

D Next.js v14 n
ocumentatio
Date: 2023-12-27

Table of Contents
1 - Introduction
2 - Getting Started
2.1 - Installation
2.2 - Next.js Project Structure
3 - App Router
3.1 - Building Your Application
3.1.1 - Routing Fundamentals
3.1.1.1 - Defining Routes
3.1.1.2 - Pages and Layouts
3.1.1.3 - Linking and Navigating
3.1.1.4 - Route Groups
3.1.1.5 - Dynamic Routes
3.1.1.6 - Loading UI and Streaming
3.1.1.7 - Error Handling
3.1.1.8 - Parallel Routes
3.1.1.9 - Intercepting Routes
3.1.1.10 - Route Handlers
3.1.1.11 - Middleware
3.1.1.12 - Project Organization and File Colocation
3.1.1.13 - Internationalization
3.1.2 - Data Fetching
3.1.2.1 - Data Fetching, Caching, and Revalidating
3.1.2.2 - Server Actions and Mutations
3.1.2.3 - Patterns and Best Practices
3.1.3 - Rendering
3.1.3.1 - Server Components
3.1.3.2 - Client Components
3.1.3.3 - Server and Client Composition Patterns
3.1.3.4 - Edge and Node.js Runtimes
3.1.4 - Caching in Next.js
3.1.5 - Styling
3.1.5.1 - CSS Modules
3.1.5.2 - Tailwind CSS
3.1.5.3 - CSS-in-JS
3.1.5.4 - Sass
3.1.6 - Optimizations
3.1.6.1 - Image Optimization
3.1.6.2 - Font Optimization
3.1.6.3 - Script Optimization
3.1.6.4 - Metadata
3.1.6.5 - Static Assets
3.1.6.6 - Lazy Loading
3.1.6.7 - Analytics
3.1.6.8 - OpenTelemetry
3.1.6.9 - Instrumentation
3.1.6.10 - Third Party Libraries
3.1.7 - Configuring
3.1.7.1 - TypeScript
3.1.7.2 - ESLint
3.1.7.3 - Environment Variables
3.1.7.4 - Absolute Imports and Module Path Aliases
3.1.7.5 - Markdown and MDX
3.1.7.6 - src Directory
3.1.7.7 - Draft Mode
3.1.7.8 - Content Security Policy
3.1.8 - Testing
3.1.8.1 - Setting up Vitest with Next.js
3.1.8.2 - Setting up Jest with Next.js
3.1.8.3 - Setting up Playwright with Next.js
3.1.8.4 - Setting up Cypress with Next.js
3.1.9 - Deploying
3.1.9.1 - Static Exports

3.1.10 - Upgrade Guide
3.1.10.1 - Codemods
3.1.10.2 - App Router Incremental Adoption Guide
3.1.10.3 - Version 14
3.1.10.4 - Migrating from Vite
3.2 - API Reference
3.2.1 - Components
3.2.1.1 - Font Module
3.2.1.2 - <Image>
3.2.1.3 - <Link>
3.2.1.4 - <Script>
3.2.2 - File Conventions
3.2.2.1 - Metadata Files API Reference
3.2.2.1.1 - favicon, icon, and apple-icon
3.2.2.1.2 - manifest.json
3.2.2.1.3 - opengraph-image and twitter-image
3.2.2.1.4 - robots.txt
3.2.2.1.5 - sitemap.xml
3.2.2.2 - default.js
3.2.2.3 - error.js
3.2.2.4 - layout.js
3.2.2.5 - loading.js
3.2.2.6 - not-found.js
3.2.2.7 - page.js
3.2.2.8 - Route Segment Config
3.2.2.9 - route.js
3.2.2.10 - template.js
3.2.3 - Functions
3.2.3.1 - cookies
3.2.3.2 - draftMode
3.2.3.3 - fetch
3.2.3.4 - generateImageMetadata
3.2.3.5 - Metadata Object and generateMetadata Options
3.2.3.6 - generateSitemaps
3.2.3.7 - generateStaticParams
3.2.3.8 - generateViewport
3.2.3.9 - headers
3.2.3.10 - ImageResponse
3.2.3.11 - NextRequest
3.2.3.12 - NextResponse
3.2.3.13 - notFound
3.2.3.14 - permanentRedirect
3.2.3.15 - redirect
3.2.3.16 - revalidatePath
3.2.3.17 - revalidateTag
3.2.3.18 - unstable_cache
3.2.3.19 - unstable_noStore
3.2.3.20 - useParams
3.2.3.21 - usePathname
3.2.3.22 - useReportWebVitals
3.2.3.23 - useRouter
3.2.3.24 - useSearchParams
3.2.3.25 - useSelectedLayoutSegment
3.2.3.26 - useSelectedLayoutSegments
3.2.3.27 - userAgent
3.2.4 - next.config.js Options
3.2.4.1 - appDir
3.2.4.2 - assetPrefix
3.2.4.3 - basePath
3.2.4.4 - compress
3.2.4.5 - devIndicators
3.2.4.6 - distDir
3.2.4.7 - env
3.2.4.8 - eslint
3.2.4.9 - exportPathMap (Deprecated)

3.2.4.10 - generateBuildId
3.2.4.11 - generateEtags
3.2.4.12 - headers
3.2.4.13 - httpAgentOptions
3.2.4.14 - images
3.2.4.15 - incrementalCacheHandlerPath
3.2.4.16 - logging
3.2.4.17 - mdxRs
3.2.4.18 - onDemandEntries
3.2.4.19 - optimizePackageImports
3.2.4.20 - output
3.2.4.21 - pageExtensions
3.2.4.22 - Partial Prerendering (experimental)
3.2.4.23 - poweredByHeader
3.2.4.24 - productionBrowserSourceMaps
3.2.4.25 - reactStrictMode
3.2.4.26 - redirects
3.2.4.27 - rewrites
3.2.4.28 - serverActions
3.2.4.29 - serverComponentsExternalPackages
3.2.4.30 - trailingSlash
3.2.4.31 - transpilePackages
3.2.4.32 - turbo (Experimental)
3.2.4.33 - typedRoutes (experimental)
3.2.4.34 - typescript
3.2.4.35 - urlImports
3.2.4.36 - webVitalsAttribution
3.2.4.37 - Custom Webpack Config
3.2.5 - create-next-app
3.2.6 - Edge Runtime
3.2.7 - Next.js CLI
4 - Pages Router
4.1 - Building Your Application
4.1.1 - Routing
4.1.1.1 - Pages and Layouts
4.1.1.2 - Dynamic Routes
4.1.1.3 - Linking and Navigating
4.1.1.4 - Custom App
4.1.1.5 - Custom Document
4.1.1.6 - Custom Errors
4.1.1.7 - API Routes
4.1.1.8 - Internationalization (i18n) Routing
4.1.1.9 - Authenticating
4.1.1.10 - Middleware
4.1.2 - Rendering
4.1.2.1 - Server-side Rendering (SSR)
4.1.2.2 - Static Site Generation (SSG)
4.1.2.3 - Automatic Static Optimization
4.1.2.4 - Client-side Rendering (CSR)
4.1.2.5 - Edge and Node.js Runtimes
4.1.3 - Data Fetching
4.1.3.1 - getStaticProps
4.1.3.2 - getStaticPaths
4.1.3.3 - Forms and Mutations
4.1.3.4 - getServerSideProps
4.1.3.5 - Incremental Static Regeneration
4.1.3.6 - Client-side Fetching
4.1.4 - Styling
4.1.4.1 - CSS Modules
4.1.4.2 - Tailwind CSS
4.1.4.3 - CSS-in-JS
4.1.4.4 - Sass
4.1.5 - Optimizations
4.1.5.1 - Image Optimization
4.1.5.2 - Font Optimization

4.1.5.3 - Script Optimization
4.1.5.4 - Static Assets
4.1.5.5 - Lazy Loading
4.1.5.6 - Analytics
4.1.5.7 - OpenTelemetry
4.1.5.8 - Instrumentation
4.1.5.9 - Third Party Libraries
4.1.6 - Configuring
4.1.6.1 - TypeScript
4.1.6.2 - ESLint
4.1.6.3 - Environment Variables
4.1.6.4 - Absolute Imports and Module Path Aliases
4.1.6.5 - src Directory
4.1.6.6 - Markdown and MDX
4.1.6.7 - AMP
4.1.6.8 - Babel
4.1.6.9 - PostCSS
4.1.6.10 - Custom Server
4.1.6.11 - Draft Mode
4.1.6.12 - Error Handling
4.1.6.13 - Debugging
4.1.6.14 - Preview Mode
4.1.6.15 - Content Security Policy
4.1.7 - Testing
4.1.7.1 - Setting up Vitest with Next.js
4.1.7.2 - Setting up Jest with Next.js
4.1.7.3 - Setting up Playwright with Next.js
4.1.7.4 - Setting up Cypress with Next.js
4.1.8 - Deploying
4.1.8.1 - Going to Production
4.1.8.2 - Static Exports
4.1.8.3 - Multi Zones
4.1.8.4 - Continuous Integration (CI) Build Caching
4.1.9 - Upgrading
4.1.9.1 - Codemods
4.1.9.2 - From Pages to App
4.1.9.3 - Version 14
4.1.9.4 - Version 13
4.1.9.5 - Version 12
4.1.9.6 - Version 11
4.1.9.7 - Version 10
4.1.9.8 - Upgrading to Version 9
4.2 - API Reference
4.2.1 - Components
4.2.1.1 - Font Module
4.2.1.2 - <Head>
4.2.1.3 - <Image> (Legacy)
4.2.1.4 - <Image>
4.2.1.5 - <Link>
4.2.1.6 - <Script>
4.2.2 - Functions
4.2.2.1 - getInitialProps
4.2.2.2 - getServerSideProps
4.2.2.3 - getStaticPaths
4.2.2.4 - getStaticProps
4.2.2.5 - NextRequest
4.2.2.6 - NextResponse
4.2.2.7 - useAmp
4.2.2.8 - useReportWebVitals
4.2.2.9 - useRouter
4.2.2.10 - userAgent
4.2.3 - next.config.js Options
4.2.3.1 - assetPrefix
4.2.3.2 - basePath
4.2.3.3 - compress

4.2.3.4 - devIndicators
4.2.3.5 - distDir
4.2.3.6 - env
4.2.3.7 - eslint
4.2.3.8 - exportPathMap
4.2.3.9 - generateBuildId
4.2.3.10 - generateEtags
4.2.3.11 - headers
4.2.3.12 - httpAgentOptions
4.2.3.13 - images
4.2.3.14 - onDemandEntries
4.2.3.15 - output
4.2.3.16 - pageExtensions
4.2.3.17 - poweredByHeader
4.2.3.18 - productionBrowserSourceMaps
4.2.3.19 - reactStrictMode
4.2.3.20 - redirects
4.2.3.21 - rewrites
4.2.3.22 - Runtime Config
4.2.3.23 - trailingSlash
4.2.3.24 - transpilePackages
4.2.3.25 - turbo (experimental)
4.2.3.26 - typescript
4.2.3.27 - urlImports
4.2.3.28 - webVitalsAttribution
4.2.3.29 - Custom Webpack Config
4.2.4 - create-next-app
4.2.5 - Next.js CLI
4.2.6 - Edge Runtime
5 - Architecture
5.1 - Accessibility
5.2 - Fast Refresh
5.3 - Next.js Compiler
5.4 - Supported Browsers
5.5 - Turbopack
6 - Next.js Community
6.1 - Docs Contribution Guide

1 - Introduction
Documentation path: /index
Description: Welcome to the Next.js Documentation. Welcome to the Next.js documentation!
What is Next.js?
Next.js is a React framework for building full-stack web applications. You use React Components to build user interfaces, and Next.js for additional features and optimizations.
Under the hood, Next.js also abstracts and automatically configures tooling needed for React, like bundling, compiling, and more. This allows you to focus on building your application instead of spending time with configuration.
Whether you’re an individual developer or part of a larger team, Next.js can help you build interactive, dynamic, and fast React applications.
Main Features
Some of the main Next.js features include:

	Feature
	Description

	Routing
	A file-system based router built on top of Server Components that supports layouts, nested routing, loading states, error handling, and more.

	Rendering
	Client-side and Server-side Rendering with Client and Server Components. Further optimized with Static and Dynamic Rendering on the server with Next.js. Streaming on Edge and Node.js runtimes.

	Data Fetching
	Simplified data fetching with async/await in Server Components, and an extended fetch API for request memoization, data caching and revalidation.

	Styling
	Support for your preferred styling methods, including CSS Modules, Tailwind CSS, and CSS-in-JS

	Optimizations
	Image, Fonts, and Script Optimizations to improve your application’s Core Web Vitals and User Experience.

	TypeScript
	Improved support for TypeScript, with better type checking and more efficient compilation, as well as custom TypeScript Plugin and type checker.

How to Use These Docs
On the left side of the screen, you’ll find the docs navbar. The pages of the docs are organized sequentially, from basic to advanced, so you can follow them step-by-step when building your application. However, you can read them in any order or skip to the pages that apply to your use case.
On the right side of the screen, you’ll see a table of contents that makes it easier to navigate between sections of a page. If you need to quickly find a page, you can use the search bar at the top, or the search shortcut (Ctrl+K or Cmd+K).
To get started, checkout the Installation guide.
App Router vs Pages Router
Next.js has two different routers: the App Router and the Pages Router. The App Router is a newer router that allows you to use React’s latest features, such as Server Components and Streaming. The Pages Router is the original Next.js router, which allowed you to build server-rendered React applications and continues to be supported for older Next.js applications.
At the top of the sidebar, you’ll notice a dropdown menu that allows you to switch between the App Router and the Pages Router
features. Since there are features that are unique to each directory, it’s important to keep track of which tab is selected.
The breadcrumbs at the top of the page will also indicate whether you’re viewing App Router docs or Pages Router docs.
Pre-Requisite Knowledge
Although our docs are designed to be beginner-friendly, we need to establish a baseline so that the docs can stay focused on Next.js functionality. We’ll make sure to provide links to relevant documentation whenever we introduce a new concept.
To get the most out of our docs, it’s recommended that you have a basic understanding of HTML, CSS, and React. If you need to brush up on your React skills, check out our React Foundations Course, which will introduce you to the fundamentals. Then, learn more about

Next.js by building a dashboard application.
Accessibility
For optimal accessibility when using a screen reader while reading the docs, we recommend using Firefox and NVDA, or Safari and VoiceOver.
Join our Community
If you have questions about anything related to Next.js, you’re always welcome to ask our community on GitHub Discussions, Discord, Twitter, and Reddit.

2 - Getting Started
Documentation path: /01-getting-started/index
Description: Learn how to create full-stack web applications with Next.js.

2.1 - Installation
Documentation path: /01-getting-started/01-installation
Description: Create a new Next.js application with `create-next-app`. Set up TypeScript, styles, and configure your `next.config.js` file.
Related:
Title: Next Steps
Related Description: Learn about the files and folders in your Next.js project.
Links:
[image:] getting-started/project-structure

System Requirements:
[image:] Node.js 18.17 or later.
[image:] macOS, Windows (including WSL), and Linux are supported.
Automatic Installation
We recommend starting a new Next.js app using create-next-app, which sets up everything automatically for you. To create a project, run:
Terminal (bash)npx create-next-app@latest

On installation, you’ll see the following prompts:

Terminal (txt)What is your project named? my-app
Would you like to use TypeScript? No / Yes
Would you like to use ESLint? No / Yes
Would you like to use Tailwind CSS? No / Yes
Would you like to use `src/` directory? No / Yes
Would you like to use App Router? (recommended) No / Yes
Would you like to customize the default import alias (@/*)? No / Yes
What import alias would you like configured? @/*

After the prompts,create-next-app

Good to know:

will create a folder with your project name and install the required dependencies.

Next.js now ships with TypeScript, ESLint, and Tailwind CSS configuration by default.src

[image:] You can optionally use a files.
Manual Installation

directory in the root of your project to separate your application’s code from configuration

To manually create a new Next.js app, install the required packages:

Terminal (bash)npm install next@latest react@latest react-dom@latest

Open your

file and add the following scripts:

package.json (json){ "scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start",
}
} "lint": "next lint"
package.json

These scripts refer to the different stages of developing an application:
[image:] dev: runs next dev to start Next.js in development mode.
[image:] build: runs next build to build the application for production usage.

[image:] start: runs next start to start a Next.js production server.
[image:] lint: runs next lint to set up Next.js’ built-in ESLint configuration.
Creating directories
Next.js uses file-system routing, which means the routes in your application are determined by how you structure your files.
The	directoryapp

For new applications, we recommend using the App Router. This router allows you to use React’s latest features and is an evolution of the Pages Router based on community feedback.layout.tsx
page.tsx

Create an app/ folder, then add a application (/).

and

file. These will be rendered when the user visits the root of your

Create a root layout inside app/layout.tsx with the required <html> and <body> tags:

app/layout.tsx (tsx)export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>

app/layout.js (jsx)export default function RootLayout({ children }) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>

Finally, create a home page

with some initial content:

app/page.tsx (tsx)export default function Page() {
} return <h1>Hello, Next.js!</h1>
app/page.tsx

app/page.js (jsx)export default function Page() {
} return <h1>Hello, Next.js!</h1>

Good to know: If you forget to create layout.tsx, Next.js will automatically create this file when running the development server with next dev.
Learn more about using the App Router.
The	directory (optional)pages

If you prefer to use the Pages Router instead of the App Router, you can create a pages/ directory at the root of your project.index.tsx
pages

Then, add an

file inside your

folder. This will be your home page (/):

pages/index.tsx (tsx)export default function Page() {
} return <h1>Hello, Next.js!</h1>

Next, add an

file inside

to define the global layout. Learn more about the custom App file.

pages/_app.tsx (tsx)import type { AppProps } from 'next/app'
export default function App({ Component, pageProps }: AppProps) {
} return <Component {...pageProps} />
_app.tsx
pages/

pages/_app.js (jsx)export default function App({ Component, pageProps }) {
} return <Component {...pageProps} />

Finally, add a _document.tsx file inside Document file.

to control the initial response from the server. Learn more about the custom
pages/_document.tsx (tsx)import { Html, Head, Main, NextScript } from 'next/document'
export default function Document() {
return (
<Html>
<Head />
<body>
<Main />
</ /body>
< <NextScript />
Html>
})
pages/

Learn more about using the Pages Router.
Good to know: Although you can use both routers in the same project, routes in recommend using only one router in your new project to avoid confusion.app

will be prioritized over pages. We

The	folder (optional)public
public

Create a public folder to store static assets such as images, fonts, etc. Files inside code starting from the base URL (/).
Run the Development Server
1. Run npm run dev to start the development server.
2. Visit http://localhost:3000 to view your application.

directory can then be referenced by your

3. Edit app/page.tsx (or pages/index.tsx) file and save it to see the updated result in your browser.

2.2 - Next.js Project Structure
Documentation path: /01-getting-started/02-project-structure
Description: A list of folders and files conventions in a Next.js project

This page provides an overview of the file and folder structure of a Next.js project. It covers top-level files and folders, configurationapp
pages

files, and routing conventions within the	and	directories.
Top-level folders

	
	

	app
	App Router

	pages
	Pages Router

	public
	Static assets to be served

	src
	Optional application source folder

Top-level files

	
	

	Next.js
	

	next.config.js
	Configuration file for Next.js

	package.json
	Project dependencies and scripts

	instrumentation.ts
	OpenTelemetry and Instrumentation file

	middleware.ts
	Next.js request middleware

	.env
	Environment variables

	.env.local
	Local environment variables

	.env.production
	Production environment variables

	.env.development
	Development environment variables

	.eslintrc.json
	Configuration file for ESLint

	.gitignore
	Git files and folders to ignore

	next-env.d.ts
	TypeScript declaration file for Next.js

	tsconfig.json
	Configuration file for TypeScript

	jsconfig.json
	Configuration file for JavaScript

Routing Conventionsapp

Routing Files

	
	
	

	layout
	.js .jsx .tsx
	Layout

	page
	.js .jsx .tsx
	Page

	loading
	.js .jsx .tsx
	Loading UI

	not-found
	.js .jsx .tsx
	Not found UI

	error
	.js .jsx .tsx
	Error UI

	global-error
	.js .jsx .tsx
	Global error UI

	route
	.js .ts
	API endpoint

	
	
	

	template
	.js .jsx .tsx
	Re-rendered layout

	default
	.js .jsx .tsx
	Parallel route fallback page

Nested Routes

	
	

	folder
	Route segment

	folder/folder
	Nested route segment

Dynamic Routes

	
	

	[folder]
	Dynamic route segment

	[...folder]
	Catch-all route segment

	[[...folder]]
	Optional catch-all route segment

Route Groups and Private Folders

	
	

	(folder)
	Group routes without affecting routing

	_folder
	Opt folder and all child segments out of routing

Parallel and Intercepted Routes

	
	

	@folder
	Named slot

	(.)folder
	Intercept same level

	(..)folder
	Intercept one level above

	(..)(..)folder
	Intercept two levels above

	(...)folder
	Intercept from root

Metadata File Conventions
App Icons

	
	
	

	favicon
	.ico
	Favicon file

	icon
	.ico .jpg .jpeg .png .svg
	App Icon file

	icon
	.js .ts .tsx
	Generated App Icon

	apple-icon
	.jpg .jpeg, .png
	Apple App Icon file

	apple-icon
	.js .ts .tsx
	Generated Apple App Icon

Open Graph and Twitter Images

	
	
	

	opengraph-image
	.jpg .jpeg .png .gif
	Open Graph image file

	opengraph-image
	.js .ts .tsx
	Generated Open Graph image

	twitter-image
	.jpg .jpeg .png .gif
	Twitter image file

	
	
	

	twitter-image
	.js .ts .tsx
	Generated Twitter image

SEO

	
	
	

	sitemap
	.xml
	Sitemap file

	sitemap
	.js .ts
	Generated Sitemap

	robots
	.txt
	Robots file

	robots
	.js .ts
	Generated Robots file

Routing Conventionspages

Special Files

	
	
	

	_app
	.js .jsx .tsx
	Custom App

	_document
	.js .jsx .tsx
	Custom Document

	_error
	.js .jsx .tsx
	Custom Error Page

	404
	.js .jsx .tsx
	404 Error Page

	500
	.js .jsx .tsx
	500 Error Page

Routes

	
	
	

	Folder convention
	
	

	index
	.js .jsx .tsx
	Home page

	folder/index
	.js .jsx .tsx
	Nested page

	File convention
	
	

	index
	.js .jsx .tsx
	Home page

	file
	.js .jsx .tsx
	Nested page

Dynamic Routes

	
	
	

	Folder convention
	
	

	[folder]/index
	.js .jsx .tsx
	Dynamic route segment

	[...folder]/index
	.js .jsx .tsx
	Catch-all route segment

	[[...folder]]/index
	.js .jsx .tsx
	Optional catch-all route segment

	File convention
	
	

	[file]
	.js .jsx .tsx
	Dynamic route segment

	[...file]
	.js .jsx .tsx
	Catch-all route segment

	[[...file]]
	.js .jsx .tsx
	Optional catch-all route segment

3 - App Router
Documentation path: /02-app/index
Description: Use the new App Router with Next.js' and React's latest features, including Layouts, Server Components, Suspense, and more.

The Next.js App Router is a new paradigm for building applications using React’s latest features. If you’re already familiar with Next.js, you’ll find that the App Router is a natural evolution of the existing file-system based router in the Pages Router.
For new applications, we recommend using the App Router. For existing applications, you can incrementally adopt the App Router. It’s also possible to use both routers in the same application.
Frequently Asked Questions
How can I access the request object in a layout?headers
cookies

You intentionally cannot access the raw request object. However, you can access You can also set cookies.

and

through server-only functions.

Layouts do not rerender. They can be cached and reused to avoid unnecessary computation when navigating between pages. By restricting layouts from accessing the raw request, Next.js can prevent the execution of potentially slow or expensive user code within the layout, which could negatively impact performance.
This design also enforces consistent and predictable behavior for layouts across different pages, which simplifies development and debugging.
Depending on the UI pattern you’re building, Parallel Routes allow you to render multiple pages in the same layout, and pages have access to the route segments as well as the URL search params.
How can I access the URL on a page?
By default, pages are Server Components. You can access the route segments through the	prop and the URL search paramsparams
searchParams

through the	prop for a given page.useSelectedLayoutSegments

If you are using Client Components, you can use usePathname, useSelectedLayoutSegment, and more complex routes.

for

Further, depending on the UI pattern you’re building, Parallel Routes allow you to render multiple pages in the same layout, and pages have access to the route segments as well as the URL search params.
How can I redirect from a Server Component?
You can use redirect to redirect from a page to a relative or absolute URL. redirect is a temporary (307) redirect, while permanentRedirect is a permanent (308) redirect. When these functions are used while streaming UI, they will insert a meta tag to emit the redirect on the client side.
How can I handle authentication with the App Router?
Here are some common authentication solutions that support the App Router: [image:] NextAuth.js
[image:] Clerk [image:] Auth0 [image:] Stytch [image:] Kinde
[image:] Or manually handling sessions or JWTs
How can I set cookies?
You can set cookies in Server Actions or Route Handlers using the	function.cookies

Since HTTP does not allow setting cookies after streaming starts, you cannot set cookies from a page or layout directly. You can also set cookies from Middleware.
How can I build multi-tenant apps?
If you are looking to build a single Next.js application that serves multiple tenants, we have built an example showing our recommended architecture.

How can I invalidate the App Router cache?
There are multiple layers of caching in Next.js, and thus, multiple ways to invalidate different parts of the cache. Learn more about caching.
Are there any comprehensive, open-source applications built on the App Router?
Yes. You can view Next.js Commerce or the Platforms Starter Kit for two larger examples of using the App Router that are open-source.
Learn More
[image:] Routing Fundamentals
[image:] Data Fetching, Caching, and Revalidating [image:] Forms and Mutations
[image:] Caching
[image:] Rendering Fundamentals [image:] Server Components
[image:] Client Components

3.1 - Building Your Application
Documentation path: /02-app/01-building-your-application/index
Description: Learn how to use Next.js features to build your application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js provides the building blocks to create flexible, full-stack web applications. The guides in Building Your Application explain how to use these features and how to customize your application’s behavior.
The sections and pages are organized sequentially, from basic to advanced, so you can follow them step-by-step when building your Next.js application. However, you can read them in any order or skip to the pages that apply to your use case.
If you’re new to Next.js, we recommend starting with the Routing, Rendering, Data Fetching and Styling sections, as they introduce the fundamental Next.js and web concepts to help you get started. Then, you can dive deeper into the other sections such as Optimizing and Configuring. Finally, once you’re ready, checkout the Deploying and Upgrading sections.
If you’re new to Next.js, we recommend starting with the Routing, Rendering, Data Fetching and Styling sections, as they introduce the fundamental Next.js and web concepts to help you get started. Then, you can dive deeper into the other sections such as Optimizing and Configuring. Finally, once you’re ready, checkout the Deploying and Upgrading sections.

3.1.1 - Routing Fundamentals
Documentation path: /02-app/01-building-your-application/01-routing/index
Description: Learn the fundamentals of routing for front-end applications.

The skeleton of every application is routing. This page will introduce you to the fundamental concepts of routing for the web and how to handle routing in Next.js.
Terminology
[image:]First, you will see these terms being used throughout the documentation. Here’s a quick reference:
[image:] Tree: A convention for visualizing a hierarchical structure. For example, a component tree with parent and children components, a folder structure, etc.
[image:] Subtree: Part of a tree, starting at a new root (first) and ending at the leaves (last).
[image:] Root: The first node in a tree or subtree, such as a root layout.
[image:] Leaf: Nodes in a subtree that have no children, such as the last segment in a URL path.
[image:]
[image:] URL Segment: Part of the URL path delimited by slashes.
[image:] URL Path: Part of the URL that comes after the domain (composed of segments).
The	Routerapp

In version 13, Next.js introduced a new App Router built on React Server Components, which supports shared layouts, nested routing, loading states, error handling, and more.
[image:][image:]The App Router works in a new directory named app. The app directory works alongside the pages directory to allow for incremental adoption. This allows you to opt some routes of your application into the new behavior while keeping other routes in the pagespages

directory for previous behavior. If your application uses the	directory, please also see the Pages Router documentation.

Good to know: The App Router takes priority over the Pages Router. Routes across directories should not resolve to the same URL path and will cause a build-time error to prevent a conflict.

By default, components inside app are React Server Components. This is a performance optimization and allows you to easily adopt them, and you can also use Client Components.
Recommendation: Check out the Server page if you’re new to Server Components.
Roles of Folders and Files
Next.js uses a file-system based router where:
[image:] Folders are used to define routes. A route is a single path of nested folders, following the file-system hierarchy from the root folder down to a final leaf folder that includes a page.js file. See Defining Routes.
[image:] Files are used to create UI that is shown for a route segment. See special files.
Route Segments
[image:]Each folder in a route represents a route segment. Each route segment is mapped to a corresponding segment in a URL path.

Nested Routes
To create a nested route, you can nest folders inside each other. For example, you can add a newapp

route by/dashboard/settings

nesting two new folders in the	directory./dashboard/settings

The

/ (Root segment)
dashboard (Segment)

route is composed of three segments:

[image:] settings (Leaf segment)
File Conventions
Next.js provides a set of special files to create UI with specific behavior in nested routes:

	
	

	layout
	Shared UI for a segment and its children

	page
	Unique UI of a route and make routes publicly accessible

	loading
	Loading UI for a segment and its children

	not-found
	Not found UI for a segment and its children

	error
	Error UI for a segment and its children

	global-error
	Global Error UI

	route
	Server-side API endpoint

	template
	Specialized re-rendered Layout UI

	default
	Fallback UI for Parallel Routes

[image:][image:]Good to know: .js, .jsx, or.tsx

Component Hierarchy

file extensions can be used for special files.

The React components defined in special files of a route segment are rendered in a specific hierarchy:
[image:] layout.js
[image:] template.js
[image:] error.js (React error boundary)
[image:] loading.js (React suspense boundary)
[image:] not-found.js (React error boundary)layout.js

[image:] page.js or nested
[image:]
In a nested route, the components of a segment will be nested inside the components of its parent segment.

[image:]
Colocation
In addition to special files, you have the option to colocate your own files (e.g. components, styles, tests, etc) inside folders in the directory.app

This is because while folders define routes, only the contents returned by page.js or route.js are publicly addressable.

Learn more about Project Organization and Colocation.
Advanced Routing Patterns
The App Router also provides a set of conventions to help you implement more advanced routing patterns. These include:
[image:] Parallel Routes: Allow you to simultaneously show two or more pages in the same view that can be navigated independently. You

can use them for split views that have their own sub-navigation. E.g. Dashboards.
[image:] Intercepting Routes: Allow you to intercept a route and show it in the context of another route. You can use these when keeping the context for the current page is important. E.g. Seeing all tasks while editing one task or expanding a photo in a feed.
These patterns allow you to build richer and more complex UIs, democratizing features that were historically complex for small teams and individual developers to implement.
Next Steps
Now that you understand the fundamentals of routing in Next.js, follow the links below to create your first routes:

3.1.1.1 - Defining Routes
Documentation path: /02-app/01-building-your-application/01-routing/01-defining-routes
Description: Learn how to create your first route in Next.js.
Related:
Title: Related
Related Description: Learn more about creating pages and layouts.
Links:
[image:] app/building-your-application/routing/pages-and-layouts

We recommend reading the Routing Fundamentals page before continuing.
This page will guide you through how to define and organize routes in your Next.js application.
Creating Routes
Next.js uses a file-system based router where folders are used to define routes.
Each folder represents a route segment that maps to a URL segment. To create a nested route, you can nest folders inside each other.

A special page.js file is used to make route segments publicly accessible.

In this example, the /dashboard/analytics URL path is not publicly accessible because it does not have a corresponding page.js
file. This folder could be used to store components, stylesheets, images, or other colocated files..tsx

[image:][image:]Good to know: .js, .jsx, or
Creating UI

file extensions can be used for special files.

Special file conventions are used to create UI for each route segment. The most common are pages to show UI unique to a route, and layouts to show UI that is shared across multiple routes.page.js
app

For example, to create your first page, add a

file inside the

directory and export a React component:

app/page.tsx (tsx)export default function Page() {
} return <h1>Hello, Next.js!</h1>

app/page.js (jsx)export default function Page() {
} return <h1>Hello, Next.js!</h1>

3.1.1.2 - Pages and Layouts
Documentation path: /02-app/01-building-your-application/01-routing/02-pages-and-layouts
Description: Create your first page and shared layout with the App Router.

We recommend reading the Routing Fundamentals and Defining Routes pages before continuing.
The App Router inside Next.js 13 introduced new file conventions to easily create pages, shared layouts, and templates. This page will guide you through how to use these special files in your Next.js application.
Pages
A page is UI that is unique to a route. You can define pages by exporting a component from a	file. Use nested folders topage.js
page.js

define a route and a	file to make the route publicly accessible.
Create your first page by adding a page.js file inside the app directory:

app/page.tsx (tsx)// `app/page.tsx` is the UI for the `/` URL
export default function Page() {
} return <h1>Hello, Home page!</h1>

app/page.js (jsx)// `app/page.js` is the UI for the `/` URL
export default function Page() {
} return <h1>Hello, Home page!</h1>

app/dashboard/page.tsx (tsx)// `app/dashboard/page.tsx` is the UI for the `/dashboard` URL
export default function Page() {
} return <h1>Hello, Dashboard Page!</h1>

app/dashboard/page.js (jsx)// `app/dashboard/page.js` is the UI for the `/dashboard` URL
export default function Page() {
} return <h1>Hello, Dashboard Page!</h1>

Good to know:
[image:] A page is always the leaf of the route subtree.
[image:][image:] .js, .jsx, or .tsx file extensions can be used for Pages.
[image:] A page.js file is required to make a route segment publicly accessible.
[image:] Pages are Server Components by default but can be set to a Client Component. [image:] Pages can fetch data. View the Data Fetching section for more information.
Layouts
A layout is UI that is shared between multiple pages. On navigation, layouts preserve state, remain interactive, and do not re-render. Layouts can also be nested.

[image:]You can define a layout by default exporting a React component from a layout.js file. The component should accept a prop that will be populated with a child layout (if it exists) or a child page during rendering.export default function DashboardLayout({
} children, // will be a page or nested layout
} children: React.ReactNode
: {
) {
return (
<section>
{/* Include shared UI here e.g. a header or sidebar */}
<nav></nav>
< {children}
}
) /section>
children

app/dashboard/layout.tsx (tsx)

app/dashboard/layout.js (jsx)export default function DashboardLayout({
} children, // will be a page or nested layout
) {
return (
<section>
{/* Include shared UI here e.g. a header or sidebar */}
<nav></nav>
< {children}
}
) /section>

Good to know:
[image:][image:][image:] The top-most layout is called the Root Layout. This required layout is shared across all pages in an application. Root layouts must contain html and body tags.
[image:] Any route segment can optionally define its own Layout. These layouts will be shared across all pages in that segment.children

Layouts in a route are nested by default. Each parent layout wraps child layouts below it using the React You can use Route Groups to opt specific route segments in and out of shared layouts.
Layouts are Server Components by default but can be set to a Client Component.
Layouts can fetch data. View the Data Fetching section for more information.

prop.

[image:] Passing data between a parent layout and its children is not possible. However, you can fetch the same data in a route more than once, and React will automatically dedupe the requests without affecting performance.
[image:] Layouts do not have access to the route segments below itself. To access all route segments, you can use
useSelectedLayoutSegment or useSelectedLayoutSegments in a Client Component.
[image:] .js, .jsx, or .tsx file extensions can be used for Layouts.
[image:] A layout.js and page.js file can be defined in the same folder. The layout will wrap the page.
Root Layout (Required)
The root layout is defined at the top level of the	directory and applies to all routes. This layout enables you to modify the initialapp

HTML returned from the server.

app/layout.tsx (tsx)export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>

app/layout.js (jsx)export default function RootLayout({ children }) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>

Good to know:
[image:][image:] The app directory must include a root layout.
[image:] The root layout must define <html> and <body> tags since Next.js does not automatically create them.<title>

You can use the built-in SEO support to manage <head> HTML elements, for example, the You can use route groups to create multiple root layouts. See an example here.
The root layout is a Server Component by default and can not be set to a Client Component.pages
_app.js
_document.js

element.

Migrating from the
guide.
Nesting Layouts

directory: The root layout replaces the

and

files. View the migration

Layouts defined inside a folder (e.g. app/dashboard/layout.js) apply to specific route segments (e.g. acme.com/dashboard) and render when those segments are active. By default, layouts in the file hierarchy are nested, which means they wrap child layouts via their children prop.

app/dashboard/layout.tsx (tsx)export default function DashboardLayout({
} children,
} children: React.ReactNode
: {
} return <section>{children}</section>
) {

app/dashboard/layout.js (jsx)export default function DashboardLayout({ children }) {
return <section>{children}</section>

}

Good to know:
[image:] Only the root layout can contain

and<html>

tags.<body>

If you were to combine the two layouts above, the root layout (app/layout.js) would wrap the dashboard layout (app/dashboard/layout.js), which would wrap route segments inside app/dashboard/*.
[image:]The two layouts would be nested as such:
You can use Route Groups to opt specific route segments in and out of shared layouts.
Templates
Templates are similar to layouts in that they wrap each child layout or page. Unlike layouts that persist across routes and maintain state, templates create a new instance for each of their children on navigation. This means that when a user navigates between routes that share a template, a new instance of the component is mounted, DOM elements are recreated, state is not preserved, and effects are re-synchronized.
There may be cases where you need those specific behaviors, and templates would be a more suitable option than layouts. For example:
[image:] Features that rely on useEffect (e.g logging page views) and useState (e.g a per-page feedback form).
[image:] To change the default framework behavior. For example, Suspense Boundaries inside layouts only show the fallback the first time the Layout is loaded and not when switching pages. For templates, the fallback is shown on each navigation.template.js

A template can be defined by exporting a default React component from a prop.children

file. The component should accept a

[image:]
app/template.tsx (tsx)export default function Template({ children }: { children: React.ReactNode }) {
} return <div>{children}</div>

app/template.js (jsx)export default function Template({ children }) {
} return <div>{children}</div>

In terms of nesting,

is rendered between a layout and its children. Here’s a simplified output:

Output (jsx)<Layout>
< <Template key={routeParam}>{children}</Template>
{/* Note that the template is given a unique key. */}
/Layout>
template.js

Modifying<head>
app
meta

In thelayout.js

directory, you can modify the <head> HTML elements such as title and

using the built-in SEO support.

Metadata can be defined by exporting a metadata object or generateMetadata function in a

or

file.
app/page.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
} title: 'Next.js',
export default function Page() {
} return '...'
page.js

app/page.js (jsx)export const metadata = {
} title: 'Next.js',
export default function Page() {
} return '...'

Good to know: You should not manually add <head> tags such as <title> and <meta> to root layouts. Instead, you should use the Metadata API which automatically handles advanced requirements such as streaming and de-duplicating<head>

elements.
Learn more about available metadata options in the API reference.

3.1.1.3 - Linking and Navigating
Documentation path: /02-app/01-building-your-application/01-routing/03-linking-and-navigating
Description: Learn how navigation works in Next.js, and how to use the Link Component and `useRouter` hook.
Related:
Title: Related
Related Description: No related description
Links:
[image:] app/building-your-application/caching
[image:] app/building-your-application/configuring/typescript

There are two ways to navigate between routes in Next.js:
[image:] Using the <Link> Component [image:] Using the useRouter Hook
This page will go through how to use <Link>, useRouter(), and dive deeper into how navigation works.
Component<Link>

<Link> is a built-in component that extends the HTML the primary way to navigate between routes in Next.js.<a>

tag to provide prefetching and client-side navigation between routes. It is

You can use it by importing it from next/link, and passing a

prop to the component:

app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
} return <Link href="/dashboard">Dashboard</Link>
href

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
} return <Link href="/dashboard">Dashboard</Link>

There are other optional props you can pass to <Link>. See the API reference for more.
Examples
Linking to Dynamic Segments
When linking to dynamic segments, you can use template literals and interpolation to generate a list of links. For example, to generate a list of blog posts:
app/blog/PostList.js (jsx)import Link from 'next/link'
export default function PostList({ posts }) {
return (

{posts.map((post) => (
<li key={post.id}>
</u }
)) /li>
< <Link href={`/blog/${post.slug}`}>{post.title}</Link>
l>
})

Checking Active Links
You can useusePathname()

to determine if a link is active. For example, to add a class to the active link, you can check if the current

matches thepathname

of the link:

app/components/links.tsx (tsx)'use client'
import { usePathname } from 'next/navigation'
import Link from 'next/link'
export function Links() {
const pathname = usePathname()
return (
<nav>

<Link className={`link ${pathname === '/' ? 'active' : ''}`} href="/">
</ /Link>
< li>
< Home
li>
<Link
· href="/about"
className={`link ${pathname === '/about' ? 'active' : ''}`}
< About
</na l>
</u li>
</ /Link>
v>
})
href

app/components/links.js (jsx)'use client'
import { usePathname } from 'next/navigation'
import Link from 'next/link'
export function Links() {
const pathname = usePathname()
return (
<nav>

<Link className={`link ${pathname === '/' ? 'active' : ''}`} href="/">
</ /Link>
< li>
< Home
li>
<Link
· href="/about"
className={`link ${pathname === '/about' ? 'active' : ''}`}
< About
</na l>
</u li>
</ /Link>
v>
})

Scrolling to anid

The default behavior of the Next.js App Router is to scroll to the top of a new route or to maintain the scroll position for backwards and forwards navigation.
If you’d like to scroll to a specific id on navigation, you can append your URL with a # hash link or just pass a hash link to the prop. This is possible since <Link> renders to an <a> element.
<Link href="/dashboard#settings">Settings</Link>
Settings
// Output
href

Disabling scroll restoration
The default behavior of the Next.js App Router is to scroll to the top of a new route or to maintain the scroll position for backwards andscroll={false}
<Link>
scroll:

forwards navigation. If you’d like to disable this behavior, you can passfalse to router.push() or router.replace().
// next/link
<Link href="/dashboard" scroll={false}>
< Dashboard
/Link>

to the

component, or

// useRouter
import { useRouter } from 'next/navigation' const router = useRouter()
router.push('/dashboard', { scroll: false })

The

Hook
hook allows you to programmatically change routes.useRouter()
useRouter

This hook can only be used inside Client Components and is imported from next/navigation.

app/page.js (jsx)'use client'
import { useRouter } from 'next/navigation'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.push('/dashboard')}>
< Dashboard
}
) /button>

For a full list of	methods, see the API reference.useRouter

Recommendation: Use the	component to navigate between routes unless you have a specific requirement for using<Link>
useRouter.

How Routing and Navigation Works
The App Router uses a hybrid approach for routing and navigation. On the server, your application code is automatically code-split by route segments. And on the client, Next.js prefetches and caches the route segments. This means, when a user navigates to a new route, the browser doesn’t reload the page, and only the route segments that change re-render - improving the navigation experience and performance.
1. Prefetching
Prefetching is a way to preload a route in the background before the user visits it. There are two ways routes are prefetched in Next.js:
[image:] <Link> component: Routes are automatically prefetched as they become visible in the user’s viewport. Prefetching happens when the page first loads or when it comes into view through scrolling.router.prefetch(): The
useRouter

hook can be used to prefetch routes programmatically.
The<Link>’s prefetching behavior is different for static and dynamic routes:
[image:][image:] Static Routes: prefetch defaults to true. The entire route is prefetched and cached.
[image:] Dynamic Routes: prefetch default to automatic. Only the shared layout down until the first loading.js file is prefetched and cached for 30s. This reduces the cost of fetching an entire dynamic route, and it means you can show an instant loading state for better visual feedback to users.
You can disable prefetching by setting the	prop to false.prefetch

See the	API reference for more information.<Link>

Good to know:
[image:] Prefetching is not enabled in development, only in production.
2. Caching
Next.js has an in-memory client-side cache called the Router Cache. As users navigate around the app, the React Server Component Payload of prefetched route segments and visited routes are stored in the cache.
This means on navigation, the cache is reused as much as possible, instead of making a new request to the server - improving performance by reducing the number of requests and data transferred.
Learn more about how the Router Cache works and how to configure it.
3. Partial Rendering
Partial rendering means only the route segments that change on navigation re-render on the client, and any shared segments are preserved.settings

For example, when navigating between two sibling routes, /dashboard/settings and /dashboard/analytics, the
analytics pages will be rendered, and the shared dashboard layout will be preserved.

and

Without partial rendering, each navigation would cause the full page to re-render on the server. Rendering only the segment that changes reduces the amount of data transferred and execution time, leading to improved performance.
4. Soft Navigation
By default, the browser performs a hard navigation between pages. This means the browser reloads the page and resets React state such as useState hooks in your app and browser state such as the user’s scroll position or focused element. However, in Next.js, the App Router uses soft navigation. This means React only renders the segments that have changed while preserving React and browser state, and there is no full page reload.
5. Back and Forward Navigation
By default, Next.js will maintain the scroll position for backwards and forwards navigation, and re-use route segments in the Router Cache.

3.1.1.4 - Route Groups
Documentation path: /02-app/01-building-your-application/01-routing/04-route-groups
Description: Route Groups can be used to partition your Next.js application into different sections.

[image:]In the app directory, nested folders are normally mapped to URL paths. However, you can mark a folder as a Route Group to prevent the folder from being included in the route’s URL path.
This allows you to organize your route segments and project files into logical groups without affecting the URL path structure. Route groups are useful for:
[image:] Organizing routes into groups e.g. by site section, intent, or team. [image:] Enabling nested layouts in the same route segment level:
[image:] Creating multiple nested layouts in the same segment, including multiple root layouts [image:] Adding a layout to a subset of routes in a common segment
Convention
A route group can be created by wrapping a folder’s name in parenthesis:(folderName)

Examples
Organize routes without affecting the URL path
To organize routes without affecting the URL, create a group to keep related routes together. The folders in parenthesis will be omittedfrom the URL (e.g. (marketing) or (shop)).
Even though routes inside (marketing) and (shop) share the same URL hierarchy, you can create a different layout for each group by adding a layout.js file inside their folders.

[image:]
Opting specific segments into a layout
To opt specific routes into a layout, create a new route group (e.g. (shop)) and move the routes that share the same layout into thegroup (e.g. account and cart). The routes outside of the group will not share the layout (e.g. checkout).

Creating multiple root layouts
To create multiple root layouts, remove the top-level layout.js file, and add a layout.js file inside each route groups. This is useful<html>
<body>

for partitioning an application into sections that have a completely different UI or experience. The added to each root layout.

and

tags need to be

In the example above, both (marketing) and (shop) have their own root layout.

Good to know:
[image:] The naming of route groups has no special significance other than for organization. They do not affect the URL path.
[image:] Routes that include a route group should not resolve to the same URL path as other routes. For example, since route(marketing)/about/page.js
(shop)/about/page.js

groups don’t affect URL structure,
/about and cause an error.

and

would both resolve to

If you use multiple root layouts without a top-level layout.js file, your home route groups, For example: app/(marketing)/page.js.page.js

file should be defined in one of the

Navigating across multiple root layouts will cause a full page load (as opposed to a client-side navigation). For example,/blog
app/(marketing)/layout.js

navigating from /cart that uses app/(shop)/layout.js to full page load. This only applies to multiple root layouts.

that uses

will cause a

3.1.1.5 - Dynamic Routes
Documentation path: /02-app/01-building-your-application/01-routing/05-dynamic-routes
Description: Dynamic Routes can be used to programmatically generate route segments from dynamic data.
Related:
Title: Next Steps
Related Description: For more information on what to do next, we recommend the following sections
Links:
[image:] app/building-your-application/routing/linking-and-navigating [image:] app/api-reference/functions/generate-static-params

When you don’t know the exact segment names ahead of time and want to create routes from dynamic data, you can use Dynamic Segments that are filled in at request time or prerendered at build time.
Convention
A Dynamic Segment can be created by wrapping a folder’s name in square brackets: [folderName]. For example,[id]
or [slug].
params

Dynamic Segments are passed as the
Example

prop to layout, page, route, and generateMetadata functions.

For example, a blog could include the following route posts.app/blog/[slug]/page.js

where

is the Dynamic Segment for blog
app/blog/[slug]/page.tsx (tsx)export default function Page({ params }: { params: { slug: string } }) {
} return <div>My Post: {params.slug}</div>
[slug]

app/blog/[slug]/page.js (jsx)export default function Page({ params }) {
} return <div>My Post: {params.slug}</div>

	Route
	Example URL
	params

	app/blog/[slug]/page.js
	/blog/a
	{ slug: 'a' }

	app/blog/[slug]/page.js
	/blog/b
	{ slug: 'b' }

	app/blog/[slug]/page.js
	/blog/c
	{ slug: 'c' }

See the generateStaticParams() page to learn how to generate the params for the segment.pages

Good to know: Dynamic Segments are equivalent to Dynamic Routes in the
Generating Static Params

directory.

The generateStaticParams function can be used in combination with dynamic route segments to statically generate routes at build time instead of on-demand at request time.
app/blog/[slug]/page.tsx (tsx)export async function generateStaticParams() {
const posts = await fetch('https://.../posts').then((res) => res.json())
return posts.map((post) => ({
}))
} slug: post.slug,

app/blog/[slug]/page.js (jsx)export async function generateStaticParams() {

const posts = await fetch('https://.../posts').then((res) => res.json())
return posts.map((post) => ({
}))
} slug: post.slug,

The primary benefit of the generateStaticParams function is its smart retrieval of data. If content is fetched within thegenerateStaticParams
fetch

function using a fetch request, the requests are automatically memoized. This means a	request with
the same arguments across multiple generateStaticParams, Layouts, and Pages will only be made once, which decreases build times.pages

Use the migration guide if you are migrating from the	directory.
See	server function documentation for more information and advanced use cases.generateStaticParams

Catch-all Segments
Dynamic Segments can be extended to catch-all subsequent segments by adding an ellipsis inside the brackets [...folderName].For example, app/shop/[...slug]/page.js
/shop/clothes/tops/t-shirts, and so on.

will match /shop/clothes, but also /shop/clothes/tops,

	Route
	Example URL
	params

	app/shop/[...slug]/page.js
	/shop/a
	{ slug: ['a'] }

	app/shop/[...slug]/page.js
	/shop/a/b
	{ slug: ['a', 'b'] }

	app/shop/[...slug]/page.js
	/shop/a/b/c
	{ slug: ['a', 'b', 'c'] }

Optional Catch-all Segments
Catch-all Segments can be made optional by including the parameter in double square brackets: [[...folderName]].For example, app/shop/[[...slug]]/page.js
/shop/clothes/tops/t-shirts.

will also match /shop, in addition to /shop/clothes, /shop/clothes/tops,

The difference between catch-all and optional catch-all segments is that with optional, the route without the parameter is also matched (/shop in the example above).

	Route
	Example URL
	params

	app/shop/[[...slug]]/page.js
	/shop
	{}

	app/shop/[[...slug]]/page.js
	/shop/a
	{ slug: ['a'] }

	app/shop/[[...slug]]/page.js
	/shop/a/b
	{ slug: ['a', 'b'] }

	app/shop/[[...slug]]/page.js
	/shop/a/b/c
	{ slug: ['a', 'b', 'c'] }

TypeScript
When using TypeScript, you can add types for

depending on your configured route segment.params

app/blog/[slug]/page.tsx (tsx)export default function Page({ params }: { params: { slug: string } }) {
} return <h1>My Page</h1>

app/blog/[slug]/page.js (jsx)export default function Page({ params }) {
} return <h1>My Page</h1>

	Route
	params Type Definition

	app/blog/[slug]/page.js
	{ slug: string }

	Route
	params Type Definition

	app/shop/[...slug]/page.js
	{ slug: string[] }

	app/[categoryId]/[itemId]/page.js
	{ categoryId: string, itemId: string }

Good to know: This may be done automatically by the TypeScript plugin in the future.

3.1.1.6 - Loading UI and Streaming
Documentation path: /02-app/01-building-your-application/01-routing/06-loading-ui-and-streaming
Description: Built on top of Suspense, Loading UI allows you to create a fallback for specific route segments, and automatically stream content as it becomes ready.

