMETRY Polygon or MultiPolygon defining the asset.
capacity_mw FLOAT Estimated capacity of the asset in megawatts.
constructed_before DATE Upper bound for construction date.
constructed_after DATE Lower bound for construction date.

Table 2. Fields in analysis_polygons.csv.

Field Type Description

id INTEGER Unique ID for the asset.
latitude FLOAT Latitude of the centroid of the asset.
longitude FLOAT Longitude of the centroid of the asset.
country TEXT Administrative country name.
capacity_mw FLOAT Estimated capacity of the asset in megawatts.
constructed_before DATE Upper bound for construction date.
constructed_after DATE Lower bound for construction date.

Table 3. Fields in sources.csv.

Field Type Description

cluster_id INTEGER Corresponding ID from analysis_polygons.*.
source_id INTEGER Source specific ID of the raw polygon.
source TEXT Original source of the raw polygon.
acquisition_date DATE Detection/acquisition date of the asset.
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Table 4. Fields in raw_polygons.gpkg.

Field Type Description

id INTEGER Source specific ID of the raw polygon.
geometry GEOMETRY Polygon or MultiPolygon defining the asset.
source TEXT Original source of the raw polygon.
acquisition_date DATE Detection/acquisition date of the asset.

Table 5. Solar capacity model cross-validation performance by plant size. Here we compare two models: TZ capacity model
and the Constant GCR model for different plant size ranges. Capacity range is given as a guideline based on the Area range.
Capacity varies according to geographical location in addition to area and is therefore not directly proportional.

Range

Plant size Area, km2 ≤0.01 0.01–0.1 >0.1
Approximate Capacity, MW ≤1 1–10 >10

TZ capacity model RMSE, MW 0.15 1.05 20.40
Constant GCR capacity model RMSE, MW 0.15 1.36 46.49

Table 6. Comparison of Solar Generating Capacity Datasets

Global USA China EU27+GB
<5MW >=5MW <5MW >=5MW <5MW >=5MW <5MW >=5MW

TZ-SAM 85 GW 626 GW 11 GW 93 GW 1 GW 246 GW 32 GW 87 GW
(41,979) (21,637) (5,649) (2,447) (5,440) (6,706) (16,646) (5,566)

GEM1 22 GW 666 GW 7 GW 72 GW 0.004 GW 294 GW 14 GW 119 GW
(9,695) (12,612) (3,120) (1,831) (2) (4,003) (6,086) (2,964)

S&P Global2 16 GW 308 GW 8 GW 95 GW 0.1 GW 39 GW 5 GW 46 GW
(7,594) (7,129) (4,160) (2,293) (57) (510) (2,025) (1,957)

IRENA3 1,419 GW 139 GW 610 GW 272 GW

A Figures in parentheses indicate the number of facilities in the dataset.
1 Global Energy Monitor (2023), Global Solar Tracker[4]. Figures presented in this table include all ’certain’ and ’uncertain’ facilities.

Data from Luxembourg, Malta, and Slovenia are not present. TransitionZero is currently working with GEM to include TZ-SAM in
future GEM Solar Tracker releases.

2 S&P Global Commodity Insights (2024), Global Clean Energy Technology[17]. 6,491 solar assets do not have a capacity estimation and
are excluded from analysis.

3 IRENA (2024), Renewable Capacity Statistics[2]. IRENA provides aggregate country-level capacities only.
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Table 7. A comparison of total identified solar in IRENA (2024) and TZ (April 2024) datasets. Top 20 largest countries by TZ
capacity are shown.

Country
Code IRENA (2024) TZ (Apr 2024)

CHN 609,350 255,089
USA 137,725 104,012
IND 72,766 54,472
JPN 87,068 38,315
ESP 28,712 26,561
DEU 81,737 24,967
AUS 33,680 15,069
ITA 29,789 13,436
BRA 37,449 13,037
TUR 11,291 11,574
GBR 15,656 11,540
MEX 10,893 10,796
FRA 20,542 9,935
CHL 8,366 9,604
VNM 17,077 9,358
KOR 27,046 7,130
UKR 8,062 5,366
ZAF 5,664 5,083
NLD 23,904 5,039
POL 15,809 4,622
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