[image:]The special file loading.js helps you create meaningful Loading UI with React Suspense. With this convention, you can show an instant loading state from the server while the content of a route segment loads. The new content is automatically swapped in once rendering is complete.
Instant Loading States
An instant loading state is fallback UI that is shown immediately upon navigation. You can pre-render loading indicators such as skeletons and spinners, or a small but meaningful part of future screens such as a cover photo, title, etc. This helps users understand the app is responding and provides a better user experience.
Create a loading state by adding a loading.js file inside a folder.

app/dashboard/loading.tsx (tsx)export default function Loading() {
} return <LoadingSkeleton />
// You can add any UI inside Loading, including a Skeleton.

app/dashboard/loading.js (jsx)export default function Loading() {
} return <LoadingSkeleton />
// You can add any UI inside Loading, including a Skeleton.

In the same folder, loading.js will be nested inside layout.js. It will automatically wrap the	file and any children below ina <Suspense> boundary.
page.js

Good to know:
[image:] Navigation is immediate, even with server-centric routing.
[image:] Navigation is interruptible, meaning changing routes does not need to wait for the content of the route to fully load before navigating to another route.
[image:] Shared layouts remain interactive while new route segments load.

Recommendation: Use the functionality.loading.js

Streaming with Suspense

convention for route segments (layouts and pages) as Next.js optimizes this

In addition to loading.js, you can also manually create Suspense Boundaries for your own UI components. The App Router supports streaming with Suspense for both Node.js and Edge runtimes.
What is Streaming?
To learn how Streaming works in React and Next.js, it’s helpful to understand Server-Side Rendering (SSR) and its limitations. With SSR, there’s a series of steps that need to be completed before a user can see and interact with a page:
1. First, all data for a given page is fetched on the server.
2. The server then renders the HTML for the page.
3. The HTML, CSS, and JavaScript for the page are sent to the client.
4. A non-interactive user interface is shown using the generated HTML, and CSS.
5. Finally, React hydrates the user interface to make it interactive.

[image:]
These steps are sequential and blocking, meaning the server can only render the HTML for a page once all the data has been fetched. And, on the client, React can only hydrate the UI once the code for all components in the page has been downloaded.
[image:]SSR with React and Next.js helps improve the perceived loading performance by showing a non-interactive page to the user as soon as possible.
However, it can still be slow as all data fetching on server needs to be completed before the page can be shown to the user.
Streaming allows you to break down the page’s HTML into smaller chunks and progressively send those chunks from the server to the client.

[image:]
This enables parts of the page to be displayed sooner, without waiting for all the data to load before any UI can be rendered.
[image:]Streaming works well with React’s component model because each component can be considered a chunk. Components that have higher priority (e.g. product information) or that don’t rely on data can be sent first (e.g. layout), and React can start hydration earlier. Components that have lower priority (e.g. reviews, related products) can be sent in the same server request after their data has been fetched.
Streaming is particularly beneficial when you want to prevent long data requests from blocking the page from rendering as it can reduce the Time To First Byte (TTFB) and First Contentful Paint (FCP). It also helps improve Time to Interactive (TTI), especially on slower devices.
Example
<Suspense> works by wrapping a component that performs an asynchronous action (e.g. fetch data), showing fallback UI (e.g. skeleton, spinner) while it’s happening, and then swapping in your component once the action completes.
app/dashboard/page.tsx (tsx)import { Suspense } from 'react'
import { PostFeed, Weather } from './Components'
export default function Posts() {
return (
<section>
<Suspense fallback={<p>Loading feed...</p>}>
< <PostFeed />
<Suspense fallback={<p>Loading weather...</p>}>
/Suspense>

</ /Suspense>
< <Weather />
section>
})

app/dashboard/page.js (jsx)import { Suspense } from 'react'
import { PostFeed, Weather } from './Components'
export default function Posts() {
return (
<section>
<Suspense fallback={<p>Loading feed...</p>}>
< <PostFeed />
<Suspense fallback={<p>Loading weather...</p>}>
/Suspense>
</ /Suspense>
< <Weather />
section>
})

By using Suspense, you get the benefits of:
1. Streaming Server Rendering - Progressively rendering HTML from the server to the client.
2. Selective Hydration - React prioritizes what components to make interactive first based on user interaction.
For more Suspense examples and use cases, please see the React Documentation.
SEO
[image:] Next.js will wait for data fetching inside generateMetadata to complete before streaming UI to the client. This guarantees the first part of a streamed response includes <head> tags.
[image:] Since streaming is server-rendered, it does not impact SEO. You can use the Mobile Friendly Test tool from Google to see how your page appears to Google’s web crawlers and view the serialized HTML (source).
Status Codes
When streaming, a	status code will be returned to signal that the request was successful.200

The server can still communicate errors or issues to the client within the streamed content itself, for example, when using redirect or notFound. Since the response headers have already been sent to the client, the status code of the response cannot be updated. This does not affect SEO.

3.1.1.7 - Error Handling
Documentation path: /02-app/01-building-your-application/01-routing/07-error-handling
Description: Handle runtime errors by automatically wrapping route segments and their nested children in a React Error Boundary.
Related:
Title: Related
Related Description: No related description
Links:
[image:] app/api-reference/file-conventions/error

The

file convention allows you to gracefully handle unexpected runtime errors in nested routes.
Automatically wrap a route segment and its nested children in a React Error Boundary.error.js

Create error UI tailored to specific segments using the file-system hierarchy to adjust granularity. Isolate errors to affected segments while keeping the rest of the application functional.
Add functionality to attempt to recover from an error without a full page reload.

Create error UI by adding an error.js file inside a route segment and exporting a React component:

'use client' // Error components must be Client Components import { useEffect } from 'react'
export default function Error({ error,
reset,
}: {
error: Error & { digest?: string } reset: () => void
}) {
useEffect(() => {
// Log the error to an error reporting service console.error(error)
}, [error])
return (
<div>
<h2>Something went wrong!</h2>
<button onClick={
// Attempt to recover by trying to re-render the segment
} () => reset()
· Try again
</button>
) </div>

app/dashboard/error.tsx (tsx)

}

app/dashboard/error.js (jsx)'use client' // Error components must be Client Components
import { useEffect } from 'react'
export default function Error({ error, reset }) {
useEffect(() => {
} console.error(error)
// Log the error to an error reporting service
, [error])
return (
<div>
<h2>Something went wrong!</h2>
<button
onClick={
// Attempt to recover by trying to re-render the segment
< </button>
} () => reset()
· Try again
}
) /div>

How	Workserror.js

[image:]

error.js automatically creates a React Error Boundary that wraps a nested child segment or The React component exported from the error.js file is used as the fallback component.page.js

component.

[image:] If an error is thrown within the error boundary, the error is contained, and the fallback component is rendered.
[image:] When the fallback error component is active, layouts above the error boundary maintain their state and remain interactive, and the error component can display functionality to recover from the error.
Recovering From Errors
The cause of an error can sometimes be temporary. In these cases, simply trying again might resolve the issue.
An error component can use the reset() function to prompt the user to attempt to recover from the error. When executed, the function will try to re-render the Error boundary’s contents. If successful, the fallback error component is replaced with the result of the re-render.
app/dashboard/error.tsx (tsx)'use client'

export default function Error({
} reset,
error,
: {
} reset: () => void
error: Error & { digest?: string }
) {
return (
<div>
< <button onClick={() => reset()}>Try again</button>
<h2>Something went wrong!</h2>
}
) /div>

app/dashboard/error.js (jsx)'use client'
export default function Error({ error, reset }) {
return (
<div>
< <button onClick={() => reset()}>Try again</button>
<h2>Something went wrong!</h2>
}
) /div>

Nested Routes
React components created through special files are rendered in a specific nested hierarchy.layout.js
error.js

For example, a nested route with two segments that both include
simplified component hierarchy:

and

files are rendered in the following

The nested component hierarchy has implications for the behavior of error.js files across a nested route:
[image:] Errors bubble up to the nearest parent error boundary. This means an error.js file will handle errors for all its nested child segments. More or less granular error UI can be achieved by placing error.js files at different levels in the nested folders of a route.layout.js

[image:] An error.js boundary will not handle errors thrown in a boundary is nested inside that layout’s component.
Handling Errors in Layouts

component in the same segment because the error

error.js boundaries do not catch errors thrown in layout.js or template.js components of the same segment. This intentional hierarchy keeps important UI that is shared between sibling routes (such as navigation) visible and functional when an error occurs.
To handle errors within a specific layout or template, place an error.js file in the layout’s parent segment. To handle errors within the root layout or template, use a variation of error.js called global-error.js.
Handling Errors in Root Layouts

The root	boundary does not catch errors thrown in the root app/layout.js or app/template.js component.app/error.js

To specifically handle errors in these root components, use a variation of error.js called app/global-error.js located in the root directory.app

Unlike the root error.js, the global-error.js error boundary wraps the entire application, and its fallback component replacesglobal-error.js
<html>
<body>

the root layout when active. Because of this, it is important to note that tags.

must define its own

and

global-error.js is the least granular error UI and can be considered “catch-all” error handling for the whole application. It is unlikely to be triggered often as root components are typically less dynamic, and other error.js boundaries will catch most errors.
Even if a global-error.js is defined, it is still recommended to define a root error.js whose fallback component will be rendered
within the root layout, which includes globally shared UI and branding.
app/global-error.tsx (tsx)'use client'
export default function GlobalError({
} reset,
error,
: {
} reset: () => void
error: Error & { digest?: string }
) {
return (
<html>
<body>
<h2>Something went wrong!</h2>
</ /body>
< <button onClick={() => reset()}>Try again</button>
html>
})

app/global-error.js (jsx)'use client'
export default function GlobalError({ error, reset }) {
return (
<html>
<body>
<h2>Something went wrong!</h2>
</ /body>
< <button onClick={() => reset()}>Try again</button>
html>
})

Handling Server Errors
If an error is thrown inside a Server Component, Next.js will forward anerror.js
error

object (stripped of sensitive error information inError

production) to the nearest

file as the

prop.

Securing Sensitive Error InformationError
message
digest

During production, the

object forwarded to the client only includes a generic

and

property.

This is a security precaution to avoid leaking potentially sensitive details included in the error to the client.
The message property contains a generic message about the error and the digest property contains an automatically generated hash of the error that can be used to match the corresponding error in server-side logs.Error
message

During development, the debugging.

object forwarded to the client will be serialized and include the

of the original error for easier

3.1.1.8 - Parallel Routes
Documentation path: /02-app/01-building-your-application/01-routing/08-parallel-routes
Description: Simultaneously render one or more pages in the same view that can be navigated independently. A pattern for highly dynamic applications.

Parallel Routing allows you to simultaneously or conditionally render one or more pages in the same layout. For highly dynamic sections of an app, such as dashboards and feeds on social sites, Parallel Routing can be used to implement complex routing patterns.
[image:]For example, you can simultaneously render the team and analytics pages.
Parallel Routing allows you to define independent error and loading states for each route as they’re being streamed in independently.

[image:]
[image:]Parallel Routing also allows you to conditionally render a slot based on certain conditions, such as authentication state. This enables fully separated code on the same URL.

Convention
Parallel routes are created using named slots. Slots are defined with the as props.@folder

convention, and are passed to the same-level layout

Slots are not route segments and do not affect the URL structure. The file path	would be accessible at/@team/members
/members.

For example, the following file structure defines two explicit slots: @analytics and @team.
The folder structure above means that the component in app/layout.js now accepts the @analytics and @team slots props, and can render them in parallel alongside the children prop:

app/layout.tsx (tsx)

app/layout.js (jsx)export default function Layout(props: {
children: React.ReactNode
} team: React.ReactNode
analytics: React.ReactNode
) {
return (
<>
{props.children}
< {props.analytics}
{props.team}
}
) />
export default function Layout(props) {
return (
<>
{props.children}
< {props.analytics}
{props.team}
}
) />

Good to know: The children prop is an implicit slot that does not need to be mapped to a folder. This means	is equivalent to app/@children/page.js.app/page.js

Unmatched Routes
By default, the content rendered within a slot will match the current URL.
In the case of an unmatched slot, the content that Next.js renders differs based on the routing technique and folder structure.default.js

default.js

You can define a	file to render as a fallback when Next.js cannot recover a slot’s active state based on the current URL.

Consider the following folder structure. The@team
settings
@analytics

slot has a

directory, but

does not.

[image:]
Navigation
On navigation, Next.js will render the slot’s previously active state, even if it doesn’t match the current URL.
Reload
On reload, Next.js will first try to render the unmatched slot’s	file. If that’s not available, a 404 gets rendered.default.js

The 404 for unmatched routes helps ensure that you don’t accidentally render a route that shouldn’t be parallel rendered.
useSelectedLayoutSegment(s)

Both

and

accept a parallelRoutesKey, which allows you to read the

active route segment within that slot.useSelectedLayoutSegment

app/layout.tsx (tsx)'use client'
import { useSelectedLayoutSegment } from 'next/navigation' export default function Layout(props: {
} auth: React.ReactNode
//...
) {
} // ...
const loginSegments = useSelectedLayoutSegment('auth')
useSelectedLayoutSegments

app/layout.js (jsx)'use client'
import { useSelectedLayoutSegment } from 'next/navigation' export default function Layout(props) {
} // ...
const loginSegments = useSelectedLayoutSegment('auth')

When a user navigates to @auth/login, or/login
loginSegments

Examples

in the URL bar,

will be equal to the string "login".

Modals
Parallel Routing can be used to render modals.

The @auth slot renders a <Modal> component that can be shown by navigating to a matching route, for example /login.

app/layout.tsx (tsx)

app/layout.js (jsx)export default async function Layout(props: {
} auth: React.ReactNode
// ...
) {
return (
<>
< {props.auth}
{/* ... */}
}
) />
export default async function Layout(props) {
return (
<>
< {props.auth}
{/* ... */}
}
) />

app/@auth/login/page.tsx (tsx)import { Modal } from 'components/modal'
export default function Login() {
return (
<Modal>
< {/* ... */}
<h1>Login</h1>
}
) /Modal>

app/@auth/login/page.js (jsx)import { Modal } from 'components/modal'
export default function Login() {
return (
<Modal>
< {/* ... */}
<h1>Login</h1>
}
) /Modal>

To ensure that the contents of the modal don’t get rendered when it’s not active, you can create a

file that returns null.
[image:]app/@auth/default.tsx (tsx)export default function Default() {
} return null
default.js

export default function CatchAll() {
} return null

app/@auth/default.js (jsx)export default function Default() {
} return null

Dismissing a modal
If a modal was initiated through client navigation, e.g. by using <Link href="/login">, you can dismiss the modal by callingrouter.back()
Link

or by using a	component.
```tsx filename=”app/@auth/login/page.tsx” highlight=”5” switcher ‘use client’ import { useRouter } from ‘next/navigation’ import { Modal
} from ‘components/modal’
export default function Login() { const router = useRouter() return ( router.back()}>Close modal
Login
… ) }```jsx filename="app/@auth/login/page.js" highlight="5" switcher
'use client'
import { useRouter } from 'next/navigation'
import { Modal } from 'components/modal'
export default function Login() {
const router = useRouter()
return (
<Modal>
<span onClick={() => router.back()}>Close modal</span>
< ... l>
<h1>Login</h1>
}
)  /Moda

More information on modals is covered in the Intercepting Routes section.
[image: ]If you want to navigate elsewhere and dismiss a modal, you can also use a catch-all route.
app/@auth/[...catchAll]/page.tsx (tsx)

app/@auth/[...catchAll]/page.js (jsx)export default function CatchAll() {
} return null





Catch-all routes take precedence over default.js.
Conditional Routes
Parallel Routes can be used to implement conditional routing. For example, you can render a on the authentication state.@dashboard





or




route depending@login

app/layout.tsx (tsx)import { getUser } from '@/lib/auth'
export default function Layout({
} login,
dashboard,
: {
} login: React.ReactNode
dashboard: React.ReactNode
) {
} return isLoggedIn ? dashboard : login
const isLoggedIn = getUser()













app/layout.js (jsx)import { getUser } from '@/lib/auth'
export default function Layout({ dashboard, login }) {
} return isLoggedIn ? dashboard : login
const isLoggedIn = getUser()






[image: ]

3.1.1.9 - Intercepting Routes
Documentation path: /02-app/01-building-your-application/01-routing/09-intercepting-routes
Description: Use intercepting routes to load a new route within the current layout while masking the browser URL, useful for advanced routing patterns such as modals.
Related:
Title: Next Steps
Related Description: Learn how to use modals with Intercepted and Parallel Routes.
Links:
[image: ] app/building-your-application/routing/parallel-routes

Intercepting routes allows you to load a route from another part of your application within the current layout. This routing paradigm can be useful when you want to display the content of a route without the user switching to a different context.
For example, when clicking on a photo in a feed, you can display the photo in a modal, overlaying the feed. In this case, Next.js intercepts the /photo/123 route, masks the URL, and overlays it over /feed.














[image: ]However, when navigating to the photo by clicking a shareable URL or by refreshing the page, the entire photo page should render instead of the modal. No route interception should occur.


Convention
Intercepting routes can be defined with the You can use:(..)

[image: ] (.) to match segments on the same level
[image: ] (..) to match segments one level above



convention, which is similar to relative path convention



but for segments.../


(..)(..) to match segments two levels above

to match segments from the root	directory(...)
app


For example, you can intercept the photo segment from within the feed segment by creating a (..)photo directory.


Note that the(..)

Examples
Modals

convention is based on route segments, not the file-system.

Intercepting Routes can be used together with Parallel Routes to create modals.
Using this pattern to create modals overcomes some common challenges when working with modals, by allowing you to:
[image: ] Make the modal content shareable through a URL
[image: ] Preserve context when the page is refreshed, instead of closing the modal
[image: ] Close the modal on backwards navigation rather than going to the previous route
[image: ] Reopen the modal on forwards navigation

[image: ]
[image: ]In the above example, the path to the photo segment can use the (..) matcher since @modal is a slot and not a segment. Thisphoto

means that the	route is only one segment level higher, despite being two file-system levels higher./login


Other examples could include opening a login modal in a top navbar while also having a dedicated cart in a side modal.
View an example of modals with Intercepted and Parallel Routes.

page, or opening a shopping

3.1.1.10 - Route Handlers
Documentation path: /02-app/01-building-your-application/01-routing/10-route-handlers
Description: Create custom request handlers for a given route using the Web's Request and Response APIs.
Related:
Title: API Reference
Related Description: Learn more about the route.js file.
Links:
[image: ] app/api-reference/file-conventions/route

[image: ]Route Handlers allow you to create custom request handlers for a given route using the Web Request and Response APIs.
Good to know: Route Handlers are only available inside the app directory. They are the equivalent of API Routes inside the directory meaning you do not need to use API Routes and Route Handlers together.
[image: ]Conventionpages
route.js|ts 
app


Route Handlers are defined in a

file inside the

directory:


app/api/route.ts (ts)export const dynamic = 'force-dynamic' // defaults to auto
export async function GET(request: Request) {}




app/api/route.js (js)export const dynamic = 'force-dynamic' // defaults to auto
export async function GET(request) {}
page.js
route.js




Route Handlers can be nested inside the same route segment level as page.js.app

Supported HTTP Methods

directory, similar to

and layout.js. But there cannot be a

file at the

[image: ][image: ][image: ]The following HTTP methods are supported: GET, POST, PUT, PATCH, DELETE, HEAD, and OPTIONS. If an unsupported method is called, Next.js will return a 405 Method Not Allowed response.NextRequest
NextResponse



ExtendedNextResponse


and

APIs

In addition to supporting native Request and Response. Next.js extends them with convenient helpers for advanced use cases.NextRequest

Behavior
CachingGET
Response


and

to provide

Route Handlers are cached by default when using the

method with the

object.


app/items/route.ts (ts)export async function GET() {
const res = await fetch('https://data.mongodb-api.com/...', {
headers: {


} 'API-Key': process.env.DATA_API_KEY,
'Content-Type': 'application/json',
const data = await res.json()
} return Response.json({ data })
}) ,

app/items/route.js (js)export async function GET() {
const res = await fetch('https://data.mongodb-api.com/...', {
headers: {
} 'API-Key': process.env.DATA_API_KEY,
'Content-Type': 'application/json',
const data = await res.json()
} return Response.json({ data })
}) ,









TypeScript Warning: Response.json() is only valid from TypeScript 5.2. If you use a lower TypeScript version, you can use
NextResponse.json() for typed responses instead.
Opting out of caching
You can opt out of caching by:Request
GET


Using the

object with the

method.

[image: ] Using any of the other HTTP methods. [image: ] Using Dynamic Functions likecookies
and headers.

[image: ] The Segment Config Options manually specifies dynamic mode. For example:






app/products/api/route.ts (ts)export async function GET(request: Request) {
const { searchParams } = new URL(request.url)
const id = searchParams.get('id')
const res = await fetch(`https://data.mongodb-api.com/product/${id}`, {
headers: {
} 'API-Key': process.env.DATA_API_KEY!,
'Content-Type': 'application/json',
const product = await res.json()
} return Response.json({ product })
}) ,














app/products/api/route.js (js)export async function GET(request) {
const { searchParams } = new URL(request.url)
const id = searchParams.get('id')
const res = await fetch(`https://data.mongodb-api.com/product/${id}`, {
headers: {
} 'API-Key': process.env.DATA_API_KEY,
'Content-Type': 'application/json',
const product = await res.json()
} return Response.json({ product })
}) ,













Similarly, the

method will cause the Route Handler to be evaluated dynamically.


app/items/route.ts (ts)export async function POST() {
const res = await fetch('https://data.mongodb-api.com/...', {
method: 'POST',
headers: {
POST


} body: JSON.stringify({ time: new Date().toISOString() }),
} 'API-Key': process.env.DATA_API_KEY!,
'Content-Type': 'application/json',
,
)
const data = await res.json()
} return Response.json(data)

app/items/route.js (js)export async function POST() {
const res = await fetch('https://data.mongodb-api.com/...', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
} body: JSON.stringify({ time: new Date().toISOString() }),
} 'API-Key': process.env.DATA_API_KEY,
,
)
const data = await res.json()
} return Response.json(data)











Good to know: Like API Routes, Route Handlers can be used for cases like handling form submissions. A new abstraction for handling forms and mutations that integrates deeply with React is being worked on.
Route Resolution
You can consider a	the lowest level routing primitive.route

They do not participate in layouts or client-side navigations like page.route.js

There cannot be a	file at the same route as page.js.

	Page
	Route
	Result

	app/page.js
	app/route.js
	Conflict

	app/page.js
	app/api/route.js
	Valid

	app/[user]/page.js
	app/api/route.js
	Valid




Each

or

file takes over all HTTP verbs for that route.


app/page.js (jsx)export default function Page() {
} return <h1>Hello, Next.js!</h1>
// lz Conflict
// `app/route.js`
export async function POST(request) {}
route.js
page.js






Examples
The following examples show how to combine Route Handlers with other Next.js APIs and features.
Revalidating Cached Datanext.revalidate


You can revalidate cached data using the

option:


app/items/route.ts (ts)export async function GET() {
const res = await fetch('https://data.mongodb-api.com/...', {
} next: { revalidate: 60 }, // Revalidate every 60 seconds
const data = await res.json()
)


} return Response.json(data)

app/items/route.js (js)export async function GET() {
const res = await fetch('https://data.mongodb-api.com/...', {
const data = await res.json()
} return Response.json(data)
} next: { revalidate: 60 }, // Revalidate every 60 seconds
)







Alternatively, you can use the revalidate segment config option:
export const revalidate = 60

Dynamic Functions
Route Handlers can be used with dynamic functions from Next.js, likecookies
and headers.

Cookies
You can read or set cookies with cookies from next/headers. This server function can be called directly in a Route Handler, or nested inside of another function.Response
Set-Cookie


Alternatively, you can return a new

using the

header.


app/api/route.ts (ts)import { cookies } from 'next/headers'
export async function GET(request: Request) {
const cookieStore = cookies()
const token = cookieStore.get('token')
return new Response('Hello, Next.js!', {
status: 200,
}  )
} headers: { 'Set-Cookie': `token=${token.value}` },












app/api/route.js (js)import { cookies } from 'next/headers'
export async function GET(request) {
const cookieStore = cookies()
const token = cookieStore.get('token')
return new Response('Hello, Next.js!', {
status: 200,
}  )
} headers: { 'Set-Cookie': `token=${token}` },











You can also use the underlying Web APIs to read cookies from the request (NextRequest):


app/api/route.ts (ts)import { type NextRequest } from 'next/server'
export async function GET(request: NextRequest) {
} const token = request.cookies.get('token')







app/api/route.js (js)export async function GET(request) {
} const token = request.cookies.get('token')





Headers
You can read headers with inside of another function.headers



from next/headers. This server function can be called directly in a Route Handler, or nested

This

instance is read-only. To set headers, you need to return a new

with new headers.


app/api/route.ts (ts)import { headers } from 'next/headers'
export async function GET(request: Request) {
const headersList = headers()
const referer = headersList.get('referer')
return new Response('Hello, Next.js!', {
status: 200,
}  )
} headers: { referer: referer },
headers
Response












app/api/route.js (js)import { headers } from 'next/headers'
export async function GET(request) {
const headersList = headers()
const referer = headersList.get('referer')
return new Response('Hello, Next.js!', {
status: 200,
}  )
} headers: { referer: referer },











You can also use the underlying Web APIs to read headers from the request (NextRequest):


app/api/route.ts (ts)import { type NextRequest } from 'next/server'
export async function GET(request: NextRequest) {
} const requestHeaders = new Headers(request.headers)







app/api/route.js (js)export async function GET(request) {
} const requestHeaders = new Headers(request.headers)



Redirects
app/api/route.ts (ts)import { redirect } from 'next/navigation'
export async function GET(request: Request) {
} redirect('https://nextjs.org/')






app/api/route.js (js)import { redirect } from 'next/navigation'
export async function GET(request) {
} redirect('https://nextjs.org/')




Dynamic Route Segments
We recommend reading the Defining Routes page before continuing.
Route Handlers can use Dynamic Segments to create request handlers from dynamic data.
app/items/[slug]/route.ts (ts)export async function GET(
) { params }: { params: { slug: string } }
request: Request,
} const slug = params.slug // 'a', 'b', or 'c'
{







app/items/[slug]/route.js (js)

export async function GET(request, { params }) {
} const slug = params.slug // 'a', 'b', or 'c'


	Route
	Example URL
	params

	app/items/[slug]/route.js
	/items/a
	{ slug: 'a' }

	app/items/[slug]/route.js
	/items/b
	{ slug: 'b' }

	app/items/[slug]/route.js
	/items/c
	{ slug: 'c' }




URL Query Parameters
The request object passed to the Route Handler is a including for more easily handling query parameters.NextRequest



instance, which has some additional convenience methods,
app/api/search/route.ts (ts)import { type NextRequest } from 'next/server'
export function GET(request: NextRequest) {
const searchParams = request.nextUrl.searchParams
} // query is "hello" for /api/search?query=hello
const query = searchParams.get('query')









app/api/search/route.js (js)export function GET(request) {
const searchParams = request.nextUrl.searchParams
} // query is "hello" for /api/search?query=hello
const query = searchParams.get('query')




Streaming
Streaming is commonly used in combination with Large Language Models (LLMs), such as OpenAI, for AI-generated content. Learn more about the AI SDK.
app/api/chat/route.ts (ts)import OpenAI from 'openai'
import { OpenAIStream, StreamingTextResponse } from 'ai'
const openai = new OpenAI({
} apiKey: process.env.OPENAI_API_KEY,
)
export const runtime = 'edge'
export async function POST(req: Request) {
const { messages } = await req.json()
const response = await openai.chat.completions.create({
model: 'gpt-3.5-turbo',
} messages,
stream: true,
)
const stream = OpenAIStream(response)
} return new StreamingTextResponse(stream)



















app/api/chat/route.js (js)import OpenAI from 'openai'
import { OpenAIStream, StreamingTextResponse } from 'ai'
const openai = new OpenAI({
} apiKey: process.env.OPENAI_API_KEY,
)
export const runtime = 'edge'
export async function POST(req) {


const { messages } = await req.json()
const response = await openai.chat.completions.create({
model: 'gpt-3.5-turbo',
} messages,
stream: true,
)
const stream = OpenAIStream(response)
} return new StreamingTextResponse(stream)


These abstractions use the Web APIs to create a stream. You can also use the underlying Web APIs directly.


app/api/route.ts (ts)

// https://developer.mozilla.org/docs/Web/API/ReadableStream#convert_async_iterator_to_stream function iteratorToStream(iterator: any) {
return new ReadableStream({ async pull(controller) {
const { value, done } = await iterator.next()
if (done) { controller.close()
} else {
} controller.enqueue(value)
},
} })
function sleep(time: number) { return new Promise((resolve) => {
setTimeout(resolve, time)
} })
const encoder = new TextEncoder() async function* makeIterator() {
yield encoder.encode('<p>One</p>') await sleep(200)
yield encoder.encode('<p>Two</p>') await sleep(200)
} yield encoder.encode('<p>Three</p>')
export async function GET() { const iterator = makeIterator()
const stream = iteratorToStream(iterator)
} return new Response(stream)

app/api/route.js (js)// https://developer.mozilla.org/docs/Web/API/ReadableStream#convert_async_iterator_to_stream
function iteratorToStream(iterator) {
return new ReadableStream({
async pull(controller) {
const { value, done } = await iterator.next()
if (done) {
} controller.close()
else {
}  )
} },
} controller.enqueue(value)
function sleep(time) {
return new Promise((resolve) => {
}  )
} setTimeout(resolve, time)
const encoder = new TextEncoder()


async function* makeIterator() {
yield encoder.encode('<p>One</p>')
await sleep(200)
yield encoder.encode('<p>Two</p>')
} yield encoder.encode('<p>Three</p>')
await sleep(200)
export async function GET() {
const stream = iteratorToStream(iterator)
} return new Response(stream)
const iterator = makeIterator()



Request Body
You can read theRequest



body using the standard Web API methods:




app/items/route.ts (ts)export async function POST(request: Request) {
} return Response.json({ res })
const res = await request.json()






app/items/route.js (js)export async function POST(request) {
} return Response.json({ res })
const res = await request.json()




Request Body FormDataFormData
request.formData()


You can read the

using the

function:


app/items/route.ts (ts)export async function POST(request: Request) {
const formData = await request.formData()
const name = formData.get('name')
} return Response.json({ name, email })
const email = formData.get('email')








app/items/route.js (js)export async function POST(request) {
const formData = await request.formData()
const name = formData.get('name')
} return Response.json({ name, email })
const email = formData.get('email')







Since formData data are all strings, you may want to use prefer (e.g. number).zod-form-data

CORSResponse


to validate the request and retrieve data in the format you

You can set CORS headers on a

using the standard Web API methods:


app/api/route.ts (ts)export const dynamic = 'force-dynamic' // defaults to auto
export async function GET(request: Request) {
return new Response('Hello, Next.js!', {
status: 200,
headers: {
'Access-Control-Allow-Origin': '*',
} 'Access-Control-Allow-Headers': 'Content-Type, Authorization',
'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
}
}) ,


app/api/route.js (js)export const dynamic = 'force-dynamic' // defaults to auto
export async function GET(request) {
return new Response('Hello, Next.js!', {
status: 200,
headers: {
'Access-Control-Allow-Origin': '*',
} 'Access-Control-Allow-Headers': 'Content-Type, Authorization',
'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
}
}) ,









Edge and Node.js Runtimes
Route Handlers have an isomorphic Web API to support both Edge and Node.js runtimes seamlessly, including support for streaming. Since Route Handlers use the same route segment configuration as Pages and Layouts, they support long-awaited features like general- purpose statically regenerated Route Handlers.
You can use the runtime segment config option to specify the runtime:
export const runtime = 'edge' // 'nodejs' is the default

Non-UI Responses
You can use Route Handlers to return non-UI content. Note that sitemap.xml, robots.txt, app icons, and open graph images all have built-in support.
app/rss.xml/route.ts (ts)export const dynamic = 'force-dynamic' // defaults to auto
export async function GET() {
< return new Response(`<?xml version="1.0" encoding="UTF-8" ?>
rss version="2.0">
<channel>
<title>Next.js Documentation</title>
< <description>The React Framework for the Web</description>
<link>https://nextjs.org/docs</link>
/channel>
</rss>`)
}













app/rss.xml/route.js (js)export const dynamic = 'force-dynamic' // defaults to auto
export async function GET() {
< return new Response(`<?xml version="1.0" encoding="UTF-8" ?>
rss version="2.0">
<channel>
<title>Next.js Documentation</title>
< <description>The React Framework for the Web</description>
<link>https://nextjs.org/docs</link>
/channel>
</rss>`)
}










Segment Config Options
Route Handlers use the same route segment configuration as pages and layouts.
app/items/route.ts (ts)export const dynamic = 'auto'
export const dynamicParams = true
export const revalidate = false
export const fetchCache = 'auto'
export const runtime = 'nodejs'
export const preferredRegion = 'auto'







app/items/route.js (js)

export const dynamic = 'auto'
export const dynamicParams = true
export const revalidate = false
export const fetchCache = 'auto'
export const runtime = 'nodejs'
export const preferredRegion = 'auto'

See the API reference for more details.

3.1.1.11 - Middleware
Documentation path: /02-app/01-building-your-application/01-routing/11-middleware
Description: Learn how to use Middleware to run code before a request is completed.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Middleware allows you to run code before a request is completed. Then, based on the incoming request, you can modify the response by rewriting, redirecting, modifying the request or response headers, or responding directly.
Middleware runs before cached content and routes are matched. See Matching Paths for more details.
Convention

[image: ]Use the file middleware.ts (or .js) in the root of your project to define Middleware. For example, at the same level as or inside src if applicable.
Example

or app,



[image: ]middleware.ts (ts)import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'
// This function can be marked `async` if using `await` inside
export function middleware(request: NextRequest) {
} return NextResponse.redirect(new URL('/home', request.url))
// See "Matching Paths" below to learn more
export const config = {
} matcher: '/about/:path*',
pages













middleware.js (js)import { NextResponse } from 'next/server'
// This function can be marked `async` if using `await` inside
export function middleware(request) {
} return NextResponse.redirect(new URL('/home', request.url))
// See "Matching Paths" below to learn more
export const config = {
} matcher: '/about/:path*',







Matching Paths
Middleware will be invoked for every route in your project. The following is the execution order:
1. headers from next.config.js
2. redirects from next.config.js
3. Middleware (rewrites, redirects, etc.)
4. beforeFiles (rewrites) from next.config.js
5. [image: ]Filesystem routes (public/, _next/static/, pages/, app/, etc.)
6. afterFiles (rewrites) from next.config.js
7. Dynamic Routes (/blog/[slug])
8. fallback (rewrites) from next.config.js
There are two ways to define which paths Middleware will run on:
1. Custom matcher config
2. Conditional statements
Matcher

allows you to filter Middleware to run on specific paths.matcher



middleware.js (js)export const config = {
} matcher: '/about/:path*',






You can match a single path or multiple paths with an array syntax:


middleware.js (js)export const config = {
} matcher: ['/about/:path*', '/dashboard/:path*'],





The matcher config allows full regex so matching like negative lookaheads or character matching is supported. An example of a negative lookahead to match all except specific paths can be seen here:
middleware.js (js)export const config = {
matcher: [
/*
* Match all request paths except for the ones starting with:
* - api (API routes)
* - _next/static (static files)
* - _next/image (image optimization files)
* - favicon.ico (favicon file)
*/
} ,
] '/((?!api|_next/static|_next/image|favicon.ico).*)',












You can also ignore prefetches (from next/link) that don’t need to go through the Middleware using the

array:
middleware.js (js)export const config = {
matcher: [
/*
* Match all request paths except for the ones starting with:
* - api (API routes)
* - _next/static (static files)
* - _next/image (image optimization files)
* - favicon.ico (favicon file)
{   source:   '/((?!api|_next/static|_next/image|favicon.ico).*)',
*/
missing: [
{ type: 'header', key: 'next-router-prefetch' },
}, ,
} ],
] { type: 'header', key: 'purpose', value: 'prefetch' },
missing















Good to know: The matcher values need to be constants so they can be statically analyzed at build-time. Dynamic values such as variables will be ignored.
Configured matchers:
1. MUST start with /
2. Can include named parameters: /about/:path matches /about/a and /about/b but not /about/a/c
3. Can have modifiers on named parameters (starting with :): /about/:path* matches /about/a/b/c because * is zero or more. ? is
zero or one and + one or more

4. Can use regular expression enclosed in parenthesis: Read more details on path-to-regexp documentation./about/(.*)
/about/:path*


is the same as

Good to know: For backward compatibility, Next.js always considers will match./public/:path

Conditional Statements

as /public/index. Therefore, a matcher of



middleware.ts (ts)/public


import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'
export function middleware(request: NextRequest) {
if (request.nextUrl.pathname.startsWith('/about')) {
} return NextResponse.rewrite(new URL('/about-2', request.url))
if (request.nextUrl.pathname.startsWith('/dashboard')) {
}
} return NextResponse.rewrite(new URL('/dashboard/user', request.url))

middleware.js (js)import { NextResponse } from 'next/server'
export function middleware(request) {
if (request.nextUrl.pathname.startsWith('/about')) {
} return NextResponse.rewrite(new URL('/about-2', request.url))
if (request.nextUrl.pathname.startsWith('/dashboard')) {
}
} return NextResponse.rewrite(new URL('/dashboard/user', request.url))












NextResponse
The NextResponse API allows you to:
[image: ] redirect the incoming request to a different URL
[image: ] rewrite the response by displaying a given URLrewrite

[image: ] Set request headers for API Routes, getServerSideProps, and [image: ] Set response cookies
[image: ] Set response headers
To produce a response from Middleware, you can:
1. rewrite to a route (Page or Route Handler) that produces a response
2. return a NextResponse directly. See Producing a Response
To produce a response from Middleware, you can:
1. rewrite to a route (Page or Edge API Route) that produces a response
2. return a NextResponse directly. See Producing a Response
Using Cookies
Cookies are regular headers. On a Request, they are stored in theCookie







destinations











header. On a Response they are in the Set-Cookie header.

Next.js provides a convenient way to access and manipulate these cookies through the cookies extension on NextRequest andNextResponse.



1. [image: ][image: ]For incoming requests, cookies comes with the following methods: get, getAll, set, and existence of a cookie with has or remove all cookies with clear.delete

2. [image: ]For outgoing responses, cookies have the following methods get, getAll, set, and delete.

cookies. You can check for the


middleware.ts (ts)import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'
export function middleware(request: NextRequest) {
// Assume a "Cookie:nextjs=fast" header to be present on the incoming request
// Getting cookies from the request using the `RequestCookies` API
let cookie = request.cookies.get('nextjs')
console.log(cookie) // => { name: 'nextjs', value: 'fast', Path: '/' }
const allCookies = request.cookies.getAll()
console.log(allCookies) // => [{ name: 'nextjs', value: 'fast' }]
request.cookies.has('nextjs') // => true


request.cookies.delete('nextjs')
request.cookies.has('nextjs') // => false
// Setting cookies on the response using the `ResponseCookies` API
const response = NextResponse.next()
response.cookies.set('vercel', 'fast')
response.cookies.set({
name: 'vercel',
} path: '/',
value: 'fast',
cookie = response.cookies.get('vercel')
)
// The outgoing response will have a `Set-Cookie:vercel=fast;path=/test` header.
} return response
console.log(cookie) // => { name: 'vercel', value: 'fast', Path: '/' }

middleware.js (js)import { NextResponse } from 'next/server'
export function middleware(request) {
// Assume a "Cookie:nextjs=fast" header to be present on the incoming request
// Getting cookies from the request using the `RequestCookies` API
let cookie = request.cookies.get('nextjs')
console.log(cookie) // => { name: 'nextjs', value: 'fast', Path: '/' }
const allCookies = request.cookies.getAll()
console.log(allCookies) // => [{ name: 'nextjs', value: 'fast' }]
request.cookies.has('nextjs') // => true
request.cookies.delete('nextjs')
request.cookies.has('nextjs') // => false
// Setting cookies on the response using the `ResponseCookies` API
const response = NextResponse.next()
response.cookies.set('vercel', 'fast')
response.cookies.set({
name: 'vercel',
} path: '/',
value: 'fast',
cookie = response.cookies.get('vercel')
)
// The outgoing response will have a `Set-Cookie:vercel=fast;path=/test` header.
} return response
console.log(cookie) // => { name: 'vercel', value: 'fast', Path: '/' }


























Setting Headers
You can set request and response headers using the



API (setting request headers is available since Next.js v13.0.0).NextResponse

middleware.ts (ts)import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'
export function middleware(request: NextRequest) {
// Clone the request headers and set a new header `x-hello-from-middleware1`
const requestHeaders = new Headers(request.headers)
requestHeaders.set('x-hello-from-middleware1', 'hello')
// You can also set request headers in NextResponse.rewrite
const response = NextResponse.next({
request: {

}) ,
} headers: requestHeaders,
// New request headers
// Set a new response header `x-hello-from-middleware2`
} return response
response.headers.set('x-hello-from-middleware2', 'hello')


middleware.js (js)import { NextResponse } from 'next/server'
export function middleware(request) {
// Clone the request headers and set a new header `x-hello-from-middleware1`
const requestHeaders = new Headers(request.headers)
requestHeaders.set('x-hello-from-middleware1', 'hello')
// You can also set request headers in NextResponse.rewrite
const response = NextResponse.next({
request: {

}) ,
} headers: requestHeaders,
// New request headers
// Set a new response header `x-hello-from-middleware2`
} return response
response.headers.set('x-hello-from-middleware2', 'hello')















Good to know: Avoid setting large headers as it might cause 431 Request Header Fields Too Large error depending on your backend web server configuration.
Producing a ResponseResponse


You can respond from Middleware directly by returning a

or

instance. (This is available since Next.js v13.1.0)
middleware.ts (ts)import { NextRequest } from 'next/server'
import { isAuthenticated } from '@lib/auth'
// Limit the middleware to paths starting with `/api/`
export const config = {
} matcher: '/api/:function*',
export function middleware(request: NextRequest) {
// Call our authentication function to check the request
if (!isAuthenticated(request)) {
// Respond with JSON indicating an error message
return Response.json(
{ success: false, message: 'authentication failed' },
} }
) { status: 401 }
NextResponse


















middleware.js (js)import { isAuthenticated } from '@lib/auth'
// Limit the middleware to paths starting with `/api/`
export const config = {
} matcher: '/api/:function*',
export function middleware(request) {
// Call our authentication function to check the request
if (!isAuthenticated(request)) {
// Respond with JSON indicating an error message
return Response.json(
{ success: false, message: 'authentication failed' },
} }
) { status: 401 }

















andwaitUntil
NextFetchEvent

The NextFetchEvent object extends the native


object, and includes theFetchEvent



method.waitUntil()


The waitUntil() method takes a promise as an argument, and extends the lifetime of the Middleware until the promise settles. This is useful for performing work in the background.

middleware.ts (ts)import { NextResponse } from 'next/server'
import type { NextFetchEvent, NextRequest } from 'next/server'
export function middleware(req: NextRequest, event: NextFetchEvent) {
event.waitUntil(
fetch('https://my-analytics-platform.com', {
method: 'POST',
)  )
} body: JSON.stringify({ pathname: req.nextUrl.pathname }),
} return NextResponse.next()













Advanced Middleware Flags
In v13.1 of Next.js two additional flags were introduced for middleware,skipMiddlewareUrlNormalize

skipTrailingSlashRedirect to handle advanced use cases.



and

skipTrailingSlashRedirect disables Next.js redirects for adding or removing trailing slashes. This allows custom handling inside middleware to maintain the trailing slash for some paths but not others, which can make incremental migrations easier.
next.config.js (js)module.exports = {
} skipTrailingSlashRedirect: true,




middleware.js (js)const legacyPrefixes = ['/docs', '/blog']
export default async function middleware(req) {
const { pathname } = req.nextUrl
if (legacyPrefixes.some((prefix) => pathname.startsWith(prefix))) {
} return NextResponse.next()
// apply trailing slash handling
if (
) !pathname.match(/((?!\.well-known(?:\/.*)?)(?:[^/]+\/)*[^/]+\.\w+)/)
!pathname.endsWith('/')  &&
{
req.nextUrl.pathname += '/'
}
} return NextResponse.redirect(req.nextUrl)














allows disabling the URL normalizing Next.js does to make handling direct visits and client-transitions the same. There are some advanced cases where you need full control using the original URL which this unlocks.skipMiddlewareUrlNormalize

next.config.js (js)module.exports = {
} skipMiddlewareUrlNormalize: true,




middleware.js (js)export default async function middleware(req) {
const { pathname } = req.nextUrl
// GET /_next/data/build-id/hello.json console.log(pathname)
} // without the flag this would be normalized to /hello
// with the flag this now /_next/data/build-id/hello.json






Runtime
Middleware currently only supports the Edge runtime. The Node.js runtime can not be used.

Version History

	Version
	Changes

	v13.1.0
	Advanced Middleware flags added

	v13.0.0
	Middleware can modify request headers, response headers, and send responses

	v12.2.0
	Middleware is stable, please see the upgrade guide

	v12.0.9
	Enforce absolute URLs in Edge Runtime (PR)

	v12.0.0
	Middleware (Beta) added



3.1.1.12 - Project Organization and File Colocation
Documentation path: /02-app/01-building-your-application/01-routing/12-colocation
Description: Learn how to organize your Next.js project and colocate files.
Related:
Title: Related
Related Description: No related description
Links:
[image: ] app/building-your-application/routing/defining-routes [image: ] app/building-your-application/routing/route-groups
[image: ] app/building-your-application/configuring/src-directory
[image: ] app/building-your-application/configuring/absolute-imports-and-module-aliases

Apart from routing folder and file conventions, Next.js is unopinionated about how you organize and colocate your project files. This page shares default behavior and features you can use to organize your project.
[image: ] Safe colocation by default
[image: ] Project organization features
[image: ] Project organization strategies
Safe colocation by default
In the	directory, nested folder hierarchy defines route structure.app


Each folder represents a route segment that is mapped to a corresponding segment in a URL path. However, even though route structure is defined through folders, a route is not publicly accessible until a is added to a route segment.


orpage.js



fileroute.js



And, even when a route is made publicly accessible, only the content returned by page.js or route.js is sent to the client.
This means that project files can be safely colocated inside route segments in the app directory without accidentally being routable.


[image: ]
Good to know:
[image: ] This is different from the pages directory, where any file in pages is considered a route.app
keep them outside the app


[image: ] While you can colocate your project files in directory.
Project organization features

you don’t have to. If you prefer, you can

Next.js provides several features to help you organize your project.
Private Folders
Private folders can be created by prefixing a folder with an underscore:_folderName

This indicates the folder is a private implementation detail and should not be considered by the routing system, thereby opting the folder and all its subfolders out of routing.



















Since files in the app directory can be safely colocated by default, private folders are not required for colocation. However, they can be useful for:
[image: ] Separating UI logic from routing logic.
[image: ] Consistently organizing internal files across a project and the Next.js ecosystem. [image: ] Sorting and grouping files in code editors.
[image: ] Avoiding potential naming conflicts with future Next.js file conventions.
Good to know
[image: ] While not a framework convention, you might also consider marking files outside private folders as “private” using the same underscore pattern.%5F


You can create URL segments that start with an underscore by prefixing the folder name with an underscore): %5FfolderName.

(the URL-encoded form of

[image: ] If you don’t use private folders, it would be helpful to know Next.js special file conventions to prevent unexpected naming conflicts.
Route Groups
Route groups can be created by wrapping a folder in parenthesis:(folderName)

This indicates the folder is for organizational purposes and should not be included in the route’s URL path.

[image: ]
Route groups are useful for:
[image: ] Organizing routes into groups e.g. by site section, intent, or team. [image: ] Enabling nested layouts in the same route segment level:
[image: ] Creating multiple nested layouts in the same segment, including multiple root layouts [image: ] Adding a layout to a subset of routes in a common segment
Directorysrc
src 


[image: ]Next.js supports storing application code (including app) inside an optional configuration files which mostly live in the root of a project.

directory. This separates application code from project


[image: ]
Module Path Aliases
Next.js supports Module Path Aliases which make it easier to read and maintain imports across deeply nested project files.
app/dashboard/settings/analytics/page.js  (jsx)// before
import  {  Button  }  from  '../../../components/button'
import { Button } from '@/components/button'
// after




Project organization strategies

There is no “right” or “wrong” way when it comes to organizing your own files and folders in a Next.js project.
The following section lists a very high-level overview of common strategies. The simplest takeaway is to choose a strategy that works for you and your team and be consistent across the project.
[image: ][image: ]Good to know: In our examples below, we’re using components and lib folders as generalized placeholders, their naming has no special framework significance and your projects might use other folders like ui, utils, hooks, styles, etc.
Store project files outside ofapp
app


This strategy stores all application code in shared folders in the root of your project and keeps the purposes.

directory purely for routing


[image: ]
Store project files in top-level folders inside ofapp

This strategy stores all application code in shared folders in the root of the app directory.



Split project files by feature or route
This strategy stores globally shared application code in the root


directory and splits more specific application code into the routeapp


[image: ]segments that use them.

3.1.1.13 - Internationalization
Documentation path: /02-app/01-building-your-application/01-routing/13-internationalization
Description: Add support for multiple languages with internationalized routing and localized content.

Next.js enables you to configure the routing and rendering of content to support multiple languages. Making your site adaptive to different locales includes translated content (localization) and internationalized routes.
Terminology
[image: ] Locale: An identifier for a set of language and formatting preferences. This usually includes the preferred language of the user and possibly their geographic region.
[image: ] en-US: English as spoken in the United States
[image: ] nl-NL: Dutch as spoken in the Netherlands
[image: ] nl: Dutch, no specific region
Routing Overview
It’s recommended to use the user’s language preferences in the browser to select which locale to use. Changing your preferredAccept-Language

language will modify the incoming	header to your application.

For example, using the following libraries, you can look at an incoming
Headers, locales you plan to support, and the default locale.

to determine which locale to select, based on the

middleware.js (js)import { match } from '@formatjs/intl-localematcher'
import Negotiator from 'negotiator'
let headers = { 'accept-language': 'en-US,en;q=0.5' }
let languages = new Negotiator({ headers }).languages()
let locales = ['en-US', 'nl-NL', 'nl']
let defaultLocale = 'en-US'
match(languages, locales, defaultLocale) // -> 'en-US'
Request









Routing can be internationalized by either the sub-path (/fr/products) or domain (my-site.fr/products). With this information, you can now redirect the user based on the locale inside Middleware.

let locales = ['en-US', 'nl-NL', 'nl']
// Get the preferred locale, similar to the above or using a library function getLocale(request) { ... }
export function middleware(request) {
// Check if there is any supported locale in the pathname const { pathname } = request.nextUrl
const pathnameHasLocale = locales.some(
) (locale) => pathname.startsWith(`/${locale}/`) || pathname === `/${locale}`
if (pathnameHasLocale) return
// Redirect if there is no locale const locale = getLocale(request)
request.nextUrl.pathname = `/${locale}${pathname}`
// e.g. incoming request is /products
// The new URL is now /en-US/products
} return Response.redirect(request.nextUrl)
export const config = { matcher: [
// Skip all internal paths (_next) '/((?!_next).*)',
// Optional: only run on root (/) URL
// '/'
} ],

middleware.js (js)

[image: ]Finally, ensure all special files inside app/ are nested under app/[lang]. This enables the Next.js router to dynamically handlelang


different locales in the route, and forward the

parameter to every layout and page. For example:


app/[lang]/page.js (jsx)// You now have access to the current locale
// e.g. /en-US/products -> `lang` is "en-US"
export default async function Page({ params: { lang } }) {
} return ...






The root layout can also be nested in the new folder (e.g. app/[lang]/layout.js).
Localization
Changing displayed content based on the user’s preferred locale, or localization, is not something specific to Next.js. The patterns described below would work the same with any web application.
Let’s assume we want to support both English and Dutch content inside our application. We might maintain two different “dictionaries”, which are objects that give us a mapping from some key to a localized string. For example:
dictionaries/en.json (json){ "products": {
}
} "cart": "Add to Cart"






dictionaries/nl.json (json){ "products": {
}
} "cart": "Toevoegen aan Winkelwagen"






We can then create a

function to load the translations for the requested locale:


app/[lang]/dictionaries.js (jsx)import 'server-only'
const dictionaries = {
} nl: () => import('./dictionaries/nl.json').then((module) => module.default), export const getDictionary = async (locale) => dictionaries[locale]()
en: () => import('./dictionaries/en.json').then((module) => module.default),
getDictionary










Given the currently selected language, we can fetch the dictionary inside of a layout or page.


app/[lang]/page.js (jsx)import { getDictionary } from './dictionaries'
export default async function Page({ params: { lang } }) {
} return <button>{dict.products.cart}</button> // Add to Cart
const dict = await getDictionary(lang) // en







[image: ]Because all layouts and pages in the app/ directory default to Server Components, we do not need to worry about the size of the translation files affecting our client-side JavaScript bundle size. This code will only run on the server, and only the resulting HTML will be sent to the browser.
Static Generation

To generate static routes for a given set of locales, we can use example, in the root layout:

with any page or layout. This can be global, for
app/[lang]/layout.js (jsx)export async function generateStaticParams() {
} return [{ lang: 'en-US' }, { lang: 'de' }]
export default function Root({ children, params }) {
return (
generateStaticParams





Resources<html lang={params.lang}>
< <body>{children}</body>
}
)  /html>

[image: ] Minimal i18n routing and translationsnext-intl
next-international next-i18n-router


3.1.2 - Data Fetching
Documentation path: /02-app/01-building-your-application/02-data-fetching/index
Description: Learn how to fetch, cache, revalidate, and mutate data with Next.js.

3.1.2.1 - Data Fetching, Caching, and Revalidating
Documentation path: /02-app/01-building-your-application/02-data-fetching/01-fetching-caching-and-revalidating
Description: Learn how to fetch, cache, and revalidate data in your Next.js application.

Data fetching is a core part of any application. This page goes through how you can fetch, cache, and revalidate data in React and Next.js.
There are four ways you can fetch data:
1. On the server, with fetch
2. On the server, with third-party libraries
3. On the client, via a Route Handler
4. On the client, with third-party libraries.
Fetching Data on the Server withfetch

Next.js extends the native fetch Web API to allow you to configure the caching and revalidating behavior for each fetch request on the server. React extends fetch to automatically memoize fetch requests while rendering a React component tree.fetch


You can use For example:

with async/await in Server Components, in Route Handlers, and in Server Actions.



app/page.tsx (tsx)async function getData() {
const  res  =  await  fetch('https://api.example.com/...')
// The return value is *not* serialized
// You can return Date, Map, Set, etc.
if (!res.ok) {
} throw new Error('Failed to fetch data')
} return res.json()
// This will activate the closest `error.js` Error Boundary
export default async function Page() {
const data = await getData()
} return <main></main>


















app/page.js (jsx)async function getData() {
const  res  =  await  fetch('https://api.example.com/...')
// The return value is *not* serialized
// You can return Date, Map, Set, etc.
if (!res.ok) {
} throw new Error('Failed to fetch data')
} return res.json()
// This will activate the closest `error.js` Error Boundary
export default async function Page() {
const data = await getData()
} return <main></main>















Good to know:
[image: ] Next.js provides helpful functions you may need when fetching data in Server Components such as These will cause the route to be dynamically rendered as they rely on request time information.cookies
and headers.

[image: ] In Route handlers, fetch requests are not memoized as Route Handlers are not part of the React component tree.5.1.3

To use async/await in a Server Component with TypeScript, you’ll need to use TypeScript	or higher and

or higher.@types/react 18.2.8

Caching Data
Caching stores data so it doesn’t need to be re-fetched from your data source on every request.
By default, Next.js automatically caches the returned values of fetch in the Data Cache on the server. This means that the data can be fetched at build time or request time, cached, and reused on each data request.// 'force-cache' is the default, and can be omitted
fetch('https://...', { cache: 'force-cache' })



requests that use the will not be cached.fetch
then it
POST

What is the Data Cache?POST


method are also automatically cached. Unless it’s inside a Route Handler that uses the

method,

The Data Cache is a persistent HTTP cache. Depending on your platform, the cache can scale automatically and be shared across multiple regions.
Learn more about the Data Cache.
Revalidating Data
Revalidation is the process of purging the Data Cache and re-fetching the latest data. This is useful when your data changes and you want to ensure you show the latest information.
Cached data can be revalidated in two ways:
[image: ] Time-based revalidation: Automatically revalidate data after a certain amount of time has passed. This is useful for data that changes infrequently and freshness is not as critical.
[image: ] On-demand revalidation: Manually revalidate data based on an event (e.g. form submission). On-demand revalidation can use a tag-based or path-based approach to revalidate groups of data at once. This is useful when you want to ensure the latest data is shown as soon as possible (e.g. when content from your headless CMS is updated).
Time-based Revalidationnext.revalidate
fetch


To revalidate data at a timed interval, you can use the seconds).

option of

to set the cache lifetime of a resource (in


fetch('https://...', { next: { revalidate: 3600 } })


Alternatively, to revalidate all

requests in a route segment, you can use the Segment Config Options.


layout.js | page.js (jsx)export const revalidate = 3600 // revalidate at most every hour
fetch



If you have multiple fetch requests in a statically rendered route, and each has a different revalidation frequency. The lowest time willfetch


be used for all requests. For dynamically rendered routes, each Learn more about time-based revalidation.
On-demand Revalidation

request will be revalidated independently.

Data can be revalidated on-demand by path (revalidatePath) or by cache tag (revalidateTag) inside a Server Action or Route Handler.fetch

Next.js has a cache tagging system for invalidating	requests across routes.
1. When using fetch, you have the option to tag cache entries with one or more tags.
2. Then, you can call revalidateTag to revalidate all entries associated with that tag.fetch


For example, the following

request adds the cache tag collection:


app/page.tsx (tsx)export default async function Page() {
const res = await fetch('https://...', { next: { tags: ['collection'] } })
} // ...
const data = await res.json()







app/page.js (jsx)export default async function Page() {
const res = await fetch('https://...', { next: { tags: ['collection'] } })


} // ...
const data = await res.json()


You can then revalidate this

call tagged with

by calling

in a Server Action:


app/actions.ts (ts)'use server'
import { revalidateTag } from 'next/cache'
export default async function action() {
} revalidateTag('collection')
fetch
collection
revalidateTag









app/actions.js (js)'use server'
import { revalidateTag } from 'next/cache'
export default async function action() {
} revalidateTag('collection')






Learn more about on-demand revalidation.
Error handling and revalidation
If an error is thrown while attempting to revalidate data, the last successfully generated data will continue to be served from the cache. On the next subsequent request, Next.js will retry revalidating the data.
Opting out of Data Caching
requests are not cached if:fetch

[image: ] The cache: 'no-store' is added to fetch requests.
[image: ] The revalidate: 0 option is added to individual fetch requests.
[image: ] The fetch request is inside a Router Handler that uses the POST method. [image: ] The fetch request comes after the usage of headers or cookies.
[image: ] The const dynamic = 'force-dynamic' route segment option is used.
[image: ] The fetchCache route segment option is configured to skip cache by default.
[image: ] The fetch request uses Authorization or Cookie headers and there’s an uncached request above it in the component tree.
Individual	Requestsfetch
fetch
cache


To opt out of caching for individual dynamically, on every request.

requests, you can set the

option in

to 'no-store'. This will fetch data
layout.js | page.js (js)fetch('https://...', { cache: 'no-store' })
fetch



View all the available	options in the fetch API reference.cache

Multiple	Requestsfetch

If you have multiple fetch requests in a route segment (e.g. a Layout or Page), you can configure the caching behavior of all data requests in the segment using the Segment Config Options.fetch


However, we recommend configuring the caching behavior of each over the caching behavior.

request individually. This gives you more granular control

Fetching data on the Server with third-party libraries
In cases where you’re using a third-party library that doesn’t support or expose fetch (for example, a database, CMS, or ORM client), you can configure the caching and revalidating behavior of those requests using the Route Segment Config Option and React’s function.cache

Whether the data is cached or not will depend on whether the route segment is statically or dynamically rendered. If the segment is static (default), the output of the request will be cached and revalidated as part of the route segment. If the segment is dynamic, the

output of the request will not be cached and will be re-fetched on every request when the segment is rendered.unstable_cache 


You can also use the experimental
Example
In the example below:

API.

The React cache function is used to memoize data requests.3600


The revalidate option is set to every hour.

in the Layout and Page segments, meaning the data will be cached and revalidated at most

app/utils.ts (ts)import { cache } from 'react'
export const getItem = cache(async (id: string) => {
} return item
const item = await db.item.findUnique({ id })
)








app/utils.js (js)import { cache } from 'react'
export const getItem = cache(async (id) => {
} return item
const item = await db.item.findUnique({ id })
)







Although the

function is called twice, only one query will be made to the database.


app/item/[id]/layout.tsx (tsx)import { getItem } from '@/utils/get-item'
export const revalidate = 3600 // revalidate the data at most every hour
export default async function Layout({
} params: { id },
} params: { id: string }
: {
) {
} // ...
const item = await getItem(id)
getItem













app/item/[id]/layout.js (jsx)import { getItem } from '@/utils/get-item'
export const revalidate = 3600 // revalidate the data at most every hour export default async function Layout({ params: { id } }) {
} // ...
const item = await getItem(id)








app/item/[id]/page.tsx (tsx)import { getItem } from '@/utils/get-item'
export const revalidate = 3600 // revalidate the data at most every hour
export default async function Page({
} params: { id },
} params: { id: string }
: {
) {
} // ...
const item = await getItem(id)












app/item/[id]/page.js (jsx)import { getItem } from '@/utils/get-item'
export const revalidate = 3600 // revalidate the data at most every hour


export default async function Page({ params: { id } }) {
} // ...
const item = await getItem(id)

Fetching Data on the Client with Route Handlers
If you need to fetch data in a client component, you can call a Route Handler from the client. Route Handlers execute on the server and return the data to the client. This is useful when you don’t want to expose sensitive information to the client, such as API tokens.
See the Route Handler documentation for examples.
Server Components and Route Handlers
Since Server Components render on the server, you don’t need to call a Route Handler from a Server Component to fetch data. Instead, you can fetch the data directly inside the Server Component.
Fetching Data on the Client with third-party libraries
You can also fetch data on the client using a third-party library such as SWR or TanStack Query. These libraries provide their own APIs for memoizing requests, caching, revalidating, and mutating data.
Future APIs:
[image: ][image: ]use is a React function that accepts and handles a promise returned by a function. Wrapping fetch in use is currently not
recommended in Client Components and may trigger multiple re-renders. Learn more about use in the React docs.

3.1.2.2 - Server Actions and Mutations
Documentation path: /02-app/01-building-your-application/02-data-fetching/02-server-actions-and-mutations
Description: Learn how to handle form submissions and data mutations with Next.js.
Related:
Title: Related
Related Description: Learn how to configure Server Actions in Next.js
Links:
[image: ] app/api-reference/next-config-js/serverActions

Server Actions are asynchronous functions that are executed on the server. They can be used in Server and Client Components to handle form submissions and data mutations in Next.js applications.
□ Watch: Learn more about forms and mutations with Server Actions → YouTube (10 minutes).
Convention
A Server Action can be defined with the React "use server" directive. You can place the directive at the top of an async function to mark the function as a Server Action, or at the top of a separate file to mark all exports of that file as Server Actions.
Server Components

Server Components can use the inline function level or module level to the top of the function body:server"


directive. To inline a Server Action, add

app/page.tsx (tsx)// Server Component
export default function Page() {
// Server Action
async function create() {
'use server'
} // ...
return (
}
) // ...
"use server"
"use














app/page.jsx (jsx)// Server Component
export default function Page() {
// Server Action
async function create() {
'use server'
} // ...
return (
}
) // ...









Client Components
Client Components can only import actions that use the module-level "use server" directive.
To call a Server Action in a Client Component, create a new file and add the "use server" directive at the top of it. All functions within the file will be marked as Server Actions that can be reused in both Client and Server Components:
app/actions.ts (tsx)'use server'
export async function create() {
// ...


}

app/actions.js (js)'use server'
export async function create() {
} // ...






app/ui/button.tsx (tsx)import { create } from '@/app/actions'
export function Button() {
return (
}
) // ...








app/ui/button.js (jsx)import { create } from '@/app/actions'
export function Button() {
return (
}
) // ...






You can also pass a Server Action to a Client Component as a prop:<ClientComponent updateItem={updateItem} />

app/client-component.jsx (jsx)



Behavior'use client'
export default function ClientComponent({ updateItem }) {
} return <form action={updateItem}>{/* ... */}</form>

[image: ] Server actions can be invoked using the action attribute in a <form> element:
[image: ] Server Components support progressive enhancement by default, meaning the form will be submitted even if JavaScript hasn’t loaded yet or is disabled.
[image: ] In Client Components, forms invoking Server Actions will queue submissions if JavaScript isn’t loaded yet, prioritizing client hydration.
[image: ] After hydration, the browser does not refresh on form submission.<form>


Server Actions are not limited to elements like <button>.

and can be invoked from event handlers, useEffect, third-party libraries, and other form

[image: ][image: ] Server Actions integrate with the Next.js caching and revalidation architecture. When an action is invoked, Next.js can return both the updated UI and new data in a single server roundtrip.
[image: ] Behind the scenes, actions use the POST method, and only this HTTP method can invoke them.
[image: ] The arguments and return value of Server Actions must be serializable by React. See the React docs for a list of serializable arguments and values.
[image: ] Server Actions are functions. This means they can be reused anywhere in your application. [image: ] Server Actions inherit the runtime from the page or layout they are used on.
Examples
Forms<form>
action


React extends the HTML

element to allow Server Actions to be invoked with the

prop.

When invoked in a form, the action automatically receives the FormData object. You don’t need to use React fields, instead, you can extract the data using the native FormData methods:

to manage

app/invoices/page.tsx (tsx)export default function Page() {
async function createInvoice(formData: FormData) {
useState


'use server'
const rawFormData = {
customerId: formData.get('customerId'),
} status: formData.get('status'),
amount: formData.get('amount'),
} // revalidate cache
} return <form action={createInvoice}>...</form>
// mutate data

app/invoices/page.jsx (jsx)export default function Page() {
async function createInvoice(formData) {
'use server'
const rawFormData = {
customerId: formData.get('customerId'),
} status: formData.get('status'),
amount: formData.get('amount'),
} // revalidate cache
} return <form action={createInvoice}>...</form>
// mutate data














Good to know:
[image: ] Example: Form with Loading & Error States
[image: ] When working with forms that have many fields, you may want to consider using the entries() method with JavaScript’s
Object.fromEntries(). For example: const  rawFormData  =  Object.fromEntries(formData.entries())
[image: ] See React <form> documentation to learn more.
Passing Additional Arguments

You can pass additional arguments to a Server Action using the JavaScriptbind

```tsx filename=”app/client-component.tsx” highlight={6} switcher ‘use client’ import { updateUser } from ‘./actions’

method.

export function UserProfile({ userId }: { userId: string }) { const updateUserWithId = updateUser.bind(null, userId) return (Update User Name

) }
```jsx filename="app/client-component.js" highlight={6} switcher
'use client'
import { updateUser } from './actions'
export function UserProfile({ userId }) {
const updateUserWithId = updateUser.bind(null, userId)
return (
<form action={updateUserWithId}>
< <button type="submit">Update User Name</button>
<input type="text" name="name" />
}
)  /form>


The Server Action will receive theuserId


argument, in addition to the form data:


app/actions.js (js)'use server'


export async function updateUser(userId, formData) {
} // ...

Good to know:
[image: ] An alternative is to pass arguments as hidden input fields in the form (e.g. <input type="hidden" name="userId" value={userId} />). However, the value will be part of the rendered HTML and will not be encoded.
[image: ] .bind works in both Server and Client Components. It also supports progressive enhancement.
Pending states
You can use the React	hook to show a pending state while the form is being submitted.useFormStatus


returns the status for a specific <form>, so it must be defined as a child of theuseFormStatus useFormStatus

is a React hook and therefore must be used in a Client Component.

element.

app/submit-button.tsx (tsx)'use client'
import { useFormStatus } from 'react-dom'
export function SubmitButton() {
const { pending } = useFormStatus()
return (
<button type="submit" aria-disabled={pending}>
< Add on>
}
)  /butt
<form>














app/submit-button.jsx (jsx)'use client'
import { useFormStatus } from 'react-dom'
export function SubmitButton() {
const { pending } = useFormStatus()
return (
<button type="submit" aria-disabled={pending}>
< Add on>
}
)  /butt













can then be nested in any form:<SubmitButton />



app/page.tsx (tsx)import { SubmitButton } from '@/app/submit-button'
import { createItem } from '@/app/actions'
// Server Component
export default async function Home() {
return (
<form action={createItem}>
< <SubmitButton />
<input type="text" name="field-name" />
}
)  /form>













app/page.jsx (jsx)import { SubmitButton } from '@/app/submit-button'
import { createItem } from '@/app/actions'
// Server Component
export default async function Home() {
return (
<form action={createItem}>


< <SubmitButton />
<input type="text" name="field-name" />
}
)  /form>



Server-side validation and error handling
We recommend using HTML validation likerequired



and


for basic client-side form validation.type="email"


For more advanced server-side validation, you can use a library like zod to validate the form fields before mutating the data:
app/actions.ts (tsx)'use server'
import { z } from 'zod'
const schema = z.object({
email: z.string({
}) ),
} invalid_type_error: 'Invalid Email',
export default async function createUser(formData: FormData) {
const validatedFields = schema.safeParse({
} email: formData.get('email'),
)
// Return early if the form data is invalid
if (!validatedFields.success) {
return {
}
} errors: validatedFields.error.flatten().fieldErrors,
} // Mutate data






















app/actions.js (jsx)'use server'
import { z } from 'zod'
const schema = z.object({
email: z.string({
}) ),
} invalid_type_error: 'Invalid Email',
export default async function createsUser(formData) {
const validatedFields = schema.safeParse({
} email: formData.get('email'),
)
// Return early if the form data is invalid
if (!validatedFields.success) {
return {
}
} errors: validatedFields.error.flatten().fieldErrors,
} // Mutate data


















Once the fields have been validated on the server, you can return a serializable object in your action and use the React hook to show a message to the user.useFormState


By passing the action to useFormState, the action’s function signature changes to receive a new parameter as its first argument.useFormState

is a React hook and therefore must be used in a Client Component.

or


app/actions.ts (tsx)'use server'
prevState
initialState


export async function createUser(prevState: any, formData: FormData) {
// ...
return {
}
} message: 'Please enter a valid email',

app/actions.js (jsx)'use server'
export async function createUser(prevState, formData) {
// ...
return {
}
} message: 'Please enter a valid email',









Then, you can pass your action to theuseFormState


hook and use the returned

to display an error message.
app/ui/signup.tsx (tsx)'use client'
import { useFormState } from 'react-dom'
import { createUser } from '@/app/actions'
const initialState = {
} message: null,
const [state, formAction] = useFormState(createUser, initialState) return (
export function Signup() {
<form action={formAction}>
<label htmlFor="email">Email</label>
<input type="text" id="email" name="email" required />
{/* ... */}
<p aria-live="polite" className="sr-only">
< <button>Sign up</button>
< {state?.message}
/p>
/form>
} )
state























app/ui/signup.js (jsx)'use client'
import { useFormState } from 'react-dom'
import { createUser } from '@/app/actions'
const initialState = {
} message: null,
const [state, formAction] = useFormState(createUser, initialState) return (
export function Signup() {
<form action={formAction}>
<label htmlFor="email">Email</label>
<input type="text" id="email" name="email" required />
{/* ... */}
<p aria-live="polite" className="sr-only">
< <button>Sign up</button>
< {state?.message}
/p>
/form>
} )




















Good to know:
[image: ] Before mutating data, you should always ensure a user is also authorized to perform the action. See Authentication and

Authorization.
Optimistic updates
You can use the React the response:useOptimistic

'use client'




hook to optimistically update the UI before the Server Action finishes, rather than waiting for
app/page.tsx (tsx)

import { useOptimistic } from 'react' import { send } from './actions'
type Message = {
} message: string
export function Thread({ messages }: { messages: Message[] }) {
const [optimisticMessages, addOptimisticMessage] = useOptimistic<Message[]>( messages,
(state: Message[], newMessage: string) => [
...state,
] { message: newMessage },
)
return (
<div>
{optimisticMessages.map((m, k) => (
<div key={k}>{m.message}</div>
))}
<form
action={async (formData: FormData) => { const message = formData.get('message') addOptimisticMessage(message)
await send(message)
· }}
<input type="text" name="message" />
<button type="submit">Send</button>
</form>
) </div>
}


'use client'
import { useOptimistic } from 'react' import { send } from './actions'
export function Thread({ messages }) {
const [optimisticMessages, addOptimisticMessage] = useOptimistic( messages,
) (state, newMessage) => [...state, { message: newMessage }]
return (
<div>
{optimisticMessages.map((m) => (
<div>{m.message}</div>
))}
<form
action={async (formData) => {
const message = formData.get('message') addOptimisticMessage(message)
await send(message)
· }}
<input type="text" name="message" />
<button type="submit">Send</button>
</form>
) </div>

app/page.jsx (jsx)

}

Nested elements
You can invoke a Server Action in elements nested inside <form> such as <button>, <input type="submit">, and<input

type="image">. These elements accept the formAction prop or event handlers.<button>

This is useful in cases where you want to call multiple server actions within a form. For example, you can create a specificReact <form> docs


element for saving a post draft in addition to publishing it. See the
Non-form Elements<form>


for more information.

While it’s common to use Server Actions within handlers and useEffect.
Event Handlers

elements, they can also be invoked from other parts of your code such as event

You can invoke a Server Action from event handlers such as onClick. For example, to increment a like count:



app/actions.js (js)'use server'
export async function incrementLike() {
} // Return updated data
// Mutate database








app/like-button.tsx (tsx)'use client'
import { incrementLike } from './actions'
import { useState } from 'react'
export default function LikeButton({ initialLikes }: { initialLikes: number }) {
const [likes, setLikes] = useState(initialLikes)
return (
<>
<p>Total Likes: {likes}</p>
<button
onClick={async () => {
const updatedLikes = await incrementLike()
> }
} setLikes(updatedLikes)
</ /butto
< Like n>
)	>
}




















To improve the user experience, we recommend using other React APIs like useOptimistic and before the Server Action finishes executing on the server, or to show a pending state.
You can also add event handlers to form elements, for example, to save a form field onChange:

to update the UI


app/ui/edit-post.tsx (tsx)'use client'
import { publishPost, saveDraft } from './actions'
export default function EditPost() {
return (
<form action={publishPost}>
<textarea
name="content"
onChange={async (e) => {
< <button type="submit">Publish</button>
/> }
} await saveDraft(e.target.value)
/form>
} )
useTransition














For cases like this, where multiple events might be fired in quick succession, we recommend debouncing to prevent unnecessary

Server Action invocations.
useEffect

You can use the React useEffect hook to invoke a Server Action when the component mounts or a dependency changes. This is useful for mutations that depend on global events or need to be triggered automatically. For example, onKeyDown for app shortcuts, an intersection observer hook for infinite scrolling, or when the component mounts to update a view count:
app/view-count.tsx (tsx)'use client'
import { incrementViews } from './actions'
import { useState, useEffect } from 'react'
export default function ViewCount({ initialViews }: { initialViews: number }) {
const [views, setViews] = useState(initialViews)
useEffect(() => {
const updateViews = async () => {
} setViews(updatedViews)
const updatedViews = await incrementViews()
} updateViews()
, [])
} return <p>Total Views: {views}</p>


















Remember to consider the behavior and caveats of useEffect.
Error Handling
When an error is thrown, it’ll be caught by the nearest to return errors to be handled by your UI.error.js
try/catch





or




boundary on the client. We recommend using<Suspense>


For example, your Server Action might handle errors from creating a new item by returning a message:


app/actions.ts (ts)'use server'
export async function createTodo(prevState: any, formData: FormData) {
try {
} // Mutate data
catch (e) {
}
} throw new Error('Failed to create task')










app/actions.js (js)'use server'
export async function createTodo(prevState, formData) {
try {
} // Mutate data
catch (e) {
}
} throw new Error('Failed to create task')








Good to know:
[image: ] Aside from throwing the error, you can also return an object to be handled by useFormStatus. See Server-side validation and error handling.
Revalidating datarevalidatePath


You can revalidate the Next.js Cache inside your Server Actions with the

API:


app/actions.ts (ts)'use server'
import { revalidatePath } from 'next/cache'


export async function createPost() {
try {
} // ... error) {
} // ...
catch (
} revalidatePath('/posts')

app/actions.js (js)'use server'
import { revalidatePath } from 'next/cache'
export async function createPost() {
try {
} // ... error) {
} // ...
catch (
} revalidatePath('/posts')













Or invalidate a specific data fetch with a cache tag using revalidateTag:


app/actions.ts (ts)'use server'
import { revalidateTag } from 'next/cache'
export async function createPost() {
try {
} // ... error) {
} // ...
catch (
} revalidateTag('posts')














app/actions.js (js)'use server'
import { revalidateTag } from 'next/cache'
export async function createPost() {
try {
} // ... error) {
} // ...
catch (
} revalidateTag('posts')













Redirecting
If you would like to redirect the user to a different route after the completion of a Server Action, you can usetry/catch



API.redirect
redirect


needs to be called outside of the

block:


app/actions.ts (ts)'use server'
import { redirect } from 'next/navigation'
import { revalidateTag } from 'next/cache'
export async function createPost(id: string) {
try {
} // ... error) {
catch (
// ...


}
} redirect(`/post/${id}`) // Navigate to the new post page
revalidateTag('posts') // Update cached posts

app/actions.js (js)'use server'
import { redirect } from 'next/navigation'
import { revalidateTag } from 'next/cache'
export async function createPost(id) {
try {
} // ... error) {
} // ...
catch (
} redirect(`/post/${id}`) // Navigate to the new post page
revalidateTag('posts') // Update cached posts















Cookies
[image: ][image: ]You can get, set, and


cookies inside a Server Action using thedelete



API:cookies





app/actions.ts (ts)'use server'
import { cookies } from 'next/headers'
export async function exampleAction() {
// Get cookie
const value = cookies().get('name')?.value
cookies().set('name', 'Delba')
// Set cookie
} cookies().delete('name')
// Delete cookie














app/actions.js (js)'use server'
import { cookies } from 'next/headers'
export async function exampleAction() {
// Get cookie
const value = cookies().get('name')?.value
cookies().set('name', 'Delba')
// Set cookie
} cookies().delete('name')
// Delete cookie











See additional examples for deleting cookies from Server Actions.
Security
Authentication and authorization
You should treat Server Actions as you would public-facing API endpoints, and ensure that the user is authorized to perform the action. For example:
app/actions.ts (tsx)'use server'
import { auth } from './lib'


export function addItem() {
const { user } = auth()
} throw new Error('You must be signed in to perform this action')
} // ...
if (!user) {

Closures and encryption
Defining a Server Action inside a component creates a closure where the action has access to the outer function’s scope. For example,publish
publishVersion


the

action has access to the

variable:


app/page.tsx (tsx)export default function Page() {
const publishVersion = await getLatestVersion();
async function publish(formData: FormData) {
"use server";
} throw new Error('The version has changed since pressing publish');
} ...
} return <button action={publish}>Publish</button>;
if (publishVersion !== await getLatestVersion()) {














app/page.js (jsx)export default function Page() {
const publishVersion = await getLatestVersion();
async function publish() {
"use server";
} throw new Error('The version has changed since pressing publish');
} ...
} return <button action={publish}>Publish</button>;
if (publishVersion !== await getLatestVersion()) {











Closures are useful when you need to capture a snapshot of data (e.g. publishVersion) at the time of rendering so that it can be used later when the action is invoked.
However, for this to happen, the captured variables are sent to the client and back to the server when the action is invoked. To prevent sensitive data from being exposed to the client, Next.js automatically encrypts the closed-over variables. A new private key is generated for each action every time a Next.js application is built. This means actions can only be invoked for a specific build.
Good to know: We don’t recommend relying on encryption alone to prevent sensitive values from being exposed on the client. Instead, you should use the React taint APIs to proactively prevent specific data from being sent to the client.
Overwriting encryption keys (advanced)
When self-hosting your Next.js application across multiple servers, each server instance may end up with a different encryption key, leading to potential inconsistencies.
To mitigate this, you can overwrite the encryption key using the process.env.NEXT_SERVER_ACTIONS_ENCRYPTION_KEY environment variable. Specifying this variable ensures that your encryption keys are persistent across builds, and all server instances use the same key.
This is an advanced use case where consistent encryption behavior across multiple deployments is critical for your application. You should consider standard security practices such key rotation and signing.
Good to know: Next.js applications deployed to Vercel automatically handle this.
Allowed origins (advanced)
Since Server Actions can be invoked in a <form> element, this opens them up to CSRF attacks.
Behind the scenes, Server Actions use the POST method, and only this HTTP method is allowed to invoke them. This prevents most CSRF vulnerabilities in modern browsers, particularly with SameSite cookies being the default.

As an additional protection, Server Actions in Next.js also compare the Origin header to the Host header (or X-Forwarded-Host). If these don’t match, the request will be aborted. In other words, Server Actions can only be invoked on the same host as the page that hosts it.
For large applications that use reverse proxies or multi-layered backend architectures (where the server API differs from the productionserverActions.allowedOrigins


domain), it’s recommended to use the configuration option The option accepts an array of strings.

option to specify a list of safe origins.
next.config.js (js)/** @type {import('next').NextConfig} */
module.exports = {
experimental: {
serverActions: {
} allowedOrigins: ['my-proxy.com', '*.my-proxy.com'],
}
}, ,








Learn more about Security and Server Actions.
Additional resources
For more information on Server Actions, check out the following React docs:
"use server"
<form> useFormStatus useFormState useOptimistic


3.1.2.3 - Patterns and Best Practices
Documentation path: /02-app/01-building-your-application/02-data-fetching/03-patterns
Description: Learn about common data fetching patterns in React and Next.js.

There are a few recommended patterns and best practices for fetching data in React and Next.js. This page will go over some of the most common patterns and how to use them.
Fetching Data on the Server
Whenever possible, we recommend fetching data on the server with Server Components. This allows you to: [image: ] Have direct access to backend data resources (e.g. databases).
[image: ] Keep your application more secure by preventing sensitive information, such as access tokens and API keys, from being exposed to the client.
[image: ] Fetch data and render in the same environment. This reduces both the back-and-forth communication between client and server, as well as the work on the main thread on the client.
[image: ] Perform multiple data fetches with single round-trip instead of multiple individual requests on the client. [image: ] Reduce client-server waterfalls.
[image: ] Depending on your region, data fetching can also happen closer to your data source, reducing latency and improving performance.
Then, you can mutate or update data with Server Actions.
Fetching Data Where It’s Needed
If you need to use the same data (e.g. current user) in multiple components in a tree, you do not have to fetch data globally, nor forward props between components. Instead, you can use fetch or React cache in the component that needs the data without worrying about the performance implications of making multiple requests for the same data.fetch

This is possible because	requests are automatically memoized. Learn more about request memoization
Good to know: This also applies to layouts, since it’s not possible to pass data between a parent layout and its children.
Streaming
Streaming and Suspense are React features that allow you to progressively render and incrementally stream rendered units of the UI to the client.
[image: ]With Server Components and nested layouts, you’re able to instantly render parts of the page that do not specifically require data, and show a loading state for parts of the page that are fetching data. This means the user does not have to wait for the entire page to load before they can start interacting with it.
To learn more about Streaming and Suspense, see the Loading UI and Streaming and Suspense pages.

Parallel and Sequential Data Fetching
[image: ]When fetching data inside React components, you need to be aware of two data fetching patterns: Parallel and Sequential.
[image: ] With sequential data fetching, requests in a route are dependent on each other and therefore create waterfalls. There may be cases where you want this pattern because one fetch depends on the result of the other, or you want a condition to be satisfied before the next fetch to save resources. However, this behavior can also be unintentional and lead to longer loading times.
[image: ] With parallel data fetching, requests in a route are eagerly initiated and will load data at the same time. This reduces client-server waterfalls and the total time it takes to load data.
Sequential Data Fetching
If you have nested components, and each component fetches its own data, then data fetching will happen sequentially if those data requests are different (this doesn’t apply to requests for the same data as they are automatically memoized).Artist


For example, the Playlists component will only start fetching data once the depends on the artistID prop:Playlists


component has finished fetching data because

app/artist/[username]/page.tsx (tsx)

// ...
async function Playlists({ artistID }: { artistID: string }) {
// Wait for the playlists
const playlists = await getArtistPlaylists(artistID)
return (
<ul>
{playlists.map((playlist) => (
<li key={playlist.id}>{playlist.name}</li>
))}
) </ul>
}
export default async function Page({ params: { username },
}: {
params: { username: string }
}) {
// Wait for the artist
const artist = await getArtist(username)
return (
<>
<h1>{artist.name}</h1>
<Suspense fallback={<div>Loading...</div>}>
<Playlists artistID={artist.id} />
</Suspense>
) </>
}

app/artist/[username]/page.js (jsx)// ...
async function Playlists({ artistID }) {
// Wait for the playlists
const playlists = await getArtistPlaylists(artistID)


return (
<ul>
{playlists.map((playlist) => (
</ )}
) <li key={playlist.id}>{playlist.name}</li>
}
)	ul>
export default async function Page({ params: { username } }) {
// Wait for the artist
const artist = await getArtist(username)
return (
<>
<h1>{artist.name}</h1>
<Suspense fallback={<div>Loading...</div>}>
</ /Suspense>
< <Playlists artistID={artist.id} />
)	>
}



In cases like this, you can use loading.js (for route segments) or loading state while React streams in the result.React <Suspense>


(for nested components) to show an instant

This will prevent the whole route from being blocked by data fetching, and the user will be able to interact with the parts of the page that are not blocked.
Blocking Data Requests:
An alternative approach to prevent waterfalls is to fetch data globally, at the root of your application, but this will block rendering for all route segments beneath it until the data has finished loading. This can be described as “all or nothing” data fetching. Either you have the entire data for your page or application, or none.
Any fetch requests with await will block rendering and data fetching for the entire tree beneath it, unless they are wrapped in a boundary or loading.js is used. Another alternative is to use parallel data fetching or the preload pattern.<Suspense>

Parallel Data Fetching
To fetch data in parallel, you can eagerly initiate requests by defining them outside the components that use the data, then calling them from inside the component. This saves time by initiating both requests in parallel, however, the user won’t see the rendered result until both promises are resolved.Page


In the example below, the getArtist and getArtistAlbums functions are defined outside the the component, and we wait for both promises to resolve:

component, then called inside
app/artist/[username]/page.tsx (tsx)import Albums from './albums'
async function getArtist(username: string) {
} return res.json()
const res = await fetch(`https://api.example.com/artist/${username}`)
async function getArtistAlbums(username: string) {
} return res.json()
const res = await fetch(`https://api.example.com/artist/${username}/albums`)
export default async function Page({
} params: { username },
} params: { username: string }
: {
) {
// Initiate both requests in parallel
const artistData = getArtist(username)
const albumsData = getArtistAlbums(username)
// Wait for the promises to resolve
const [artist, albums] = await Promise.all([artistData, albumsData])
return (
<>
<h1>{artist.name}</h1>


< <Albums list={albums}></Albums>
}
)  />

app/artist/[username]/page.js (jsx)import Albums from './albums'
async function getArtist(username) {
} return res.json()
const res = await fetch(`https://api.example.com/artist/${username}`)
async function getArtistAlbums(username) {
} return res.json()
const res = await fetch(`https://api.example.com/artist/${username}/albums`)
export default async function Page({ params: { username } }) {
// Initiate both requests in parallel
const artistData = getArtist(username)
const albumsData = getArtistAlbums(username)
// Wait for the promises to resolve
const [artist, albums] = await Promise.all([artistData, albumsData])
return (
<>
< <Albums list={albums}></Albums>
<h1>{artist.name}</h1>
}
)  />




















To improve the user experience, you can add a Suspense Boundary to break up the rendering work and show part of the result as soon as possible.
Preloading Data
Another way to prevent waterfalls is to use the preload pattern. You can optionally create a preload function to further optimize parallel data fetching. With this approach, you don’t have to pass promises down as props. The preload function can also have any name as it’s a pattern, not an API.
components/Item.tsx (tsx)import { getItem } from '@/utils/get-item'
export const preload = (id: string) => {
// void evaluates the given expression and returns undefined
} void getItem(id)
// https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/void
export default async function Item({ id }: { id: string }) {
} // ...
const result = await getItem(id)











components/Item.js (jsx)import { getItem } from '@/utils/get-item'
export const preload = (id) => {
// void evaluates the given expression and returns undefined
} void getItem(id)
// https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/void
export default async function Item({ id }) {
} // ...
const result = await getItem(id)











app/item/[id]/page.tsx (tsx)import Item, { preload, checkIsAvailable } from '@/components/Item'


export default async function Page({
} params: { id },
} params: { id: string }
: {
) {
// starting loading item data
preload(id)
const isAvailable = await checkIsAvailable()
} return isAvailable ? <Item id={id} /> : null
// perform another asynchronous task

app/item/[id]/page.js (jsx)import Item, { preload, checkIsAvailable } from '@/components/Item'
export default async function Page({ params: { id } }) {
// starting loading item data
preload(id)
const isAvailable = await checkIsAvailable()
} return isAvailable ? <Item id={id} /> : null
// perform another asynchronous task







Using React cache, server-only, and the Preload Patternpreload


You can combine thecache

used throughout your app.

function, the

pattern, and the

package to create a data fetching utility that can be
utils/get-item.ts (ts)import { cache } from 'react'
import 'server-only'
export const preload = (id: string) => {
} void getItem(id)
export const getItem = cache(async (id: string) => {
} // ...
)
server-only











utils/get-item.js (js)import { cache } from 'react'
import 'server-only'
export const preload = (id) => {
} void getItem(id)
export const getItem = cache(async (id) => {
} // ...
)








With this approach, you can eagerly fetch data, cache responses, and guarantee that this data fetching only happens on the server.utils/get-item


The fetched.
Good to know:

exports can be used by Layouts, Pages, or other components to give them control over when an item’s data is

We recommend using the	package to make sure server data fetching functions are never used on the client.server-only 

Preventing sensitive data from being exposed to the client

We recommend using React’s taint APIs, sensitive values from being passed to the client.taintObjectReference

To enable tainting in your application, set the Next.js Config

and taintUniqueValue, to prevent whole object instances or
[image: ]option to true:experimental.taint


next.config.js (js)module.exports = {
experimental: {


taint: true,
} },


Then pass the object or value you want to taint to theexperimental_taintUniqueValue

functions:

or

app/utils.ts (ts)import { queryDataFromDB } from './api'
import {
} experimental_taintUniqueValue,
experimental_taintObjectReference,
from 'react'
export async function getUserData() {
const data = await queryDataFromDB()
experimental_taintObjectReference(
) data
'Do not pass the whole user object to the client',
experimental_taintUniqueValue(
"Do not pass the user's phone number to the client",
) data.phoneNumber
} return data
data,
experimental_taintObjectReference



















app/utils.js (js)import { queryDataFromDB } from './api'
import {
} experimental_taintUniqueValue,
experimental_taintObjectReference,
from 'react'
export async function getUserData() {
const data = await queryDataFromDB()
experimental_taintObjectReference(
) data
'Do not pass the whole user object to the client',
experimental_taintUniqueValue(
"Do not pass the user's phone number to the client",
) data.phoneNumber
} return data
data,


















app/page.tsx (tsx)import { getUserData } from './data'
export async function Page() {
const userData = getUserData()
return (
<ClientComponent
/ phoneNumber={userData.phoneNumber} // this will cause an error because of taintUniqueValue
user={userData} // this will cause an error because of taintObjectReference
}
)  >











app/page.js (jsx)import { getUserData } from './data'
export async function Page() {
const userData = getUserData()
return (
<ClientComponent
/ phoneNumber={userData.phoneNumber} // this will cause an error because of taintUniqueValue
user={userData} // this will cause an error because of taintObjectReference
}
)  >


Learn more about Security and Server Actions.

3.1.3 - Rendering
Documentation path: /02-app/01-building-your-application/03-rendering/index
Description: Learn the differences between Next.js rendering environments, strategies, and runtimes.

Rendering converts the code you write into user interfaces. React and Next.js allow you to create hybrid web applications where parts of your code can be rendered on the server or the client. This section will help you understand the differences between these rendering environments, strategies, and runtimes.
Fundamentals
To start, it’s helpful to be familiar with three foundational web concepts:
[image: ] The Environments your application code can be executed in: the server and the client.
[image: ] The Request-Response Lifecycle that’s initiated when a user visits or interacts with your application. [image: ] The Network Boundary that separates server and client code.
Rendering Environments
[image: ]There are two environments where web applications can be rendered: the client and the server.
[image: ] The client refers to the browser on a user’s device that sends a request to a server for your application code. It then turns the response from the server into a user interface.
[image: ] The server refers to the computer in a data center that stores your application code, receives requests from a client, and sends back an appropriate response.
Historically, developers had to use different languages (e.g. JavaScript, PHP) and frameworks when writing code for the server and the client. With React, developers can use the same language (JavaScript), and the same framework (e.g. Next.js or your framework of choice). This flexibility allows you to seamlessly write code for both environments without context switching.
However, each environment has its own set of capabilities and constraints. Therefore, the code you write for the server and the client is not always the same. There are certain operations (e.g. data fetching or managing user state) that are better suited for one environment over the other.
Understanding these differences is key to effectively using React and Next.js. We’ll cover the differences and use cases in more detail on the Server and Client Components pages, for now, let’s continue building on our foundation.
Request-Response Lifecycle
Broadly speaking, all websites follow the same Request-Response Lifecycle:
1. User Action: The user interacts with a web application. This could be clicking a link, submitting a form, or typing a URL directly into the browser’s address bar.
2. [image: ][image: ]HTTP Request: The client sends an HTTP request to the server that contains necessary information about what resources are being requested, what method is being used (e.g. GET, POST), and additional data if necessary.
3. Server: The server processes the request and responds with the appropriate resources. This process may take a couple of steps like routing, fetching data, etc.
4. HTTP Response: After processing the request, the server sends an HTTP response back to the client. This response contains a

status code (which tells the client whether the request was successful or not) and requested resources (e.g. HTML, CSS, JavaScript, static assets, etc).
5. Client: The client parses the resources to render the user interface.
6. User Action: Once the user interface is rendered, the user can interact with it, and the whole process starts again.
A major part of building a hybrid web application is deciding how to split the work in the lifecycle, and where to place the Network Boundary.
Network Boundary
In web development, the Network Boundary is a conceptual line that separates the different environments. For example, the client and the server, or the server and the data store.
{/ Diagram: Network Boundary /}
In React, you choose where to place the client-server network boundary wherever it makes the most sense.
Behind the scenes, the work is split into two parts: the client module graph and the server module graph. The server module graph contains all the components that are rendered on the server, and the client module graph contains all components that are rendered on the client.
{/ Diagram: Client and Server Module Graphs /}
It may be helpful to think about module graphs as a visual representation of how files in your application depend on each other.Page.jsx
Button.jsx


{/ For example, if you have a file called something like this: - Diagram - /}

that imports a file called

on the server, the module graph would look

You can use the React "use client" convention to define the boundary. There’s also a to do some computational work on the server.
Building Hybrid Applications

convention, which tells React

When working in these environments, it’s helpful to think of the flow of the code in your application as unidirectional. In other words, during a response, your application code flows in one direction: from the server to the client."use server"

{/ Diagram: Response flow /}
If you need to access the server from the client, you send a new request to the server rather than re-use the same request. This makes it easier to understand where to render your components and where to place the Network Boundary.
In practice, this model encourages developers to think about what they want to execute on the server first, before sending the result to the client and making the application interactive.
This concept will become clearer when we look at how you can interleave client and server components in the same component tree.

3.1.3.1 - Server Components
Documentation path: /02-app/01-building-your-application/03-rendering/01-server-components
Description: Learn how you can use React Server Components to render parts of your application on the server.
Related:
Title: Related
Related Description: Learn how Next.js caches data and the result of static rendering.
Links:
[image: ] app/building-your-application/caching

React Server Components allow you to write UI that can be rendered and optionally cached on the server. In Next.js, the rendering work is further split by route segments to enable streaming and partial rendering, and there are three different server rendering strategies:
[image: ] Static Rendering
[image: ] Dynamic Rendering [image: ] Streaming
This page will go through how Server Components work, when you might use them, and the different server rendering strategies.
Benefits of Server Rendering
There are a couple of benefits to doing the rendering work on the server, including:
[image: ] Data Fetching: Server Components allow you to move data fetching to the server, closer to your data source. This can improve performance by reducing time it takes to fetch data needed for rendering, and the amount of requests the client needs to make.
[image: ] Security: Server Components allow you to keep sensitive data and logic on the server, such as tokens and API keys, without the risk of exposing them to the client.
[image: ] Caching: By rendering on the server, the result can be cached and reused on subsequent requests and across users. This can improve performance and reduce cost by reducing the amount of rendering and data fetching done on each request.
[image: ] Bundle Sizes: Server Components allow you to keep large dependencies that previously would impact the client JavaScript bundle size on the server. This is beneficial for users with slower internet or less powerful devices, as the client does not have to download, parse and execute any JavaScript for Server Components.
[image: ] Initial Page Load and First Contentful Paint (FCP): On the server, we can generate HTML to allow users to view the page immediately, without waiting for the client to download, parse and execute the JavaScript needed to render the page.
[image: ] Search Engine Optimization and Social Network Shareability: The rendered HTML can be used by search engine bots to index your pages and social network bots to generate social card previews for your pages.
[image: ] Streaming: Server Components allow you to split the rendering work into chunks and stream them to the client as they become ready. This allows the user to see parts of the page earlier without having to wait for the entire page to be rendered on the server.
Using Server Components in Next.js
By default, Next.js uses Server Components. This allows you to automatically implement server rendering with no additional configuration, and you can opt into using Client Components when needed, see Client Components.
How are Server Components rendered?
On the server, Next.js uses React’s APIs to orchestrate rendering. The rendering work is split into chunks: by individual route segments and Suspense Boundaries.
Each chunk is rendered in two steps:
1. React renders Server Components into a special data format called the React Server Component Payload (RSC Payload).
2. Next.js uses the RSC Payload and Client Component JavaScript instructions to render HTML on the server.
{/ Rendering Diagram /} Then, on the client:
1. The HTML is used to immediately show a fast non-interactive preview of the route - this is for the initial page load only.
2. The React Server Components Payload is used to reconcile the Client and Server Component trees, and update the DOM.
3. The JavaScript instructions are used to hydrate Client Components and make the application interactive.
What is the React Server Component Payload (RSC)?

The RSC Payload is a compact binary representation of the rendered React Server Components tree. It’s used by React on the client to update the browser’s DOM. The RSC Payload contains:
[image: ] The rendered result of Server Components
[image: ] Placeholders for where Client Components should be rendered and references to their JavaScript files [image: ] Any props passed from a Server Component to a Client Component
Server Rendering Strategies
There are three subsets of server rendering: Static, Dynamic, and Streaming.
Static Rendering (Default)
{/ Static Rendering Diagram /}
With Static Rendering, routes are rendered at build time, or in the background after data revalidation. The result is cached and can be pushed to a Content Delivery Network (CDN). This optimization allows you to share the result of the rendering work between users and server requests.
Static rendering is useful when a route has data that is not personalized to the user and can be known at build time, such as a static blog post or a product page.
Dynamic Rendering
{/ Dynamic Rendering Diagram /}
With Dynamic Rendering, routes are rendered for each user at request time.
Dynamic rendering is useful when a route has data that is personalized to the user or has information that can only be known at request time, such as cookies or the URL’s search params.
Dynamic Routes with Cached Data
In most websites, routes are not fully static or fully dynamic - it’s a spectrum. For example, you can have an e-commerce page that uses cached product data that’s revalidated at an interval, but also has uncached, personalized customer data.
In Next.js, you can have dynamically rendered routes that have both cached and uncached data. This is because the RSC Payload and data are cached separately. This allows you to opt into dynamic rendering without worrying about the performance impact of fetching all the data at request time.
Learn more about the full-route cache and Data Cache.
Switching to Dynamic Rendering
During rendering, if a dynamic function or uncached data request is discovered, Next.js will switch to dynamically rendering the whole route. This table summarizes how dynamic functions and data caching affect whether a route is statically or dynamically rendered:

	Dynamic Functions
	Data
	Route

	No
	Cached
	Statically Rendered

	Yes
	Cached
	Dynamically Rendered

	No
	Not Cached
	Dynamically Rendered

	Yes
	Not Cached
	Dynamically Rendered



In the table above, for a route to be fully static, all data must be cached. However, you can have a dynamically rendered route that uses both cached and uncached data fetches.
As a developer, you do not need to choose between static and dynamic rendering as Next.js will automatically choose the best rendering strategy for each route based on the features and APIs used. Instead, you choose when to cache or revalidate specific data, and you may choose to stream parts of your UI.
Dynamic Functions
Dynamic functions rely on information that can only be known at request time such as a user’s cookies, current requests headers, or the URL’s search params. In Next.js, these dynamic functions are:
[image: ] cookies() and headers(): Using these in a Server Component will opt the whole route into dynamic rendering at request time.
[image: ] useSearchParams():
[image: ] In Client Components, it’ll skip static rendering and instead render all Client Components up to the nearest parent Suspense boundary on the client.useSearchParams()
<Suspense/>


We recommend wrapping the Client Component that uses

in a

boundary. This will allow any

Client Components above it to be statically rendered. Example.
[image: ] searchParams: Using the Pages prop will opt the page into dynamic rendering at request time.
Using any of these functions will opt the whole route into dynamic rendering at request time.
Streaming
[image: ]
Streaming enables you to progressively render UI from the server. Work is split into chunks and streamed to the client as it becomes ready. This allows the user to see parts of the page immediately, before the entire content has finished rendering.
[image: ]
Streaming is built into the Next.js App Router by default. This helps improve both the initial page loading performance, as well as UI that depends on slower data fetches that would block rendering the whole route. For example, reviews on a product page.loading.js


You can start streaming route segments using section for more information.

and UI components with React Suspense. See the Loading UI and Streaming

3.1.3.2 - Client Components
Documentation path: /02-app/01-building-your-application/03-rendering/02-client-components
Description: Learn how to use Client Components to render parts of your application on the client.

Client Components allows you to write interactive UI that can be rendered on the client at request time. In Next.js, client rendering is
opt-in, meaning you have to explicitly decide what components React should render on the client.
This page will go through how Client Components work, how they’re rendered, and when you might use them.
Benefits of Client Rendering
There are a couple of benefits to doing the rendering work on the client, including:
[image: ] Interactivity: Client Components can use state, effects, and event listeners, meaning they can provide immediate feedback to the user and update the UI.
[image: ] Browser APIs: Client Components have access to browser APIs, like geolocation or localStorage, allowing you to build UI for specific use cases.
Using Client Components in Next.js
To use Client Components, you can add the React	directive at the top of a file, above your imports."use client" 

"use client" is used to declare a boundary between a Server and Client Component modules. This means that by defining a"use

client" in a file, all other modules imported into it, including child components, are considered part of the client bundle.
```tsx filename=”app/counter.tsx” highlight={1} switcher ‘use client’ import { useState } from ‘react’
export default function Counter() { const [count, setCount] = useState(0) return (
You clicked {count} timessetCount(count + 1)}>Click me

) }
```jsx filename="app/counter.js" highlight={1} switcher
'use client'
import { useState } from 'react'
export default function Counter() {
const [count, setCount] = useState(0)
return (
<div>
< <button onClick={() => setCount(count + 1)}>Click me</button>
<p>You clicked {count} times</p>
}
)  /div>

[image: ]The diagram below shows that using onClick and useState in a nested component (toggle.js) will cause an error if the "use client" directive is not defined. This is because, by default, the components are rendered on the server where these APIs are not available. By defining the "use client" directive in toggle.js, you can tell React to render the component and its children on the client, where the APIs are available.

[image: ]


Defining multipleuse client


entry points:

You can define multiple “use client” entry points in your React Component tree. This allows you to split your application into multiple client bundles (or branches).
However, "use client" doesn’t need to be defined in every component that needs to be rendered on the client. Once you define the boundary, all child components and modules imported into it are considered part of the client bundle.
How are Client Components Rendered?
In Next.js, Client Components are rendered differently depending on whether the request is part of a full page load (an initial visit to your application or a page reload triggered by a browser refresh) or a subsequent navigation.
Full page load
To optimize the initial page load, Next.js will use React’s APIs to render a static HTML preview on the server for both Client and Server Components. This means, when the user first visits your application, they will see the content of the page immediately, without having to wait for the client to download, parse, and execute the Client Component JavaScript bundle.
On the server:
1. React renders Server Components into a special data format called the React Server Component Payload (RSC Payload), which includes references to Client Components.
2. Next.js uses the RSC Payload and Client Component JavaScript instructions to render HTML for the route on the server.
Then, on the client:
1. The HTML is used to immediately show a fast non-interactive initial preview of the route.
2. The React Server Components Payload is used to reconcile the Client and Server Component trees, and update the DOM.
3. The JavaScript instructions are used to hydrate Client Components and make their UI interactive.
What is hydration?

Hydration is the process of attaching event listeners to the DOM, to make the static HTML interactive. Behind the scenes,hydrateRoot


hydration is done with the
Subsequent Navigations

React API.

On subsequent navigations, Client Components are rendered entirely on the client, without the server-rendered HTML.
This means the Client Component JavaScript bundle is downloaded and parsed. Once the bundle is ready, React will use the RSC Payload to reconcile the Client and Server Component trees, and update the DOM.
Going back to the Server Environment
Sometimes, after you’ve declared the "use client" boundary, you may want to go back to the server environment. For example, you may want to reduce the client bundle size, fetch data on the server, or use an API that is only available on the server.
You can keep code on the server even though it’s theoretically nested inside Client Components by interleaving Client and Server Components and Server Actions. See the Composition Patterns page for more information.

3.1.3.3 - Server and Client Composition Patterns
Documentation path: /02-app/01-building-your-application/03-rendering/03-composition-patterns
Description: Recommended patterns for using Server and Client Components.

When building React applications, you will need to consider what parts of your application should be rendered on the server or the client. This page covers some recommended composition patterns when using Server and Client Components.
When to use Server and Client Components?
Here’s a quick summary of the different use cases for Server and Client Components:

	What do you need to do?
	Server Component
	Client Component

	Fetch data
	
	

	Access backend resources (directly)
	
	

	Keep sensitive information on the server (access tokens, API keys, etc)
	
	

	Keep large dependencies on the server / Reduce client-side JavaScript
	
	

	Add interactivity and event listeners (onClick(), onChange(), etc)
	
	

	Use State and Lifecycle Effects (useState(), useReducer(), useEffect(), etc)
	
	

	Use browser-only APIs
	
	

	Use custom hooks that depend on state, effects, or browser-only APIs
	
	

	Use React Class components
	
	



Server Component Patterns
Before opting into client-side rendering, you may wish to do some work on the server like fetching data, or accessing your database or backend services.
Here are some common patterns when working with Server Components:
Sharing data between components
When fetching data on the server, there may be cases where you need to share data across different components. For example, you may have a layout and a page that depend on the same data.
Instead of using React Context (which is not available on the server) or passing data as props, you can use fetch or React’s cache
function to fetch the same data in the components that need it, without worrying about making duplicate requests for the same data.fetch
cache
fetch


This is because React extends available.

to automatically memoize data requests, and the

function can be used when

is not

Learn more about memoization in React.
Keeping Server-only Code out of the Client Environment
Since JavaScript modules can be shared between both Server and Client Components modules, it’s possible for code that was only ever intended to be run on the server to sneak its way into the client.
For example, take the following data-fetching function:
lib/data.ts (ts)export async function getData() {
const res = await fetch('https://external-service.com/data', {
headers: {
}) ,
} authorization: process.env.API_KEY,
} return res.json()









lib/data.js (js)export async function getData() {


const res = await fetch('https://external-service.com/data', {
headers: {
}) ,
} authorization: process.env.API_KEY,
} return res.json()

At first glance, it appears that getData works on both the server and the client. However, this function contains an API_KEY, written with the intention that it would only ever be executed on the server.
Since the environment variable API_KEY is not prefixed with NEXT_PUBLIC, it’s a private variable that can only be accessed on the server. To prevent your environment variables from being leaked to the client, Next.js replaces private environment variables with an empty string.
As a result, even though getData() can be imported and executed on the client, it won’t work as expected. And while making the variable public would make the function work on the client, you may not want to expose sensitive information to the client.
To prevent this sort of unintended client usage of server code, we can use the server-only package to give other developers a build- time error if they ever accidentally import one of these modules into a Client Component.
To use server-only, first install the package:
Terminal (bash)npm install server-only



Then import the package into any module that contains server-only code:


lib/data.js (js)import 'server-only'
export async function getData() {
const res = await fetch('https://external-service.com/data', {
headers: {
}) ,
} authorization: process.env.API_KEY,
} return res.json()












Now, any Client Component that imports server.client-only

The corresponding packagewindow


will receive a build-time error explaining that this module can only be used on the
can be used to mark modules that contain client-only code – for example, code that accessesgetData()


the	object.
Using Third-party Packages and Providers
Since Server Components are a new React feature, third-party packages and providers in the ecosystem are just beginning to add the directive to components that use client-only features like useState, useEffect, and createContext."use client"

[image: ]Today, many components from npm packages that use client-only features do not yet have the directive. These third-party components"use client"


will work as expected within Client Components since they have the Components.

directive, but they won’t work within Server

For example, let’s say you’ve installed the hypothetical acme-carousel package which has a component uses useState, but it doesn’t yet have the "use client" directive.
If you use <Carousel /> within a Client Component, it will work as expected:

component. This


app/gallery.tsx (tsx)'use client'
import { useState } from 'react'
import { Carousel } from 'acme-carousel'
export default function Gallery() {
let [isOpen, setIsOpen] = useState(false)
return (
<div>
<button onClick={() => setIsOpen(true)}>View pictures</button>
{/* Works, since Carousel is used within a Client Component */}
<Carousel />


< {isOpen && <Carousel />}
}
)  /div>

app/gallery.js (jsx)'use client'
import { useState } from 'react'
import { Carousel } from 'acme-carousel'
export default function Gallery() {
let [isOpen, setIsOpen] = useState(false)
return (
<div>
<button onClick={() => setIsOpen(true)}>View pictures</button>
< {isOpen && <Carousel />}
{/* Works, since Carousel is used within a Client Component */}
}
)  /div>
















However, if you try to use it directly within a Server Component, you’ll see an error:


app/page.tsx (tsx)import { Carousel } from 'acme-carousel'
export default function Page() {
return (
<div>
<p>View pictures</p>
< <Carousel />
{/* Error: `useState` can not be used within Server Components */}
}
)  /div>













app/page.js (jsx)import { Carousel } from 'acme-carousel'
export default function Page() {
return (
<div>
<p>View pictures</p>
< <Carousel />
{/* Error: `useState` can not be used within Server Components */}
}
)  /div>










This is because Next.js doesn’t know	is using client-only features.<Carousel />


To fix this, you can wrap third-party components that rely on client-only features in your own Client Components:


app/carousel.tsx (tsx)'use client'
import { Carousel } from 'acme-carousel' export default Carousel







app/carousel.js (jsx)'use client'
import { Carousel } from 'acme-carousel' export default Carousel






Now, you can use

directly within a Server Component:


app/page.tsx (tsx)<Carousel />




import Carousel from './carousel'
export default function Page() {
return (
<div>
<p>View pictures</p>
< <Carousel />
{/* Works, since Carousel is a Client Component */}
}
)  /div>

app/page.js (jsx)import Carousel from './carousel'
export default function Page() {
return (
<div>
<p>View pictures</p>
< <Carousel />
{/* Works, since Carousel is a Client Component */}
}
)  /div>










We don’t expect you to need to wrap most third-party components since it’s likely you’ll be using them within Client Components. However, one exception is providers, since they rely on React state and context, and are typically needed at the root of an application. Learn more about third-party context providers below.
Using Context Providers
Context providers are typically rendered near the root of an application to share global concerns, like the current theme. Since React context is not supported in Server Components, trying to create a context at the root of your application will cause an error:
app/layout.tsx (tsx)import { createContext } from 'react'
// createContext is not supported in Server Components
export const ThemeContext = createContext({})
export default function RootLayout({ children }) {
return (
<html>
<body>
</ /body>
< <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>
html>
} )













app/layout.js (jsx)import { createContext } from 'react'
// createContext is not supported in Server Components
export const ThemeContext = createContext({})
export default function RootLayout({ children }) {
return (
<html>
<body>
</ /body>
< <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>
html>
} )














To fix this, create your context and render its provider inside of a Client Component:


app/theme-provider.tsx (tsx)'use client'
import { createContext } from 'react'


export const ThemeContext = createContext({})
export default function ThemeProvider({ children }) {
} return <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>

app/theme-provider.js (jsx)'use client'
import { createContext } from 'react'
export const ThemeContext = createContext({})
export default function ThemeProvider({ children }) {
} return <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>








Your Server Component will now be able to directly render your provider since it’s been marked as a Client Component:
app/layout.tsx (tsx)import ThemeProvider from './theme-provider'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html>
<body>
</ /body>
< <ThemeProvider>{children}</ThemeProvider>
html>
} )














app/layout.js (jsx)import ThemeProvider from './theme-provider'
export default function RootLayout({ children }) {
return (
<html>
<body>
</ /body>
< <ThemeProvider>{children}</ThemeProvider>
html>
} )









With the provider rendered at the root, all other Client Components throughout your app will be able to consume this context.
Good to know: You should render providers as deep as possible in the tree – notice how ThemeProvider only wraps{children}
Components.
<html>

instead of the entire	document. This makes it easier for Next.js to optimize the static parts of your Server

Advice for Library Authors
In a similar fashion, library authors creating packages to be consumed by other developers can use the "use client" directive to mark client entry points of their package. This allows users of the package to import package components directly into their Server Components without having to create a wrapping boundary.
You can optimize your package by using ‘use client’ deeper in the tree, allowing the imported modules to be part of the Server Component module graph.
It’s worth noting some bundlers might strip out "use client" directives. You can find an example of how to configure esbuild to"use client"

include the	directive in the React Wrap Balancer and Vercel Analytics repositories.
Client Components
Moving Client Components Down the Tree

To reduce the Client JavaScript bundle size, we recommend moving Client Components down your component tree.
For example, you may have a Layout that has static elements (e.g. logo, links, etc) and an interactive search bar that uses state. Instead of making the whole layout a Client Component, move the interactive logic to a Client Component (e.g. <SearchBar />) and keep your layout as a Server Component. This means you don’t have to send all the component Javascript of the layout to the client.
app/layout.tsx (tsx)// SearchBar is a Client Component
import SearchBar from './searchbar'
// Logo is a Server Component
import Logo from './logo'
// Layout is a Server Component by default
export default function Layout({ children }: { children: React.ReactNode }) {
return (
<>
<nav>
< <main>{children}</main>
< <SearchBar />
<Logo />
/nav>
/>
} )
















app/layout.js (jsx)// SearchBar is a Client Component
import SearchBar from './searchbar'
// Logo is a Server Component
import Logo from './logo'
// Layout is a Server Component by default
export default function Layout({ children }) {
return (
<>
<nav>
< <main>{children}</main>
< <SearchBar />
<Logo />
/nav>
/>
} )












Passing props from Server to Client Components (Serialization)
If you fetch data in a Server Component, you may want to pass data down as props to Client Components. Props passed from the Server to Client Components need to be serializable by React.
If your Client Components depend on data that is not serializable, you can fetch data on the client with a third party library or on the server via a Route Handler.
Interleaving Server and Client Components
When interleaving Client and Server Components, it may be helpful to visualize your UI as a tree of components. Starting with the root layout, which is a Server Component, you can then render certain subtrees of components on the client by adding the"use client"

directive.
{/ Diagram - interleaving /}
Within those client subtrees, you can still nest Server Components or call Server Actions, however there are some things to keep in mind:
[image: ] During a request-response lifecycle, your code moves from the server to the client. If you need to access data or resources on the server while on the client, you’ll be making a new request to the server - not switching back and forth.
[image: ] When a new request is made to the server, all Server Components are rendered first, including those nested inside Client Components. The rendered result (RSC Payload) will contain references to the locations of Client Components. Then, on the client, React uses the RSC Payload to reconcile Server and Client Components into a single tree.
{/ Diagram /}
[image: ] Since Client Components are rendered after Server Components, you cannot import a Server Component into a Client Componentprops

module (since it would require a new request back to the server). Instead, you can pass a Server Component as	to a Client

Component. See the unsupported pattern and supported pattern sections below.
Unsupported Pattern: Importing Server Components into Client Components
The following pattern is not supported. You cannot import a Server Component into a Client Component:
```tsx filename=”app/client-component.tsx” switcher highlight={4,17} ‘use client’
// You cannot import a Server Component into a Client Component. import ServerComponent from ‘./Server-Component’ export default function ClientComponent({ children, }: { children: React.ReactNode }) { const [count, setCount] = useState(0) return (<><ServerComponent />
setCount(count + 1)}>{count}

) }
```jsx filename="app/client-component.js" switcher highlight={3,13}
'use client'
// You cannot import a Server Component into a Client Component.
import ServerComponent from './Server-Component'
export default function ClientComponent({ children }) {
const [count, setCount] = useState(0)
return (
<>
<button onClick={() => setCount(count + 1)}>{count}</button>
< <ServerComponent />
}
)  />

Supported Pattern: Passing Server Components to Client Components as Props
The following pattern is supported. You can pass Server Components as a prop to a Client Component. A common pattern is to use the React children prop to create a “slot” in your Client Component.children

In the example below, <ClientComponent> accepts a	prop:
```tsx filename=”app/client-component.tsx” switcher highlight={6,15} ‘use client’ import { useState } from ‘react’
export default function ClientComponent({ children, }: { children: React.ReactNode }) { const [count, setCount] = useState(0)setCount(count + 1)}>{count}

return (<>
) }

{children}

```jsx filename="app/client-component.js" switcher highlight={5,12}
'use client'
import { useState } from 'react'
export default function ClientComponent({ children }) {
const [count, setCount] = useState(0)
return (
<>
<button onClick={() => setCount(count + 1)}>{count}</button>
< {children}
}
)  />

<ClientComponent> doesn’t know that children will eventually be filled in by the result of a Server Component. The only responsibility <ClientComponent> has is to decide where children will eventually be placed.<ServerComponent>


In a parent Server Component, you can import both the <ClientComponent> and as a child of <ClientComponent>:<ServerComponent>


and pass

```tsx filename=”app/page.tsx” highlight={11} switcher // This pattern works: // You can pass a Server Component as a child or prop of a
// Client Component. import ClientComponent from ‘./client-component’ import ServerComponent from ‘./server-component’
// Pages in Next.js are Server Components by default export default function Page() { return () }

```jsx filename="app/page.js" highlight={11} switcher
// This pattern works:
// You can pass a Server Component as a child or prop of a
// Client Component.
import ClientComponent from './client-component'
import ServerComponent from './server-component'
// Pages in Next.js are Server Components by default
export default function Page() {
return (
<ClientComponent>
< <ServerComponent />
}
)  /ClientComponent>

With this approach, <ClientComponent> and	are decoupled and can be rendered independently. In this case,<ServerComponent>
<ClientComponent>


the child <ServerComponent> can be rendered on the server, well before
Good to know:

is rendered on the client.

The pattern of “lifting content up” has been used to avoid re-rendering a nested child component when a parent component re-renders.children

You’re not limited to the	prop. You can use any prop to pass JSX.

3.1.3.4 - Edge and Node.js Runtimes
Documentation path: /02-app/01-building-your-application/03-rendering/04-edge-and-nodejs-runtimes
Description: Learn about the switchable runtimes (Edge and Node.js) in Next.js.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
In the context of Next.js, runtime refers to the set of libraries, APIs, and general functionality available to your code during execution. On the server, there are two runtimes where parts of your application code can be rendered:
[image: ] The Node.js Runtime (default) has access to all Node.js APIs and compatible packages from the ecosystem. [image: ] The Edge Runtime is based on Web APIs.
Runtime Differences
There are many considerations to make when choosing a runtime. This table shows the major differences at a glance. If you want a more in-depth analysis of the differences, check out the sections below.

	
	Node
	Serverless
	Edge

	Cold Boot
	/
	Normal
	Low

	HTTP Streaming
	Yes
	Yes
	Yes

	IO
	All
	All
	fetch

	Scalability
	/
	High
	Highest

	Security
	Normal
	High
	High

	Latency
	Normal
	Low
	Lowest

	npm Packages
	All
	All
	A smaller subset

	Static Rendering
	Yes
	Yes
	No

	Dynamic Rendering
	Yes
	Yes
	Yes

	Data Revalidation w/ fetch
	Yes
	Yes
	Yes



Edge Runtime
In Next.js, the lightweight Edge Runtime is a subset of available Node.js APIs.
The Edge Runtime is ideal if you need to deliver dynamic, personalized content at low latency with small, simple functions. The Edge Runtime’s speed comes from its minimal use of resources, but that can be limiting in many scenarios.
For example, code executed in the Edge Runtime on Vercel cannot exceed between 1 MB and 4 MB, this limit includes imported packages, fonts and files, and will vary depending on your deployment infrastructure.
Node.js Runtime
Using the Node.js runtime gives you access to all Node.js APIs, and all npm packages that rely on them. However, it’s not as fast to start up as routes using the Edge runtime.
Deploying your Next.js application to a Node.js server will require managing, scaling, and configuring your infrastructure. Alternatively, you can consider deploying your Next.js application to a serverless platform like Vercel, which will handle this for you.
Serverless Node.js
Serverless is ideal if you need a scalable solution that can handle more complex computational loads than the Edge Runtime. With Serverless Functions on Vercel, for example, your overall code size is 50MB including imported packages, fonts, and files.
The downside compared to routes using the Edge is that it can take hundreds of milliseconds for Serverless Functions to boot up before they begin processing requests. Depending on the amount of traffic your site receives, this could be a frequent occurrence as the functions are not frequently “warm”.
Examples

Segment Runtime Option
You can specify a runtime for individual route segments in your Next.js application. To do so, declare a variable called runtime and export it. The variable must be a string, and must have a value of either 'nodejs' or 'edge' runtime.
The following example demonstrates a page route segment that exports a runtime with a value of 'edge':
app/page.tsx (tsx)export const runtime = 'edge' // 'nodejs' (default) | 'edge'



app/page.js (jsx)export const runtime = 'edge' // 'nodejs' (default) | 'edge'



You can also define

on a layout level, which will make all routes under the layout run on the edge runtime:


app/layout.tsx (tsx)export const runtime = 'edge' // 'nodejs' (default) | 'edge'
runtime




app/layout.js (jsx)export const runtime = 'edge' // 'nodejs' (default) | 'edge'



If the segment runtime is not set, the default plan to change from the Node.js runtime.nodejs


runtime will be used. You do not need to use the

option if you do not

Please refer to the Node.js Docs and Edge Docs for the full list of available APIs. Both runtimes can also support streaming depending on your deployment infrastructure.runtime


3.1.4 - Caching in Next.js
Documentation path: /02-app/01-building-your-application/04-caching/index
Description: An overview of caching mechanisms in Next.js.

Next.js improves your application’s performance and reduces costs by caching rendering work and data requests. This page provides an in-depth look at Next.js caching mechanisms, the APIs you can use to configure them, and how they interact with each other.
Good to know: This page helps you understand how Next.js works under the hood but is not essential knowledge to be productive with Next.js. Most of Next.js’ caching heuristics are determined by your API usage and have defaults for the best performance with zero or minimal configuration.
Overview
Here’s a high-level overview of the different caching mechanisms and their purpose:

	Mechanism
	What
	Where
	Purpose
	Duration

	Request Memoization
	Return values of functions
	Server
	Re-use data in a React Component tree
	Per-request lifecycle

	Data Cache
	Data
	Server
	Store data across user requests and deployments
	Persistent (can be revalidated)

	Full Route Cache
	HTML and RSC payload
	Server
	Reduce rendering cost and improve performance
	Persistent (can be revalidated)

	Router Cache
	RSC Payload
	Client
	Reduce server requests on navigation
	User session or time-based



[image: ]By default, Next.js will cache as much as possible to improve performance and reduce cost. This means routes are statically rendered and data requests are cached unless you opt out. The diagram below shows the default caching behavior: when a route is statically rendered at build time and when a static route is first visited.

Caching behavior changes depending on whether the route is statically or dynamically rendered, data is cached or uncached, and whether a request is part of an initial visit or a subsequent navigation. Depending on your use case, you can configure the caching behavior for individual routes and data requests.
Request Memoization
[image: ]React extends the fetch API to automatically memoize requests that have the same URL and options. This means you can call a fetch function for the same data in multiple places in a React component tree while only executing it once.
For example, if you need to use the same data across a route (e.g. in a Layout, Page, and multiple components), you do not have to fetch data at the top of the tree then forward props between components. Instead, you can fetch data in the components that need it without worrying about the performance implications of making multiple requests across the network for the same data.
app/example.tsx (tsx)async function getItem() {
// The `fetch` function is automatically memoized and the result
// is cached
} return res.json()
const  res  =  await  fetch('https://.../item/1')
// This function is called twice, but only executed the first time
const item = await getItem() // cache MISS
// The second call could be anywhere in your route
const item = await getItem() // cache HIT












app/example.js (jsx)async function getItem() {
// The `fetch` function is automatically memoized and the result
// is cached
} return res.json()
const  res  =  await  fetch('https://.../item/1')
// This function is called twice, but only executed the first time
const item = await getItem() // cache MISS
// The second call could be anywhere in your route
const item = await getItem() // cache HIT











How Request Memoization Works

[image: ]
[image: ][image: ]While rendering a route, the first time a particular request is called, its result will not be in memory and it’ll be a cache MISS. Therefore, the function will be executed, and the data will be fetched from the external source, and the result will be stored in memory.
Subsequent function calls of the request in the same render pass will be a cache HIT, and the data will be returned from memory
without executing the function.
Once the route has been rendered and the rendering pass is complete, memory is “reset” and all request memoization entries are cleared.
Good to know:
[image: ][image: ] Request memoization is a React feature, not a Next.js feature. It’s included here to show how it interacts with the other caching mechanisms.
[image: ] Memoization only applies to the GET method in fetch requests.
[image: ] Memoization only applies to the React Component tree, this means:
[image: ] It applies to fetch requests in generateMetadata, generateStaticParams, Layouts, Pages, and other Server
Components.
[image: ] It doesn’t apply to fetch requests in Route Handlers as they are not a part of the React component tree.
[image: ] For cases where fetch is not suitable (e.g. some database clients, CMS clients, or GraphQL clients), you can use the React function to memoize functions.cache 

Duration
The cache lasts the lifetime of a server request until the React component tree has finished rendering.
Revalidating
Since the memoization is not shared across server requests and only applies during rendering, there is no need to revalidate it.
Opting outfetch
AbortController signal


To opt out of memoization in

requests, you can pass an

to the request.


app/example.js (js)const { signal } = new AbortController()
fetch(url, { signal })



Data Cache
Next.js has a built-in Data Cache that persists the result of data fetches across incoming server requests and deployments. This isfetch

possible because Next.js extends the native	API to allow each request on the server to set its own persistent caching semantics.
Good to know: In the browser, the cache option of fetch indicates how a request will interact with the browser’s HTTP cache,cache

in Next.js, the	option indicates how a server-side request will interact with the server’s Data Cache.

By default, data requests that use caching behavior.fetch

How the Data Cache Works

are cached. You can use the

and

options of

to configure the


[image: ]
[image: ] The first time a fetch request is called during rendering, Next.js checks the Data Cache for a cached response. [image: ] If a cached response is found, it’s returned immediately and memoized.
[image: ] If a cached response is not found, the request is made to the data source, the result is stored in the Data Cache, and memoized. [image: ] For uncached data (e.g. { cache: 'no-store' }), the result is always fetched from the data source, and memoized.
[image: ] Whether the data is cached or uncached, the requests are always memoized to avoid making duplicate requests for the same data during a React render pass.
Differences between the Data Cache and Request Memoization
While both caching mechanisms help improve performance by re-using cached data, the Data Cache is persistent across incoming requests and deployments, whereas memoization only lasts the lifetime of a request.
With memoization, we reduce the number of duplicate requests in the same render pass that have to cross the network boundary from the rendering server to the Data Cache server (e.g. a CDN or Edge Network) or data source (e.g. a database or CMS). With the Data Cache, we reduce the number of requests made to our origin data source.
Duration
The Data Cache is persistent across incoming requests and deployments unless you revalidate or opt-out.
Revalidating
Cached data can be revalidated in two ways, with:
[image: ] Time-based Revalidation: Revalidate data after a certain amount of time has passed and a new request is made. This is useful for data that changes infrequently and freshness is not as critical.
[image: ] On-demand Revalidation: Revalidate data based on an event (e.g. form submission). On-demand revalidation can use a tag-based or path-based approach to revalidate groups of data at once. This is useful when you want to ensure the latest data is shown as soon as possible (e.g. when content from your headless CMS is updated).
Time-based Revalidationnext.revalidate
fetch


To revalidate data at a timed interval, you can use the seconds).

option of

to set the cache lifetime of a resource (in


// Revalidate at most every hour
fetch('https://...', { next: { revalidate: 3600 } })



Alternatively, you can use Route Segment Config options to configure all able to use fetch.cache
next.revalidate
fetch
fetch

How Time-based Revalidation Works

requests in a segment or for cases where you’re not

[image: ]


The first time a fetch request with Data Cache.revalidate


is called, the data will be fetched from the external data source and stored in the

[image: ] Any requests that are called within the specified timeframe (e.g. 60-seconds) will return the cached data. [image: ] After the timeframe, the next request will still return the cached (now stale) data.
[image: ] Next.js will trigger a revalidation of the data in the background.
[image: ] Once the data is fetched successfully, Next.js will update the Data Cache with the fresh data. [image: ] If the background revalidation fails, the previous data will be kept unaltered.
This is similar to stale-while-revalidate behavior.
On-demand Revalidation
Data can be revalidated on-demand by path (revalidatePath) or by cache tag (revalidateTag).
How On-Demand Revalidation Works

[image: ]
The first time a fetch request is called, the data will be fetched from the external data source and stored in the Data Cache. When an on-demand revalidation is triggered, the appropriate cache entries will be purged from the cache.
This is different from time-based revalidation, which keeps the stale data in the cache until the fresh data is fetched.MISS


[image: ] The next time a request is made, it will be a cache stored in the Data Cache.
Opting out

again, and the data will be fetched from the external data source and

For individual data fetches, you can opt out of caching by setting the	option to no-store. This means data will be fetchedwhenever fetch is called.
// Opt out of caching for an individual `fetch` request
fetch(`https://...`, { cache: 'no-store' })
cache




Alternatively, you can also use the Route Segment Config options to opt out of caching for a specific route segment. This will affect all data requests in the route segment, including third-party libraries.// Opt out of caching for all data requests in the route segment
export const dynamic = 'force-dynamic'

Vercel Data Cache
If your Next.js application is deployed to Vercel, we recommend reading the Vercel Data Cache documentation for a better understanding of Vercel specific features.
Full Route Cache
Related terms:
You may see the terms Automatic Static Optimization, Static Site Generation, or Static Rendering being used interchangeably to refer to the process of rendering and caching routes of your application at build time.
Next.js automatically renders and caches routes at build time. This is an optimization that allows you to serve the cached route instead of rendering on the server for every request, resulting in faster page loads.
To understand how the Full Route Cache works, it’s helpful to look at how React handles rendering, and how Next.js caches the result:
1. React Rendering on the Server

On the server, Next.js uses React’s APIs to orchestrate rendering. The rendering work is split into chunks: by individual routes segments and Suspense boundaries.
Each chunk is rendered in two steps:
1. React renders Server Components into a special data format, optimized for streaming, called the React Server Component Payload.
2. Next.js uses the React Server Component Payload and Client Component JavaScript instructions to render HTML on the server.
This means we don’t have to wait for everything to render before caching the work or sending a response. Instead, we can stream a response as work is completed.
What is the React Server Component Payload?
The React Server Component Payload is a compact binary representation of the rendered React Server Components tree. It’s used by React on the client to update the browser’s DOM. The React Server Component Payload contains:
[image: ] The rendered result of Server Components
[image: ] Placeholders for where Client Components should be rendered and references to their JavaScript files [image: ] Any props passed from a Server Component to a Client Component
To learn more, see the Server Components documentation.
2. Next.js Caching on the Server (Full Route Cache)
[image: ]
The default behavior of Next.js is to cache the rendered result (React Server Component Payload and HTML) of a route on the server. This applies to statically rendered routes at build time, or during revalidation.
3. React Hydration and Reconciliation on the Client
At request time, on the client:
1. The HTML is used to immediately show a fast non-interactive initial preview of the Client and Server Components.
2. The React Server Components Payload is used to reconcile the Client and rendered Server Component trees, and update the DOM.
3. The JavaScript instructions are used to hydrate Client Components and make the application interactive.
4. Next.js Caching on the Client (Router Cache)
The React Server Component Payload is stored in the client-side Router Cache - a separate in-memory cache, split by individual route segment. This Router Cache is used to improve the navigation experience by storing previously visited routes and prefetching future routes.
5. Subsequent Navigations
On subsequent navigations or during prefetching, Next.js will check if the React Server Components Payload is stored in the Router

Cache. If so, it will skip sending a new request to the server.
If the route segments are not in the cache, Next.js will fetch the React Server Components Payload from the server, and populate the Router Cache on the client.
Static and Dynamic Rendering
Whether a route is cached or not at build time depends on whether it’s statically or dynamically rendered. Static routes are cached by default, whereas dynamic routes are rendered at request time, and not cached.
[image: ]This diagram shows the difference between statically and dynamically rendered routes, with cached and uncached data:
Learn more about static and dynamic rendering.
Duration
By default, the Full Route Cache is persistent. This means that the render output is cached across user requests.
Invalidation
There are two ways you can invalidate the Full Route Cache:
[image: ] Revalidating Data: Revalidating the Data Cache, will in turn invalidate the Router Cache by re-rendering components on the server and caching the new render output.
[image: ] Redeploying: Unlike the Data Cache, which persists across deployments, the Full Route Cache is cleared on new deployments.
Opting out
You can opt out of the Full Route Cache, or in other words, dynamically render components for every incoming request, by:
[image: ] Using a Dynamic Function: This will opt the route out from the Full Route Cache and dynamically render it at request time. The Data Cache can still be used.dynamic = 'force-dynamic'
revalidate = 0


Using the

or

route segment config options: This will skip the Full Route

Cache and the Data Cache. Meaning components will be rendered and data fetched on every incoming request to the server. The Router Cache will still apply as it’s a client-side cache.
[image: ] Opting out of the Data Cache: If a route has a fetch request that is not cached, this will opt the route out of the Full Route
Cache. The data for the specific fetch request will be fetched for every incoming request. Other fetch requests that do not opt out of caching will still be cached in the Data Cache. This allows for a hybrid of cached and uncached data.
Router Cache
Related Terms:
You may see the Router Cache being referred to as Client-side Cache or Prefetch Cache. While Prefetch Cache refers to the prefetched route segments, Client-side Cache refers to the whole Router cache, which includes both visited and prefetched segments. This cache specifically applies to Next.js and Server Components, and is different to the browser’s bfcache, though it has a similar result.
Next.js has an in-memory client-side cache that stores the React Server Component Payload, split by individual route segments, for the duration of a user session. This is called the Router Cache.
[image: ]How the Router Cache Works
As a user navigates between routes, Next.js caches visited route segments and prefetches the routes the user is likely to navigate to
(based on	components in their viewport).<Link>

This results in an improved navigation experience for the user:
[image: ] Instant backward/forward navigation because visited routes are cached and fast navigation to new routes because of prefetching and partial rendering.
[image: ] No full-page reload between navigations, and React state and browser state are preserved.
Difference between the Router Cache and Full Route Cache:
The Router Cache temporarily stores the React Server Component Payload in the browser for the duration of a user session,

whereas the Full Route Cache persistently stores the React Server Component Payload and HTML on the server across multiple user requests.
While the Full Route Cache only caches statically rendered routes, the Router Cache applies to both statically and dynamically rendered routes.
Duration
The cache is stored in the browser’s temporary memory. Two factors determine how long the router cache lasts:
[image: ] Session: The cache persists across navigation. However, it’s cleared on page refresh.
[image: ] Automatic Invalidation Period: The cache of an individual segment is automatically invalidated after a specific time. The duration depends on whether the route is statically or dynamically rendered:
[image: ] Dynamically Rendered: 30 seconds
[image: ] Statically Rendered: 5 minutes
While a page refresh will clear all cached segments, the automatic invalidation period only affects the individual segment from the time it was last accessed or created.prefetch={true}
router.prefetch


By adding
Invalidation

or calling

for a dynamically rendered route, you can opt into caching for 5 minutes.

There are two ways you can invalidate the Router Cache:
[image: ] In a Server Action:
[image: ] Revalidating data on-demand by path with (revalidatePath) or by cache tag with (revalidateTag)cookies.delete


[image: ] Using cookies.set or authentication).router.refresh

[image: ] Calling
Opting out

invalidates the Router Cache to prevent routes that use cookies from becoming stale (e.g. will invalidate the Router Cache and make a new request to the server for the current route.

It’s not possible to opt out of the Router Cache.
You can opt out of prefetching by setting the prefetch prop of the <Link> component to false. However, this will still temporarily store the route segments for 30s to allow instant navigation between nested segments, such as tab bars, or back and forward navigation. Visited routes will still be cached.
Cache Interactions
When configuring the different caching mechanisms, it’s important to understand how they interact with each other:
Data Cache and Full Route Cache
[image: ] Revalidating or opting out of the Data Cache will invalidate the Full Route Cache, as the render output depends on data.
[image: ] Invalidating or opting out of the Full Route Cache does not affect the Data Cache. You can dynamically render a route that has both cached and uncached data. This is useful when most of your page uses cached data, but you have a few components that rely on data that needs to be fetched at request time. You can dynamically render without worrying about the performance impact of re- fetching all the data.
Data Cache and Client-side Router cache
[image: ] Revalidating the Data Cache in a Route Handler will not immediately invalidate the Router Cache as the Route Handler isn’t tied to a specific route. This means Router Cache will continue to serve the previous payload until a hard refresh, or the automatic invalidation period has elapsed.revalidatePath
revalidateTag


[image: ] To immediately invalidate the Data Cache and Router cache, you can use
APIs
The following table provides an overview of how different Next.js APIs affect caching:

or

in a Server Action.


	API
	Router Cache
	Full Route Cache
	Data Cache
	React Cache

	<Link prefetch>
	Cache
	
	
	

	router.prefetch
	Cache
	
	
	




	API
	Router Cache
	Full Route Cache
	Data Cache
	React Cache

	router.refresh
	Revalidate
	
	
	

	fetch
	
	
	Cache
	Cache

	fetch options.cache
	
	
	Cache or Opt out
	

	fetch options.next.revalidate
	
	Revalidate
	Revalidate
	

	fetch options.next.tags
	
	Cache
	Cache
	

	revalidateTag
	Revalidate (Server Action)
	Revalidate
	Revalidate
	

	revalidatePath
	Revalidate (Server Action)
	Revalidate
	Revalidate
	

	const revalidate
	
	Revalidate or Opt out
	Revalidate or Opt out
	

	const dynamic
	
	Cache or Opt out
	Cache or Opt out
	

	cookies
	Revalidate (Server Action)
	Opt out
	
	

	headers, useSearchParams, searchParams
	
	Opt out
	
	

	generateStaticParams
	
	Cache
	
	

	React.cache
	
	
	
	Cache

	unstable_cache
	
	
	
	


<Link>

By default, the <Link> component automatically prefetches routes from the Full Route Cache and adds the React Server Component Payload to the Router Cache.
To disable prefetching, you can set the prefetch prop to false. But this will not skip the cache permanently, the route segment will still be cached client-side when the user visits the route.<Link> 

Learn more about the	component.
router.prefetch



The prefetch option of the to the Router Cache.useRouter
useRouter 


hook can be used to manually prefetch a route. This adds the React Server Component Payload

See the	hook API reference.
router.refresh

The refresh option of the useRouter hook can be used to manually refresh a route. This completely clears the Router Cache, and
makes a new request to the server for the current route.	does not affect the Data or Full Route Cache.refresh

The rendered result will be reconciled on the client while preserving React state and browser state.useRouter 

See the	hook API reference.fetch 

fetch
Data returned from fetch is automatically cached in the Data Cache.
// Cached by default. `force-cache` is the default option and can be ommitted.
fetch(`https://...`, { cache: 'force-cache' })


See the	API Reference for more options.
fetch options.cache


You can opt out individual fetch requests of data caching by setting the cache option to no-store:
fetch(`https://...`, { cache: 'no-store' })
// Opt out of caching

Since the render output depends on data, using cache: 'no-store' will also skip the Full Route Cache for the route where the fetch request is used. That is, the route will be dynamically rendered every request, but you can still have other cached data requests in the same route.fetch 

See the	API Reference for more options.
fetch options.next.revalidate

You can use the next.revalidate option of fetch to set the revalidation period (in seconds) of an individual fetch request. This will revalidate the Data Cache, which in turn will revalidate the Full Route Cache. Fresh data will be fetched, and components will be re- rendered on the server.
// Revalidate at most after 1 hour
fetch(`https://...`, { next: { revalidate: 3600 } })



See the

API reference for more options.
andfetch 
fetch options.next.tags
revalidateTag


Next.js has a cache tagging system for fine-grained data caching and revalidation.
1. When using fetch or unstable_cache, you have the option to tag cache entries with one or more tags.
2. Then, you can call revalidateTag to purge the cache entries associated with that tag.
For example, you can set a tag when fetching data:// Cache data with a tag
fetch(`https://...`, { next: { tags: ['a', 'b', 'c'] } })
Then, call revalidateTag with a tag to purge the cache entry:
// Revalidate entries with a specific tag
revalidateTag('a')


There are two places you can use revalidateTag, depending on what you’re trying to achieve:
1. Route Handlers - to revalidate data in response of a third party event (e.g. webhook). This will not invalidate the Router Cache immediately as the Router Handler isn’t tied to a specific route.
2. Server Actions - to revalidate data after a user action (e.g. form submission). This will invalidate the Router Cache for the associated route.
revalidatePath
revalidatePath allows you manually revalidate data and re-render the route segments below a specific path in a single operation. Calling the revalidatePath method revalidates the Data Cache, which in turn invalidates the Full Route Cache.
revalidatePath('/')


There are two places you can use revalidatePath, depending on what you’re trying to achieve:
1. Route Handlers - to revalidate data in response to a third party event (e.g. webhook).
2. Server Actions - to revalidate data after a user interaction (e.g. form submission, clicking a button).
See the	API reference for more information.revalidatePath 

revalidatePath vs. router.refresh:
Calling router.refresh will clear the Router cache, and re-render route segments on the server without invalidating the Data Cache or the Full Route Cache.router.refresh()


The difference is that revalidatePath purges the Data Cache and Full Route Cache, whereas change the Data Cache and Full Route Cache, as it is a client-side API.
Dynamic Functions

does not

cookies, headers, useSearchParams, and searchParams are all dynamic functions that depend on runtime incoming request information. Using them will opt a route out of the Full Route Cache, in other words, the route will be dynamically rendered.
cookies

Using cookies.set or cookies.delete in a Server Action invalidates the Router Cache to prevent routes that use cookies from becoming stale (e.g. to reflect authentication changes).
See the	API reference.


Segment Config Optionscookies

The Route Segment Config options can be used to override the route segment defaults or when you’re not able to use the (e.g. database client or 3rd party libraries).fetch

The following Route Segment Config options will opt out of the Data Cache and Full Route Cache:const dynamic = 'force-dynamic' const revalidate = 0



API



See the Route Segment Config documentation for more options.
generateStaticParams

For dynamic segments (e.g. app/blog/[slug]/page.js), paths provided by generateStaticParams are cached in the Full Route Cache at build time. At request time, Next.js will also cache paths that weren’t known at build time the first time they’re visited.
You can disable caching at request time by using export const dynamicParams = false option in a route segment. When this config option is used, only paths provided by generateStaticParams will be served, and other routes will 404 or match (in the case of catch-all routes).generateStaticParams 


See the
Reactcache



function

API reference.

The React cache function allows you to memoize the return value of a function, allowing you to call the same function multiple times while only executing it once.
Since fetch requests are automatically memoized, you do not need to wrap it in React cache. However, you can use cache tofetch


manually memoize data requests for use cases when the GraphQL clients.

API is not suitable. For example, some database clients, CMS clients, or
utils/get-item.ts (tsx)import { cache } from 'react'
import db from '@/lib/db'
export const getItem = cache(async (id: string) => {
} return item
const item = await db.item.findUnique({ id })
)









utils/get-item.js (jsx)import { cache } from 'react'
import db from '@/lib/db'
export const getItem = cache(async (id) => {
} return item
const item = await db.item.findUnique({ id })
)


3.1.5 - Styling
Documentation path: /02-app/01-building-your-application/05-styling/index
Description: Learn the different ways you can style your Next.js application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js supports different ways of styling your application, including:
[image: ] Global CSS: Simple to use and familiar for those experienced with traditional CSS, but can lead to larger CSS bundles and difficulty managing styles as the application grows.
[image: ] CSS Modules: Create locally scoped CSS classes to avoid naming conflicts and improve maintainability.
[image: ] Tailwind CSS: A utility-first CSS framework that allows for rapid custom designs by composing utility classes.
[image: ] Sass: A popular CSS preprocessor that extends CSS with features like variables, nested rules, and mixins.
[image: ] CSS-in-JS: Embed CSS directly in your JavaScript components, enabling dynamic and scoped styling.
Learn more about each approach by exploring their respective documentation:

3.1.5.1 - CSS Modules
Documentation path: /02-app/01-building-your-application/05-styling/01-css-modules
Description: Style your Next.js Application with CSS Modules.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
[image: ] Examples
- [Basic CSS Example](https://github.com/vercel/next.js/tree/canary/examples/basic-css).module.css

Next.js has built-in support for CSS Modules using the	extension.
CSS Modules locally scope CSS by automatically creating a unique class name. This allows you to use the same class name in different files without worrying about collisions. This behavior makes CSS Modules the ideal way to include component-level CSS.
Exampleapp


CSS Modules can be imported into any file inside the

directory:


app/dashboard/layout.tsx (tsx)import  styles  from  './styles.module.css'
export default function DashboardLayout({
} children,
} children: React.ReactNode
: {
} return <section className={styles.dashboard}>{children}</section>
) {










app/dashboard/layout.js (jsx)import  styles  from  './styles.module.css'
export default function DashboardLayout({ children }) {
} return <section className={styles.dashboard}>{children}</section>






app/dashboard/styles.module.css (css).dashboard {
} padding: 24px;




For example, consider a reusable Button component in the	folder:components/


First, create components/Button.module.css with the following content:


Button.module.css (css)/*
You do not need to worry about .error {} colliding with any other `.css` or
`.module.css` files!
*/
.error {
} background-color: red;
color: white;










Then, create components/Button.js, importing and using the above CSS file:


components/Button.js (jsx)import styles from './Button.module.css'
export function Button() {
return (
<button
type="button"
// Note how the "error" class is accessed as a property on the imported
· className={styles.error}
// `styles` object.
< Destroy
/button>


} )


CSS Modules are an optional feature and are only enabled for files with the
and global CSS files are still supported..module.css
<link>


extension. Regular

stylesheets

[image: ][image: ]In production, all CSS Module files will be automatically concatenated into many minified and code-split .css files. These .css files represent hot execution paths in your application, ensuring the minimal amount of CSS is loaded for your application to paint.
Global Styles
Global styles can be imported into any layout, page, or component inside the	directory.app

Good to know: This is different from the pages directory, where you can only import global styles inside the	file._app.js

For example, consider a stylesheet named app/global.css: body {
padding: 20px 20px 60px;
} margin: 0 auto;
max-width: 680px;



Inside the root layout (app/layout.js), import the

stylesheet to apply the styles to every route in your application:
app/layout.tsx (tsx)// These styles apply to every route in the application
import './global.css'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <body>{children}</body>
}
)  /html>
global.css














app/layout.js (jsx)// These styles apply to every route in the application
import './global.css'
export default function RootLayout({ children }) {
return (
<html lang="en">
< <body>{children}</body>
}
)  /html>











To add a stylesheet to your application, import the CSS file within pages/_app.js. For example, consider the following stylesheet named styles.css:




styles.css (css)body {
font-family: 'SF Pro Text', 'SF Pro Icons', 'Helvetica Neue', 'Helvetica',
p 'Arial', sans-serif; ;
adding: 20px 20px 60px
} margin: 0 auto;
max-width: 680px;









Create a

file if not already present. Then,

the

file.


pages/_app.js (jsx)import '../styles.css'
// This default export is required in a new `pages/_app.js` file.
export default function MyApp({ Component, pageProps }) {
pages/_app.js 
import
styles.css


} return <Component {...pageProps} />

These styles (styles.css) will apply to all pages and components in your application. Due to the global nature of stylesheets, and to avoid conflicts, you may only import them inside pages/_app.js.
In development, expressing stylesheets this way allows your styles to be hot reloaded as you edit them—meaning you can keep application state.
[image: ]In production, all CSS files will be automatically concatenated into a single minified .css file. The order that the CSS is concatenated will match the order the CSS is imported into the _app.js file. Pay special attention to imported JS modules that include their own CSS; the JS module’s CSS will be concatenated following the same ordering rules as imported CSS files. For example:import '../styles.css'
// The CSS in ErrorBoundary depends on the global CSS in styles.css,
// so we import it after styles.css.
import ErrorBoundary from '../components/ErrorBoundary'
export default function MyApp({ Component, pageProps }) {
return (
<ErrorBoundary>
< <Component {...pageProps} />
}
)  /ErrorBoundary>



External Stylesheets
Stylesheets published by external packages can be imported anywhere in the



directory, including colocated components:app

app/layout.tsx (tsx)import 'bootstrap/dist/css/bootstrap.css'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <body className="container">{children}</body>
}
)  /html>














app/layout.js (jsx)import 'bootstrap/dist/css/bootstrap.css'
export default function RootLayout({ children }) {
return (
<html lang="en">
< <body className="container">{children}</body>
}
)  /html>








Good to know: External stylesheets must be directly imported from an npm package or downloaded and colocated with your codebase. You cannot use <link rel="stylesheet" />.import


Next.js allows you to import CSS files from a JavaScript file. This is possible because Next.js extends the concept of JavaScript.
Import styles fromnode_modules

Since Next.js 9.5.4, importing a CSS file from node_modules is permitted anywhere in your application.bootstrap


beyond

For global stylesheets, like

or nprogress, you should import the file inside pages/_app.js. For example:


pages/_app.js (jsx)import 'bootstrap/dist/css/bootstrap.css'
export default function MyApp({ Component, pageProps }) {
return <Component {...pageProps} />


}


For importing CSS required by a third-party component, you can do so in your component. For example:


components/example-dialog.js (jsx)import { useState } from 'react'
import { Dialog } from '@reach/dialog'
import VisuallyHidden from '@reach/visually-hidden'
import '@reach/dialog/styles.css'
function ExampleDialog(props) {
const [showDialog, setShowDialog] = useState(false)
const open = () => setShowDialog(true)
const close = () => setShowDialog(false)
return (
<div>
<button onClick={open}>Open Dialog</button>
<Dialog isOpen={showDialog} onDismiss={close}>
<button className="close-button" onClick={close}>
< <span aria-hidden>×</span>
<VisuallyHidden>Close</VisuallyHidden>
/button>
</ /Dialog>
< <p>Hello there. I am a dialog</p>
div>
} )














Additional Features
Next.js includes additional features to improve the authoring experience of adding styles:
[image: ] When running locally with next dev, local stylesheets (either global or CSS modules) will take advantage of Fast Refresh to instantly reflect changes as edits are saved..css


When building for production with next build, CSS files will be bundled into fewer minified network requests needed to retrieve styles.

files to reduce the number of

If you disable JavaScript, styles will still be loaded in the production build (next start). However, JavaScript is still required fornext dev

to enable Fast Refresh.

3.1.5.2 - Tailwind CSS
Documentation path: /02-app/01-building-your-application/05-styling/02-tailwind-css
Description: Style your Next.js Application using Tailwind CSS.

{/ The content of this doc is shared between the app and pages router. You can use the<PagesOnly>Content</PagesOnly>

to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
[image: ] Examples
- [With Tailwind CSS](https://github.com/vercel/next.js/tree/canary/examples/with-tailwindcss)
Tailwind CSS is a utility-first CSS framework that works exceptionally well with Next.js.
Installing Tailwindinit
tailwind.config.js
postcss.config.js








component

Install the Tailwind CSS packages and run the files:

command to generate both the

and



Terminal (bash)npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p





Configuring Tailwind
Inside tailwind.config.js, add paths to the files that will use Tailwind CSS class names:




tailwind.config.js (js)/** @type {import('tailwindcss').Config} */
module.exports = {
content: [
'./app/**/*.{js,ts,jsx,tsx,mdx}', // Note the addition of the `app` directory.
'./pages/**/*.{js,ts,jsx,tsx,mdx}',
'./components/**/*.{js,ts,jsx,tsx,mdx}',
] './src/**/*.{js,ts,jsx,tsx,mdx}',
// Or if using `src` directory:
theme: {
,
} plugins: [],
} extend: {},
,













You do not need to modify postcss.config.js.
Importing Styles
Add the Tailwind CSS directives that Tailwind will use to inject its generated styles to a Global Stylesheet in your application, for example:
app/globals.css (css)@tailwind base;
@tailwind components;
@tailwind utilities;





Inside the root layout (app/layout.tsx), import the

stylesheet to apply the styles to every route in your application.
app/layout.tsx (tsx)import type { Metadata } from 'next'
// These styles apply to every route in the application
import './globals.css'
export const metadata: Metadata = {
} description: 'Generated by create next app',
title: 'Create Next App',
export default function RootLayout({
children,
globals.css


}: {
} children: React.ReactNode
) {
return (
<html lang="en">
< <body>{children}</body>
}
)  /html>

app/layout.js (jsx)// These styles apply to every route in the application
import './globals.css'
export const metadata = {
} description: 'Generated by create next app',
title: 'Create Next App',
export default function RootLayout({ children }) {
return (
<html lang="en">
< <body>{children}</body>
}
)  /html>









Using Classes
After installing Tailwind CSS and adding the global styles, you can use Tailwind’s utility classes in your application.
app/page.tsx (tsx)export default function Page() {
} return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>




app/page.js (jsx)export default function Page() {
} return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>



Importing Styles
Add the Tailwind CSS directives that Tailwind will use to inject its generated styles to a Global Stylesheet in your application, for example:
styles/globals.css (css)@tailwind base;
@tailwind components;
@tailwind utilities;





Inside the custom app file (pages/_app.js), import the

stylesheet to apply the styles to every route in your application.
pages/_app.tsx (tsx)// These styles apply to every route in the application
import '@/styles/globals.css'
import type { AppProps } from 'next/app'
export default function App({ Component, pageProps }: AppProps) {
} return <Component {...pageProps} />
globals.css









pages/_app.js (jsx)// These styles apply to every route in the application
import '@/styles/globals.css'
export default function App({ Component, pageProps }) {
} return <Component {...pageProps} />


Using Classes
After installing Tailwind CSS and adding the global styles, you can use Tailwind’s utility classes in your application.
pages/index.tsx (tsx)export default function Page() {
} return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>




pages/index.js (jsx)export default function Page() {
} return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>



Usage with Turbopack
As of Next.js 13.1, Tailwind CSS and PostCSS are supported with Turbopack.

3.1.5.3 - CSS-in-JS
Documentation path: /02-app/01-building-your-application/05-styling/03-css-in-js
Description: Use CSS-in-JS libraries with Next.js

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Warning: CSS-in-JS libraries which require runtime JavaScript are not currently supported in Server Components. Using CSS-in- JS with newer React features like Server Components and Streaming requires library authors to support the latest version of React, including concurrent rendering.
We’re working with the React team on upstream APIs to handle CSS and JavaScript assets with support for React Server Components and streaming architecture.
The following libraries are supported in Client Components in the	directory (alphabetical):app











The following are currently working on support:chakra-ui kuma-ui @mui/material pandacss styled-jsx
styled-components style9
tamagui tss-react
vanilla-extract

emotion

Good to know: We’re testing out different CSS-in-JS libraries and we’ll be adding more examples for libraries that support
React 18 features and/or the	directory.app

If you want to style Server Components, we recommend using CSS Modules or other solutions that output CSS files, like PostCSS or Tailwind CSS.
Configuring CSS-in-JS inapp

Configuring CSS-in-JS is a three-step opt-in process that involves:
1. A style registry to collect all CSS rules in a render.
2. The new useServerInsertedHTML hook to inject rules before any content that might use them.
3. A Client Component that wraps your app with the style registry during initial server-side rendering.
styled-jsx



Using

in Client Components requires using v5.1.0. First, create a new registry:


app/registry.tsx (tsx)'use client'
import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'
import { StyleRegistry, createStyleRegistry } from 'styled-jsx'
export default function StyledJsxRegistry({
} children,
} children: React.ReactNode
: {
) {
// Only create stylesheet once with lazy initial state
// x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
const [jsxStyleRegistry] = useState(() => createStyleRegistry())
useServerInsertedHTML(() => {
styled-jsx


const styles = jsxStyleRegistry.styles()
} return <>{styles}</>
jsxStyleRegistry.flush()
)
} return <StyleRegistry registry={jsxStyleRegistry}>{children}</StyleRegistry>

app/registry.js (jsx)'use client'
import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'
import { StyleRegistry, createStyleRegistry } from 'styled-jsx'
export default function StyledJsxRegistry({ children }) {
// Only create stylesheet once with lazy initial state
// x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
const [jsxStyleRegistry] = useState(() => createStyleRegistry())
useServerInsertedHTML(() => {
const styles = jsxStyleRegistry.styles()
} return <>{styles}</>
jsxStyleRegistry.flush()
)
} return <StyleRegistry registry={jsxStyleRegistry}>{children}</StyleRegistry>


















Then, wrap your root layout with the registry:


app/layout.tsx (tsx)import StyledJsxRegistry from './registry'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html>
<body>
</ /body>
< <StyledJsxRegistry>{children}</StyledJsxRegistry>
html>
} )















app/layout.js (jsx)import StyledJsxRegistry from './registry'
export default function RootLayout({ children }) {
return (
<html>
<body>
</ /body>
< <StyledJsxRegistry>{children}</StyledJsxRegistry>
html>
} )









View an example here.
Styled Components
Below is an example of how to configure styled-components@6 or newer:
First, enable styled-components in next.config.js.
next.config.js (js)module.exports = {
compiler: {
styledComponents: true,
},


} },

Then, use the	API to create a global registry component to collect all CSS style rules generated during a render,styled-components
useServerInsertedHTML


and a function to return those rules. Then use the HTML tag in the root layout.<head>

'use client'
import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'

hook to inject the styles collected in the registry into the

lib/registry.tsx (tsx)

import { ServerStyleSheet, StyleSheetManager } from 'styled-components'
export default function StyledComponentsRegistry({ children,
}: {
children: React.ReactNode
}) {
// Only create stylesheet once with lazy initial state
// x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state const [styledComponentsStyleSheet] = useState(() => new ServerStyleSheet())
useServerInsertedHTML(() => {
const styles = styledComponentsStyleSheet.getStyleElement() styledComponentsStyleSheet.instance.clearTag()
return <>{styles}</>
})
if (typeof window !== 'undefined') return <>{children}</> return (
<StyleSheetManager sheet={styledComponentsStyleSheet.instance}>
{children}
) </StyleSheetManager>
}

lib/registry.js (jsx)'use client'
import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'
import { ServerStyleSheet, StyleSheetManager } from 'styled-components'
export default function StyledComponentsRegistry({ children }) {
// Only create stylesheet once with lazy initial state
// x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
const [styledComponentsStyleSheet] = useState(() => new ServerStyleSheet())
useServerInsertedHTML(() => {
const styles = styledComponentsStyleSheet.getStyleElement()
} return <>{styles}</>
styledComponentsStyleSheet.instance.clearTag()
)
if (typeof window !== 'undefined') return <>{children}</>
return (
<StyleSheetManager sheet={styledComponentsStyleSheet.instance}>
< {children} anager>
}
)  /StyleSheetM























Wrap the

of the root layout with the style registry component:


app/layout.tsx (tsx)import StyledComponentsRegistry from './lib/registry'
export default function RootLayout({
} children,
: {
children: React.ReactNode
children


}) {
return (
<html>
<body>
</ /body>
< <StyledComponentsRegistry>{children}</StyledComponentsRegistry>
html>
} )

app/layout.js (jsx)import StyledComponentsRegistry from './lib/registry'
export default function RootLayout({ children }) {
return (
<html>
<body>
</ /body>
< <StyledComponentsRegistry>{children}</StyledComponentsRegistry>
html>
} )









View an example here.
Good to know:
[image: ] During server rendering, styles will be extracted to a global registry and flushed to the <head> of your HTML. This ensures the style rules are placed before any content that might use them. In the future, we may use an upcoming React feature to determine where to inject the styles.
[image: ] During streaming, styles from each chunk will be collected and appended to existing styles. After client-side hydration is complete, styled-components will take over as usual and inject any further dynamic styles.
[image: ] We specifically use a Client Component at the top level of the tree for the style registry because it’s more efficient to extract CSS rules this way. It avoids re-generating styles on subsequent server renders, and prevents them from being sent in the Server Component payload.
[image: ] For advanced use cases where you need to configure individual properties of styled-components compilation, you can read our Next.js styled-components API reference to learn more.
[image: ] Examples
It’s possible to use any existing CSS-in-JS solution.The simplest one is inline styles:function HiThere() {
} return <p style={{ color: 'red' }}>hi there</p> export default HiThere

We bundle styled-jsx to provide support for isolated scoped CSS. The aim is to support “shadow CSS” similar to Web Components, which unfortunately do not support server-rendering and are JS-only.
See the above examples for other popular CSS-in-JS solutions (like Styled Components). Acomponent using styled-jsx looks like this:
function HelloWorld() {
return (
<div>
Hello world
<p>scoped!</p>
<style jsx>{`
p {
} color: blue;
div {
} background: red;
@media (max-width: 600px) {
div {
` } style>
} background: blue;
<style global jsx>{`
}</
body {


< `}</style>
} background: black;
}
)  /div>
export default HelloWorld

Please see the styled-jsx documentation for more examples.
Disabling JavaScript
Yes, if you disable JavaScript the CSS will still be loaded in the production build (next start). During development, we require JavaScript to be enabled to provide the best developer experience with Fast Refresh.

3.1.5.4 - Sass
Documentation path: /02-app/01-building-your-application/05-styling/04-sass
Description: Style your Next.js application using Sass.
{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}.scss
.sass

Next.js has built-in support for integrating with Sass after the package is installed using both the	and	extensions. You can.module.sass


use component-level Sass via CSS Modules and the .module.scssor First, install sass:

extension.



Terminal (bash)npm install --save-dev sass




Good to know:
Sass supports two different syntaxes, each with their own extension. The.sass



extension requires you use the SCSS syntax,.scss


while the	extension requires you use the Indented Syntax (“Sass”)..scss


If you’re not sure which to choose, start with the Indented Syntax (“Sass”).
Customizing Sass Options
If you want to configure the Sass compiler, usesassOptions


extension which is a superset of CSS, and doesn’t require you learn the


in next.config.js.

next.config.js (js)






Sass Variablesconst path = require('path')
module.exports = {
sassOptions: {
} ,
} includePaths: [path.join( dirname, 'styles')],

Next.js supports Sass variables exported from CSS Module files.primaryColor


For example, using the exported

Sass variable:


app/variables.module.scss (scss)$primary-color: #64ff00;
:export {
} primaryColor: $primary-color;







app/page.js (jsx)// maps to root `/` URL
import  variables  from  './variables.module.scss'
} return <h1 style={{ color: variables.primaryColor }}>Hello, Next.js!</h1>
export default function Page() {








pages/_app.js (jsx)import  variables  from  '../styles/variables.module.scss'
export default function MyApp({ Component, pageProps }) {
return (
<Layout color={variables.primaryColor}>
< <Component {...pageProps} />
}
)  /Layout>


3.1.6 - Optimizations
Documentation path: /02-app/01-building-your-application/06-optimizing/index
Description: Optimize your Next.js application for best performance and user experience.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js comes with a variety of built-in optimizations designed to improve your application’s speed and Core Web Vitals. This guide will cover the optimizations you can leverage to enhance your user experience.
Built-in Components
Built-in components abstract away the complexity of implementing common UI optimizations. These components are:
[image: ] Images: Built on the native <img> element. The Image Component optimizes images for performance by lazy loading and automatically resizing images based on device size.<a>
<script>


[image: ] Link: Built on the native transitions.
[image: ] Scripts: Built on the native
scripts.
Metadata

tags. The Link Component prefetches pages in the background, for faster and smoother page tags. The Script Component gives you control over loading and execution of third-party

Metadata helps search engines understand your content better (which can result in better SEO), and allows you to customize how your content is presented on social media, helping you create a more engaging and consistent user experience across various platforms.<head>

The Metadata API in Next.js allows you to modify the	element of a page. You can configure metadata in two ways:static metadata object
generateMetadata 
layout.js
page.js


Config-based Metadata: Export a file.

or a dynamic

function in a	or

[image: ] File-based Metadata: Add static or dynamically generated special files to route segments.
Additionally, you can create dynamic Open Graph Images using JSX and CSS with imageResponse constructor.<head>


The Head Component in Next.js allows you to modify the
Static Assets

of a page. Learn more in the Head Component documentation.

Next.js /public folder can be used to serve static assets like images, fonts, and other files. Files inside CDN providers so that they are delivered efficiently./public

Analytics and Monitoring

can also be cached by

For large applications, Next.js integrates with popular analytics and monitoring tools to help you understand how your application is performing. Learn more in the Analytics, OpenTelemetry, and Instrumentation guides.

3.1.6.1 - Image Optimization
Documentation path: /02-app/01-building-your-application/06-optimizing/01-images
Description: Optimize your images with the built-in `next/image` component.
Related:
Title: API Reference
Related Description: Learn more about the next/image API.
Links:
[image: ] app/api-reference/components/image

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
[image: ] Examples
According to Web Almanac, images account for a huge portion of the typical website’s page weight and can have a sizable impact on your website’s LCP performance.<img>

The Next.js Image component extends the HTML	element with features for automatic image optimization:
Size Optimization: Automatically serve correctly sized images for each device, using modern image formats like WebP and AVIF.
Visual Stability: Prevent layout shift automatically when images are loading.
Faster Page Loads: Images are only loaded when they enter the viewport using native browser lazy loading, with optional blur-up placeholders.
Asset Flexibility: On-demand image resizing, even for images stored on remote serversnext/image


□ Watch: Learn more about how to use
Usage

→ YouTube (9 minutes).


import Image from 'next/image'


You can then define the
Local Images
To use a local image,import


for your image (either local or remote).


your .jpg, .png, or .webp image files.src


Next.js will automatically determine the width and height of your image based on the imported file. These values are used to prevent Cumulative Layout Shift while your image is loading.
app/page.js (jsx)import Image from 'next/image'
import profilePic from './me.png'
export default function Page() {
return (
<Image
src={profilePic}
alt="Picture of the author"
// width={500} automatically provided
// height={500} automatically provided
/ // placeholder="blur" // Optional blur-up while loading
// blurDataURL="data:..." automatically provided
}
)  >














pages/index.js (jsx)import Image from 'next/image'
import profilePic from '../public/me.png'
export default function Page() {
return (
<Image
src={profilePic}
alt="Picture of the author"
// width={500} automatically provided


// height={500} automatically provided
/ // placeholder="blur" // Optional blur-up while loading
// blurDataURL="data:..." automatically provided
}
)  >


Warning: Dynamic build time.await import()

Remote Images

or

are not supported. The

must be static so it can be analyzed at

To use a remote image, the	property should be a URL string.require()
import
src
height


Since Next.js does not have access to remote files during the build process, you’ll need to provide the width, props manually.blurDataURL
The width and The width and


and optional

attributes are used to infer the correct aspect ratio of image and avoid layout shift from the image loading in. do not determine the rendered size of the image file. Learn more about Image Sizing.height height

app/page.js (jsx)import Image from 'next/image'
export default function Page() {
return (
<Image
src="https://s3.amazonaws.com/my-bucket/profile.png"
alt="Picture of the author"
/ height={500}
width={500}
}
)  >










To safely allow optimizing images, define a list of supported URL patterns in next.config.js. Be as specific as possible to prevent malicious usage. For example, the following configuration will only allow images from a specific AWS S3 bucket:
next.config.js (js)module.exports = {
images: {
remotePatterns: [
{ protocol: 'https',
hostname: 's3.amazonaws.com',
port: '',
], ,
} },
} pathname: '/my-bucket/**',












Learn more aboutremotePatterns

Domains

configuration. If you want to use relative URLs for the image src, use a loader.

[image: ]Sometimes you may want to optimize a remote image, but still use the built-in Next.js Image Optimization API. To do this, leave theloader
src

at its default setting and enter an absolute URL for the Image	prop.
To protect your application from malicious users, you must define a list of remote hostnames you intend to use with the component.next/image
remotePatterns


Learn more about
Loaders

configuration.

Note that in the example earlier, a partial URL ("/me.png") is provided for a local image. This is possible because of the loader architecture.
[image: ]A loader is a function that generates the URLs for your image. It modifies the provided src, and generates multiple URLs to request the image at different sizes. These multiple URLs are used in the automatic srcset generation, so that visitors to your site will be served an image that is the right size for their viewport.
The default loader for Next.js applications uses the built-in Image Optimization API, which optimizes images from anywhere on the web,

and then serves them directly from the Next.js web server. If you would like to serve your images directly from a CDN or image server, you can write your own loader function with a few lines of JavaScript.loader 
loaderFile 


You can define a loader per-image with the
Priority

prop, or at the application level with the

configuration.

You should add the priority property to the image that will be the Largest Contentful Paint (LCP) element for each page. Doing so allows Next.js to specially prioritize the image for loading (e.g. through preload tags or priority hints), leading to a meaningful boost in LCP.
The LCP element is typically the largest image or text block visible within the viewport of the page. When you run next dev, you’ll see<Image>
priority


a console warning if the LCP element is an

without the

property.

Once you’ve identified the LCP image, you can add the property like this:


app/page.js (jsx)import Image from 'next/image'
export default function Home() {
return (
<>
<h1>My Homepage</h1>
<Image
src="/me.png"
alt="Picture of the author"
width={500}
< <p>Welcome to my homepage!</p>
/ priority
height={500}
>
/>
} )

















app/page.js (jsx)import Image from 'next/image'
import profilePic from '../public/me.png'
} return <Image src={profilePic} alt="Picture of the author" priority />
export default function Page() {







See more about priority in thenext/image 

Image Sizing

component documentation.

One of the ways that images most commonly hurt performance is through layout shift, where the image pushes other elements around on the page as it loads in. This performance problem is so annoying to users that it has its own Core Web Vital, called Cumulative Layout Shift. The way to avoid image-based layout shifts is to always size your images. This allows the browser to reserve precisely enough space for the image before it loads.
Because next/image is designed to guarantee good performance results, it cannot be used in a way that will contribute to layout shift, and must be sized in one of three ways:
1. Automatically, using a static import
2. Explicitly, by including a width and height property
3. Implicitly, by using fill which causes the image to expand to fill its parent element.
What if I don’t know the size of my images?
If you are accessing images from a source without knowledge of the images’ sizes, there are several things you can do:
Use fill
[image: ]The fill prop allows your image to be sized by its parent element. Consider using CSS to give the image’s parent element space on the page along sizes prop to match any media query break points. You can also use object-fit with fill, contain, or cover, and object-position to define how the image should occupy that space.
Normalize your images
If you’re serving images from a source that you control, consider modifying your image pipeline to normalize the images to a specific size.
Modify your API calls

If your application is retrieving image URLs using an API call (such as to a CMS), you may be able to modify the API call to return the image dimensions along with the URL.
If none of the suggested methods works for sizing your images, the	component is designed to work well on a pagenext/image
<img>

alongside standard	elements.
Styling
Styling the Image component is similar to styling a normal	element, but there are a few guidelines to keep in mind: [image: ] Use className or style, not styled-jsx.<img>

In most cases, we recommend using the className prop. This can be an imported CSS Module, a global stylesheet, etc. You can also use the style prop to assign inline styles.
[image: ]You cannot use styled-jsx because it’s scoped to the current component (unless you mark the style as global). When using fill, the parent element must have position: relative
[image: ]This is necessary for the proper rendering of the image element in that layout mode. When using fill, the parent element must have display: block<div>


[image: ] This is the default for
Examples
Responsive

elements but should be specified otherwise.


import Image from 'next/image'
import  mountains  from  '../public/mountains.jpg'
export default function Responsive() {
return (
<div style={{ display: 'flex', flexDirection: 'column' }}>
<Image
alt="Mountains"
// Importing an image will
// automatically set the width and height
src={mountains}
sizes="100vw"
// Make the image display full width
style={{
} height: 'auto',
width: '100%',
}
/> }
) </div>

Fill Container

import Image from 'next/image'
import  mountains  from  '../public/mountains.jpg'
export default function Fill() {
return (
<div
style={{
display: 'grid',
gridGap: '8px',
> }
} gridTemplateColumns: 'repeat(auto-fit, minmax(400px, auto))',
<div style={{ position: 'relative', height: '400px' }}>
<Image
alt="Mountains"
src={mountains}
fill
sizes="(min-width: 808px) 50vw, 100vw"
style={{
} objectFit: 'cover', // cover, contain, none
< {/* And more images in the grid... */}
</div>
/> }
/div>
} )

Background Image
import Image from 'next/image'
import  mountains  from  '../public/mountains.jpg'
export default function Background() {
return (
<Image
alt="Mountains"
src={mountains}
placeholder="blur"
quality={100}
fill


sizes="100vw"
style={{
} objectFit: 'cover',
} )
/> }

For examples of the Image component used with the various styles, see the Image Component Demo.
Other Properties
View all properties available to the next/image component.

Configuration
The next/image component and Next.js Image Optimization API can be configured in the next.config.js file. These configurations allow you to enable remote images, define custom image breakpoints, change caching behavior and more.
Read the full image configuration documentation for more information.

3.1.6.2 - Font Optimization
Documentation path: /02-app/01-building-your-application/06-optimizing/02-fonts
Description: Optimize your application's web fonts with the built-in `next/font` loaders.
Related:
Title: API Reference
Related Description: Learn more about the next/font API.
Links:
[image: ] app/api-reference/components/font

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
next/font will automatically optimize your fonts (including custom fonts) and remove external network requests for improved privacy and performance.
□ Watch: Learn more about how to use	→ YouTube (6 minutes).next/font

next/font includes built-in automatic self-hosting for any font file. This means you can optimally load web fonts with zero layoutsize-adjust

shift, thanks to the underlying CSS	property used.
This new font system also allows you to conveniently use all Google Fonts with performance and privacy in mind. CSS and font files are downloaded at build time and self-hosted with the rest of your static assets. No requests are sent to Google by the browser.
Google Fonts
Automatically self-host any Google Font. Fonts are included in the deployment and served from the same domain as your deployment.
No requests are sent to Google by the browser.next/font/google


Get started by importing the font you would like to use from the best performance and flexibility.

as a function. We recommend using variable fonts for
app/layout.tsx (tsx)import { Inter } from 'next/font/google'
// If loading a variable font, you don't need to specify the font weight
const inter = Inter({
} display: 'swap',
subsets: ['latin'],
)
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en" className={inter.className}>
< <body>{children}</body>
}
)  /html>



















app/layout.js (jsx)import { Inter } from 'next/font/google'
// If loading a variable font, you don't need to specify the font weight
const inter = Inter({
} display: 'swap',
subsets: ['latin'],
)
export default function RootLayout({ children }) {
return (
<html lang="en" className={inter.className}>
< <body>{children}</body>
}
)  /html>


If you can’t use a variable font, you will need to specify a weight:



app/layout.tsx (tsx)import { Roboto } from 'next/font/google'
const roboto = Roboto({
weight: '400',
} display: 'swap',
subsets: ['latin'],
)
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en" className={roboto.className}>
< <body>{children}</body>
}
)  /html>



















app/layout.js (jsx)import { Roboto } from 'next/font/google'
const roboto = Roboto({
weight: '400',
} display: 'swap',
subsets: ['latin'],
)
export default function RootLayout({ children }) {
return (
<html lang="en" className={roboto.className}>
< <body>{children}</body>
}
)  /html>















To use the font in all your pages, add it to

file under

as shown below:


pages/_app.js (jsx)import { Inter } from 'next/font/google'
// If loading a variable font, you don't need to specify the font weight
const inter = Inter({ subsets: ['latin'] })
export default function MyApp({ Component, pageProps }) {
return (
<main className={inter.className}>
< <Component {...pageProps} />
}
)  /main>
_app.js 
/pages













If you can’t use a variable font, you will need to specify a weight:


pages/_app.js (jsx)import { Roboto } from 'next/font/google'
const roboto = Roboto({
} subsets: ['latin'],
weight: '400',
)
export default function MyApp({ Component, pageProps }) {
return (
<main className={roboto.className}>
< <Component {...pageProps} />
}
)  /main>


You can specify multiple weights and/or styles by using an array:


app/layout.js (jsx)const roboto = Roboto({
weight: ['400', '700'],
style: ['normal', 'italic'],
} display: 'swap',
subsets: ['latin'],
)








Good to know: Use an underscore (_) for font names with multiple words. E.g.Roboto Mono
Roboto_Mono.


Apply the font in<head>
className


should be imported as

You can also use the font without a wrapper and

by injecting it inside the

as follows:



pages/_app.js (jsx)import { Inter } from 'next/font/google'
const inter = Inter({ subsets: ['latin'] })
export default function MyApp({ Component, pageProps }) {
return (
<>
<style jsx global>{`
html {
< <Component {...pageProps} />
`}</style>
} font-family: ${inter.style.fontFamily};
/>
} )
<head>

















Single page usage
To use the font on a single page, add it to the specific page as shown below:




pages/index.js (jsx)import { Inter } from 'next/font/google'
const inter = Inter({ subsets: ['latin'] })
export default function Home() {
return (
<div className={inter.className}>
< <p>Hello World</p>
}
)  /div>









Specifying a subset
Google Fonts are automatically subset. This reduces the size of the font file and improves performance. You’ll need to define which ofpreload
true


these subsets you want to preload. Failing to specify any subsets while This can be done by adding it to the function call:

is

will result in a warning.



app/layout.tsx (tsx)const inter = Inter({ subsets: ['latin'] })




app/layout.js (jsx)const inter = Inter({ subsets: ['latin'] })



pages/_app.js (jsx)const inter = Inter({ subsets: ['latin'] })


View the Font API Reference for more information.
Using Multiple Fonts

You can import and use multiple fonts in your application. There are two approaches you can take.className

The first approach is to create a utility function that exports a font, imports it, and applies its the font is preloaded only when it’s rendered:


where needed. This ensures
app/fonts.ts (ts)import { Inter, Roboto_Mono } from 'next/font/google'
export const inter = Inter({
} display: 'swap',
subsets: ['latin'],
)
export const roboto_mono = Roboto_Mono({
} display: 'swap',
subsets: ['latin'],
)












app/fonts.js (js)import { Inter, Roboto_Mono } from 'next/font/google'
export const inter = Inter({
} display: 'swap',
subsets: ['latin'],
)
export const roboto_mono = Roboto_Mono({
} display: 'swap',
subsets: ['latin'],
)











app/layout.tsx (tsx)import { inter } from './fonts'
export default function Layout({ children }: { children: React.ReactNode }) {
return (
<html lang="en" className={inter.className}>
<body>
</ /body>
< <div>{children}</div>
html>
} )











app/layout.js (jsx)import { inter } from './fonts'
export default function Layout({ children }) {
return (
<html lang="en" className={inter.className}>
<body>
</ /body>
< <div>{children}</div>
html>
} )











app/page.tsx (tsx)import { roboto_mono } from './fonts'
export default function Page() {
return (
<>
< <h1 className={roboto_mono.className}>My page</h1>
}
)  />









app/page.js (jsx)import { roboto_mono } from './fonts'
export default function Page() {
return (


<>
< <h1 className={roboto_mono.className}>My page</h1>
}
)  />


In the example above,Inter


will be applied globally, and

can be imported and applied as needed.

Alternatively, you can create a CSS variable and use it with your preferred CSS solution:

import { Inter, Roboto_Mono } from 'next/font/google' import styles from './global.css'
const inter = Inter({ subsets: ['latin'], variable: '--font-inter', display: 'swap',
})
const roboto_mono = Roboto_Mono({ subsets: ['latin'],
variable: '--font-roboto-mono', display: 'swap',
})
export default function RootLayout({ children,
}: {
children: React.ReactNode
}) {
return (
<html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
<body>
<h1>My App</h1>
<div>{children}</div>
</body>
) </html>


app/layout.tsx (tsx)Roboto Mono


}

app/layout.js (jsx)import { Inter, Roboto_Mono } from 'next/font/google'
const inter = Inter({
subsets: ['latin'],
} display: 'swap',
variable: '--font-inter',
)
const roboto_mono = Roboto_Mono({
subsets: ['latin'],
} display: 'swap',
variable: '--font-roboto-mono',
)
export default function RootLayout({ children }) {
return (
<html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
<body>
<h1>My App</h1>
</ /body>
< <div>{children}</div>
html>
} )






















app/global.css (css)html {
} font-family: var(--font-inter);

} font-family: var(--font-roboto-mono);
h1 {


In the example above,

will be applied globally, and any

tags will be styled with Roboto Mono.

Recommendation: Use multiple fonts conservatively since each new font is an additional resource the client has to download.Inter
<h1>

Local Fonts

Import flexibility.next/font/local


and specify the

of your local font file. We recommend using variable fonts for the best performance and
app/layout.tsx (tsx)import localFont from 'next/font/local'
// Font files can be colocated inside of `app`
const myFont = localFont({
} display: 'swap',
src: './my-font.woff2',
)
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en" className={myFont.className}>
< <body>{children}</body>
}
)  /html>
src



















app/layout.js (jsx)import localFont from 'next/font/local'
// Font files can be colocated inside of `app`
const myFont = localFont({
} display: 'swap',
src: './my-font.woff2',
)
export default function RootLayout({ children }) {
return (
<html lang="en" className={myFont.className}>
< <body>{children}</body>
}
)  /html>














pages/_app.js (jsx)import localFont from 'next/font/local'
// Font files can be colocated inside of `pages`
const myFont = localFont({ src: './my-font.woff2' })
export default function MyApp({ Component, pageProps }) {
return (
<main className={myFont.className}>
< <Component {...pageProps} />
}
)  /main>










Ifyou want to use multiple files for a single font family, src can be an array:
const roboto = localFont({
src: [
{ path: './Roboto-Regular.woff2',
} style: 'normal',
weight: '400',
{ path: './Roboto-Italic.woff2',
,
weight: '400',
style: 'italic',


},
{ path: './Roboto-Bold.woff2',
} style: 'normal',
weight: '700',
{ path: './Roboto-BoldItalic.woff2',
,
} style: 'italic',
weight: '700',
})
], ,

View the Font API Reference for more information.
With Tailwind CSS
can be used with Tailwind CSS through a CSS variable.next/font
Inter
next/font/google


In the example below, we use the fontvariable


from

(you can use any font from Google or Local Fonts). Load your

font with the

option to define your CSS variable name and assign it to inter. Then, use

to add the CSS

variable to your HTML document.


app/layout.tsx (tsx)import { Inter, Roboto_Mono } from 'next/font/google'
const inter = Inter({
subsets: ['latin'],
} variable: '--font-inter',
display: 'swap',
)
const roboto_mono = Roboto_Mono({
subsets: ['latin'],
} variable: '--font-roboto-mono',
display: 'swap',
)
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
< <body>{children}</body>
}
)  /html>
inter.variable
























app/layout.js (jsx)import { Inter, Roboto_Mono } from 'next/font/google'
const inter = Inter({
subsets: ['latin'],
} variable: '--font-inter',
display: 'swap',
)
const roboto_mono = Roboto_Mono({
subsets: ['latin'],
} variable: '--font-roboto-mono',
display: 'swap',
)
export default function RootLayout({ children }) {
return (
<html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
< <body>{children}</body>
}
)  /html>


pages/_app.js (jsx)import { Inter } from 'next/font/google'
const inter = Inter({
} variable: '--font-inter',
subsets: ['latin'],
)
export default function MyApp({ Component, pageProps }) {
return (
<main className={`${inter.variable} font-sans`}>
< <Component {...pageProps} />
}
)  /main>














Finally, add the CSS variable to your Tailwind CSS config:


tailwind.config.js (js)/** @type {import('tailwindcss').Config} */
module.exports = {
content: [
'./pages/**/*.{js,ts,jsx,tsx}',
] './app/**/*.{js,ts,jsx,tsx}',
'./components/**/*.{js,ts,jsx,tsx}',
theme: {
,
extend: {
fontFamily: {
sans: ['var(--font-inter)'],
}, ,
} mono: ['var(--font-roboto-mono)'],
},
} plugins: [],

















You can now use thefont-sans

Preloading

and

utility classes to apply the font to your elements.

When a font function is called on a page of your site, it is not globally available and preloaded on all routes. Rather, the font is only preloaded on the related routes based on the type of file where it is used:font-mono

[image: ] If it’s a unique page, it is preloaded on the unique route for that page. [image: ] If it’s a layout, it is preloaded on all the routes wrapped by the layout. [image: ] If it’s the root layout, it is preloaded on all routes.
When a font function is called on a page of your site, it is not globally available and preloaded on all routes. Rather, the font is only preloaded on the related route/s based on the type of file where it is used:
[image: ] if it’s a unique page, it is preloaded on the unique route for that page/pages

[image: ] if it’s in the custom App, it is preloaded on all the routes of the site under
Reusing fonts
Every time you call the localFont or Google font function, that font is hosted as one instance in your application. Therefore, if you load the same font function in multiple files, multiple instances of the same font are hosted. In this situation, it is recommended to do the following:
[image: ] Call the font loader function in one shared file [image: ] Export it as a constant
[image: ] Import the constant in each file where you would like to use this font

3.1.6.3 - Script Optimization
Documentation path: /02-app/01-building-your-application/06-optimizing/03-scripts
Description: Optimize 3rd party scripts with the built-in Script component.
Related:
Title: API Reference
Related Description: Learn more about the next/script API.
Links:
[image: ] app/api-reference/components/script

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Layout Scripts

To load a third-party script for multiple routes, import

and include the script directly in your layout component:
app/dashboard/layout.tsx (tsx)import Script from 'next/script'
export default function DashboardLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<>
< <Script src="https://example.com/script.js" />
<section>{children}</section>
}
)  />
next/script














app/dashboard/layout.js (jsx)import Script from 'next/script'
export default function DashboardLayout({ children }) {
return (
<>
< <Script src="https://example.com/script.js" />
<section>{children}</section>
}
)  />








The third-party script is fetched when the folder route (e.g. dashboard/page.js) or any nested route (e.g. dashboard/settings/page.js) is accessed by the user. Next.js will ensure the script will only load once, even if a user navigates between multiple routes in the same layout.
Application Scriptsnext/script


To load a third-party script for all routes, import

and include the script directly in your root layout:


app/layout.tsx (tsx)import Script from 'next/script'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <Script src="https://example.com/script.js" />
<body>{children}</body>
}
)  /html>



app/layout.js (jsx)import Script from 'next/script'
export default function RootLayout({ children }) {
return (
<html lang="en">
< <Script src="https://example.com/script.js" />
<body>{children}</body>
}
)  /html>











To load a third-party script for all routes, import

and include the script directly in your custom _app:


[image: ]pages/_app.js (jsx)import Script from 'next/script'
export default function MyApp({ Component, pageProps }) {
return (
<>
< <Script src="https://example.com/script.js" />
<Component {...pageProps} />
}
)  />
next/script










This script will load and execute when any route in your application is accessed. Next.js will ensure the script will only load once, even if a user navigates between multiple pages.
Recommendation: We recommend only including third-party scripts in specific pages or layouts in order to minimize any unnecessary impact to performance.
Strategy
Although the default behavior of next/script allows you to load third-party scripts in any page or layout, you can fine-tune its loading behavior by using the strategy property:
[image: ] beforeInteractive: Load the script before any Next.js code and before any page hydration occurs.
[image: ] afterInteractive: (default) Load the script early but after some hydration on the page occurs.
[image: ] lazyOnload: Load the script later during browser idle time.
[image: ] worker: (experimental) Load the script in a web worker.
Refer to the	API reference documentation to learn more about each strategy and their use cases.next/script



Offloading Scripts To A Web Worker (Experimental)
Warning: The worker strategy is not yet stable and does not yet work with the


directory. Use with caution.app


Scripts that use the worker strategy are offloaded and executed in a web worker with Partytown. This can improve the performance of your site by dedicating the main thread to the rest of your application code.nextScriptWorkers


This strategy is still experimental and can only be used if the

flag is enabled in next.config.js:


next.config.js (js)module.exports = {
experimental: {
} ,
} nextScriptWorkers: true,







[image: ]Then, run next (normally finish the setup:

or yarn dev) and Next.js will guide you through the installation of the required packages to
Terminal (bash)npm run dev
npm run dev



You’ll see instructions like these: Please install Partytown by runningnpm install @builder.io/partytown


Once setup is complete, defining script to a web worker.

will automatically instantiate Partytown in your application and offload the
pages/home.tsx (tsx)strategy="worker"




import Script from 'next/script'
export default function Home() {
return (
<>
< <Script src="https://example.com/script.js" strategy="worker" />
}
)  />

pages/home.js (jsx)import Script from 'next/script'
export default function Home() {
return (
<>
< <Script src="https://example.com/script.js" strategy="worker" />
}
)  />








There are a number of trade-offs that need to be considered when loading a third-party script in a web worker. Please see Partytown’s tradeoffs documentation for more information.
Inline Scripts
Inline scripts, or scripts not loaded from an external file, are also supported by the Script component. They can be written by placing the JavaScript within curly braces:<Script id="show-banner">
< {`document.getElementById('banner').classList.remove('hidden')`}
/Script>
Or by using the dangerouslySetInnerHTML property:
<Script
id="show-banner"
dangerouslySetInnerHTML={{
/>
}} html: `document.getElementById('banner').classList.remove('hidden')`,


Warning: An	property must be assigned for inline scripts in order for Next.js to track and optimize the script.
Executing Additional Codeid

Event handlers can be used with the Script component to execute additional code after a certain event occurs:
[image: ] onLoad: Execute code after the script has finished loading.
[image: ] onReady: Execute code after the script has finished loading and every time the component is mounted.
[image: ] onError: Execute code if the script fails to load.next/script


These handlers will only work when as the first line of code:

is imported and used inside of a Client Component where

is defined
app/page.tsx (tsx)'use client'
import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onLoad={() => {
} console.log('Script has loaded')
}
/> }
) </>
"use client"


app/page.js (jsx)'use client'
import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onLoad={() => {
} console.log('Script has loaded')
}
/> }
) </>













Refer to the	API reference to learn more about each event handler and view examples.next/script
next/script


These handlers will only work when as the first line of code:

is imported and used inside of a Client Component where

is defined
pages/index.tsx (tsx)import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onLoad={() => {
} console.log('Script has loaded')
}
/> }
) </>
"use client"














pages/index.js (jsx)import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onLoad={() => {
} console.log('Script has loaded')
}
/> }
) </>











Refer to the	API reference to learn more about each event handler and view examples.next/script

Additional Attributes
There are many DOM attributes that can be assigned to a <script> element that are not used by the Script component, like nonce or<script>


custom data attributes. Including any additional attributes will automatically forward it to the final, optimized is included in the HTML.

element that
app/page.tsx (tsx)import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
nonce="XUENAJFW"
data-test="script"


< />
}
)  />

app/page.js (jsx)import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
</ >
/ data-test="script"
nonce="XUENAJFW"
)	>
}













pages/index.tsx (tsx)import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
</ >
/ data-test="script"
nonce="XUENAJFW"
)	>
}













pages/index.js (jsx)import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
id="example-script"
</ >
/ data-test="script"
nonce="XUENAJFW"
)	>
}


3.1.6.4 - Metadata
Documentation path: /02-app/01-building-your-application/06-optimizing/04-metadata
Description: Use the Metadata API to define metadata in any layout or page.
Related:
Title: Related
Related Description: View all the Metadata API options.
Links:
[image: ] app/api-reference/functions/generate-metadata [image: ] app/api-reference/file-conventions/metadata
[image: ] app/api-reference/functions/generate-viewportlink
head



Next.js has a Metadata API that can be used to define your application metadata (e.g. element) for improved SEO and web shareability.meta

There are two ways you can add metadata to your application:static metadata object
generateMetadata 


and

tags inside your HTML

Config-based Metadata: Export a file.layout.js
page.js


or a dynamic

function in a	or

File-based Metadata: Add static or dynamically generated special files to route segments.
With both these options, Next.js will automatically generate the relevant	elements for your pages. You can also create dynamic<head>
ImageResponse


OG images using the
Static Metadata
To define static metadata, export a

constructor.


object from aMetadata 





or staticlayout.js





file.page.js







layout.tsx | page.tsx (tsx)import type { Metadata } from 'next'
export const metadata: Metadata = {
} description: '...',
export default function Page() {}
title: '...',









layout.js | page.js (jsx)export const metadata = {
} description: '...',
export default function Page() {}
title: '...',






For all the available options, see the API Reference.
Dynamic MetadatagenerateMetadata
fetch


You can use

function to

metadata that requires dynamic values.


app/products/[id]/page.tsx (tsx)import type { Metadata, ResolvingMetadata } from 'next'
type Props = {
} searchParams: { [key: string]: string | string[] | undefined }
params: { id: string }
export async function generateMetadata(
) parent: ResolvingMetadata
{ params, searchParams }: Props,
: Promise<Metadata> {
// read route params
const id = params.id


// fetch data
const product = await fetch(`https://.../${id}`).then((res) => res.json())
// optionally access and extend (rather than replace) parent metadata
const previousImages = (await parent).openGraph?.images || []
return {
title: product.title,
openGraph: {
} images: ['/some-specific-page-image.jpg', ...previousImages],
}
} ,
export default function Page({ params, searchParams }: Props) {}

app/products/[id]/page.js (jsx)export async function generateMetadata({ params, searchParams }, parent) {
// read route params
const id = params.id
const product = await fetch(`https://.../${id}`).then((res) => res.json())
// fetch data
// optionally access and extend (rather than replace) parent metadata
const previousImages = (await parent).openGraph?.images || []
return {
title: product.title,
openGraph: {
} images: ['/some-specific-page-image.jpg', ...previousImages],
}
} ,
export default function Page({ params, searchParams }) {}















For all the available params, see the API Reference.
Good to know:
[image: ] Both static and dynamic metadata through generateMetadata are only supported in Server Components.
[image: ] fetch requests are automatically memoized for the same data across generateMetadata, generateStaticParams, Layouts, Pages, and Server Components. React cache can be used if fetch is unavailable.
[image: ] Next.js will wait for data fetching inside generateMetadata to complete before streaming UI to the client. This guarantees the first part of a streamed response includes <head> tags.
File-based metadata
These special files are available for metadata:
[image: ] favicon.ico, apple-icon.jpg, and icon.jpg
[image: ] opengraph-image.jpg and twitter-image.jpg [image: ] robots.txt
[image: ] sitemap.xml
You can use these for static metadata, or you can programmatically generate these files with code.
For implementation and examples, see the Metadata Files API Reference and Dynamic Image Generation.
Behavior
File-based metadata has the higher priority and will override any config-based metadata.
Default Fields
There are two default	tags that are always added even if a route doesn’t define metadata:meta

The meta charset tag sets the character encoding for the website.
The meta viewport tag sets the viewport width and scale for the website to adjust for different devices.

<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />



Good to know: You can overwrite the defaultviewport

Ordering

meta tag.

Metadata is evaluated in order, starting from the root segment down to the segment closest to the final example:page.js

1. app/layout.tsx (Root Layout)
2. app/blog/layout.tsx (Nested Blog Layout)
3. app/blog/[slug]/page.tsx (Blog Page)
Merging

segment. For

Following the evaluation order, Metadata objects exported from multiple segments in the same route are shallowly merged together to form the final metadata output of a route. Duplicate keys are replaced based on their ordering.openGraph
robots


This means metadata with nested fields such as last segment to define them.
Overwriting fields

and

that are defined in an earlier segment are overwritten by the

app/layout.js (jsx)export const metadata = {
title: 'Acme',
openGraph: {
title: 'Acme',
} ,
} description: 'Acme is a...',








app/blog/page.js (jsx)export const metadata = {
title: 'Blog',
openGraph: {
} ,
} title: 'Blog',
// Output:
// <title>Blog</title>
// <meta property="og:title" content="Blog" />











In the example above:
[image: ] title from app/layout.js is replaced by title in app/blog/page.js.
[image: ] All openGraph fields from app/layout.js are replaced in app/blog/page.js because metadata. Note the absence of openGraph.description.



sets

If you’d like to share some nested fields between segments while overwriting others, you can pull them out into a separate variable:app/blog/page.js
openGraph

app/shared-metadata.js (jsx)export const openGraphImage = { images: ['http://...'] }



app/page.js (jsx)import { openGraphImage } from './shared-metadata'
export const metadata = {
openGraph: {
...openGraphImage,
} ,
} title: 'Home',








app/about/page.js (jsx)import { openGraphImage } from '../shared-metadata' export const metadata = {


openGraph: {
...openGraphImage,
} ,
} title: 'About',


In the example above, the OG image is shared betweenapp/layout.js

Inheriting fields

and

while the titles are different.

app/layout.js (jsx)export const metadata = {
title: 'Acme',
openGraph: {
title: 'Acme',
} ,
} description: 'Acme is a...',
app/about/page.js








app/about/page.js (jsx)export const metadata = {
} title: 'About',
// Output:
// <title>About</title>
// <meta property="og:title" content="Acme" />
// <meta property="og:description" content="Acme is a..." />









Notesapp/about/page.js





in app/about/page.js.title from app/layout.js is replaced by All openGraph fields from app/layout.js openGraph metadata.
title

are inherited in app/about/page.js because



doesn’t set


Dynamic Image Generation
The	constructor allows you to generate dynamic images using JSX and CSS. This is useful for creating social mediaImageResponse

images such as Open Graph images, Twitter cards, and more.ImageResponse

uses the Edge Runtime, and Next.js automatically adds the correct headers to cached images at the edge, helping improve performance and reducing recomputation.ImageResponse


To use it, you can import

from next/og:


app/about/route.js (jsx)import { ImageResponse } from 'next/og'
export const runtime = 'edge'
export async function GET() {
return new ImageResponse(
( <div
style={{
fontSize: 128,
background: 'white',
width: '100%',
height: '100%',
display: 'flex',
textAlign: 'center',
> }
} justifyContent: 'center',
alignItems: 'center',
), /div>
< Hello world!
)
{ width: 1200,
} height: 600,


}

ImageResponse integrates well with other Next.js APIs, including Route Handlers and file-based Metadata. For example, you can useopengraph-image.tsx

ImageResponse in a	file to generate Open Graph images at build time or dynamically at request time.
ImageResponse supports common CSS properties including flexbox and absolute positioning, custom fonts, text wrapping, centering, and nested images. See the full list of supported CSS properties.
Good to know:
[image: ] Examples are available in the Vercel OG Playground.
[image: ] ImageResponse uses @vercel/og, Satori, and Resvg to convert HTML and CSS into PNG.
[image: ] Only the Edge Runtime is supported. The default Node.js runtime will not work.
[image: ] Only flexbox and a subset of CSS properties are supported. Advanced layouts (e.g. display: grid) will not work.
[image: ] Maximum bundle size of 500KB. The bundle size includes your JSX, CSS, fonts, images, and any other assets. If you exceed the limit, consider reducing the size of any assets or fetching at runtime.woff
ttf
otf


[image: ][image: ] Only ttf, otf, and
woff.
JSON-LD

font formats are supported. To maximize the font parsing speed,

or

are preferred over

JSON-LD is a format for structured data that can be used by search engines to understand your content. For example, you can use it to describe a person, an event, an organization, a movie, a book, a recipe, and many other types of entities.<script>
layout.js
page.js


Our current recommendation for JSON-LD is to render structured data as a For example:

tag in your

or

components.

app/products/[id]/page.tsx (tsx)export default async function Page({ params }) {
const product = await getProduct(params.id)
const jsonLd = {
'@context': 'https://schema.org',
'@type': 'Product',
name: product.name,
} description: product.description,
image: product.image,
return (
<section>
{/* Add JSON-LD to your page */}
<script
type="application/ld+json"
< {/* ... */}
/ dangerouslySetInnerHTML={{   html: JSON.stringify(jsonLd) }}
>
/section>
} )




















app/products/[id]/page.js (jsx)export default async function Page({ params }) {
const product = await getProduct(params.id)
const jsonLd = {
'@context': 'https://schema.org',
'@type': 'Product',
name: product.name,
} description: product.description,
image: product.image,
return (
<section>
{/* Add JSON-LD to your page */}
<script
type="application/ld+json"
< {/* ... */}
/ dangerouslySetInnerHTML={{   html: JSON.stringify(jsonLd) }}
>
/section>


} )

You can validate and test your structured data with the Rich Results Test for Google or the generic Schema Markup Validator.You can type your JSON-LD with TypeScript using community packages like schema-dts: import { Product, WithContext } from 'schema-dts'
const jsonLd: WithContext<Product> = {
'@context': 'https://schema.org',
'@type': 'Product',
name: 'Next.js Sticker',
} description: 'Dynamic at the speed of static.',
image: 'https://nextjs.org/imgs/sticker.png',


3.1.6.5 - Static Assets
Documentation path: /02-app/01-building-your-application/06-optimizing/05-static-assets
Description: Next.js allows you to serve static files, like images, in the public directory. You can learn how it works here.
{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}public
public


Next.js can serve static files, like images, under a folder called by your code starting from the base URL (/).me.png


in the root directory. Files inside

can then be referenced

For example, if you add

inside public, the following code will access the image:


Avatar.js (jsx)import Image from 'next/image'
} return <Image src="/me.png" alt="me" width="64" height="64" />
export function Avatar() {






This folder is also useful for robots.txt, favicon.ico, Google Site Verification, and any other static files (including .html). But makepages/

sure to not have a static file with the same name as a file in the	directory, as this will result in an error. Read more.
For static metadata files, such as robots.txt, favicon.ico, etc, you should use special metadata files inside the	folder.app

Good to know:
The directory must be named public. The name cannot be changed and it’s the only directory used to serve static assets. Only assets that are in the public directory at build time will be served by Next.js. Files added at request time won’t be available. We recommend using a third-party service like AWS S3 for persistent file storage.

3.1.6.6 - Lazy Loading
Documentation path: /02-app/01-building-your-application/06-optimizing/06-lazy-loading
Description: Lazy load imported libraries and React Components to improve your application's loading performance.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Lazy loading in Next.js helps improve the initial loading performance of an application by decreasing the amount of JavaScript needed to render a route.
It allows you to defer loading of Client Components and imported libraries, and only include them in the client bundle when they’re needed. For example, you might want to defer loading a modal until a user clicks to open it.
There are two ways you can implement lazy loading in Next.js:
1. Using Dynamic Imports with next/dynamicReact.lazy()

2. Using	with Suspense
By default, Server Components are automatically code split, and you can use streaming to progressively send pieces of UI from the server to the client. Lazy loading applies to Client Components.app

next/dynamic



next/dynamic is a composite of incremental migration.React.lazy()

Examples
Importing Client Components

and Suspense. It behaves the same way in the

and

directories to allow for





app/page.js (jsx)'use client'
import { useState } from 'react'
import dynamic from 'next/dynamic'
// Client Components:
const  ComponentA  =  dynamic(()  =>  import('../components/A'))
const  ComponentB  =  dynamic(()  =>  import('../components/B'))
const ComponentC = dynamic(() => import('../components/C'), { ssr: false })
export default function ClientComponentExample() {
const [showMore, setShowMore] = useState(false)
return (
<div>
{/* Load immediately, but in a separate client bundle */}
<ComponentA />
{/* Load on demand, only when/if the condition is met */}
{showMore && <ComponentB />}
<button onClick={() => setShowMore(!showMore)}>Toggle</button>
< <ComponentC />
{/* Load only on the client side */}
}
)  /div>
pages


























Skipping SSR
When using Ifyou want to disable pre-rendering for a Client Component, you can use the ssr option set to false: const ComponentC = dynamic(() => import('../components/C'), { ssr: false })
React.lazy()



and Suspense, Client Components will be pre-rendered (SSR) by default.


Importing Server Components

If you dynamically import a Server Component, only the Client Components that are children of the Server Component will be lazy- loaded - not the Server Component itself.
app/page.js (jsx)import dynamic from 'next/dynamic'
const ServerComponent = dynamic(() => import('../components/ServerComponent'))
// Server Component:
export default function ServerComponentExample() {
return (
<div>
< <ServerComponent />
}
)  /div>












Loading External Libraries
External libraries can be loaded on demand using the


function. This example uses the external libraryimport()



for fuzzyfuse.js


search. The module is only loaded on the client after the user types in the search input.


app/page.js (jsx)'use client'
import { useState } from 'react'
const names = ['Tim', 'Joe', 'Bel', 'Lee']
export default function Page() {
const [results, setResults] = useState()
return (
<div>
<input
type="text"
placeholder="Search"
onChange={async (e) => {
const { value } = e.currentTarget
// Dynamically load fuse.js
const  Fuse  =  (await  import('fuse.js')).default
const fuse = new Fuse(names)
< <pre>Results: {JSON.stringify(results, null, 2)}</pre>
/> }
} setResults(fuse.search(value))


}
)  /div>



















Adding a custom loading component
app/page.js (jsx)import dynamic from 'next/dynamic'
const WithCustomLoading = dynamic(
{ loading: () => <p>Loading...</p>,
) }
() => import('../components/WithCustomLoading'),
export default function Page() {
return (
<div>
< <WithCustomLoading />
{/* The loading component will be rendered while <WithCustomLoading/> is loading */}
}
)  /div>












Importing Named Exports

To dynamically import a named export, you can return it from the Promise returned by

function:


components/hello.js (jsx)'use client'
export function Hello() {
} return <p>Hello!</p>
import()







app/page.js (jsx)import dynamic from 'next/dynamic'
const ClientComponent = dynamic(() =>
) import('../components/hello').then((mod) => mod.Hello)





By using next/dynamic, the header component will not be included in the page’s initial JavaScript bundle. The page will render the Suspense fallback first, followed by the Header component when the Suspense boundary is resolved.
import dynamic from 'next/dynamic'
const DynamicHeader = dynamic(() => import('../components/header'), {
} loading: () => <p>Loading...</p>,
)
export default function Home() {
} return <DynamicHeader />

Good to know: In import('path/to/component'), the path must be explicitly written. It can’t be a template string nor a variable. Furthermore the import() has to be inside the dynamic() call for Next.js to be able to match webpack bundles / module ids to the specific dynamic() call and preload them before rendering. dynamic() can’t be used inside of React rendering as it needs to be marked in the top level of the module for preloading to work, similar to React.lazy.
With named exports
To dynamically import a named export, you can return it from the Promise returned by import():
components/hello.js (jsx)export function Hello() {
} return <p>Hello!</p>
// pages/index.js
import dynamic from 'next/dynamic'
const DynamicComponent = dynamic(() =>
) import('../components/hello').then((mod) => mod.Hello)











With no SSR
To dynamically load a component on the client side, you can use thedependency or component relies on browser APIs like window. import dynamic from 'next/dynamic'
const DynamicHeader = dynamic(() => import('../components/header'), {
} ssr: false,
)




option to disable server-rendering. This is useful if an externalssr









With external libraries
This example uses the external library search input.fuse.js




for fuzzy search. The module is only loaded in the browser after the user types in the


import { useState } from 'react'
const names = ['Tim', 'Joe', 'Bel', 'Lee']


export default function Page() {
const [results, setResults] = useState()
return (
<div>
<input
type="text"
placeholder="Search"
onChange={async (e) => {
const { value } = e.currentTarget
// Dynamically load fuse.js
const Fuse = (await import('fuse.js')).default
const fuse = new Fuse(names)
< <pre>Results: {JSON.stringify(results, null, 2)}</pre>
/> }
} setResults(fuse.search(value))


}
)  /div>


3.1.6.7 - Analytics
Documentation path: /02-app/01-building-your-application/06-optimizing/07-analytics
Description: Measure and track page performance using Next.js Speed Insights

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js has built-in support for measuring and reporting performance metrics. You can either use the useReportWebVitals hook to manage reporting yourself, or alternatively, Vercel provides a managed service to automatically collect and visualize metrics for you.
Build Your Own
pages/_app.js (jsx)import { useReportWebVitals } from 'next/web-vitals'
function MyApp({ Component, pageProps }) {
useReportWebVitals((metric) => {
} console.log(metric)
)
} return <Component {...pageProps} />










View the API Reference for more information.


app/_components/web-vitals.js (jsx)'use client'
import { useReportWebVitals } from 'next/web-vitals'
export function WebVitals() {
useReportWebVitals((metric) => {
}  )
} console.log(metric)










app/layout.js (jsx)import { WebVitals } from './_components/web-vitals'
export default function Layout({ children }) {
return (
<html>
<body>
<WebVitals />
</ /body>
< {children}
html>
} )










Since the useReportWebVitals hook requires the "use client" directive, the most performant approach is to create aWebVitals


separate component that the root layout imports. This confines the client boundary exclusively to the View the API Reference for more information.
Web Vitals

component.

Web Vitals are a set of useful metrics that aim to capture the user experience of a web page. The following web vitals are all included: [image: ] Time to First Byte (TTFB)
[image: ] First Contentful Paint (FCP)
[image: ] Largest Contentful Paint (LCP) [image: ] First Input Delay (FID)
[image: ] Cumulative Layout Shift (CLS) [image: ] Interaction to Next Paint (INP)
You can handle all the results of these metrics using the	property.name


pages/_app.js (jsx)import { useReportWebVitals } from 'next/web-vitals'
function MyApp({ Component, pageProps }) {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP': {
} // handle FCP results
case 'LCP': {
} // handle LCP results
})
} // ...
} return <Component {...pageProps} />
















app/components/web-vitals.tsx (tsx)'use client'
import { useReportWebVitals } from 'next/web-vitals'
export function WebVitals() {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP': {
} // handle FCP results
case 'LCP': {
} // ...
} })
} // handle LCP results
















app/components/web-vitals.js (jsx)'use client'
import { useReportWebVitals } from 'next/web-vitals'
export function WebVitals() {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP': {
} // handle FCP results
case 'LCP': {
} // ...
} })
} // handle LCP results










Custom Metrics
In addition to the core metrics listed above, there are some additional custom metrics that measure the time it takes for the page to hydrate and render:
[image: ] Next.js-hydration: Length of time it takes for the page to start and finish hydrating (in ms)
[image: ] Next.js-route-change-to-render: Length of time it takes for a page to start rendering after a route change (in ms)
[image: ] Next.js-render: Length of time it takes for a page to finish render after a route change (in ms)
You can handle all the results of these metrics separately:export function reportWebVitals(metric) {
switch (metric.name) {
case 'Next.js-hydration':
// handle hydration results
break


case 'Next.js-route-change-to-render':
c break xt.js-render':
// handle route-change to render results
ase 'Ne
d break
// handle render results
efault:
break
} }

These metrics work in all browsers that support the User Timing API.
Sending results to external systems
You can send results to any endpoint to measure and track real user performance on your site. For example:useReportWebVitals((metric) => {
const  body  =  JSON.stringify(metric)
const url = 'https://example.com/analytics'
// Use `navigator.sendBeacon()` if available, falling back to `fetch()`.
if (navigator.sendBeacon) {
} navigator.sendBeacon(url, body)
else {
})
} fetch(url, { body, method: 'POST', keepalive: true })



Good to know: If you use Google Analytics, using the calculate percentiles, etc.)id


value can allow you to construct metric distributions manually (to

js useReportWebVitals(metric => { // Use `window.gtag` if you initialized Google Analytics as this
unique to current page load non_interaction: true, // avoids affecting bounce rate. }); }
example: // https://github.com/vercel/next.js/blob/canary/examples/with-google-
analytics/pages/_app.js window.gtag('event', metric.name, { value: Math.round(metric.name === 'CLS'
? metric.value * 1000 : metric.value), // values must be integers event_label: metric.id, // id

Read more about sending results to Google Analytics.

3.1.6.8 - OpenTelemetry
Documentation path: /02-app/01-building-your-application/06-optimizing/08-open-telemetry
Description: Learn how to instrument your Next.js app with OpenTelemetry.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Good to know: This feature is experimental, you need to explicitly opt-in by providingexperimental.instrumentationHook = true;

in your next.config.js.
Observability is crucial for understanding and optimizing the behavior and performance of your Next.js app.
As applications become more complex, it becomes increasingly difficult to identify and diagnose issues that may arise. By leveraging observability tools, such as logging and metrics, developers can gain insights into their application’s behavior and identify areas for optimization. With observability, developers can proactively address issues before they become major problems and provide a better user experience. Therefore, it is highly recommended to use observability in your Next.js applications to improve performance, optimize resources, and enhance user experience.
We recommend using OpenTelemetry for instrumenting your apps. It’s a platform-agnostic way to instrument apps that allows you to change your observability provider without changing your code. Read Official OpenTelemetry docs for more information about OpenTelemetry and how it works.
This documentation uses terms like Span, Trace or Exporter throughout this doc, all of which can be found in the OpenTelemetry Observability Primer.
Next.js supports OpenTelemetry instrumentation out of the box, which means that we already instrumented Next.js itself. When yougetStaticProps

enable OpenTelemetry we will automatically wrap all your code like	in spans with helpful attributes.
Good to know: We currently support OpenTelemetry bindings only in serverless functions. We don’t provide any for	or client side code.edge

Getting Started
OpenTelemetry is extensible but setting it up properly can be quite verbose. That’s why we prepared a package @vercel/otel that helps you get started quickly. It’s not extensible and you should configure OpenTelemetry manually if you need to customize your setup.
Using@vercel/otel

To get started, you must install @vercel/otel:
Terminal (bash)npm install @vercel/otel



Next, create a custom Next, create a custominstrumentation.ts instrumentation.ts


(or .js) file in the root directory of the project (or inside (or .js) file in the root directory of the project (or inside

folder if using one): folder if using one):
your-project/instrumentation.ts  (ts)import { registerOTel } from '@vercel/otel'
export function register() {
} registerOTel('next-app')
src src







your-project/instrumentation.js  (js)import { registerOTel } from '@vercel/otel'
export function register() {
} registerOTel('next-app')







Good to know
[image: ][image: ][image: ] The instrumentation file should be in the root of your project and not inside the the src folder, then place the file inside src alongside pages and app.


orapp



directory. If you’re usingpages
instrumentation


If you use the pageExtensions config option to add a suffix, you will also need to update the to match.

filename

[image: ] We have created a basic with-opentelemetry example that you can use.
Good to know
[image: ] The instrumentation file should be in the root of your project and not inside thesrc
pages





orapp





directory. If you’re usingpages


[image: ]the src folder, then place the file inside	alongside	and app.instrumentation


[image: ] If you use the pageExtensions config option to add a suffix, you will also need to update the to match.
[image: ] We have created a basic with-opentelemetry example that you can use.
Manual OpenTelemetry configuration

filename

If our wrapper	doesn’t suit your needs, you can configure OpenTelemetry manually.@vercel/otel


Firstly you need to install OpenTelemetry packages:


Terminal (bash)npm install @opentelemetry/sdk-node @opentelemetry/resources @opentelemetry/semantic-conventions @opentel



Now you can initialize	in your instrumentation.ts. OpenTelemetry APIs are not compatible with edge runtime, so youNodeSDK

need to make sure that you are importing them only when process.env.NEXT_RUNTIME === 'nodejs'. We recommend creating ainstrumentation.node.ts


new file

which you conditionally import only when using node:


instrumentation.ts (ts)export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
}
}  await  import('./instrumentation.node.ts')







instrumentation.js (js)export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
}
}  await  import('./instrumentation.node.js')






instrumentation.node.ts (ts)import { NodeSDK } from '@opentelemetry/sdk-node'
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http'
import { Resource } from '@opentelemetry/resources'
import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions'
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-node'
const sdk = new NodeSDK({
resource: new Resource({
} spanProcessor: new SimpleSpanProcessor(new OTLPTraceExporter()),
} [SemanticResourceAttributes.SERVICE_NAME]: 'next-app',
),
sdk.start()
)













instrumentation.node.js (js)import { NodeSDK } from '@opentelemetry/sdk-node'
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http'
import { Resource } from '@opentelemetry/resources'
import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions'
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-node'
const sdk = new NodeSDK({
resource: new Resource({
} spanProcessor: new SimpleSpanProcessor(new OTLPTraceExporter()),
} [SemanticResourceAttributes.SERVICE_NAME]: 'next-app',
),
sdk.start()
)










Doing this is equivalent to using @vercel/otel, but it’s possible to modify and extend. For example, you could use@opentelemetry/exporter-trace-otlp-http


@opentelemetry/exporter-trace-otlp-grpc instead of resource attributes.

or you can specify more

Testing your instrumentation
You need an OpenTelemetry collector with a compatible backend to test OpenTelemetry traces locally. We recommend using our OpenTelemetry dev environment.
If everything works well you should be able to see the root server span labeled as GET /requested/pathname. All other spans from that particular trace will be nested under it.
Next.js traces more spans than are emitted by default. To see more spans, you must set NEXT_OTEL_VERBOSE=1.
Deployment
Using OpenTelemetry Collector
When you are deploying with OpenTelemetry Collector, you can use @vercel/otel. It will work both on Vercel and when self-hosted.
Deploying on Vercel
We made sure that OpenTelemetry works out of the box on Vercel.
Follow Vercel documentation to connect your project to an observability provider.
Self-hosting
Deploying to other platforms is also straightforward. You will need to spin up your own OpenTelemetry Collector to receive and process the telemetry data from your Next.js app.
To do this, follow the OpenTelemetry Collector Getting Started guide, which will walk you through setting up the collector and configuring it to receive data from your Next.js app.
Once you have your collector up and running, you can deploy your Next.js app to your chosen platform following their respective deployment guides.
Custom Exporters
We recommend using OpenTelemetry Collector. If that is not possible on your platform, you can use a custom OpenTelemetry exporter with manual OpenTelemetry configuration
Custom Spans
You can add a custom span with OpenTelemetry APIs.
Terminal (bash)npm install @opentelemetry/api



The following example demonstrates a function that fetches GitHub stars and adds a custom fetch request’s result:fetchGithubStars


span to track the


import { trace } from '@opentelemetry/api'
export async function fetchGithubStars() {
return await trace
.getTracer('nextjs-example')
.startActiveSpan('fetchGithubStars', async (span) => {
try {
} return await getValue()
} span.end()
finally {
}	})

The register function will execute before your code runs in a new environment. You can start creating new spans, and they should be correctly added to the exported trace.
Default Spans in Next.js
Next.js automatically instruments several spans for you to provide useful insights into your application’s performance.next

Attributes on spans follow OpenTelemetry semantic conventions. We also add some custom attributes under the	namespace:
- duplicates span namenext.span_name


next.span_type - each span type has a unique identifier next.route - The route pattern of the request (e.g., /[param]/user). next.page
This is an internal value used by an app router.
You can think about it as a route to a special file (like page.ts, layout.ts, loading.ts and others)
It can be used as a unique identifier only when paired with next.route because /layout can be used to identify both and /(groupB)/layout.ts/(groupA)/layout.ts

[http.method] [next.route]

[image: ] next.span_type:
This span represents the root span for each incoming request to your Next.js application. It tracks the HTTP method, route, target, and status code of the request.BaseServer.handleRequest

Attributes:
[image: ] Common HTTP attributeshttp.method http.status_code
http.route http.target next.span_name next.span_type next.route



Server HTTP attributes





render route (app) [next.route]

[image: ] next.span_type: AppRender.getBodyResult.
This span represents the process of rendering a route in the app router. Attributes:



fetch  [http.method]  [http.url]

[image: ] next.span_type:
This span represents the fetch request executed in your code. Attributes:next.span_name next.span_type next.route
AppRender.fetch

[image: ] Common HTTP attributeshttp.method

[image: ] Client HTTP attributes
[image: ] http.url
[image: ] net.peer.name
[image: ] net.peer.port (only if specified)
[image: ] next.span_name [image: ] next.span_type
executing api route (app) [next.route]

[image: ] next.span_type: AppRouteRouteHandlers.runHandler.
This span represents the execution of an API route handler in the app router. Attributes:
next.span_name next.span_type next.route


getServerSideProps   [next.route]


[image: ] next.span_type: Render.getServerSideProps.
This span represents the execution of Attributes:getServerSideProps



for a specific route.


next.span_name next.span_type next.route


getStaticProps  [next.route]


[image: ] next.span_type: Render.getStaticProps.
This span represents the execution of Attributes:getStaticProps



for a specific route.





render route (pages) [next.route]

[image: ] next.span_type: Render.renderDocument.next.span_name next.span_type next.route

This span represents the process of rendering the document for a specific route. Attributes:



generateMetadata [next.page]

[image: ] next.span_type: ResolveMetadata.generateMetadata.
This span represents the process of generating metadata for a specific page (a single route can have multiple of these spans). Attributes:next.span_name next.span_type next.route

next.span_name next.span_type next.page


3.1.6.9 - Instrumentation
Documentation path: /02-app/01-building-your-application/06-optimizing/09-instrumentation
Description: Learn how to use instrumentation to run code at server startup in your Next.js app

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
[image: ]If you export a function named register from a instrumentation.ts (or .js) file in the root directory of your project (or insidesrc


the

folder if using one), we will call that function whenever a new Next.js server instance is bootstrapped.
Good to know
[image: ] This feature is experimental. To use it, you must explicitly opt in by definingexperimental.instrumentationHook =

true; in your next.config.js.

[image: ][image: ]The instrumentation file should be in the root of your project and not inside the the src folder, then place the file inside src alongside pages and app.app
pages
instrumentation


or

directory. If you’re using

[image: ] If you use the pageExtensions config option to add a suffix, you will also need to update the to match.
[image: ] We have created a basic with-opentelemetry example that you can use.
Good to know
[image: ] This feature is experimental. To use it, you must explicitly opt in by definingexperimental.instrumentationHook =

true; in your next.config.js.

filename

[image: ][image: ]The instrumentation file should be in the root of your project and not inside the the src folder, then place the file inside src alongside pages and app.app
pages


or

directory. If you’re using

If you use the pageExtensions config option to add a suffix, you will also need to update the to match.
We have created a basic with-opentelemetry example that you can use.

filename

When your	function is deployed, it will be called on each cold boot (but exactly once in each environment).instrumentation
register

Sometimes, it may be useful to import a file in your code because of the side effects it will cause. For example, you might import a file that defines a set of global variables, but never explicitly use the imported file in your code. You would still have access to the global variables the package has declared.register

You can import files with side effects in instrumentation.ts, which you might want to use in your	function as demonstrated in the following example:
your-project/instrumentation.ts  (ts)import { init } from 'package-init'
export function register() {
} init()






your-project/instrumentation.js  (js)import { init } from 'package-init'
export function register() {
} init()





However, we recommend importing files with side effects using import from within your	function instead. The followingregister
import
register


example demonstrates a basic usage of

in a

function:


your-project/instrumentation.ts  (ts)export async function register() {
} await import('package-with-side-effect')





your-project/instrumentation.js  (js)export async function register() {
} await import('package-with-side-effect')




By doing this, you can colocate all of your side effects in one place in your code, and avoid any unintended consequences from

importing files.
[image: ]We call register in all environments, so it’s necessary to conditionally import any code that doesn’t support both edge and nodejs.NEXT_RUNTIME


You can use the environment variable look like this:

to get the current environment. Importing an environment-specific code would
your-project/instrumentation.ts  (ts)export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
} await import('./instrumentation-node')
if (process.env.NEXT_RUNTIME === 'edge') {
}
} await import('./instrumentation-edge')










your-project/instrumentation.js  (js)export async function register() {
if (process.env.NEXT_RUNTIME === 'nodejs') {
} await import('./instrumentation-node')
if (process.env.NEXT_RUNTIME === 'edge') {
}
} await import('./instrumentation-edge')


3.1.6.10 - Third Party Libraries
Documentation path: /02-app/01-building-your-application/06-optimizing/10-third-party-libraries
Description: Optimize the performance of third-party libraries in your application with the `@next/third-parties` package.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
@next/third-parties is a library that provides a collection of components and utilities that improve the performance and developer experience of loading popular third-party libraries in your Next.js application.
Good to know: @next/third-parties is a new experimental library that is still under active development. We’re currently working on adding more third-party integrations.

All third-party integrations provided by
Getting Started
To get started, you must install the@next/third-parties


have been optimized for performance and ease of use.


library:@next/third-parties








Terminal (bash)npm install @next/third-parties



Google Third-Parties
All supported third-party libraries from Google can be imported from @next/third-parties/google.
Google Tag Manager
The GoogleTagManager component can be used to instantiate a Google Tag Manager container to your page. By default, it fetches the original inline script after hydration occurs on the page.
To load Google Tag Manager for all routes, include the component directly in your root layout:
app/layout.tsx (tsx)import { GoogleTagManager } from '@next/third-parties/google'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <GoogleTagManager gtmId="GTM-XYZ" />
<body>{children}</body>
}
)  /html>













app/layout.js (jsx)import { GoogleTagManager } from '@next/third-parties/google'
export default function RootLayout({ children }) {
return (
<html lang="en">
< <GoogleTagManager gtmId="GTM-XYZ" />
<body>{children}</body>
}
)  /html>











[image: ]To load Google Tag Manager for all routes, include the component directly in your custom _app:


pages/_app.js (jsx)import { GoogleTagManager } from '@next/third-parties/google'
export default function MyApp({ Component, pageProps }) {
return (
<>


< <GoogleTagManager gtmId="GTM-XYZ" />
<Component {...pageProps} />
}
)  />


To load Google Tag Manager for a single route, include the component in your page file:


app/page.js (jsx)import { GoogleTagManager } from '@next/third-parties/google'
export default function Page() {
} return <GoogleTagManager gtmId="GTM-XYZ" />







pages/index.js (jsx)import { GoogleTagManager } from '@next/third-parties/google'
export default function Page() {
} return <GoogleTagManager gtmId="GTM-XYZ" />





Sending Events
The sendGTMEvent function can be used to track user interactions on your page by sending events using the dataLayer object. For<GoogleTagManager />


this function to work, the directly in the same file.

component must be included in either a parent layout, page, or component, or
app/page.js (jsx)'use client'
import { sendGTMEvent } from '@next/third-parties/google'
export function EventButton() {
return (
<div>
<button
· onClick={() => sendGTMEvent({ event: 'buttonClicked', value: 'xyz' })}
</ /button>
< Send Event
div>
} )















pages/index.js (jsx)import { sendGTMEvent } from '@next/third-parties/google'
export function EventButton() {
return (
<div>
<button
· onClick={() => sendGTMEvent({ event: 'buttonClicked', value: 'xyz' })}
</ /button>
< Send Event
div>
} )











Refer to the Tag Manager developer documentation to learn about the different variables and events that can be passed into the function.
Options
Options to pass to the Google Tag Manager. For a full list of options, read the Google Tag Manager docs.

	Name
	Type
	Description

	gtmId
	Required
	Your GTM container id.

	dataLayer
	Optional
	Data layer array to instantiate the container with. Defaults to an empty array.




	Name
	Type
	Description

	dataLayerName
	Optional
	Name of the data layer. Defaults to dataLayer.

	auth
	Optional
	Value of authentication parameter (gtm_auth) for environment snippets.

	preview
	Optional
	Value of preview parameter (gtm_preview) for environment snippets.


Google Analytics
The GoogleAnalytics component can be used to include Google Analytics 4 to your page via the Google tag (gtag.js). By default, it fetches the original scripts after hydration occurs on the page.
Recommendation: If Google Tag Manager is already included in your application, you can configure Google Analytics directly using it, rather than including Google Analytics as a separate component. Refer to the documentation to learn more about the differences between Tag Manager and gtag.js.
To load Google Analytics for all routes, include the component directly in your root layout:
app/layout.tsx (tsx)import { GoogleAnalytics } from '@next/third-parties/google'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <GoogleAnalytics gaId="GA-XYZ" />
<body>{children}</body>
}
)  /html>













app/layout.js (jsx)import { GoogleAnalytics } from '@next/third-parties/google'
export default function RootLayout({ children }) {
return (
<html lang="en">
< <GoogleAnalytics gaId="GA-XYZ" />
<body>{children}</body>
}
)  /html>











[image: ]To load Google Analytics for all routes, include the component directly in your custom _app:


pages/_app.js (jsx)import { GoogleAnalytics } from '@next/third-parties/google'
export default function MyApp({ Component, pageProps }) {
return (
<>
< <GoogleAnalytics gaId="GA-XYZ" />
<Component {...pageProps} />
}
)  />












To load Google Analytics for a single route, include the component in your page file:


app/page.js (jsx)import { GoogleAnalytics } from '@next/third-parties/google'
export default function Page() {
} return <GoogleAnalytics gaId="GA-XYZ" />







pages/index.js (jsx)import { GoogleAnalytics } from '@next/third-parties/google'


export default function Page() {
} return <GoogleAnalytics gaId="GA-XYZ" />

Sending Events
The sendGAEvent function can be used to measure user interactions on your page by sending events using the dataLayer object. For<GoogleAnalytics />


this function to work, the directly in the same file.

component must be included in either a parent layout, page, or component, or
app/page.js (jsx)'use client'
import { sendGAEvent } from '@next/third-parties/google'
export function EventButton() {
return (
<div>
<button
· onClick={() => sendGAEvent({ event: 'buttonClicked', value: 'xyz' })}
</ /button>
< Send Event
div>
} )















pages/index.js (jsx)import { sendGAEvent } from '@next/third-parties/google'
export function EventButton() {
return (
<div>
<button
· onClick={() => sendGAEvent({ event: 'buttonClicked', value: 'xyz' })}
</ /button>
< Send Event
div>
} )











Refer to the Google Analytics developer documentation to learn more about event parameters.
Options
Options to pass to the	component.<GoogleAnalytics>


	Name
	Type
	Description

	gaId
	Required
	Your Google tag id.

	dataLayerName
	Optional
	Name of the data layer. Defaults to dataLayer.




Google Maps Embed
The GoogleMapsEmbed component can be used to add a Google Maps Embed to your page. By default, it uses the lazy-load the embed below the fold.


attribute to
app/page.js (jsx)import { GoogleMapsEmbed } from '@next/third-parties/google'
export default function Page() {
return (
<GoogleMapsEmbed
apiKey="XYZ"
height={200}
width="100%"
/ q="Brooklyn+Bridge,New+York,NY"
mode="place"
>
loading


} )

pages/index.js (jsx)import { GoogleMapsEmbed } from '@next/third-parties/google'
export default function Page() {
return (
<GoogleMapsEmbed
apiKey="XYZ"
height={200}
width="100%"
/ q="Brooklyn+Bridge,New+York,NY"
mode="place"
}
)  >











Options
Options to pass to the Google Maps Embed. For a full list of options, read the Google Map Embed docs.

	Name
	Type
	Description

	apiKey
	Required
	Your api key.

	mode
	Required
	Map mode

	height
	Optional
	Height of the embed. Defaults to auto.

	width
	Optional
	Width of the embed. Defaults to auto.

	style
	Optional
	Pass styles to the iframe.

	allowfullscreen
	Optional
	Property to allow certain map parts to go full screen.

	loading
	Optional
	Defaults to lazy. Consider changing if you know your embed will be above the fold.

	q
	Optional
	Defines map marker location. This may be required depending on the map mode.

	center
	Optional
	Defines the center of the map view.

	zoom
	Optional
	Sets initial zoom level of the map.

	maptype
	Optional
	Defines type of map tiles to load.

	language
	Optional
	Defines the language to use for UI elements and for the display of labels on map tiles.

	region
	Optional
	Defines the appropriate borders and labels to display, based on geo-political sensitivities.


YouTube Embed
The YouTubeEmbed component can be used to load and display a YouTube embed. This component loads faster by usinglite-

youtube-embed under the hood.
app/page.js (jsx)import { YouTubeEmbed } from '@next/third-parties/google'
} return <YouTubeEmbed videoid="ogfYd705cRs" height={400} params="controls=0" />
export default function Page() {






pages/index.js (jsx)import { YouTubeEmbed } from '@next/third-parties/google'
} return <YouTubeEmbed videoid="ogfYd705cRs" height={400} params="controls=0" />
export default function Page() {





Options

	Name
	Type
	Description




	Name
	Type
	Description

	videoid
	Required
	YouTube video id.

	width
	Optional
	Width of the video container. Defaults to auto

	height
	Optional
	Height of the video container. Defaults to auto

	playlabel
	Optional
	A visually hidden label for the play button for accessibility.

	params
	Optional
	The video player params defined here. Params are passed as a query param string.
Eg: params="controls=0&start=10&end=30"

	style
	Optional
	Used to apply styles to the video container.



3.1.7 - Configuring
Documentation path: /02-app/01-building-your-application/07-configuring/index
Description: Learn how to configure your Next.js application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js allows you to customize your project to meet specific requirements. This includes integrations with TypeScript, ESlint, and more, as well as internal configuration options such as Absolute Imports and Environment Variables.

3.1.7.1 - TypeScript
Documentation path: /02-app/01-building-your-application/07-configuring/01-typescript
Description: Next.js provides a TypeScript-first development experience for building your React application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js provides a TypeScript-first development experience for building your React application.
It comes with built-in TypeScript support for automatically installing the necessary packages and configuring the proper settings. As well as a TypeScript Plugin for your editor.
□ Watch: Learn about the built-in TypeScript plugin → YouTube (3 minutes)
New Projects
now ships with TypeScript by default.create-next-app

Terminal (bash)npx create-next-app@latest




Existing Projects
[image: ][image: ]Add TypeScript to your project by renaming a file to .ts / .tsx. Run next dev and dependencies and add a tsconfig.json file with the recommended config options.next build
paths
jsconfig.json




to automatically install the necessarytsconfig.json


If you already had a jsconfig.json file, copy the file, and delete the old jsconfig.json file.
TypeScript Plugin

compiler option from the old

into the new

Next.js includes a custom TypeScript plugin and type checker, which VSCode and other code editors can use for advanced type- checking and auto-completion.
You can enable the plugin in VS Code by:
1. Opening the command palette (Ctrl/⌘ + Shift + P)
2. Searching for “TypeScript: Select TypeScript Version”
3. Selecting “Use Workspace Version”














Now, when editing files, the custom plugin will be enabled. When running next build, the custom type checker will be used.

Plugin Features
The TypeScript plugin can help with:
[image: ] Warning if the invalid values for segment config options are passed. [image: ] Showing available options and in-context documentation.

[image: ] Ensuring the use client directive is used correctly.
[image: ] Ensuring client hooks (like useState) are only used in Client Components.
Good to know: More features will be added in the future.
Minimum TypeScript Versionv4.5.2


It is highly recommended to be on at least performance improvements.
Statically Typed Links

of TypeScript to get syntax features such as type modifiers on import names and

Next.js can statically type links to prevent typos and other errors when using next/link, improving type safety when navigating between pages.experimental.typedRoutes


To opt-into this feature,

need to be enabled and the project needs to be using TypeScript.


next.config.js (js)/** @type {import('next').NextConfig} */
const nextConfig = {
experimental: {
} ,
} typedRoutes: true,
module.exports = nextConfig








Next.js will generate a link definition in .next/types that contains information about all existing routes in your application, which TypeScript can then use to provide feedback in your editor about invalid links.
Currently, experimental support includes any string literal, including dynamic segments. For non-literal strings, you currently need tomanually cast the href with as Route:
import type { Route } from 'next';
import Link from 'next/link'
// No TypeScript errors if href is a valid route
<Link href="/about" />
<Link href="/blog/nextjs" />
<Link href={`/blog/${slug}`} />
<Link href={('/blog' + slug) as Route} />
// TypeScript errors if href is not a valid route
<Link href="/aboot" />











To accept href in a custom component wrapping next/link, use a generic:
import type { Route } from 'next'
import Link from 'next/link'
function Card<T extends string>({ href }: { href: Route<T> | URL }) {
return (
<Link href={href}>
< <div>My Card</div>
}
)  /Link>

How does it work?
[image: ]When running next dev or next build, Next.js generates a hidden .d.ts file inside .next that contains information about all existing routes in your application (all valid routes as the href type of Link). This .d.ts file is included intsconfig.json
.d.ts


and the TypeScript compiler will check that
End-to-End Type Safety
Next.js 13 has enhanced type safety. This includes:

and provide feedback in your editor about invalid links.

1. No serialization of data between fetching function and page: You can fetch directly in components, layouts, and pages on the server. This data does not need to be serialized (converted to a string) to be passed to the client side for consumption in React.app

[image: ][image: ][image: ]Instead, since	uses Server Components by default, we can use values like Date, Map, Set, and more without any extra steps.

Previously, you needed to manually type the boundary between server and client with Next.js-specific types.
2. [image: ][image: ]Streamlined data flow between components: With the removal of _app in favor of root layouts, it is now easier to visualize the data flow between components and pages. Previously, data flowing between individual pages and _app were difficult to type and could introduce confusing bugs. With colocated data fetching in Next.js 13, this is no longer an issue.
Data Fetching in Next.js now provides as close to end-to-end type safety as possible without being prescriptive about your database or content provider selection.
We’re able to type the response data as you would expect with normal TypeScript. For example:
app/page.tsx (tsx)async function getData() {
const  res  =  await  fetch('https://api.example.com/...')
// The return value is *not* serialized
} return res.json()
// You can return Date, Map, Set, etc.
export default async function Page() {
const name = await getData()
} return '...'










For complete end-to-end type safety, this also requires your database or content provider to support TypeScript. This could be through using an ORM or type-safe query builder.
Async Server Component TypeScript Errorasync
5.1.3
@types/react 18.2.8


To use an higher.

Server Component with TypeScript, ensure you are using TypeScript

or higher and	or

If you are using an older version of TypeScript, you may see a 'Promise<Element>' is not a valid JSX element type error. Updating to the latest version of TypeScript and @types/react should resolve this issue.
Passing Data Between Server & Client Components
When passing data between a Server and Client Component through props, the data is still serialized (converted to a string) for use in the browser. However, it does not need a special type. It’s typed the same as passing any other props between components.
Further, there is less code to be serialized, as un-rendered data does not cross between the server and client (it remains on the server). This is only now possible through support for Server Components.
Static Generation and Server-side Rendering
For getStaticProps, getStaticPaths, and getServerSideProps, you can use the GetStaticProps, GetStaticPaths, and
GetServerSideProps types respectively:
pages/blog/[slug].tsx (tsx)import { GetStaticProps, GetStaticPaths, GetServerSideProps } from 'next'
export const getStaticProps = (async (context) => {
} // ... ies GetStaticProps
) satisf
export const getStaticPaths = (async () => {
} // ... ies GetStaticPaths
) satisf
export const getServerSideProps = (async (context) => {
} // ... ies GetServerSideProps
) satisf













Good to know:satisfies

API Routes

was added to TypeScript in 4.9. We recommend upgrading to the latest version of TypeScript.

The following is an example of how to use the built-in types for API routes:import type { NextApiRequest, NextApiResponse } from 'next'


export default function handler(req: NextApiRequest, res: NextApiResponse) {
} res.status(200).json({ name: 'John Doe' })

You can also type the response data:import type { NextApiRequest, NextApiResponse } from 'next'
type Data = {
} name: string
export default function handler(
) res: NextApiResponse<Data>
req: NextApiRequest,
} res.status(200).json({ name: 'John Doe' })
{

Custom
Ifyou have a custom App, you can use the built-in type AppProps and change file name to ./pages/_app.tsx like so:
import type { AppProps } from 'next/app'
export default function MyApp({ Component, pageProps }: AppProps) {
} return <Component {...pageProps} />
App







Path aliases and baseUrl
Next.js automatically supports thetsconfig.json "paths"




and



options."baseUrl"


You can learn more about this feature on the Module Path aliases documentation. You can learn more about this feature on the Module Path aliases documentation.
Type checking next.config.js
The	file must be a JavaScript file as it does not get parsed by Babel or TypeScript, however you can add some typenext.config.js

checking in your IDE using JSDoc as below:// @ts-check
/**
* @type {import('next').NextConfig}
const nextConfig = {
**/
} /* config options here */ module.exports = nextConfig

Incremental type checking
Since	Next.js supports incremental type checking when enabled in your tsconfig.json, this can help speed up typev10.2.1

checking in larger applications.
Ignoring TypeScript Errors
Next.js fails your production build (next build) when TypeScript errors are present in your project.
If you’d like Next.js to dangerously produce production code even when your application has errors, you can disable the built-in type checking step.
If disabled, be sure you are running type checks as part of your build or deploy process, otherwise this can be very dangerous.next.config.js
ignoreBuildErrors
typescript


Open

and enable the

option in the

config:


next.config.js (js)module.exports = {
typescript: {


// !! WARN !!
// Dangerously allow production builds to successfully complete even if
// your project has type errors.
// !! WARN !!
} ,
} ignoreBuildErrors: true,

Version Changes

	Version
	Changes

	v13.2.0
	Statically typed links are available in beta.

	v12.0.0
	SWC is now used by default to compile TypeScript and TSX for faster builds.

	v10.2.1
	Incremental type checking support added when enabled in your tsconfig.json.



3.1.7.2 - ESLint
Documentation path: /02-app/01-building-your-application/07-configuring/02-eslint
Description: Next.js provides an integrated ESLint experience by default. These conformance rules help you use Next.js in an optimal way.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}next lint


Next.js provides an integrated ESLint experience out of the box. Add

as a script to package.json:


package.json (json){ "scripts": {
}
} "lint": "next lint"







Then run

or yarn lint:


Terminal (bash)yarn lint
npm run lint



If you don’t already have ESLint configured in your application, you will be guided through the installation and configuration process.
Terminal (bash)yarn lint


You’ll see a prompt like this:
? How would you like to configure ESLint? Strict (recommended)
Base Cancel
One of the following three options can be selected:
[image: ] Strict: Includes Next.js’ base ESLint configuration along with a stricter Core Web Vitals rule-set. This is the recommended configuration for developers setting up ESLint for the first time.
.eslintrc.json (json){ "extends": "next/core-web-vitals"
}





Base: Includes Next.js’ base ESLint configuration.



.eslintrc.json (json){ "extends": "next"
}





[image: ] Cancel: Does not include any ESLint configuration. Only select this option if you plan on setting up your own custom ESLint configuration.
If either of the two configuration options are selected, Next.js will automatically install eslint and eslint-config-next as.eslintrc.json


dependencies in your application and create an configuration.

file in the root of your project that includes your selected

You can now run next lint every time you want to run ESLint to catch errors. Once ESLint has been set up, it will also automatically run during every build (next build). Errors will fail the build, while warnings will not.
If you do not want ESLint to run during next build, refer to the documentation for Ignoring ESLint. If you do not want ESLint to run during next build, refer to the documentation for Ignoring ESLint.
We recommend using an appropriate integration to view warnings and errors directly in your code editor during development.
ESLint Config

The default configuration (eslint-config-next) includes everything you need to have an optimal out-of-the-box linting experience innext lint


Next.js. If you do not have ESLint already configured in your application, we recommend using this configuration.

to set up ESLint along with

If you would like to use eslint-config-next along with other ESLint configurations, refer to the Additional Configurations section to learn how to do so without causing any conflicts.
Recommended rule-sets from the following ESLint plugins are all used within eslint-config-next:
eslint-plugin-react eslint-plugin-react-hooks eslint-plugin-next

This will take precedence over the configuration from next.config.js.
ESLint Plugin
Next.js provides an ESLint plugin, eslint-plugin-next, already bundled within the base configuration that makes it possible to catch common issues and problems in a Next.js application. The full set of rules is as follows:
Enabled in the recommended configuration

	
	Rule
	Description

	
	@next/next/google-font-display
	Enforce font-display behavior with Google Fonts.

	
	@next/next/google-font-preconnect
	Ensure preconnect is used with Google Fonts.

	
	@next/next/inline-script-id
	Enforce id attribute on next/script components with inline content.

	
	@next/next/next-script-for-ga
	Prefer next/script component when using the inline script for Google Analytics.

	
	@next/next/no-assign-module-variable
	Prevent assignment to the module variable.

	
	@next/next/no-async-client-component
	Prevent client components from being async functions.

	
	@next/next/no-before-interactive-script-outside- document
	Prevent usage of next/script’s beforeInteractive strategy outside of
pages/_document.js.

	
	@next/next/no-css-tags
	Prevent manual stylesheet tags.

	
	@next/next/no-document-import-in-page
	Prevent importing next/document outside of pages/_document.js.

	
	@next/next/no-duplicate-head
	Prevent duplicate usage of <Head> in pages/_document.js.

	
	@next/next/no-head-element
	Prevent usage of <head> element.

	
	@next/next/no-head-import-in-document
	Prevent usage of next/head in pages/_document.js.

	
	@next/next/no-html-link-for-pages
	Prevent usage of <a> elements to navigate to internal Next.js pages.

	
	@next/next/no-img-element
	Prevent usage of <img> element due to slower LCP and higher bandwidth.

	
	@next/next/no-page-custom-font
	Prevent page-only custom fonts.

	
	@next/next/no-script-component-in-head
	Prevent usage of next/script in next/head component.

	
	@next/next/no-styled-jsx-in-document
	Prevent usage of styled-jsx in pages/_document.js.

	
	@next/next/no-sync-scripts
	Prevent synchronous scripts.

	
	@next/next/no-title-in-document-head
	Prevent usage of <title> with Head component from next/document.

	
	@next/next/no-typos
	Prevent common typos in Next.js’s data fetching functions

	
	@next/next/no-unwanted-polyfillio
	Prevent duplicate polyfills from Polyfill.io.



If you already have ESLint configured in your application, we recommend extending from this plugin directly instead of including unless a few conditions are met. Refer to the Recommended Plugin Ruleset to learn more.eslint-config-next

Custom Settings

rootDir

If you’re using eslint-plugin-next in a project where Next.js isn’t installed in your root directory (such as a monorepo), you can tellsettings


eslint-plugin-next where to find your Next.js application using the

property in your .eslintrc:


.eslintrc.json (json){ "extends": "next",
"settings": {
"next": {
} }
} "rootDir": "packages/my-app/"








can be a path (relative or absolute), a glob (i.e. "packages/*/"), or an array of paths and/or globs.rootDir

Linting Custom Directories and Files
[image: ]By default, Next.js will run ESLint for all files in the pages/, app/, components/, lib/, and src/ directories. However, you can specifydirs


which directories using the

option in the eslint config in next.config.js for production builds:


next.config.js (js)module.exports = {
eslint: {
} ,
} dirs: ['pages', 'utils'], // Only run ESLint on the 'pages' and 'utils' directories during production







Similarly, the

and

flags can be used for

to lint specific directories and files:


Terminal (bash)next lint --dir pages --dir utils --file bar.js
--dir
--file
next lint



Caching
To improve performance, information of files processed by ESLint are cached by default. This is stored in .next/cache or in your defined build directory. If you include any ESLint rules that depend on more than the contents of a single source file and need to disable--no-cache

the cache, use the	flag with next lint.
To improve performance, information of files processed by ESLint are cached by default. This is stored in .next/cache or in your defined build directory. If you include any ESLint rules that depend on more than the contents of a single source file and need to disable--no-cache


the cache, use the

flag with next lint.


Terminal (bash)next lint --no-cache



Disabling Rules
[image: ]If you would like to modify or disable any rules provided by the supported plugins (react, react-hooks, next), you can directlyrules


change them using the

property in your .eslintrc:


.eslintrc.json (json){ "extends": "next",
"rules": {
"react/no-unescaped-entities": "off",
}
} "@next/next/no-page-custom-font": "off"









Core Web Vitals
Thenext/core-web-vitals



rule set is enabled when


is run for the first time and the strict option is selected.next lint

.eslintrc.json (json){ "extends": "next/core-web-vitals"
}




Thenext/core-web-vitals
Web Vitals.


updates

to error on a number of rules that are warnings by default if they affect Core

entry point is automatically included for new applications built with Create Next App.eslint-plugin-next


Usage With Other Toolsnext/core-web-vitals

Prettier
ESLint also contains code formatting rules, which can conflict with your existing Prettier setup. We recommend including eslint-config- prettier in your ESLint config to make ESLint and Prettier work together.
First, install the dependency:
Terminal (bash)npm install --save-dev eslint-config-prettier yarn add --dev eslint-config-prettier
pnpm add --save-dev eslint-config-prettier
bun add --dev eslint-config-prettier








Then, add

to your existing ESLint config:


.eslintrc.json (json){ "extends": ["next", "prettier"]
}
prettier




lint-staged
If you would like to use next lint with lint-staged to run the linter on staged git files, you’ll have to add the following to the.lintstagedrc.js
--file


file in the root of your project in order to specify usage of the

flag.


.lintstagedrc.js (js)const path = require('path')
const buildEslintCommand = (filenames) =>
`next lint --fix --file ${filenames
.join(' --file ')}`
module.exports = {
.map((f) => path.relative(process.cwd(), f))
} '*.{js,jsx,ts,tsx}': [buildEslintCommand],







Migrating Existing Config
Recommended Plugin Ruleset
If you already have ESLint configured in your application and any of the following conditions are true:
[image: ] You have one or more of the following plugins already installed (either separately or through a different config such as	orairbnb

react-app): [image: ] react
[image: ] react-hooks [image: ] jsx-a11y
[image: ] import
You’ve defined specific parserOptions that are different from how Babel is configured within Next.js (this is not recommended unless you have customized your Babel configuration)eslint-plugin-import

You have	installed with Node.js and/or TypeScript resolvers defined to handle imports
Then we recommend either removing these settings if you prefer how these properties have been configured withinnext or extending directly from the Next.js ESLint plugin instead:
module.exports = {
extends: [
//...
eslint-config-


'plugin:@next/next/recommended',
} ],


The plugin can be installed normally in your project without needing to run next lint:


Terminal (bash)npm install --save-dev @next/eslint-plugin-next yarn add --dev @next/eslint-plugin-next
pnpm add --save-dev @next/eslint-plugin-next
bun add --dev @next/eslint-plugin-next







This eliminates the risk of collisions or errors that can occur due to importing the same plugin or parser across multiple configurations.
Additional Configurations
If you already use a separate ESLint configuration and want to include eslint-config-next, ensure that it is extended last after other configurations. For example:
.eslintrc.json (json){ "extends": ["eslint:recommended", "next"]
}




[image: ]The next configuration already handles setting default values for the parser, plugins and settings properties. There is no need to manually re-declare any of these properties unless you need a different configuration for your use case.
If you include any other shareable configurations, you will need to make sure that these properties are not overwritten ornext


modified. Otherwise, we recommend removing any configurations that share behavior with the directly from the Next.js ESLint plugin as mentioned above.

configuration or extending

3.1.7.3 - Environment Variables
Documentation path: /02-app/01-building-your-application/07-configuring/03-environment-variables
Description: Learn to add and access environment variables in your Next.js application.

{/ The content of this doc is shared between the app and pages router. You can use the<PagesOnly>Content</PagesOnly>

to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /} [image: ] Examples
Next.js comes with built-in support for environment variables, which allows you to do the following: [image: ] Use .env.local to load environment variablesBundle environment variables for the browser by prefixing with NEXT_PUBLIC_








component




Loading Environment Variables
Next.js has built-in support for loading environment variables from




.env.local (txt)DB_HOST=localhost
DB_USER=myuser
DB_PASS=mypassword
.env.local
into process.env.






This loads process.env.DB_HOST, process.env.DB_USER, and allowing you to use them in Next.js data fetching methods and API routes. For example, using getStaticProps:process.env.DB_PASS


into the Node.js environment automatically


pages/index.js (js)export async function getStaticProps() {
const db = await myDB.connect({
host: process.env.DB_HOST,
} // ...
} password: process.env.DB_PASS,
username: process.env.DB_USER,
)










Note: Next.js also supports multiline variables inside of your.env*

```bash
.env.local
you can write with line breaks

files:

PRIVATE_KEY=”-----BEGIN RSA PRIVATE KEY----- … Kh9NV… … -----END DSA PRIVATE KEY	“\n

or with	inside double quotes
PRIVATE_KEY=”-----BEGIN RSA PRIVATE KEY-----\nKh9NV…\n-----END DSA PRIVATE KEY	\n” ```
Note: If you are using a /src folder, please note that Next.js will load the .env files only from the parent folder and not from/src
process.env.DB_PASS

the	folder. This loads process.env.DB_HOST, process.env.DB_USER, and

into the Node.js

environment automatically allowing you to use them in Route Handlers.
For example:

app/api/route.js (js)export async function GET() {
const db = await myDB.connect({
host: process.env.DB_HOST,
} // ...
} password: process.env.DB_PASS,
username: process.env.DB_USER,
)

Referencing Other Variables

Next.js will automatically expand variables that use $ to reference other variables e.g. allows you to reference other secrets. For example:$VARIABLE

inside of your

files. This
.env (txt)TWITTER_USER=nextjs
TWITTER_URL=https://twitter.com/$TWITTER_USER
.env*

In the above example,	would be set to https://twitter.com/nextjs.process.env.TWITTER_URL

[image:]Good to know: If you need to use variable with a $ in the actual value, it needs to be escaped e.g. \$.
Bundling Environment Variables for the Browser
Non-NEXT_PUBLIC_ environment variables are only available in the Node.js environment, meaning they aren’t accessible to the browser (the client runs in a different environment).
In order to make the value of an environment variable accessible in the browser, Next.js can “inline” a value, at build time, into the js bundle that is delivered to the client, replacing all references to process.env.[variable] with a hard-coded value. To tell it to do this, you just have to prefix the variable with NEXT_PUBLIC_. For example:
Terminal (txt)NEXT_PUBLIC_ANALYTICS_ID=abcdefghijk

This will tell Next.js to replace all references to process.env.NEXT_PUBLIC_ANALYTICS_ID in the Node.js environment with the value from the environment in which you run next build, allowing you to use it anywhere in your code. It will be inlined into any JavaScript sent to the browser.
Note: After being built, your app will no longer respond to changes to these environment variables. For instance, if you use a Heroku pipeline to promote slugs built in one environment to another environment, or if you build and deploy a single Docker image to multiple environments, all NEXT_PUBLIC_ variables will be frozen with the value evaluated at build time, so these values need to be set appropriately when the project is built. If you need access to runtime environment values, you’ll have to setup your own API to provide them to the client (either on demand or during initialization).
pages/index.js (js)import setupAnalyticsService from '../lib/my-analytics-service'
// 'NEXT_PUBLIC_ANALYTICS_ID' can be used here as it's prefixed by 'NEXT_PUBLIC_'.
// It will be transformed at build time to `setupAnalyticsService('abcdefghijk')`.
setupAnalyticsService(process.env.NEXT_PUBLIC_ANALYTICS_ID)
function HomePage() {
} return <h1>Hello World</h1> export default HomePage

Note that dynamic lookups will not be inlined, such as:// This will NOT be inlined, because it uses a variable
const varName = 'NEXT_PUBLIC_ANALYTICS_ID'
setupAnalyticsService(process.env[varName])
// This will NOT be inlined, because it uses a variable
const env = process.env
setupAnalyticsService(env.NEXT_PUBLIC_ANALYTICS_ID)

Runtime Environment Variables
Next.js can support both build time and runtime environment variables.
By default, environment variables are only available on the server. To expose an environment variable to the browser, it must be prefixed with NEXT_PUBLIC_. However, these public environment variables will be inlined into the JavaScript bundle duringnext
build.

To read runtime environment variables, we recommend using getServerSideProps or incrementally adopting the App Router. With the App Router, we can safely read environment variables on the server during dynamic rendering. This allows you to use a singular Docker image that can be promoted through multiple environments with different values.import { unstable_noStore as noStore } from 'next/cache' export default function Component() {

noStore()
// cookies(), headers(), and other dynamic functions
// will also opt into dynamic rendering, making
// this env variable is evaluated at runtime
} // ...
const value = process.env.MY_VALUE

Good to know:
[image:] You can run code on server startup using the register function.
[image:] We do not recommend using the runtimeConfig option, as this does not work with the standalone output mode. Instead, we recommend incrementally adopting the App Router.
Default Environment Variables
[image:]In general only one .env.local file is needed. However, sometimes you might want to add some defaults for thedevelopment

[image:]dev) or production (next start) environment..env
.env.development
.env.production

(next

Next.js allows you to set defaults in (production environment)..env.local

(all environments),

(development environment), and

always overrides the defaults set.
Good to know: .env, .env.development, and .env.production files should be included in your repository as they define.env.local

defaults. .env*.local should be added to .gitignore, as those files are intended to be ignored. secrets can be stored.
Environment Variables on Vercel
When deploying your Next.js application to Vercel, Environment Variables can be configured in the Project Settings.

is where

All types of Environment Variables should be configured there. Even Environment Variables used in Development – which can be downloaded onto your local device afterwards..env.local

If you’ve configured Development Environment Variables you can pull them into a the following command:

for usage on your local machine using
Terminal (bash)vercel env pull .env.local

Good to know: When deploying your Next.js application to Vercel, your environment variables in .env* files will not be made available to Edge Runtime, unless their name are prefixed with NEXT_PUBLIC_. We strongly recommend managing your environment variables in Project Settings instead, from where all environment variables are available.
Test Environment Variables
[image:]Apart from development and production environments, there is a 3rd option available: test. In the same way you can set defaults for development or production environments, you can do the same with a .env.test file for the testing environment (though this one is not as common as the previous two). Next.js will not load environment variables from .env.development or.env.production
testing

in the	environment.
This one is useful when running tests with tools like jest or cypress where you need to set specific environment vars only for testing purposes. Test default values will be loaded if NODE_ENV is set to test, though you usually don’t need to do this manually as testing tools will address it for you.
[image:]There is a small difference between test environment, and both development and production that you need to bear in mind:
.env.local won’t be loaded, as you expect tests to produce the same results for everyone. This way every test execution will use the same env defaults across different executions by ignoring your .env.local (which is intended to override the default set).
Good to know: similar to Default Environment Variables, .env.test file should be included in your repository, but.env.test.local
.env*.local

shouldn’t, as	are intended to be ignored through .gitignore.
While running unit tests you can make sure to load your environment variables the same way Next.js does by leveraging the
loadEnvConfig function from the @next/env package.
// The below can be used in a Jest global setup file or similar for your testing set-up import { loadEnvConfig } from '@next/env'

export default async () => {
} loadEnvConfig(projectDir)
const projectDir = process.cwd()

Environment Variable Load Order
Environment variables are looked up in the following places, in order, stopping once the variable is found.

[image:][image:]is test.)1. process.env
2. .env.$(NODE_ENV).local
3. .env.local (Not checked when
4. .env.$(NODE_ENV)
5. .env
NODE_ENV

For example, if NODE_ENV is development and you define a variable in both.env.development.local

[image:].env.development.local will be used.NODE_ENV
development

and .env, the value in

Good to know: The allowed values for
Good to know

are production,

and test.

If you are using a	directory, .env.* files should remain in the root of your project./src
development
next dev

[image:] If the environment variable NODE_ENV is unassigned, Next.js automatically assigns command, or production for all other commands.
Version History

when running the

	Version
	Changes

	v9.4.0
	Support .env and NEXT_PUBLIC_ introduced.

3.1.7.4 - Absolute Imports and Module Path Aliases
Documentation path: /02-app/01-building-your-application/07-configuring/04-absolute-imports-and-module-aliases
Description: Configure module path aliases that allow you to remap certain import paths.

{/ The content of this doc is shared between the app and pages router. You can use the<PagesOnly>Content</PagesOnly>

to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /} [image:] Examples"paths"
"baseUrl"
tsconfig.json
jsconfig.json

component

Next.js has in-built support for the

and

options of

and

files.

These options allow you to alias project directories to absolute paths, making it easier to import modules. For example:// before
import { Button } from '../../../components/button'
import { Button } from '@/components/button'
// after

Good to know:create-next-app

Absolute Imports

will prompt to configure these options for you.

The	configuration option allows you to import directly from the root of the project.baseUrl

An example of this configuration:

tsconfig.json or jsconfig.json (json){ "compilerOptions": {
}
} "baseUrl": "."

components/button.tsx (tsx)export default function Button() {
} return <button>Click me</button>

components/button.js (jsx)export default function Button() {
} return <button>Click me</button>

app/page.tsx (tsx)import Button from 'components/button'
export default function HomePage() {
return (
<>
< <Button />
<h1>Hello World</h1>
}
) />

app/page.js (jsx)import Button from 'components/button'
export default function HomePage() {
return (
<>
< <Button />
<h1>Hello World</h1>
}
) />

Module Aliases

In addition to configuring the	path, you can use the "paths" option to “alias” module paths.baseUrl

For example, the following configuration maps @/components/* to components/*:

tsconfig.json or jsconfig.json (json){ "compilerOptions": {
"baseUrl": ".",
"paths": {
} }
} "@/components/*": ["components/*"]

components/button.tsx (tsx)export default function Button() {
} return <button>Click me</button>

components/button.js (jsx)export default function Button() {
} return <button>Click me</button>

app/page.tsx (tsx)import Button from '@/components/button'
export default function HomePage() {
return (
<>
< <Button />
<h1>Hello World</h1>
}
) />

app/page.js (jsx)import Button from '@/components/button'
export default function HomePage() {
return (
<>
< <Button />
<h1>Hello World</h1>
}
) />

Each of the "paths" are relative to the baseUrl location. For example:
// tsconfig.json or jsconfig.json
{ "compilerOptions": {
"baseUrl": "src/",
"paths": {
"@/styles/*": ["styles/*"],
} }
} "@/components/*": ["components/*"]
// pages/index.js
import Button from '@/components/button'
import '@/styles/styles.css'
import Helper from 'utils/helper'
export default function HomePage() {
return (
<Helper>
<h1>Hello World</h1>
) /Helper>
< <Button />

}

3.1.7.5 - Markdown and MDX
Documentation path: /02-app/01-building-your-application/07-configuring/05-mdx
Description: Learn how to configure MDX to write JSX in your markdown files.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Markdown is a lightweight markup language used to format text. It allows you to write using plain text syntax and convert it to structurally valid HTML. It’s commonly used for writing content on websites and blogs.
You write…I **love** using [Next.js](https://nextjs.org/)

Output:
<p>I love using Next.js</p>

MDX is a superset of markdown that lets you write JSX directly in your markdown files. It is a powerful way to add dynamic interactivity and embed React components within your content.
Next.js can support both local MDX content inside your application, as well as remote MDX files fetched dynamically on the server. The Next.js plugin handles transforming markdown and React components into HTML, including support for usage in Server Components (the default in App Router).
@next/mdx

The @next/mdx package is used to configure Next.js so it can process markdown and MDX. It sources data from local files, allowing

you to create pages with a.mdx
/pages
/app

extension, directly in your

or

directory.

Let’s walk through how to configure and use MDX with Next.js.
Getting Started
Install packages needed to render MDX:

Terminal (bash)npm install @next/mdx @mdx-js/loader @mdx-js/react @types/mdx

Create a mdx-components.tsx file at the root of your application (the parent folder ofapp/
or src/):
mdx-components.tsx

Good to know:

is required to use MDX with App Router and will not work without it.

mdx-components.tsx (tsx)import type { MDXComponents } from 'mdx/types'
export function useMDXComponents(components: MDXComponents): MDXComponents {
return {
}
} ...components,

mdx-components.js (js)export function useMDXComponents(components) {
return {
}
} ...components,

Update the

file at your project’s root to configure it to use MDX:

next.config.js (js)const withMDX = require('@next/mdx')()
/** @type {import('next').NextConfig} */
const nextConfig = {
// Configure `pageExtensions` to include MDX files
pageExtensions: ['js', 'jsx', 'mdx', 'ts', 'tsx'],
next.config.js

} // Optionally, add any other Next.js config below module.exports = withMDX(nextConfig)

Then, create a new MDX page within the /app directory:
your-project
├── app
│	└── my-mdx-page
│
└── package.json
└── page.mdx
Then, create a new MDX page within the /pages directory:
your-project
├── pages
│	└── my-mdx-page.mdx
└── package.json

Now you can use markdown and import React components directly inside your MDX page:
import { MyComponent } from 'my-components' # Welcome to my MDX page!
This is some **bold** and _italics_ text.
This is a list in markdown:
- One
- Two
- Three
Checkout my React component:
<MyComponent />

Navigating to the/my-mdx-page

Remote MDX

route should display your rendered MDX.

If your markdown or MDX files or content lives somewhere else, you can fetch it dynamically on the server. This is useful for content stored in a separate local folder, CMS, database, or anywhere else. A popular community packages for this use is next-mdx-remote.
Good to know: Please proceed with caution. MDX compiles to JavaScript and is executed on the server. You should only fetch MDX content from a trusted source, otherwise this can lead to remote code execution (RCE).
The following example uses next-mdx-remote:
app/my-mdx-page-remote/page.tsx (tsx)import { MDXRemote } from 'next-mdx-remote/rsc'
export default async function RemoteMdxPage() {
// MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https://...')
} return <MDXRemote source={markdown} />
const markdown = await res.text()

app/my-mdx-page-remote/page.js (jsx)import { MDXRemote } from 'next-mdx-remote/rsc'
export default async function RemoteMdxPage() {
// MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https://...')
} return <MDXRemote source={markdown} />
const markdown = await res.text()

pages/my-mdx-page-remote.tsx (tsx)import { serialize } from 'next-mdx-remote/serialize'

import { MDXRemote, MDXRemoteSerializeResult } from 'next-mdx-remote'
interface Props {
} mdxSource: MDXRemoteSerializeResult
export default function RemoteMdxPage({ mdxSource }: Props) {
} return <MDXRemote {...mdxSource} />
export async function getStaticProps() {
// MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https:...')
const mdxText = await res.text()
} return { props: { mdxSource } }
const mdxSource = await serialize(mdxText)

pages/my-mdx-page-remote.js (jsx)import { serialize } from 'next-mdx-remote/serialize'
import { MDXRemote } from 'next-mdx-remote'
export default function RemoteMdxPage({ mdxSource }) {
} return <MDXRemote {...mdxSource} />
export async function getStaticProps() {
// MDX text - can be from a local file, database, CMS, fetch, anywhere...
const res = await fetch('https:...')
const mdxText = await res.text()
} return { props: { mdxSource } }
const mdxSource = await serialize(mdxText)

Navigating to the/my-mdx-page-remote

Layouts

route should display your rendered MDX.

To share a layout amongst MDX pages, you can use the built-in layouts support with the App Router.

app/my-mdx-page/layout.tsx (tsx)export default function MdxLayout({ children }: { children: React.ReactNode }) {
} return <div style={{ color: 'blue' }}>{children}</div>
// Create any shared layout or styles here

app/my-mdx-page/layout.js (jsx)export default function MdxLayout({ children }) {
} return <div style={{ color: 'blue' }}>{children}</div>
// Create any shared layout or styles here

To share a layout around MDX pages, create a layout component:

components/mdx-layout.tsx (tsx)export default function MdxLayout({ children }: { children: React.ReactNode }) {
} return <div style={{ color: 'blue' }}>{children}</div>
// Create any shared layout or styles here

components/mdx-layout.js (jsx)export default function MdxLayout({ children }) {
} return <div style={{ color: 'blue' }}>{children}</div>
// Create any shared layout or styles here

Then, import the layout component into the MDX page, wrap the MDX content in the layout, and export it:import MdxLayout from '../components/mdx-layout' # Welcome to my MDX page!

export default function MDXPage({ children }) {
return <MdxLayout>{children}</MdxLayout>;
}

Remark and Rehype Plugins
You can optionally provide remark and	plugins to transform the MDX content.rehype

For example, you can use remark-gfm to support GitHub Flavored Markdown.remark
next.config.mjs

Since the

and rehype ecosystem is ESM only, you’ll need to use

as the configuration file.

next.config.mjs (js)import remarkGfm from 'remark-gfm'
import createMDX from '@next/mdx'
/** @type {import('next').NextConfig} */
const nextConfig = {
// Configure `pageExtensions`` to include MDX files
} // Optionally, add any other Next.js config below
pageExtensions: ['js', 'jsx', 'mdx', 'ts', 'tsx'],
const withMDX = createMDX({
// Add markdown plugins here, as desired
options: {
remarkPlugins: [remarkGfm],
}) ,
} rehypePlugins: [],
// Merge MDX config with Next.js config
export default withMDX(nextConfig)

Frontmatter
Frontmatter is a YAML like key/value pairing that can be used to store data about a page. default, though there are many solutions for adding frontmatter to your MDX content, such as:@next/mdx

[image:] remark-frontmatter
[image:] remark-mdx-frontmatter [image:] gray-matter.

does not support frontmatter by

To access page metadata with @next/mdx, you can export a metadata object from within the .mdx file:
export const metadata = {
} author: 'John Doe', # My MDX page

Custom Elements
One of the pleasant aspects of using markdown, is that it maps to native HTML elements, making writing fast, and intuitive:
This is a list in markdown:
- One
- Two
- Three
The above generates the following HTML:
<p>This is a list in markdown:</p>

One
< Three
Two
/ul>

When you want to style your own elements for a custom feel to your website or application, you can pass in shortcodes. These are your own custom components that map to HTML elements.
To do this, open the mdx-components.tsx file at the root of your application and add custom elements:pages/

To do this, create a mdx-components.tsx file at the root of your application (the parent folder of elements:

or src/) and add custom
[image:]mdx-components.tsx (tsx)import type { MDXComponents } from 'mdx/types'
import Image, { ImageProps } from 'next/image'
// This file allows you to provide custom React components
// to be used in MDX files. You can import and use any
// React component you want, including inline styles,
// components from other libraries, and more.
export function useMDXComponents(components: MDXComponents): MDXComponents {
return {
// Allows customizing built-in components, e.g. to add styling.
h1: ({ children }) => <h1 style={{ fontSize: '100px' }}>{children}</h1>,
img: (props) => (
<Image
sizes="100vw"
), >
/ {...(props as ImageProps)}
style={{ width: '100%', height: 'auto' }}
...components,
} }

mdx-components.js (js)import Image from 'next/image'
// This file allows you to provide custom React components
// to be used in MDX files. You can import and use any
// React component you want, including inline styles,
// components from other libraries, and more.
export function useMDXComponents(components) {
return {
// Allows customizing built-in components, e.g. to add styling.
h1: ({ children }) => <h1 style={{ fontSize: '100px' }}>{children}</h1>,
img: (props) => (
<Image
sizes="100vw"
), >
/ {...props}
style={{ width: '100%', height: 'auto' }}
...components,
} }

Deep Dive: How do you transform markdown into HTML?
React does not natively understand markdown. The markdown plaintext needs to first be transformed into HTML. This can be accomplished withremark
and rehype.
rehype

is an ecosystem of tools around markdown. transforms markdown into HTML:remark

is the same, but for HTML. For example, the following code snippet

import { unified } from 'unified'
import remarkParse from 'remark-parse'
import remarkRehype from 'remark-rehype'
import rehypeSanitize from 'rehype-sanitize'
import rehypeStringify from 'rehype-stringify'
main()
async function main() {
const file = await unified()
.use(remarkParse) // Convert into markdown AST
.use(remarkRehype) // Transform to HTML AST

.use(rehypeSanitize) // Sanitize HTML input
.process('Hello, Next.js!')
} console.log(String(file)) // <p>Hello, Next.js!</p>
.use(rehypeStringify) // Convert AST into serialized HTML

The remark and rehype ecosystem contains plugins for syntax highlighting, linking headings, generating a table of contents, and more.remark
rehype

When using @next/mdx as shown above, you do not need to use@next/mdx

or

directly, as it is handled for you. We’re describing

it here for a deeper understanding of what the	package is doing underneath.
Using the Rust-based MDX compiler (Experimental)
Next.js supports a new MDX compiler written in Rust. This compiler is still experimental and is not recommended for production use.next.config.js

To use the new compiler, you need to configure

when you pass it to withMDX:

next.config.js (js)module.exports = withMDX({
experimental: {
}) ,
} mdxRs: true,

Helpful Links
[image:] MDX@next/mdx

[image:] remark [image:] rehype

3.1.7.6 - src Directory
Documentation path: /02-app/01-building-your-application/07-configuring/06-src-directory
Description: Save pages under the `src` directory as an alternative to the root `pages` directory.
Related:
Title: Related
Related Description: No related description
Links:
[image:] app/building-your-application/routing/colocation

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
As an alternative to having the special Next.js app or pages directories in the root of your project, Next.js also supports the common pattern of placing application code under the src directory.
This separates application code from project configuration files which mostly live in the root of a project, which is preferred by some individuals and teams.
To use the src directory, move the app Router folder or pages Router folder to src/app or src/pages respectively.

Good to know
[image:] The /public directory should remain in the root of your project.tsconfig.json

[image:] Config files like package.json, next.config.js and
[image:] .env.* files should remain in the root of your project.

should remain in the root of your project.

[image:]src/app or src/pages will be ignored if app or pages are present in the root directory. If you’re using src, you’ll probably also move other application folders such as/components

If you’re using Middleware, ensure it is placed inside the src directory. If you’re using Tailwind CSS, you’ll need to add the /src prefix to thetailwind.config.js

or /lib.
[image:]file in the content section.

3.1.7.7 - Draft Mode
Documentation path: /02-app/01-building-your-application/07-configuring/11-draft-mode
Description: Next.js has draft mode to toggle between static and dynamic pages. You can learn how it works with App Router here.

Static rendering is useful when your pages fetch data from a headless CMS. However, it’s not ideal when you’re writing a draft on your headless CMS and want to view the draft immediately on your page. You’d want Next.js to render these pages at request time instead of build time and fetch the draft content instead of the published content. You’d want Next.js to switch to dynamic rendering only for this specific case.
Next.js has a feature called Draft Mode which solves this problem. Here are instructions on how to use it.
Step 1: Create and access the Route Handler
First, create a Route Handler. It can have any name - e.g. app/api/draft/route.tsdraftMode
next/headers

Then, import

from

and call the enable() method.

app/api/draft/route.ts (ts)// route handler enabling draft mode
import { draftMode } from 'next/headers'
export async function GET(request: Request) {
} return new Response('Draft mode is enabled')
draftMode().enable()

app/api/draft/route.js (js)// route handler enabling draft mode
import { draftMode } from 'next/headers'
export async function GET(request) {
} return new Response('Draft mode is enabled')
draftMode().enable()

This will set a cookie to enable draft mode. Subsequent requests containing this cookie will trigger Draft Mode changing the behavior for statically generated pages (more on this later).Set-Cookie

You can test this manually by visiting /api/draft and looking at your browser’s developer tools. Notice the header with a cookie named prerender_bypass.
Securely accessing it from your Headless CMS

response

In practice, you’d want to call this Route Handler securely from your headless CMS. The specific steps will vary depending on which headless CMS you’re using, but here are some common steps you could take.
These steps assume that the headless CMS you’re using supports setting custom draft URLs. If it doesn’t, you can still use this method to secure your draft URLs, but you’ll need to construct and access the draft URL manually.
First, you should create a secret token string using a token generator of your choice. This secret will only be known by your Next.js app and your headless CMS. This secret prevents people who don’t have access to your CMS from accessing draft URLs.
Second, if your headless CMS supports setting custom draft URLs, specify the following as the draft URL. This assumes that your Route Handler is located atapp/api/draft/route.ts

Terminal (bash)https://<your-site>/api/draft?secret=<token>&slug=<path>

<your-site> should be your deployment domain.
<token> should be replaced with the secret token you generated.
<path> should be the path for the page that you want to view. If you want to view /posts/foo, then you should use
&slug=/posts/foo.<path>

Your headless CMS might allow you to include a variable in the draft URL so that data like so:&slug=/posts/{entry.fields.slug}

Finally, in the Route Handler:

can be set dynamically based on the CMS’s

Check that the secret matches and that the	parameter exists (if not, the request should fail).slug

Call	to set the cookie.draftMode.enable()

[image:]Then redirect the browser to the path specified by slug.

// route handler with secret and slug import { draftMode } from 'next/headers' import { redirect } from 'next/navigation'
export async function GET(request: Request) {
// Parse query string parameters
const { searchParams } = new URL(request.url) const secret = searchParams.get('secret') const slug = searchParams.get('slug')
// Check the secret and next parameters
// This secret should only be known to this route handler and the CMS if (secret !== 'MY_SECRET_TOKEN' || !slug) {
} return new Response('Invalid token', { status: 401 })
// Fetch the headless CMS to check if the provided `slug` exists
// getPostBySlug would implement the required fetching logic to the headless CMS const post = await getPostBySlug(slug)
// If the slug doesn't exist prevent draft mode from being enabled if (!post) {
} return new Response('Invalid slug', { status: 401 })
// Enable Draft Mode by setting the cookie draftMode().enable()
// Redirect to the path from the fetched post

app/api/draft/route.ts (ts)

// We don't redirect to searchParams.slug as that might lead to open redirect vulnerabilities
} redirect(post.slug)

// route handler with secret and slug import { draftMode } from 'next/headers' import { redirect } from 'next/navigation'
export async function GET(request) {
// Parse query string parameters
const { searchParams } = new URL(request.url) const secret = searchParams.get('secret') const slug = searchParams.get('slug')
// Check the secret and next parameters
// This secret should only be known to this route handler and the CMS if (secret !== 'MY_SECRET_TOKEN' || !slug) {
} return new Response('Invalid token', { status: 401 })
// Fetch the headless CMS to check if the provided `slug` exists
// getPostBySlug would implement the required fetching logic to the headless CMS const post = await getPostBySlug(slug)
// If the slug doesn't exist prevent draft mode from being enabled if (!post) {
} return new Response('Invalid slug', { status: 401 })
// Enable Draft Mode by setting the cookie draftMode().enable()
// Redirect to the path from the fetched post

app/api/draft/route.js (js)

// We don't redirect to searchParams.slug as that might lead to open redirect vulnerabilities
} redirect(post.slug)
If it succeeds, then the browser will be redirected to the path you want to view with the draft mode cookie.
Step 2: Update page

The next step is to update your page to check the value of draftMode().isEnabled.
[image:]If you request a page which has the cookie set, then data will be fetched at request time (instead of at build time).isEnabled

Furthermore, the value of

will be true.

app/page.tsx (tsx)// page that fetches data
import { draftMode } from 'next/headers'
async function getData() {
const { isEnabled } = draftMode()
const url = isEnabled
: 'https://production.example.com' const res = await fetch(url)
} return res.json()
? 'https://draft.example.com'
export default async function Page() {
const { title, desc } = await getData()
return (
<main>
< <p>{desc}</p>
<h1>{title}</h1>
}
) /main>

app/page.js (jsx)// page that fetches data
import { draftMode } from 'next/headers'
async function getData() {
const { isEnabled } = draftMode()
const url = isEnabled
: 'https://production.example.com' const res = await fetch(url)
} return res.json()
? 'https://draft.example.com'
export default async function Page() {
const { title, desc } = await getData()
return (
<main>
< <p>{desc}</p>
<h1>{title}</h1>
}
) /main>

[image:]That’s it! If you access the draft Route Handler (with	and slug) from your headless CMS or manually, you should now be able tosecret

see the draft content. And if you update your draft without publishing, you should be able to view the draft. Set this as the draft URL on your headless CMS or access manually, and you should be able to see the draft.
Terminal (bash)https://<your-site>/api/draft?secret=<token>&slug=<path>

More Details
Clear the Draft Mode cookie
By default, the Draft Mode session ends when the browser is closed.
To clear the Draft Mode cookie manually, create a Route Handler that calls draftMode().disable():

app/api/disable-draft/route.ts (ts)import { draftMode } from 'next/headers'
export async function GET(request: Request) {
} return new Response('Draft mode is disabled')
draftMode().disable()

app/api/disable-draft/route.js (js)import { draftMode } from 'next/headers'
export async function GET(request) {
} return new Response('Draft mode is disabled')
draftMode().disable()

Then, send a request to /api/disable-draft to invoke the Route Handler. If calling this route using next/link, you must pass to prevent accidentally deleting the cookie on prefetch.prefetch={false}

Unique pernext build

A new bypass cookie value will be generated each time you run next build. This ensures that the bypass cookie can’t be guessed.
Good to know: To test Draft Mode locally over HTTP, your browser will need to allow third-party cookies and local storage access.

3.1.7.8 - Content Security Policy
Documentation path: /02-app/01-building-your-application/07-configuring/15-content-security-policy
Description: Learn how to set a Content Security Policy (CSP) for your Next.js application.
Related:
Title: Related
Related Description: No related description
Links:
[image:] app/building-your-application/routing/middleware [image:] app/api-reference/functions/headers

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Content Security Policy (CSP) is important to guard your Next.js application against various security threats such as cross-site scripting (XSS), clickjacking, and other code injection attacks.
By using CSP, developers can specify which origins are permissible for content sources, scripts, stylesheets, images, fonts, objects, media (audio, video), iframes, and more.
[image:] Examples
Nonces
A nonce is a unique, random string of characters created for a one-time use. It is used in conjunction with CSP to selectively allow certain inline scripts or styles to execute, bypassing strict CSP directives.
Why use a nonce?
Even though CSPs are designed to block malicious scripts, there are legitimate scenarios where inline scripts are necessary. In such cases, nonces offer a way to allow these scripts to execute if they have the correct nonce.
Adding a nonce with Middleware
Middleware enables you to add headers and generate nonces before the page renders.
Every time a page is viewed, a fresh nonce should be generated. This means that you must use dynamic rendering to add nonces. For example:

import { NextRequest, NextResponse } from 'next/server' export function middleware(request: NextRequest) {
const nonce = Buffer.from(crypto.randomUUID()).toString('base64') const cspHeader = `
default-src 'self';
script-src 'self' 'nonce-${nonce}' 'strict-dynamic'; style-src 'self' 'nonce-${nonce}';
img-src 'self' blob: data:; font-src 'self';
object-src 'none'; base-uri 'self'; form-action 'self';
frame-ancestors 'none';
block-all-mixed-content;

middleware.ts (ts)

`	upgrade-insecure-requests;
// Replace newline characters and spaces
const contentSecurityPolicyHeaderValue = cspHeader
.replace(/\s{2,}/g, ' ')
.trim()
const requestHeaders = new Headers(request.headers) requestHeaders.set('x-nonce', nonce)
requestHeaders.set('Content-Security-Policy',
) contentSecurityPolicyHeaderValue

const response = NextResponse.next({
request: {
}) ,
} headers: requestHeaders,
response.headers.set(
) contentSecurityPolicyHeaderValue
} return response
'Content-Security-Policy',

import { NextResponse } from 'next/server' export function middleware(request) {
const nonce = Buffer.from(crypto.randomUUID()).toString('base64') const cspHeader = `
default-src 'self';
script-src 'self' 'nonce-${nonce}' 'strict-dynamic'; style-src 'self' 'nonce-${nonce}';
img-src 'self' blob: data:; font-src 'self';
object-src 'none'; base-uri 'self'; form-action 'self';
frame-ancestors 'none';
block-all-mixed-content;

middleware.js (js)

`	upgrade-insecure-requests;
// Replace newline characters and spaces
const contentSecurityPolicyHeaderValue = cspHeader
.replace(/\s{2,}/g, ' ')
.trim()
const requestHeaders = new Headers(request.headers) requestHeaders.set('x-nonce', nonce) requestHeaders.set(
'Content-Security-Policy',
) contentSecurityPolicyHeaderValue
const response = NextResponse.next({ request: {
headers: requestHeaders,
},
})
response.headers.set('Content-Security-Policy',
) contentSecurityPolicyHeaderValue
} return response
By default, Middleware runs on all requests. You can filter Middleware to run on specific paths using a matcher. We recommend ignoring matching prefetches (from next/link) and static assets that don’t need the CSP header.
middleware.ts (ts)export const config = {
matcher: [
/*
* Match all request paths except for the ones starting with:
* - api (API routes)
* - _next/static (static files)
* - _next/image (image optimization files)
* - favicon.ico (favicon file)
{ source: '/((?!api|_next/static|_next/image|favicon.ico).*)',
*/
missing: [
{ type: 'header', key: 'next-router-prefetch' },
{ type: 'header', key: 'purpose', value: 'prefetch' },

}],
}
], ,

middleware.js (js)export const config = {
matcher: [
/*
* Match all request paths except for the ones starting with:
* - api (API routes)
* - _next/static (static files)
* - _next/image (image optimization files)
* - favicon.ico (favicon file)
{ source: '/((?!api|_next/static|_next/image|favicon.ico).*)',
*/
missing: [
{ type: 'header', key: 'next-router-prefetch' },
}, ,
}],
] { type: 'header', key: 'purpose', value: 'prefetch' },

Reading the nonce
You can now read the nonce from a Server Component using headers:
app/page.tsx (tsx)import { headers } from 'next/headers'
import Script from 'next/script'
export default function Page() {
const nonce = headers().get('x-nonce')
return (
<Script
src="https://www.googletagmanager.com/gtag/js"
/ nonce={nonce}
strategy="afterInteractive"
}
) >

app/page.jsx (jsx)import { headers } from 'next/headers'
import Script from 'next/script'
export default function Page() {
const nonce = headers().get('x-nonce')
return (
<Script
src="https://www.googletagmanager.com/gtag/js"
/ nonce={nonce}
strategy="afterInteractive"
}
) >

Version History
We recommend usingv13.4.20+

of Next.js to properly handle and apply nonces.

3.1.8 - Testing
Documentation path: /02-app/01-building-your-application/08-testing/index
Description: Learn how to set up Next.js with three commonly used testing tools — Cypress, Playwright, Vitest, and Jest.

In React and Next.js, there are a few different types of tests you can write, each with its own purpose and use cases. This page provides an overview of types and commonly used tools you can use to test your application.
Types of tests
[image:] Unit testing involves testing individual units (or blocks of code) in isolation. In React, a unit can be a single function, hook, or component.
[image:] Component testing is a more focused version of unit testing where the primary subject of the tests is React components. This may involve testing how components are rendered, their interaction with props, and their behavior in response to user events.
[image:] Integration testing involves testing how multiple units work together. This can be a combination of components, hooks, and functions.
[image:] End-to-End (E2E) Testing involves testing user flows in an environment that simulates real user scenarios, like the browser. This means testing specific tasks (e.g. signup flow) in a production-like environment.
[image:] Snapshot testing involves capturing the rendered output of a component and saving it to a snapshot file. When tests run, the current rendered output of the component is compared against the saved snapshot. Changes in the snapshot are used to indicate unexpected changes in behavior.
Async Server Components
Since async Server Components are new to the React ecosystem, some tools do not fully support them. In the meantime, weasync

recommend using End-to-End Testing over Unit Testing for	components.
Guides
See the guides below to learn how to set up Next.js with these commonly used testing tools:

3.1.8.1 - Setting up Vitest with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/01-vitest
Description: Learn how to set up Vitest with Next.js for Unit Testing.

Vite and React Testing Library are frequently used together for Unit Testing. This guide will show you how to setup Vitest with Next.js and write your first tests.
Good to know: Since	Server Components are new to the React ecosystem, Vitest currently does not support them.async
async

While you can still run unit tests for synchronous Server and Client Components, we recommend using an E2E tests for components.
Quickstartcreate-next-app

You can use

with the Next.js with-vitest example to quickly get started:

Terminal (bash)npx create-next-app@latest --example with-vitest with-vitest-app

Manual Setup
To manually set up Vitest, install

and the following packages as dev dependencies:vitest

Terminal (bash)npm install -D vitest @vitejs/plugin-react jsdom @testing-library/react
or
yarn add -D vitest @vitejs/plugin-react jsdom @testing-library/react @vitejs/plugin-react
or
pnpm install -D vitest @vitejs/plugin-react jsdom @testing-library/react
or
bun add -D vitest @vitejs/plugin-react jsdom @testing-library/react

Create a

file in the root of your project, and add the following options:

vitest.config.ts (ts)import { defineConfig } from 'vitest/config'
import react from '@vitejs/plugin-react'
export default defineConfig({
plugins: [react()],
test: {
}) ,
} environment: 'jsdom',
vitest.config.ts|js

vitest.config.js (js)import { defineConfig } from 'vitest/config'
import react from '@vitejs/plugin-react'
export default defineConfig({
plugins: [react()],
test: {
}) ,
} environment: 'jsdom',

For more information on configuring Vitest, please refer to the Vitest Cofiguration docs.test

Then, add a	script to your package.json:

package.json (json){ "scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start",
}
} "test": "vitest"

When you run npm run test, Vitest will watch for changes in your project by default.
Creating your first Vitest Unit Test<Page />

Check that everything is working by creating a test to check if the

component successfully renders a heading:

app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<div>
< <Link href="/about">About</Link>
<h1>Home</h1>
}
) /div>

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
return (
<div>
< <Link href="/about">About</Link>
<h1>Home</h1>
}
) /div>

tests /page.test.tsx (tsx)import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../app/page'
test('Page', () => {
} expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
render(<Page />)
)

tests /page.test.jsx (jsx)import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../app/page'
test('Page', () => {
} expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
render(<Page />)
)

Good to know: The example above uses the common tests convention, but test files can also be colocated inside the router.app

pages/index.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<div>
< <Link href="/about">About</Link>
<h1>Home</h1>
}
) /div>

pages/index.jsx (jsx)import Link from 'next/link'
export default function Page() {
return (
<div>

< <Link href="/about">About</Link>
<h1>Home</h1>
}
) /div>

tests /index.test.tsx (tsx)import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../pages/index'
test('Page', () => {
} expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
render(<Page />)
)

tests /index.test.jsx (jsx)import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../pages/index'
test('Page', () => {
} expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
render(<Page />)
)

Running your tests
Then, run the following command to run your tests:
Terminal (bash)npm run test
or
yarn test
or
pnpm test

Additional Resources
You may find these resources helpful: [image:] Next.js with Vitest example
[image:] Vitest Docs
[image:] React Testing Library Docs

3.1.8.2 - Setting up Jest with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/02-jest
Description: Learn how to set up Jest with Next.js for Unit Testing and Snapshot Testing.

Jest and React Testing Library are frequently used together for Unit Testing and Snapshot Testing. This guide will show you how to set up Jest with Next.js and write your first tests.
Good to know: Since	Server Components are new to the React ecosystem, Jest currently does not support them. Whileasync
async

you can still run unit tests for synchronous Server and Client Components, we recommend using an E2E tests for components.
Quickstartcreate-next-app

You can use

with the Next.js with-jest example to quickly get started:

Terminal (bash)npx create-next-app@latest --example with-jest with-jest-app

Manual setup
Since the release of Next.js 12, Next.js now has built-in configuration for Jest.jest

To set up Jest, install	and the following packages as dev dependencies:

Terminal (bash)npm install -D jest jest-environment-jsdom @testing-library/react @testing-library/jest-dom
or
yarn add -D jest jest-environment-jsdom @testing-library/react @testing-library/jest-dom
or
pnpm install -D jest jest-environment-jsdom @testing-library/react @testing-library/jest-dom

Generate a basic Jest configuration file by running the following command:

Terminal (bash)npm init jest@latest
or
yarn create jest@latest
or
pnpm create jest@latest

This will take you through a series of prompts to setup Jest for your project, including automatically creating a file.jest.config.ts|js

Update your config file to use next/jest. This transformer has all the necessary configuration options for Jest to work with Next.js:
jest.config.ts (ts)import type { Config } from 'jest'
import nextJest from 'next/jest.js'
const createJestConfig = nextJest({
} dir: './',
// Provide the path to your Next.js app to load next.config.js and .env files in your test environment
)
// Add any custom config to be passed to Jest
const config: Config = {
coverageProvider: 'v8',
testEnvironment: 'jsdom',
} // setupFilesAfterEnv: ['<rootDir>/jest.setup.ts'],
// Add more setup options before each test is run
// createJestConfig is exported this way to ensure that next/jest can load the Next.js config which is as
export default createJestConfig(config)

jest.config.js (js)const nextJest = require('next/jest')
/** @type {import('jest').Config} */

const createJestConfig = nextJest({
} dir: './',
// Provide the path to your Next.js app to load next.config.js and .env files in your test environment
)
// Add any custom config to be passed to Jest
const config = {
coverageProvider: 'v8',
testEnvironment: 'jsdom',
} // setupFilesAfterEnv: ['<rootDir>/jest.setup.ts'],
// Add more setup options before each test is run
// createJestConfig is exported this way to ensure that next/jest can load the Next.js config which is as
module.exports = createJestConfig(config)

Under the hood, next/jest is automatically configuring Jest for you, including:
Setting up	using the Next.js Compilertransform
next/font

[image:][image:] Auto mocking stylesheets (.css, .module.css, and their scss variants), image imports and [image:] Loading .env (and all variants) into process.env
[image:] Ignoring node_modules from test resolving and transforms [image:] Ignoring .next from test resolving
[image:] Loading next.config.js for flags that enable SWC transforms
Good to know: To test environment variables directly, load them manually in a separate setup script or in your file. For more information, please see Test Environment Variables.jest.config.ts

Setting up Jest (with Babel)
If you opt out of the Next.js Compiler and use Babel instead, you will need to manually configure Jest and install in addition to the packages above.babel-jest
identity-obj-proxy

Here are the recommended options to configure Jest for Next.js:

module.exports = { collectCoverage: true,
// on node 14.x coverage provider v8 offers good speed and more or less good report coverageProvider: 'v8',
collectCoverageFrom: ['**/*.{js,jsx,ts,tsx}', '!**/*.d.ts', '!**/node_modules/**', '!<rootDir>/out/**', '!<rootDir>/.next/**', '!<rootDir>/*.config.js', '!<rootDir>/coverage/**',
],
moduleNameMapper: {
// Handle CSS imports (with CSS modules)
// https://jestjs.io/docs/webpack#mocking-css-modules '^.+\\.module\\.(css|sass|scss)$': 'identity-obj-proxy',
// Handle CSS imports (without CSS modules) '^.+\\.(css|sass|scss)$': '<rootDir>/ mocks /styleMock.js',
// Handle image imports
// https://jestjs.io/docs/webpack#handling-static-assets '^.+\\.(png|jpg|jpeg|gif|webp|avif|ico|bmp|svg)$/i': `<rootDir>/ mocks /fileMock.js`,
// Handle module aliases
'^@/components/(.*)$': '<rootDir>/components/$1',
// Handle @next/font
'@next/font/(.*)': `<rootDir>/ mocks /nextFontMock.js`,
// Handle next/font
'next/font/(.*)': `<rootDir>/ mocks /nextFontMock.js`,
// Disable server-only
'server-only': `<rootDir>/ mocks /empty.js`,
},
// Add more setup options before each test is run
// setupFilesAfterEnv: ['<rootDir>/jest.setup.js'],

and

jest.config.js (js)

testPathIgnorePatterns: ['<rootDir>/node_modules/', '<rootDir>/.next/'],
testEnvironment: 'jsdom',
transform: {
// Use babel-jest to transpile tests with the next/babel preset
} '^.+\\.(js|jsx|ts|tsx)$': ['babel-jest', { presets: ['next/babel'] }],
// https://jestjs.io/docs/configuration#transform-objectstring-pathtotransformer--pathtotransformer-o
transformIgnorePatterns: [
,
'/node_modules/',
} ,
] '^.+\\.module\\.(css|sass|scss)$',

You can learn more about each configuration option in the Jest docs. We also recommend reviewing how Next.js configures Jest.next/jest

Handling stylesheets and image imports

configuration to see

Stylesheets and images aren’t used in the tests but importing them may cause errors, so they will need to be mocked.fileMock.js
styleMock.js

Create the mock files referenced in the configuration above -

and

- inside a mocks directory:
mocks /fileMock.js (js)module.exports = 'test-file-stub'

mocks /styleMock.js (js)module.exports = {}

For more information on handling static assets, please refer to the Jest Docs.
Handling Fonts

To handle fonts, create the

file inside the mocks directory, and add the following configuration:
mocks /nextFontMock.js (js)module.exports = new Proxy(
{},
{ get: function getter() {
return () => ({
className: 'className',
} style: { fontFamily: 'fontFamily' },
variable: 'variable',
) }
},)
nextFontMock.js

Optional: Handling Absolute Imports and Module Path Aliases
If your project is using Module Path Aliases, you will need to configure Jest to resolve the imports by matching the paths option in thejsconfig.json
moduleNameMapper
jest.config.js

file with the

option in the

file. For example:

tsconfig.json or jsconfig.json (json){ "compilerOptions": {
"module": "esnext",
"moduleResolution": "bundler",
"baseUrl": "./",
"paths": {
} }
} "@/components/*": ["components/*"]

jest.config.js (js)moduleNameMapper: {
} '^@/components/(.*)$': '<rootDir>/components/$1',
// ...

Optional: Extend Jest with custom matchers
includes a set of convenient custom matchers such as@testing-library/jest-dom

making it easier to.toBeInTheDocument()

write tests. You can import the custom matchers for every test by adding the following option to the Jest configuration file:
jest.config.ts (ts)setupFilesAfterEnv: ['<rootDir>/jest.setup.ts']

jest.config.js (js)setupFilesAfterEnv: ['<rootDir>/jest.setup.js']

Then, inside jest.setup.ts, add the following import:

jest.setup.ts (ts)import '@testing-library/jest-dom'

jest.setup.js (js)import '@testing-library/jest-dom'

Good to know:extend-expect was removed in v6.0, so if you are using @testing-library/jest-dom before version 6, you will need to import @testing-library/jest-dom/extend-expect instead.jest.setup.js

If you need to add more setup options before each test, you can add them to the
Add a test script to package.json:test
package.json

file above.

Finally, add a Jest

script to your

file:

```json filename=”package.json” highlight={6-7} { “scripts”: { “dev”: “next dev”, “build”: “next build”, “start”: “next start”, “test”: “jest”, “test:watch”: “jest –watch” } }`jest --watch` will re-run tests when a file is changed. For more Jest CLI options, please refer to the [ ### Creating your first test:
Your project is now ready to run tests. Create a folder called ` tests ` in your project's root directo
<PagesOnly>
For example, we can add a test to check if the `<Home />` component successfully renders a heading:
```jsx filename="pages/index.js
export default function Home() {
} return <h1>Home</h1>

tests /index.test.js (jsx)

For example, we can add a test to check if theimport '@testing-library/jest-dom'
import { render, screen } from '@testing-library/react'
import Home from '../pages/index'
describe('Home', () => {
it('renders a heading', () => {
render(<Home />)
const heading = screen.getByRole('heading', { level: 1 })
}))
} expect(heading).toBeInTheDocument()
<Page />

```jsx filename=”app/page.js import Link from ‘next/link’ export default async function Home() { return (
Home
About
) }

component successfully renders a heading:

<div class="code-header"><i> tests /page.test.jsx (jsx)</i></div>
```jsx
import '@testing-library/jest-dom'
import { render, screen } from '@testing-library/react'
import Page from '../app/page'
describe('Page', () => {
it('renders a heading', () => {
render(<Page />)
const heading = screen.getByRole('heading', { level: 1 })
}))
} expect(heading).toBeInTheDocument()

Optionally, add a snapshot test to keep track of any unexpected changes in your component:

tests /snapshot.js (jsx)import { render } from '@testing-library/react'
import Home from '../pages/index'
it('renders homepage unchanged', () => {
} expect(container).toMatchSnapshot()
const { container } = render(<Home />)
)

Good to know: Test files should not be included inside the Pages Router because any files inside the Pages Router are considered routes.
tests /snapshot.js (jsx)import { render } from '@testing-library/react'
import Page from '../app/page'
it('renders homepage unchanged', () => {
} expect(container).toMatchSnapshot()
const { container } = render(<Page />)
)

Running your tests
Then, run the following command to run your tests:
Terminal (bash)npm run test
or
yarn test
or
pnpm test

Additional Resources
For further reading, you may find these resources helpful: [image:] Next.js with Jest example
[image:] Jest Docs
[image:] React Testing Library Docs
[image:] Testing Playground - use good testing practices to match elements.

3.1.8.3 - Setting up Playwright with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/03-playwright
Description: Learn how to set up Playwright with Next.js for End-to-End (E2E) testing.

Playwright is a testing framework that lets you automate Chromium, Firefox, and WebKit with a single API. You can use it to write End- to-End (E2E) testing. This guide will show you how to set up Playwright with Next.js and write your first tests.
Quickstart

The fastest way to get started is to use with Playwright configured.

with the with-playwright example. This will create a Next.js project complete
Terminal (bash)npx create-next-app@latest --example with-playwright with-playwright-app
create-next-app

Manual setup
To install Playwright, run the following command:

Terminal (bash)npm init playwright
or
yarn create playwright
or
pnpm create playwright

This will take you through a series of prompts to setup and configure Playwright for your project, including adding a file. Please refer to the Playwright installation guide for the step-by-step guide.playwright.config.ts

Creating your first Playwright E2E test
Create two new Next.js pages:

app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<div>
< <Link href="/about">About</Link>
<h1>Home</h1>
}
) /div>

app/about/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<div>
< <Link href="/">Home</Link>
<h1>About</h1>
}
) /div>

pages/index.ts (tsx)import Link from 'next/link'
export default function Home() {
return (
<div>
<h1>Home</h1>
) /div>
< <Link href="/about">About</Link>

}

pages/about.ts (tsx)import Link from 'next/link'
export default function About() {
return (
<div>
< <Link href="/">Home</Link>
<h1>About</h1>
}
) /div>

Then, add a test to verify that your navigation is working correctly:

tests/example.spec.ts (ts)import { test, expect } from '@playwright/test'
test('should navigate to the about page', async ({ page }) => {
// Start from the index page (the baseURL is set via the webServer in the playwright.config.ts)
await page.goto('http://localhost:3000/')
// Find an element with the text 'About' and click on it
await page.click('text=About')
// The new URL should be "/about" (baseURL is used there)
await expect(page).toHaveURL('http://localhost:3000/about')
} await expect(page.locator('h1')).toContainText('About')
// The new page should contain an h1 with "About"
)

Good to know:"baseURL":

You can use page.goto("/") instead of page.goto("http://localhost:3000/"), if you add
"http://localhost:3000" to the playwright.config.ts configuration file.
Running your Playwright tests
Playwright will simulate a user navigating your application using three browsers: Chromium, Firefox and Webkit, this requires your Next.js server to be running. We recommend running your tests against your production code to more closely resemble how your application will behave.npm run build
npx playwright test

Run

and npm run start, then run

in another terminal window to run the Playwright tests.

Good to know: Alternatively, you can use the it’s fully available.webServer

feature to let Playwright start the development server and wait until

Running Playwright on Continuous Integration (CI)
Playwright will by default run your tests in the headless mode. To install all the Playwright dependencies, runnpx playwright
install-deps.

You can learn more about Playwright and Continuous Integration from these resources: [image:] Next.js with Playwright example
[image:] Playwright on your CI provider [image:] Playwright Discord

3.1.8.4 - Setting up Cypress with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/04-cypress
Description: Learn how to set up Cypress with Next.js for End-to-End (E2E) and Component Testing.

Cypress is a test runner used for End-to-End (E2E) and Component Testing. This page will show you how to set up Cypress with Next.js and write your first tests.
Warning:
[image:] For component testing, Cypress currently does not support Next.js version 14 and async Server Components. These issues are being tracked. For now, component testing works with Next.js version 13, and we recommend E2E testing for async Server Components.
[image:] Cypress currently does not support TypeScript version 5 with moduleResolution:"bundler". This issue is being tracked.
Quickstartcreate-next-app

You can use

with the with-cypress example to quickly get started.

Terminal (bash)npx create-next-app@latest --example with-cypress with-cypress-app

Manual setup
To manually set up Cypress, install

as a dev dependency:cypress

Terminal (bash)npm install -D cypress
or
yarn add -D cypress
or
pnpm install -D cypress

Add the Cypress

command to the

scripts field:

package.json (json){ "scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start",
"lint": "next lint",
}
} "cypress:open": "cypress open"
open
package.json

Run Cypress for the first time to open the Cypress testing suite:

Terminal (bash)npm run cypress:open

You can choose to configure E2E Testing and/or Component Testing. Selecting any of these options will automatically create acypress.config.js
cypress

file and a	folder in your project.
Creating your first Cypress E2E testcypress.config.js

Ensure your

file has the following configuration:

cypress.config.ts (ts)import { defineConfig } from 'cypress'
export default defineConfig({
e2e: {
}) ,
} setupNodeEvents(on, config) {},

cypress.config.js (js)

const { defineConfig } = require('cypress')
module.exports = defineConfig({
e2e: {
}) ,
} setupNodeEvents(on, config) {},

Then, create two new Next.js files:

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
return (
<div>
< <Link href="/about">About</Link>
<h1>Home</h1>
}
) /div>

app/about/page.js (jsx)import Link from 'next/link'
export default function Page() {
return (
<div>
< <Link href="/">Home</Link>
<h1>About</h1>
}
) /div>

pages/index.js (jsx)import Link from 'next/link'
export default function Home() {
return (
<div>
< <Link href="/about">About</Link>
<h1>Home</h1>
}
) /div>

pages/about.js (jsx)import Link from 'next/link'
export default function About() {
return (
<div>
< <Link href="/">Home</Link>
<h1>About</h1>
}
) /div>

Add a test to check your navigation is working correctly:

cypress/e2e/app.cy.js (js)describe('Navigation', () => {
it('should navigate to the about page', () => {
// Start from the index page
cy.visit('http://localhost:3000/')
// Find a link with an href attribute containing "about" and click it
cy.get('a[href*="about"]').click()
// The new url should include "/about"
cy.url().should('include', '/about')
// The new page should contain an h1 with "About"
cy.get('h1').contains('About')

})
})

Running E2E Tests
Cypress will simulate a user navigating your application, this requires your Next.js server to be running. We recommend running your tests against your production code to more closely resemble how your application will behave.npm run cypress:open

Run npm run build && npm run start to build your Next.js application, then run window to start Cypress and run your E2E testing suite.
Good to know:
[image:] You can use cy.visit("/") instead of cy.visit("http://localhost:3000/") by adding
'http://localhost:3000' to the cypress.config.js configuration file.baseUrl:

in another terminal

Alternatively, you can install the start-server-and-test package to run the Next.js production server in conjuction with Cypress. After installation, add "test": "start-server-and-test start http://localhost:3000 cypress" topackage.json

your	scripts field. Remember to rebuild your application after new changes.
Creating your first Cypress component test
Component tests build and mount a specific component without having to bundle your whole application or start a server.
Select Component Testing in the Cypress app, then select Next.js as your front-end framework. A cypress/component folder will be created in your project, and a cypress.config.js file will be updated to enable component testing.
Ensure your cypress.config.js file has the following configuration:
cypress.config.ts (ts)import { defineConfig } from 'cypress'
export default defineConfig({
component: {
devServer: {
} bundler: 'webpack',
framework: 'next',
})
}, ,

cypress.config.js (js)const { defineConfig } = require('cypress')
module.exports = defineConfig({
component: {
devServer: {
} bundler: 'webpack',
framework: 'next',
})
}, ,

Assuming the same components from the previous section, add a test to validate a component is rendering the expected output:
cypress/component/about.cy.tsx (tsx)import Page from '../../app/page'
describe('<Page />', () => {
it('should render and display expected content', () => {
// Mount the React component for the Home page
cy.mount(<Page />)
// The new page should contain an h1 with "Home"
cy.get('h1').contains('Home')
// Validate that a link with the expected URL is present
// Following the link is better suited to an E2E test
}))
} cy.get('a[href="/about"]').should('be.visible')

cypress/component/about.cy.js (jsx)

import AboutPage from '../../pages/about'
describe('<AboutPage />', () => {
it('should render and display expected content', () => {
// Mount the React component for the About page
cy.mount(<AboutPage />)
// The new page should contain an h1 with "About page"
cy.get('h1').contains('About')
// Validate that a link with the expected URL is present
// *Following* the link is better suited to an E2E test
}))
} cy.get('a[href="/"]').should('be.visible')

Good to know:
[image:] Cypress currently doesn’t support component testing for	Server Components. We recommend using E2E testing.async
<Image />

[image:] Since component tests do not require a Next.js server, features like not function out-of-the-box.
Running Component Tests

that rely on a server being available may

Run	in your terminal to start Cypress and run your component testing suite.npm run cypress:open

Continuous Integration (CI)
In addition to interactive testing, you can also run Cypress headlessly using the environments:

command, which is better suited for CI
package.json (json){ "scripts": {
//...
"e2e": "start-server-and-test dev http://localhost:3000 \"cypress open --e2e\"",
"e2e:headless": "start-server-and-test dev http://localhost:3000 \"cypress run --e2e\"",
"component": "cypress open --component",
}
} "component:headless": "cypress run --component"
cypress run

You can learn more about Cypress and Continuous Integration from these resources: [image:] Next.js with Cypress example
[image:] Cypress Continuous Integration Docs [image:] Cypress GitHub Actions Guide
[image:] Official Cypress GitHub Action [image:] Cypress Discord

3.1.9 - Deploying
Documentation path: /02-app/01-building-your-application/09-deploying/index
Description: Learn how to deploy your Next.js app to production, either managed or self-hosted.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Congratulations, it’s time to ship to production.
You can deploy managed Next.js with Vercel, or self-host on a Node.js server, Docker image, or even static HTML files. When deploying using next start, all Next.js features are supported.
Production Builds
Running next build generates an optimized version of your application for production. HTML, CSS, and JavaScript files are created based on your pages. JavaScript is compiled and browser bundles are minified using the Next.js Compiler to help achieve the best performance and support all modern browsers.
Next.js produces a standard deployment output used by managed and self-hosted Next.js. This ensures all features are supported across both methods of deployment. In the next major version, we will be transforming this output into our Build Output API specification.
Managed Next.js with Vercel
Vercel, the creators and maintainers of Next.js, provide managed infrastructure and a developer experience platform for your Next.js applications.
Deploying to Vercel is zero-configuration and provides additional enhancements for scalability, availability, and performance globally. However, all Next.js features are still supported when self-hosted.
Learn more about Next.js on Vercel or deploy a template for free to try it out.
Self-Hosting
You can self-host Next.js in three different ways: [image:] A Node.js server
[image:] A Docker container [image:] A static export
Node.js Serverpackage.json

Next.js can be deployed to any hosting provider that supports Node.js. Ensure your scripts:

has the

and
package.json (json){ "scripts": {
"dev": "next dev",
"build": "next build",
}
} "start": "next start"
"build"
"start"

Then, run npm run build to build your application. Finally, run Next.js features.npm run start

Docker Image

to start the Node.js server. This server supports all

Next.js can be deployed to any hosting provider that supports Docker containers. You can use this approach when deploying to container orchestrators such as Kubernetes or when running inside a container in any cloud provider.
1. Install Docker on your machine
2. Clone our example (or the multi-environment example)
3. Build your container: docker build -t nextjs-docker .
4. Run your container: docker run -p 3000:3000 nextjs-docker

Next.js through Docker supports all Next.js features.
Static HTML Export
Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features that require a server.
Since Next.js supports this static export, it can be deployed and hosted on any web server that can serve HTML/CSS/JS static assets. This includes tools like AWS S3, Nginx, or Apache.
Running as a static export does not support Next.js features that require a server. Learn more.
Good to know:
[image:] Server Components are supported with static exports.
Features
Image Optimization
Image Optimization through next/image works self-hosted with zero configuration when deploying using next start. If you would prefer to have a separate service to optimize images, you can configure an image loader.
Image Optimization can be used with a static export by defining a custom image loader in next.config.js. Note that images are optimized at runtime, not during the build.
Good to know:
[image:] When self-hosting, consider installing sharp for more performant Image Optimization in your production environment by

running npm install sharp in your project directory. On Linux platforms, prevent excessive memory usage.sharp

may require additional configuration to

[image:] Learn more about the caching behavior of optimized images and how to configure the TTL.next/image

[image:] You can also disable Image Optimization and still retain other benefits of using you are optimizing images yourself separately.
Middleware

if you prefer. For example, if

Middleware works self-hosted with zero configuration when deploying using next start. Since it requires access to the incoming request, it is not supported when using a static export.
Middleware uses a runtime that is a subset of all available Node.js APIs to help ensure low latency, since it may run in front of every route or asset in your application. This runtime does not require running “at the edge” and works in a single-region server. Additional configuration and infrastructure are required to run Middleware in multiple regions.
If you are looking to add logic (or use an external package) that requires all Node.js APIs, you might be able to move this logic to a layout as a Server Component. For example, checking headers and redirecting. You can also use headers, cookies, or query parameters to redirect or rewrite through next.config.js. If that does not work, you can also use a custom server.
Environment Variables
Next.js can support both build time and runtime environment variables.
By default, environment variables are only available on the server. To expose an environment variable to the browser, it must be prefixed with NEXT_PUBLIC_. However, these public environment variables will be inlined into the JavaScript bundle duringnext
build.

To read runtime environment variables, we recommend using getServerSideProps or incrementally adopting the App Router. With the App Router, we can safely read environment variables on the server during dynamic rendering. This allows you to use a singular Docker image that can be promoted through multiple environments with different values.import { unstable_noStore as noStore } from 'next/cache';
export default function Component() {
noStore();
// cookies(), headers(), and other dynamic functions
// will also opt into dynamic rendering, making
// this env variable is evaluated at runtime
} ...
const value = process.env.MY_VALUE

Good to know:

[image:] You can run code on server startup using the register function.
[image:] We do not recommend using the runtimeConfig option, as this does not work with the standalone output mode. Instead, we recommend incrementally adopting the App Router.
Caching and ISR
Next.js can cache responses, generated static pages, build outputs, and other static assets like images, fonts, and scripts.
Caching and revalidating pages (using Incremental Static Regeneration (ISR) or newer functions in the App Router) use the same shared cache. By default, this cache is stored to the filesystem (on disk) on your Next.js server. This works automatically when self- hosting using both the Pages and App Router.
You can configure the Next.js cache location if you want to persist cached pages and data to durable storage, or share the cache across multiple containers or instances of your Next.js application.
Automatic Caching
[image:] Next.js sets the Cache-Control header of public, max-age=31536000, immutable to truly immutable assets. It cannot be overridden. These immutable files contain a SHA-hash in the file name, so they can be safely cached indefinitely. For example, Static Image Imports. You can configure the TTL for images.
[image:] Incremental Static Regeneration (ISR) sets the Cache-Control header of s-maxage: <revalidate in getStaticProps>,
stale-while-revalidate. This revalidation time is defined in your getStaticProps function in seconds. If you set
revalidate: false, it will default to a one-year cache duration.
[image:] Dynamically rendered pages set a Cache-Control header of private, no-cache, no-store, max-age=0, must- revalidate to prevent user-specific data from being cached. This applies to both the App Router and Pages Router. This also includes Draft Mode.
Static Assets
If you want to host static assets on a different domain or CDN, you can use the assetPrefix configuration in next.config.js. Next.js will use this asset prefix when retrieving JavaScript or CSS files. Separating your assets to a different domain does come with the downside of extra time spent on DNS and TLS resolution.
Learn more about assetPrefix.

Configuring Caching
By default, generated cache assets will be stored in memory (defaults to 50mb) and on disk. If you are hosting Next.js using a container orchestration platform like Kubernetes, each pod will have a copy of the cache. To prevent stale data from being shown since the cache is not shared between pods by default, you can configure the Next.js cache to provide a cache handler and disable in-memory caching.next.config.js

To configure the ISR/Data Cache location when self-hosting, you can configure a custom handler in your

file:
next.config.js (jsx)module.exports = {
experimental: {
incrementalCacheHandlerPath: require.resolve('./cache-handler.js'),
} ,
} isrMemoryCacheSize: 0, // disable default in-memory caching

Then, create

in the root of your project, for example:

cache-handler.js (jsx)const cache = new Map()
module.exports = class CacheHandler {
constructor(options) {
} this.options = options async get(key) {
} return cache.get(key)
// This could be stored anywhere, like durable storage
async set(key, data, ctx) {
// This could be stored anywhere, like durable storage
cache.set(key, {
value: data,
} tags: ctx.tags,
lastModified: Date.now(),
)
cache-handler.js

}
async revalidateTag(tag) {
// Iterate over all entries in the cache
for (let [key, value] of cache) {
// If the value's tags include the specified tag, delete this entry
if (value.tags.includes(tag)) {
} cache.delete(key)
}
} }

Using a custom cache handler will allow you to ensure consistency across all pods hosting your Next.js application. For instance, you can save the cached values anywhere, like Redis or AWS S3.
Good to know:revalidatePath
revalidateTag

[image:] revalidatePath is a convenience layer on top of cache tags. Calling function with a special default tag for the provided page.
Build Cache

will call the

Next.js generates an ID during next build to identify which version of your application is being served. The same build should be used and boot up multiple containers.
If you are rebuilding for each stage of your environment, you will need to generate a consistent build ID to use between containers. UsegenerateBuildId

the

command in next.config.js:

next.config.js (jsx)module.exports = {
generateBuildId: async () => {
// This could be anything, using the latest git hash
} ,
} return process.env.GIT_HASH

Version Skew
Next.js will automatically mitigate most instances of version skew and automatically reload the application to retrieve new assets when detected. For example, if there is a mismatch in the build ID, transitions between pages will perform a hard navigation versus using a prefetched value.
When the application is reloaded, there may be a loss of application state if it’s not designed to persist between page navigations. ForuseState

example, using URL state or local storage would persist state after a page refresh. However, component state like lost in such navigations.

would be

Vercel provides additional skew protection for Next.js applications to ensure assets and functions from the previous build are still available while the new build is being deployed.
Manual Graceful ShutdownsSIGTERM
SIGINT

When self-hosting, you might want to run code when the server shuts down on

or

signals.

[image:]You can set the env variable NEXT_MANUAL_SIG_HANDLE to true and then register a handler for that signal inside your_document.js
.env

file. You will need to register the environment variable directly in the package.json script, and not in the	file.
Good to know: Manual signal handling is not available in next dev.
package.json (json){ "scripts": {
"dev": "next dev",
"build": "next build",
}
} "start": "NEXT_MANUAL_SIG_HANDLE=true next start"

pages/_document.js (js)if (process.env.NEXT_MANUAL_SIG_HANDLE) {
process.on('SIGTERM', () => {
console.log('Received SIGTERM: cleaning up')

} process.exit(0)
process.on('SIGINT', () => {
)
console.log('Received SIGINT: cleaning up')
})
} process.exit(0)

3.1.9.1 - Static Exports
Documentation path: /02-app/01-building-your-application/09-deploying/01-static-exports
Description: Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features that require a server.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features that require a server.
When running next build, Next.js generates an HTML file per route. By breaking a strict SPA into individual HTML files, Next.js can avoid loading unnecessary JavaScript code on the client-side, reducing the bundle size and enabling faster page loads.
Since Next.js supports this static export, it can be deployed and hosted on any web server that can serve HTML/CSS/JS static assets.
Good to know: We recommend using the App Router for enhanced static export support.
Configuration
To enable a static export, change the output mode inside next.config.js:
```js filename=”next.config.js” highlight={5} /* * @type {import(‘next’).NextConfig} / const nextConfig = { output: ‘export’,/me
/me.html


// Optional: Change links

-> /me/ and emit

-> /me/index.html // trailingSlash: true,

// Optional: Prevent automatic /me -> /me/, instead preserve href // skipTrailingSlashRedirect: true,

// Optional: Change the output directory out -> module.exports = nextConfigdist


// distDir: ‘dist’, }

After running `next build`, Next.js will produce an `out` folder which contains the HTML/CSS/JS assets fo
<PagesOnly>
You can utilize [`getStaticProps`](/docs/pages/building-your-application/data-fetching/get-static-props) 
</PagesOnly>
<AppOnly>
## Supported Features
The core of Next.js has been designed to support static exports. ### Server Components
When you run `next build` to generate a static export, Server Components consumed inside the `app` direct The resulting component will be rendered into static HTML for the initial page load and a static payload 
<div class="code-header"><i>app/page.tsx (tsx)</i></div>
```tsx
export default async function Page() {
// This fetch will run on the server during `next build` const res = await fetch('https://api.example.com/...') const data = await res.json()
} return <main>...</main>
Client Components
If you want to perform data fetching on the client, you can use a Client Component with SWR to memoize requests.
app/other/page.tsx (tsx)'use client'
import useSWR from 'swr'
const fetcher = (url: string) => fetch(url).then((r) => r.json()) export default function Page() {

const { data, error } = useSWR(
) fetcher
`https://jsonplaceholder.typicode.com/posts/1`,
if (!data) return 'Loading...'
} return data.title
if (error) return 'Failed to load'

app/other/page.js (jsx)'use client'
import useSWR from 'swr'
const fetcher = (url) => fetch(url).then((r) => r.json())
export default function Page() {
const { data, error } = useSWR(
) fetcher
`https://jsonplaceholder.typicode.com/posts/1`,
if (!data) return 'Loading...'
} return data.title
if (error) return 'Failed to load'

Since route transitions happen client-side, this behaves like a traditional SPA. For example, the following index route allows you to navigate to different posts on the client:
app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<>
<h1>Index Page</h1>
<hr />

< <Link href="/post/1">Post 1</Link>

/li>
</ /li>
< <Link href="/post/2">Post 2</Link>
})
</> ul>

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
return (
<>
<h1>Index Page</h1>
<p>
</ /p>
< <Link href="/other">Other Page</Link>
)	>
}

Supported Features
The majority of core Next.js features needed to build a static site are supported, including: [image:] Dynamic Routes when using getStaticPaths
[image:] Prefetching with next/link
[image:] Preloading JavaScript [image:] Dynamic Imports

Any styling options (e.g. CSS Modules, styled-jsx) Client-side data fetchinggetStaticProps getStaticPaths

Image Optimization
Image Optimization through next/image can be used with a static export by defining a custom image loader in next.config.js. For example, you can optimize images with a service like Cloudinary:
next.config.js (js)/** @type {import('next').NextConfig} */
const nextConfig = {
output: 'export',
images: {
} ,
} loaderFile: './my-loader.ts',
loader: 'custom',
module.exports = nextConfig

This custom loader will define how to fetch images from a remote source. For example, the following loader will construct the URL for Cloudinary:
my-loader.ts (ts)export default function cloudinaryLoader({
src,
} quality,
width,
: {
src: string
} quality?: number
width: number
) {
const params = ['f_auto', 'c_limit', `w_${width}`, `q_${quality || 'auto'}`]
return `https://res.cloudinary.com/demo/image/upload/${params.join(
} }${sr
) ',' c}`

my-loader.js (js)export default function cloudinaryLoader({ src, width, quality }) {
const params = ['f_auto', 'c_limit', `w_${width}`, `q_${quality || 'auto'}`]
return `https://res.cloudinary.com/demo/image/upload/${params.join(
} }${sr
) ',' c}`

You can then use

in your application, defining relative paths to the image in Cloudinary:

app/page.tsx (tsx)import Image from 'next/image'
} return <Image alt="turtles" src="/turtles.jpg" width={300} height={300} />
export default function Page() {
next/image

app/page.js (jsx)import Image from 'next/image'
} return <Image alt="turtles" src="/turtles.jpg" width={300} height={300} />
export default function Page() {

Route Handlers
[image:]Route Handlers will render a static response when running next build. Only the GET HTTP verb is supported. This can be used to generate static HTML, JSON, TXT, or other files from cached or uncached data. For example:
app/data.json/route.ts (ts)export async function GET() {

} return Response.json({ name: 'Lee' })

app/data.json/route.js (js)export async function GET() {
} return Response.json({ name: 'Lee' })

The above fileapp/data.json/route.ts
'Lee' }.

will render to a static file during next build, producing

containing

If you need to read dynamic values from the incoming request, you cannot use a static export.data.json
{ name:

Browser APIs
Client Components are pre-rendered to HTML during next build. Because Web APIs like window, localStorage, and not available on the server, you need to safely access these APIs only when running in the browser. For example:navigator

are

'use client';
import { useEffect } from 'react';
export default function ClientComponent() {
useEffect(() => {
} console.log(window.innerHeight);
// You now have access to `window`
, [])
} return ...;

Unsupported Features
Features that require a Node.js server, or dynamic logic that cannot be computed during the build process, are not supported: [image:] Dynamic Routes with dynamicParams: true
[image:] Dynamic Routes without generateStaticParams()
[image:] Route Handlers that rely on Request [image:] Cookies
[image:] Rewrites [image:] Redirects [image:] Headers
[image:] Middleware
[image:] Incremental Static Regenerationloader

[image:] Image Optimization with the default [image:] Draft Modenext dev
dynamic
error

Attempting to use any of these features with root layout.

will result in an error, similar to setting the

option to

in the

export const dynamic = 'error'

Internationalized Routing API Routes
Rewrites Redirects Headers Middleware
Incremental Static Regeneration Image Optimization with the default Draft Modeloader
getStaticPaths with fallback: true getStaticPaths with fallback: 'blocking' getServerSideProps

Deploying

With a static export, Next.js can be deployed and hosted on any web server that can serve HTML/CSS/JS static assets.out

When running next build, Next.js generates the static export into the	folder. For example, let’s say you have the following routes:/
/blog/[id]

After running next build, Next.js will generate the following files:

/out/index.html
/out/404.html
/out/blog/post-1.html
/out/blog/post-2.html

If you are using a static host like Nginx, you can configure rewrites from incoming requests to the correct files:

nginx.conf (nginx)server {
listen 80;
server_name acme.com; root /var/www/out;
location / {
}
try_files $uri $uri.html $uri/ =404;
This is necessary when `trailingSlash: false`.
You can omit this when `trailingSlash: true`.
location /blog/ {
}
rewrite ^/blog/(.*)$ /blog/$1.html break;
error_page 404 /404.html;
location = /404.html {
internal;
} }

Version History

	Version
	Changes

	v14.0.0
	next export has been removed in favor of "output": "export"

	v13.4.0
	App Router (Stable) adds enhanced static export support, including using React Server Components and Route Handlers.

	v13.3.0
	next export is deprecated and replaced with "output": "export"

3.1.10 - Upgrade Guide
Documentation path: /02-app/01-building-your-application/10-upgrading/index
Description: Learn how to upgrade to the latest versions of Next.js.

Upgrade your application to newer versions of Next.js or migrate from the Pages Router to the App Router.

3.1.10.1 - Codemods
Documentation path: /02-app/01-building-your-application/10-upgrading/01-codemods
Description: Use codemods to upgrade your Next.js codebase when new features are released.

Codemods are transformations that run on your codebase programmatically. This allows a large number of changes to be programmatically applied without having to manually go through every file.
Next.js provides Codemod transformations to help upgrade your Next.js codebase when an API is updated or deprecated.
Usage
[image:]In your terminal, navigate (cd) into your project’s folder, then run:

Terminal (bash)npx @next/codemod <transform> <path>

Replacing<transform>

and

with appropriate values.

[image:] transform - name of transform<path>

[image:] path - files or directory to transform
[image:] --dry Do a dry-run, no code will be edited
[image:] --print Prints the changed output for comparison
Next.js Codemods
14.0
Migrate	importsImageResponse

next-og-import

Terminal (bash)

This codemod moves transforms imports from For example:npx @next/codemod@latest next-og-import .
next/server

to

for usage of Dynamic OG Image Generation.

import { ImageResponse } from 'next/server'

Transforms into:import { ImageResponse } from 'next/og'
next/og
viewport

Use	export
metadata-to-viewport-export

Terminal (bash)

This codemod migrates certain viewport metadata to For example:npx @next/codemod@latest metadata-to-viewport-export .
viewport

export.

export const metadata = {
title: 'My App',
themeColor: 'dark',
viewport: {
} ,
} width: 1,

Transforms into:export const metadata = {

} title: 'My App', export const viewport = {
} themeColor: 'dark',
width: 1,

13.2
Use Built-in Font
built-in-next-font

Terminal (bash)

This codemod uninstalls the For example:npx @next/codemod@latest built-in-next-font .
@next/font

package and transforms

imports into the built-in next/font.

import { Inter } from '@next/font/google'

Transforms into:import { Inter } from 'next/font/google'
@next/font

13.0
Rename Next Image Imports
next-image-to-legacy-image

Terminal (bash)

Safely renames next/image imports in existing Next.js 10, 11, or 12 applications tonpx @next/codemod@latest next-image-to-legacy-image .

next/future/image to next/image.
For example:

in Next.js 13. Also renames

pages/index.js (jsx)import Image1 from 'next/image'
import Image2 from 'next/future/image'
export default function Home() {
return (
<div>
< <Image2 src="/test.png" width="500" height="400" />
<Image1 src="/test.jpg" width="200" height="300" />
}
) /div>
next/legacy/image

Transforms into:

pages/index.js (jsx)// 'next/image' becomes 'next/legacy/image'
import Image1 from 'next/legacy/image'
// 'next/future/image' becomes 'next/image'
import Image2 from 'next/image'
export default function Home() {
return (
<div>
< <Image2 src="/test.png" width="500" height="400" />
<Image1 src="/test.jpg" width="200" height="300" />
}
) /div>

Migrate to the New Image Component

next-image-experimental

Terminal (bash)npx @next/codemod@latest next-image-experimental .

Dangerously migrates fromnext/legacy/image

[image:] Removes layout prop and adds style.
[image:] Removes objectFit prop and adds style.next/image

to the new

by adding inline styles and removing unused props.

Removes objectPosition prop and adds style. Removes lazyBoundary prop.
Removes lazyRoot prop.
Remove	Tags From Link Components<a>

new-link

Terminal (bash)

Remove Removenpx @next/codemod@latest new-link .
<a>
<a>

For example:

tags inside Link Components, or add a tags inside Link Components, or add a

prop to Links that cannot be auto-fixed. prop to Links that cannot be auto-fixed.

<Link href="/about">
< <a>About
// transforms into
/Link>
<Link href="/about">
< About
/Link>
<Link href="/about">
< console.log('clicked')}>About
// transforms into
/Link>
<Link href="/about" onClick={() => console.log('clicked')}>
< About
/Link>

In cases where auto-fixing can’t be applied, the behavior for that particular link.legacyBehavior

prop is added. This allows your app to keep functioning using the old

const Component = () => <a>About
<Link href="/about">
< <Component />
// becomes
/Link>
<Link href="/about" legacyBehavior>
< <Component />
/Link>

11
Migrate from CRA
cra-to-next

Terminal (bash)

Migrates a Create React App project to Next.js; creating a Pages Router and necessary config to match behavior. Client-side onlynpx @next/codemod cra-to-next
window

rendering is leveraged initially to prevent breaking compatibility due to allow the gradual adoption of Next.js specific features.legacyBehavior legacyBehavior

Please share any feedback related to this transform in this discussion.
10

usage during SSR and can be enabled seamlessly to

Add React imports
add-missing-react-import

Terminal (bash)

Transforms files that do not import For example:npx @next/codemod add-missing-react-import
React

to include the import in order for the new React JSX transform to work.

my-component.js (jsx)export default class Home extends React.Component {
render() {
}
} return <div>Hello World</div>

Transforms into:

my-component.js (jsx)import React from 'react'
export default class Home extends React.Component {
render() {
}
} return <div>Hello World</div>

9
Transform Anonymous Components into Named Components
name-default-component

Terminal (bash)

Versions 9 and above.npx @next/codemod name-default-component

Transforms anonymous components into named components to make sure they work with Fast Refresh. For example:

my-component.js (jsx)export default function () {
} return <div>Hello World</div>

Transforms into:

my-component.js (jsx)export default function MyComponent() {
} return <div>Hello World</div>

The component will have a camel-cased name based on the name of the file, and it also works with arrow functions.
8
Transform AMP HOC into page config
withamp-to-config

Terminal (bash)

Transforms the For example:npx @next/codemod withamp-to-config
withAmp

HOC into Next.js 9 page configuration.

// Before
import { withAmp } from 'next/amp'
function Home() {

} return <h1>My AMP Page</h1> export default withAmp(Home)

// After
export default function Home() {
} return <h1>My AMP Page</h1>
export const config = {
} amp: true,

6
UsewithRouter

url-to-withrouter

Terminal (bash)

Transforms the deprecated automatically injected	property on top level pages to usingnpx @next/codemod url-to-withrouter
url
withRouter

and the

property it

injects. Read more here: https://nextjs.org/docs/messages/url-deprecated For example:

From (js)import React from 'react'
export default class extends React.Component {
render() {
const { pathname } = this.props.url
}
} return <div>Current pathname: {pathname}</div>
router

To (js)import React from 'react'
import { withRouter } from 'next/router'
export default withRouter(
class extends React.Component {
render() {
const { pathname } = this.props.router
) }
} return <div>Current pathname: {pathname}</div>

This is one case. All the cases that are transformed (and tested) can be found in the	directory. testfixtures	

3.1.10.2 - App Router Incremental Adoption Guide
Documentation path: /02-app/01-building-your-application/10-upgrading/02-app-router-migration
Description: Learn how to upgrade your existing Next.js application from the Pages Router to the App Router.

This guide will help you:
[image:] Update your Next.js application from version 12 to version 13Upgrade features that work in both the pages and the app directories Incrementally migrate your existing application from pages to app

Upgrading
Node.js Version
The minimum Node.js version is now v18.17. See the Node.js documentation for more information.
Next.js Version
To update to Next.js version 13, run the following command using your preferred package manager:

Terminal (bash)npm install next@latest react@latest react-dom@latest

ESLint Version
If you’re using ESLint, you need to upgrade your ESLint version:

Terminal (bash)npm install -D eslint-config-next@latest

Good to know: You may need to restart the ESLint server in VS Code for the ESLint changes to take effect. Open the Commandctrl+shift+p

Palette (cmd+shift+p on Mac;
Next Steps

on Windows) and search for ESLint: Restart ESLint Server.

After you’ve updated, see the following sections for next steps:
[image:] Upgrade new features: A guide to help you upgrade to new features such as the improved Image and Link Components.pages
app

[image:] Migrate from the pages to app directory: A step-by-step guide to help you incrementally migrate from the directory.
Upgrading New Features
Next.js 13 introduced the new App Router with new features and conventions. The new Router is available in thepages

to the

directory and co-app

exists with the	directory.
Upgrading to Next.js 13 does not require using the new App Router. You can continue using pages with new features that work in both directories, such as the updated Image component, Link component, Script component, and Font optimization.
Component<Image/>

Next.js 12 introduced new improvements to the Image Component with a temporary import: next/future/image. These improvements included less client-side JavaScript, easier ways to extend and style images, better accessibility, and native browser lazy loading.
In version 13, this new behavior is now the default for next/image.
There are two codemods to help you migrate to the new Image Component:next/image

next-image-to-legacy-image codemod: Safely and automatically renames Existing components will maintain the same behavior.

imports to next/legacy/image.

next-image-experimental codemod: Dangerously adds inline styles and removes unused props. This will change the behavior of existing components to match the new defaults. To use this codemod, you need to run thenext-image-to-legacy-image

codemod first.

Component<Link>

[image:]The <Link> Component no longer requires manually adding an <a> tag as a child. This behavior was added as an experimental option<Link>
<a>

in version 12.2 and is now the default. In Next.js 13, For example:

always renders

and allows you to forward props to the underlying tag.

import Link from 'next/link'
// Next.js 12: `<a>` has to be nested otherwise it's excluded
<Link href="/about">
< <a>About
/Link>
// Next.js 13: `<Link>` always renders `<a>` under the hood
<Link href="/about">
< About
/Link>

To upgrade your links to Next.js 13, you can use thenew-link

[image:]Component<Script>

codemod.

The behavior of next/script has been updated to support both smooth migration:pages

and app, but some changes need to be made to ensure a

[image:] Move any beforeInteractive scripts you previously included in _document.js to the root layout file (app/layout.tsx).
[image:] The experimental worker strategy does not yet work in app and scripts denoted with this strategy will either have to be removed or modified to use a different strategy (e.g. lazyOnload).
[image:] onLoad, onReady, and onError handlers will not work in Server Components so make sure to move them to a Client Component
or remove them altogether.
Font Optimization
Previously, Next.js helped you optimize fonts by inlining font CSS. Version 13 introduces the new next/font module which gives you the ability to customize your font loading experience while still ensuring great performance and privacy. next/font is supported inpages
app

both the	and	directories.next/font

While inlining CSS still works in pages, it does not work in app. You should use See the Font Optimization page to learn how to use next/font.

instead.

Migrating from	topages
app

□ Watch: Learn how to incrementally adopt the App Router → YouTube (16 minutes).
Moving to the App Router may be the first time using React features that Next.js builds on top of such as Server Components, Suspense, and more. When combined with new Next.js features such as special files and layouts, migration means new concepts, mental models, and behavioral changes to learn.
[image:]We recommend reducing the combined complexity of these updates by breaking down your migration into smaller steps. The apppages

directory is intentionally designed to work simultaneously with the	directory to allow for incremental page-by-page migration.
[image:][image:] The app directory supports nested routes and layouts. Learn more.
Use nested folders to define routes and a special page.js file to make a route segment publicly accessible. Learn more. Special file conventions are used to create UI for each route segment. The most common special files arepage.js
and layout.js.

Use page.js to define UI unique to a route.
Use layout.js to define UI that is shared across multiple routes.
.js, .jsx, or .tsx file extensions can be used for special files.
You can colocate other files inside the app directory such as components, styles, tests, and more. Learn more.
[image:]Data fetching functions like getServerSideProps and getStaticProps have been replaced with a new API inside app. getStaticPaths has been replaced with generateStaticParams.
pages/_app.js and pages/_document.js have been replaced with a single app/layout.js root layout. Learn more.
pages/_error.js has been replaced with more granular error.js special files. Learn more.
pages/404.js has been replaced with the not-found.js file.
pages/api/* currently remain inside the pages directory.

Step 1: Creating the	directoryapp

Update to the latest Next.js version (requires 13.4 or greater):npm install next@latest

Then, create a newapp

directory at the root of your project (or

directory).

Step 2: Creating a Root Layoutsrc/
app/layout.tsx

Create a new

file inside the

directory. This is a root layout that will apply to all routes inside app.
[image:]app/layout.tsx (tsx)export default function RootLayout({
// Layouts must accept a children prop.
} children,
// This will be populated with nested layouts or pages
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>
app

app/layout.js (jsx)export default function RootLayout({
// Layouts must accept a children prop.
} children,
// This will be populated with nested layouts or pages
) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>

[image:]The app directory must include a root layout.
The root layout must define <html>, and <body> tags since Next.js does not automatically create them The root layout replaces the pages/_app.tsx and pages/_document.tsx files..tsx

[image:][image:][image:] .js, .jsx, or	extensions can be used for layout files.
To manage	HTML elements, you can use the built-in SEO support:<head>

app/layout.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
} description: 'Welcome to Next.js',
title: 'Home',

app/layout.js (jsx)export const metadata = {
} description: 'Welcome to Next.js',
title: 'Home',

Migrating	and_document.js
_app.js

If you have an existing _app or _document file, you can copy the contents (e.g. global styles) to the root layout (app/layout.tsx). Styles in app/layout.tsx will not apply to pages/*. You should keep _app/_document while migrating to prevent your pages/* routes from breaking. Once fully migrated, you can then safely delete them.
If you are using any React Context providers, they will need to be moved to a Client Component.
Migrating the	pattern to Layouts (Optional)getLayout()

Next.js recommended adding a property to Page components to achieve per-page layouts in the	directory. This pattern can bepages
app

replaced with native support for nested layouts in the [image:] See before and after example
Step 3: Migratingnext/head
title
meta

directory.

In the pages directory, the next/head React component is used to manage<head>
app
next/head

HTML elements such as

and

. In the

directory,
Before:

is replaced with the new built-in SEO support.

pages/index.tsx (tsx)import Head from 'next/head'
export default function Page() {
return (
<>
<Head>
</ /Head>
< <title>My page title</title>
)	>
}

pages/index.js (jsx)import Head from 'next/head'
export default function Page() {
return (
<>
<Head>
</ /Head>
< <title>My page title</title>
)	>
}

After:
app/page.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
} title: 'My Page Title',
export default function Page() {
} return '...'

app/page.js (jsx)export const metadata = {
} title: 'My Page Title',
export default function Page() {
} return '...'

See all metadata options.
Step 4: Migrating Pages
[image:] Pages in the app directory are Server Components by default. This is different from the Components.getStaticProps
getInitialProps

directory where pages are Clientpages

[image:]Data fetching has changed in app. getServerSideProps, simpler API.

and

have been replaced with a

The app directory uses nested folders to define routes and a special page.js file to make a route segment publicly accessible.
Route
app Directory
pages Directory

	pages Directory
	app Directory
	Route

	index.js
	page.js
	/

	about.js
	about/page.js
	/about

	blog/[slug].js
	blog/[slug]/page.js
	/blog/post-1

We recommend breaking down the migration of a page into two main steps:
[image:] Step 1: Move the default exported Page Component into a new Client Component.page.js
app

Step 2: Import the new Client Component into a new

file inside the

directory.

Good to know: This is the easiest migration path because it has the most comparable behavior to thepages

Step 1: Create a new Client Component

directory.

Create a new separate file inside the app directory (i.e. app/home-page.tsx or similar) that exports a Client Component. To define Client Components, add the 'use client' directive to the top of the file (before any imports).pages/index.js
to app/home-page.tsx.

Move the default exported page component from
app/home-page.tsx (tsx)'use client'
// This is a Client Component. It receives data as props and
// has access to state and effects just like Page components
// in the `pages` directory.
export default function HomePage({ recentPosts }) {
return (
<div>
{recentPosts.map((post) => (
</)}
) <div key={post.id}>{post.title}</div>
div>
})

app/home-page.js (jsx)'use client'
// This is a Client Component. It receives data as props and
// has access to state and effects just like Page components
// in the `pages` directory.
export default function HomePage({ recentPosts }) {
return (
<div>
{recentPosts.map((post) => (
</)}
) <div key={post.id}>{post.title}</div>
div>
})

Step 2: Create a new page
[image:][image:] Create a new app/page.tsx file inside the app directory. This is a Server Component by default. [image:] Import the home-page.tsx Client Component into the page.
[image:] If you were fetching data in pages/index.js, move the data fetching logic directly into the Server Component using the new data
fetching APIs. See the data fetching upgrade guide for more details.
app/page.tsx (tsx)// Import your Client Component
import HomePage from './home-page'
async function getPosts() {
const res = await fetch('https://...')
} return posts
const posts = await res.json()
export default async function Page() {

// Fetch data directly in a Server Component
const recentPosts = await getPosts()
} return <HomePage recentPosts={recentPosts} />
// Forward fetched data to your Client Component

app/page.js (jsx)// Import your Client Component
import HomePage from './home-page'
async function getPosts() {
const res = await fetch('https://...')
} return posts
const posts = await res.json()
export default async function Page() {
// Fetch data directly in a Server Component
const recentPosts = await getPosts()
} return <HomePage recentPosts={recentPosts} />
// Forward fetched data to your Client Component

[image:] If your previous page used useRouter, you’ll need to update to the new routing hooks. Learn more.
[image:] Start your development server and visit http://localhost:3000. You should see your existing index route, now served through the app directory.
Step 5: Migrating Routing Hooks
A new router has been added to support the new behavior in the app directory.
In app, you should use the three new hooks imported from next/navigation: useRouter(), usePathname(), and
useSearchParams().next/navigation
useRouter
pages

The new useRouter hook is imported from is imported from next/router.

and has different behavior to the

hook in

which

The useRouter hook imported from next/router is not supported in the directory.app
pages

directory but can continue to be used in the

The new useRouter does not return the pathname string. Use the separate usePathname hook instead. The new useRouter does not return the query object. Use the separate useSearchParams hook instead.'use client'
import { useRouter, usePathname, useSearchParams } from 'next/navigation'
export default function ExampleClientComponent() {
const router = useRouter()
const searchParams = useSearchParams()
} // ...
const pathname = usePathname()

You can use useSearchParams and usePathname together to listen to page changes. See the Router Events section for more
details.
These new hooks are only supported in Client Components. They cannot be used in Server Components.
app/example-client-component.tsx (tsx)

app/example-client-component.js (jsx)'use client'
import { useRouter, usePathname, useSearchParams } from 'next/navigation'
export default function ExampleClientComponent() {
const router = useRouter()
const searchParams = useSearchParams()
} // ...
const pathname = usePathname()

In addition, the new	hook has the following changes:useRouter

isFallback has been removed because fallback has been replaced.
The locale, locales, defaultLocales, domainLocales values have been removed because built-in i18n Next.js features are no longer necessary in the app directory. Learn more about i18n.
basePath has been removed. The alternative will not be part of useRouter. It has not yet been implemented.as

asPath has been removed because the concept of	has been removed from the new router.
isReady has been removed because it is no longer necessary. During static rendering, any component that uses the
useSearchParams() hook will skip the prerendering step and instead be rendered on the client at runtime.
View the useRouter() API reference.

Step 6: Migrating Data Fetching Methods

The

directory uses

and getStaticProps to fetch data for pages. Inside the

directory, these previous

data fetching functions are replaced with a simpler API built on top of fetch() andpages
getServerSideProps
async

React Server Components.

app/page.tsx (tsx)export default async function Page() {
// This request should be cached until manually invalidated.
// Similar to `getStaticProps`.
// `force-cache` is the default and can be omitted.
const staticData = await fetch(`https://...`, { cache: 'force-cache' })
// This request should be refetched on every request.
// Similar to `getServerSideProps`.
const dynamicData = await fetch(`https://...`, { cache: 'no-store' })
// This request should be cached with a lifetime of 10 seconds.
// Similar to `getStaticProps` with the `revalidate` option.
const revalidatedData = await fetch(`https://...`, {
} next: { revalidate: 10 },
)
} return <div>...</div>
app

app/page.js (jsx)export default async function Page() {
// This request should be cached until manually invalidated.
// Similar to `getStaticProps`.
// `force-cache` is the default and can be omitted.
const staticData = await fetch(`https://...`, { cache: 'force-cache' })
// This request should be refetched on every request.
// Similar to `getServerSideProps`.
const dynamicData = await fetch(`https://...`, { cache: 'no-store' })
// This request should be cached with a lifetime of 10 seconds.
// Similar to `getStaticProps` with the `revalidate` option.
const revalidatedData = await fetch(`https://...`, {
} next: { revalidate: 10 },
)
} return <div>...</div>

Server-side Rendering (getServerSideProps)pages
getServerSideProps

In the

directory,

is used to fetch data on the server and forward props to the default exported React

component in the file. The initial HTML for the page is prerendered from the server, followed by “hydrating” the page in the browser (making it interactive).
pages/dashboard.js (jsx)// `pages` directory
export async function getServerSideProps() {
const projects = await res.json()
} return { props: { projects } }
const res = await fetch(`https://...`)

export default function Dashboard({ projects }) {
return (

{projects.map((project) => (
</)}
) <li key={project.id}>{project.name}
ul>
})

In the	directory, we can colocate our data fetching inside our React components using Server Components. This allows us to sendapp

less JavaScript to the client, while maintaining the rendered HTML from the server.
By setting the cache option to no-store, we can indicate that the fetched data should never be cached. This is similar to
getServerSideProps in the pages directory.
app/dashboard/page.tsx (tsx)// `app` directory
// This function can be named anything
async function getProjects() {
const projects = await res.json()
} return projects
const res = await fetch(`https://...`, { cache: 'no-store' })
export default async function Dashboard() {
const projects = await getProjects()
return (

{projects.map((project) => (
</)}
) <li key={project.id}>{project.name}
ul>
})

app/dashboard/page.js (jsx)// `app` directory
// This function can be named anything
async function getProjects() {
const projects = await res.json()
} return projects
const res = await fetch(`https://...`, { cache: 'no-store' })
export default async function Dashboard() {
const projects = await getProjects()
return (

{projects.map((project) => (
</)}
) <li key={project.id}>{project.name}
ul>
})

Accessing Request Object
In the	directory, you can retrieve request-based data based on the Node.js HTTP API.pages
req

For example, you can retrieve the

object from

and use it to retrieve the request’s cookies and headers.
pages/index.js (jsx)// `pages` directory
export async function getServerSideProps({ req, query }) {
const authHeader = req.getHeaders()['authorization'];
const theme = req.cookies['theme'];
getServerSideProps

} return { props: { ... }}
export default function Page(props) {
} return ...

The

directory exposes new read-only functions to retrieve request data:
headers(): Based on the Web Headers API, and can be used inside Server Components to retrieve request headers.app

cookies(): Based on the Web Cookies API, and can be used inside Server Components to retrieve cookies.

app/page.tsx (tsx)// `app` directory
import { cookies, headers } from 'next/headers'
const authHeader = headers().get('authorization')
} return '...'
async function getData() {
export default async function Page() {
// You can use `cookies()` or `headers()` inside Server Components
// directly or in your data fetching function
const theme = cookies().get('theme')
} return '...'
const data = await getData()

app/page.js (jsx)// `app` directory
import { cookies, headers } from 'next/headers'
const authHeader = headers().get('authorization')
} return '...'
async function getData() {
export default async function Page() {
// You can use `cookies()` or `headers()` inside Server Components
// directly or in your data fetching function
const theme = cookies().get('theme')
} return '...'
const data = await getData()

Static Site Generation (getStaticProps)pages
getStaticProps

In the

directory, the

function is used to pre-render a page at build time. This function can be used to fetch

data from an external API or directly from a database, and pass this data down to the entire page as it’s being generated during the build.
pages/index.js (jsx)// `pages` directory
export async function getStaticProps() {
const projects = await res.json()
} return { props: { projects } }
const res = await fetch(`https://...`)
export default function Index({ projects }) {
} return projects.map((project) => <div>{project.name}</div>)

In the	directory, data fetching with fetch() will default to cache: 'force-cache', which will cache the request data untilapp

manually invalidated. This is similar to getStaticProps in the pages directory.

app/page.js (jsx)

// `app` directory
// This function can be named anything
async function getProjects() {
const projects = await res.json()
} return projects
const res = await fetch(`https://...`)
export default async function Index() {
const projects = await getProjects()
} return projects.map((project) => <div>{project.name}</div>)

Dynamic paths (getStaticPaths)pages

In the

directory, the

function is used to define the dynamic paths that should be pre-rendered at build time.
pages/posts/[id].js (jsx)// `pages` directory
import PostLayout from '@/components/post-layout'
export async function getStaticPaths() {
return {
}
} paths: [{ params: { id: '1' } }, { params: { id: '2' } }],

export async function getStaticProps({ params }) {
const post = await res.json()
} return { props: { post } }
const res = await fetch(`https://.../posts/${params.id}`)
export default function Post({ post }) {
} return <PostLayout post={post} />
getStaticPaths

In the app directory, getStaticPaths is replaced with generateStaticParams.
generateStaticParams behaves similarly to getStaticPaths, but has a simplified API for returning route parameters and can beparam

used inside layouts. The return shape of generateStaticParams is an array of segments instead of an array of nested or a string of resolved paths.

objects

app/posts/[id]/page.js (jsx)// `app` directory
import PostLayout from '@/components/post-layout'
export async function generateStaticParams() {
} return [{ id: '1' }, { id: '2' }]
async function getPost(params) {
const post = await res.json()
} return post
const res = await fetch(`https://.../posts/${params.id}`)
export default async function Post({ params }) {
const post = await getPost(params)
} return <PostLayout post={post} />

Using the name generateStaticParams is more appropriate than getStaticPaths for the new model in the app directory. The get prefix is replaced with a more descriptive generate, which sits better alone now that getStaticProps and getServerSideProps are no longer necessary. The Paths suffix is replaced by Params, which is more appropriate for nested routing with multiple dynamic segments.

Replacingfallback

In the pages directory, the fallback property returned from getStaticPaths is used to define the behavior of a page that isn’t pre-false

[image:]rendered at build time. This property can be set to true to show a fallback page while the page is being generated,	to show ablocking

404 page, or

to generate the page at request time.

pages/posts/[id].js (jsx)// `pages` directory
export async function getStaticPaths() {
return {
} ;
} fallback: 'blocking'
paths: [],
export async function getStaticProps({ params }) {
} ...
export default function Post({ post }) {
} return ...

[image:]In the app directory theconfig.dynamicParams

property controls how params outside of

are handled:

[image:] true: (default) Dynamic segments not included in generateStaticParams are generated on demand.generateStaticParams

[image:] false: Dynamic segments not included in generateStaticParams will return a 404.
This replaces the fallback: true | false | 'blocking' option of getStaticPaths in the pages directory. The fallback:'blocking'
streaming.
true

option is not included in dynamicParams because the difference between 'blocking' and	is negligible with

app/posts/[id]/page.js (jsx)// `app` directory
export const dynamicParams = true;
export async function generateStaticParams() {
} return [...]
async function getPost(params) {
} ...
export default async function Post({ params }) {
const post = await getPost(params);
} return ...

set to	(the default), when a route segment is requested that hasn’t been generated, it will be server-With dynamicParams
rendered and cached.
true

Incremental Static Regeneration (getStaticProps with revalidate)getStaticProps

In the pages directory, the certain amount of time.

function allows you to add a

field to automatically regenerate a page after a
pages/index.js (jsx)// `pages` directory
export async function getStaticProps() {
const res = await fetch(`https://.../posts`)
const posts = await res.json()
return {
props: { posts },
}
} revalidate: 60,
revalidate

export default function Index({ posts }) {
return (
<Layout>
< <PostList posts={posts} />
}
) /Layout>

[image:]In the app directory, data fetching with seconds.

can use revalidate, which will cache the request for the specified amount of
app/page.js (jsx)// `app` directory
async function getPosts() {
const data = await res.json()
} return data.posts
const res = await fetch(`https://.../posts`, { next: { revalidate: 60 } })
export default async function PostList() {
const posts = await getPosts()
} return posts.map((post) => <div>{post.name}</div>)
fetch()

API Routes
API Routes continue to work in theapp

directory without any changes. However, they have been replaced by Route Handlers inpages/api

the	directory.
Route Handlers allow you to create custom request handlers for a given route using the Web Request and Response APIs.
app/api/route.ts (ts)export async function GET(request: Request) {}

app/api/route.js (js)export async function GET(request) {}

Good to know: If you previously used API routes to call an external API from the client, you can now use Server Components instead to securely fetch data. Learn more about data fetching.
Step 7: Stylingapp

In the pages directory, global stylesheets are restricted to only pages/_app.js. With the Global styles can be added to any layout, page, or component.
[image:] CSS Modules [image:] Tailwind CSS [image:] Global Styles [image:] CSS-in-JS
[image:] External Stylesheets [image:] Sass
Tailwind CSSapp
tailwind.config.js

directory, this restriction has been lifted.

If you’re using Tailwind CSS, you’ll need to add the

directory to your

file:

tailwind.config.js (js)module.exports = {
content: [
'./app/**/*.{js,ts,jsx,tsx,mdx}', // <-- Add this line
'./pages/**/*.{js,ts,jsx,tsx,mdx}',
} ,
] './components/**/*.{js,ts,jsx,tsx,mdx}',

You’ll also need to import your global styles in yourapp/layout.js

file:

app/layout.js (jsx)import '../styles/globals.css'

export default function RootLayout({ children }) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>

Learn more about styling with Tailwind CSS
Codemods
Next.js provides Codemod transformations to help upgrade your codebase when a feature is deprecated. See Codemods for more information.

3.1.10.3 - Version 14
Documentation path: /02-app/01-building-your-application/10-upgrading/03-version-14
Description: Upgrade your Next.js Application from Version 13 to 14.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Upgrading from 13 to 14
To update to Next.js version 14, run the following command using your preferred package manager:
Terminal (bash)npm i next@latest react@latest react-dom@latest eslint-config-next@latest

Terminal (bash)yarn add next@latest react@latest react-dom@latest eslint-config-next@latest

Terminal (bash)pnpm up next react react-dom eslint-config-next --latest

Terminal (bash)bun add next@latest react@latest react-dom@latest eslint-config-next@latest
@types/react-dom

Good to know: If you are using TypeScript, ensure you also upgrade versions.@types/react

v14 Summary

and

to their latest

The minimum Node.js version has been bumped from 16.14 to 18.17, since 16.x has reached end-of-life.The next export co The next/server im rename your imports.

mmand is deprecated in favor of output: 'export'. Please see the docs for more information.ImageResponse

port for	was renamed to next/og. A codemod is available to safely and automatically
The @next/font package has been fully removed in favor of the built-in next/font. A codemod is available to safely and automatically rename your imports.next-swc

The WASM target for	has been removed.

3.1.10.4 - Migrating from Vite
Documentation path: /02-app/01-building-your-application/10-upgrading/04-from-vite
Description: Learn how to migrate your existing React application from Vite to Next.js. This guide will help you migrate an existing Vite application to Next.js.
Why Switch?
There are several reasons why you might want to switch from Vite to Next.js:
1. Slow initial page loading time: If you have built your application with the default Vite plugin for React, your application is a purely client-side application. Client-side only applications, also known as single-page applications (SPAs), often experience slow initial page loading time. This happens due to a couple of reasons:
2. The browser needs to wait for the React code and your entire application bundle to download and run before your code is able to send requests to load some data.
3. Your application code grows with every new feature and extra dependency you add.
4. No automatic code splitting: The previous issue of slow loading times can be somewhat managed with code splitting. However, if you try to do code splitting manually, you’ll often make performance worse. It’s easy to inadvertently introduce network waterfalls when code-splitting manually. Next.js provides automatic code splitting built into its router.
5. Network waterfalls: A common cause of poor performance occurs when applications make sequential client-server requests to fetch data. One common pattern for data fetching in an SPA is to initially render a placeholder, and then fetch data after the component has mounted. Unfortunately, this means that a child component that fetches data can’t start fetching until the parent component has finished loading its own data. On Next.js, this issue is resolved by fetching data in Server Components.
6. Fast and intentional loading states: Thanks to built-in support for Streaming with Suspense, with Next.js, you can be more intentional about which parts of your UI you want to load first and in what order without introducing network waterfalls. This enables you to build pages that are faster to load and also eliminate layout shifts.
7. Choose the data fetching strategy: Depending on your needs, Next.js allows you to choose your data fetching strategy on a page and component basis. You can decide to fetch at build time, at request time on the server, or on the client. For example, you can fetch data from your CMS and render your blog posts at build time, which can then be efficiently cached on a CDN.
8. Middleware: Next.js Middleware allows you to run code on the server before a request is completed. This is especially useful to avoid having a flash of unauthenticated content when the user visits an authenticated-only page by redirecting the user to a login page. The middleware is also useful for experimentation and internationalization.
9. Built-in Optimizations: Images, fonts, and third-party scripts often have significant impact on an application’s performance. Next.js comes with built-in components that automatically optimize those for you.
Migration Steps
Our goal with this migration is to get a working Next.js application as quickly as possible, so that you can then adopt Next.js features incrementally. To begin with, we’ll keep it as a purely client-side application (SPA) without migrating your existing router. This helps minimize the chances of encountering issues during the migration process and reduces merge conflicts.
Step 1: Install the Next.js Dependencynext

The first thing you need to do is to install

as a dependency:

Terminal (bash)npm install next@latest

Step 2: Create the Next.js Configuration Filenext.config.mjs

Create a

at the root of your project. This file will hold your Next.js configuration options.

next.config.mjs (js)/** @type {import('next').NextConfig} */
const nextConfig = {
} distDir: './dist', // Changes the build output directory to `./dist/`. export default nextConfig
output: 'export', // Outputs a Single-Page Application (SPA).

Good to know: You can use either

or

for your Next.js configuration file.

Step 3: Update TypeScript Configuration.js
.mjs

If you’re using TypeScript, you need to update your If you’re not using TypeScript, you can skip this step.tsconfig.json

1. Remove the project reference to tsconfig.node.json
2. Add ./dist/types/**/*.ts and ./next-env.d.ts to the
3. Add ./node_modules to the exclude array"plugins": [{ "name": "next" }]

file with the following changes to make it compatible with Next.js.

arrayinclude

4. Add { "name": "next" } to the plugins array in compilerOptions:
5. Set esModuleInterop to true: "esModuleInterop": true
6. Set jsx to preserve: "jsx": "preserve"
7. Set allowJs to true: "allowJs": true
8. Set forceConsistentCasingInFileNames to true: "forceConsistentCasingInFileNames": true
9. Set incremental to true: "incremental": truetsconfig.json

Here’s an example of a working

with those changes:

tsconfig.json (json){ "compilerOptions": {
"target": "ES2020",
"useDefineForClassFields": true,
"lib": ["ES2020", "DOM", "DOM.Iterable"],
"module": "ESNext",
"esModuleInterop": true,
"skipLibCheck": true,
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"resolveJsonModule": true,
"isolatedModules": true,
"noEmit": true,
"jsx": "preserve",
"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,
"noFallthroughCasesInSwitch": true,
"allowJs": true,
"forceConsistentCasingInFileNames": true,
} "plugins": [{ "name": "next" }]
"incremental": true,
,
} "exclude": ["./node_modules"]
"include": ["./src", "./dist/types/**/*.ts", "./next-env.d.ts"],

You can find more information about configuring TypeScript on the Next.js docs.
Step 4: Create the Root Layout
A Next.js App Router application must include a root layout file, which is a React Server Component that will wrap all pages in yourapp

application. This file is defined at the top level of the	directory.index.html

The closest equivalent to the root layout file in a Vite application is the tags.<body>

file, which contains your <html>, <head>, and

In this step, you’ll convert your	file into a root layout file:index.html

1. Create a new app directory in your	directory.src
app

2. Create a new layout.tsx file inside that

directory:

app/layout.tsx (tsx)export default function RootLayout({
} children,
} children: React.ReactNode
: {
} return null
) {

app/layout.js (jsx)export default function RootLayout({ children }) {
} return null

[image:][image:][image:]Good to know: .js, .jsx, or .tsx extensions can be used for Layout files.
1. Copy the content of your index.html file into the previously created <RootLayout> component while replacing the and body.script tags with <div id="root">{children}</div>:body.div#root

app/layout.tsx (tsx)export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
<head>
<meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/icon.svg" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
< <meta name="description" content="My App is a..." />
<title>My App</title>
<body>
/head>
</ /body>
< <div id="root">{children}</div>
html>
})

app/layout.js (jsx)export default function RootLayout({ children }) {
return (
<html lang="en">
<head>
<meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/icon.svg" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
< <meta name="description" content="My App is a..." />
<title>My App</title>
<body>
/head>
</ /body>
< <div id="root">{children}</div>
html>
})

1. Next.js already includes by default the meta charset and meta viewport tags, so you can safely remove those from your <head>:
app/layout.tsx (tsx)export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
<head>
<link rel="icon" type="image/svg+xml" href="/icon.svg" />
< <meta name="description" content="My App is a..." />
<title>My App</title>
<body>
/head>
</ /body>
< <div id="root">{children}</div>
html>
})

app/layout.js (jsx)export default function RootLayout({ children }) {
return (
<html lang="en">
<head>
<link rel="icon" type="image/svg+xml" href="/icon.svg" />

< <meta name="description" content="My App is a..." />
<title>My App</title>
<body>
/head>
</ /body>
< <div id="root">{children}</div>
html>
})

1. Any metadata files such as favicon.ico, icon.png, robots.txt are automatically added to the application	tag as long<head>
app

as you have them placed into the top level of the app directory. After moving all supported files into the	directory you can<link>

safely delete their

tags:

app/layout.tsx (tsx)export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
<head>
< <meta name="description" content="My App is a..." />
<title>My App</title>
<body>
/head>
</ /body>
< <div id="root">{children}</div>
html>
})

app/layout.js (jsx)export default function RootLayout({ children }) {
return (
<html lang="en">
<head>
< <meta name="description" content="My App is a..." />
<title>My App</title>
<body>
/head>
</ /body>
< <div id="root">{children}</div>
html>
})

1. Finally, Next.js can manage your last object:

tags with the Metadata API. Move your final metadata info into an exported

app/layout.tsx (tsx)import type { Metadata } from 'next'
export const metadata: Metadata = {
} description: 'My App is a...',
title: 'My App',
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
<body>
</ /body>
< <div id="root">{children}</div>
html>
})
<head>
metadata

app/layout.js (jsx)export const metadata = {
} description: 'My App is a...',
title: 'My App',
export default function RootLayout({ children }) {
return (
<html lang="en">
<body>
</ /body>
< <div id="root">{children}</div>
html>
})

With the above changes, you shifted from declaring everything in your index.html to using Next.js’ convention-based approach built into the framework (Metadata API). This approach enables you to more easily improve your SEO and web shareability of your pages.
Step 5: Create the Entrypoint Page
On Next.js you declare an entrypoint for your application by creating a page.tsx file. The closest equivalent of this file on Vite is your file. In this step, you’ll set up the entrypoint of your application.main.tsx
[[...slug]]
app

1. Create a

directory in your

directory.

Since in this guide we’re aiming first to set up our Next.js as an SPA (Single Page Application), you need your page entrypoint to catch[[...slug]]
app

all possible routes of your application. For that, create a new

directory in your

directory.

This directory is what is called an optional catch-all route segment. Next.js uses a file-system based router where directories are usedpage.tsx

to define routes. This special directory will make sure that all routes of your application will be directed to its containing	file.page.tsx
app/[[...slug]]

1. Create a new

file inside the

directory with the following content:

app/[[...slug]]/page.tsx (tsx)'use client'
import dynamic from 'next/dynamic'
import '../../index.css'
const App = dynamic(() => import('../../App'), { ssr: false })
export default function Page() {
} return <App />

app/[[...slug]]/page.js (jsx)'use client'
import dynamic from 'next/dynamic'
import '../../index.css'
const App = dynamic(() => import('../../App'), { ssr: false })
export default function Page() {
} return <App />

[image:][image:]Good to know: .js, .jsx, or	extensions can be used for Page files..tsx
'use client'

This file contains a <Page> component which is marked as a Client Component by the the component would have been a Server Component.

directive. Without that directive,

In Next.js, Client Components are prerendered to HTML on the server before being sent to the client, but since we want to first have awith the ssr option set to false:
const App = dynamic(() => import('../../App'), { ssr: false })
<App>

purely client-side application, you need to tell Next.js to disable the prerendering for the	component by dynamically importing it

Step 6: Update Static Image Imports
Next.js handles static image imports slightly different from Vite. With Vite, importing an image file will return its public URL as a string:

App.tsx (tsx)import image from './img.png' // `image` will be '/assets/img.2d8efhg.png' in production
export default function App() {
} return

With Next.js, static image imports return an object. The object can then be used directly with the Next.js	component, or you<Image>
src

can use the object’s	property with your existing	tag.
The <Image> component has the added benefits of automatic image optimization. The <Image> component automatically sets the width and height attributes of the resulting based on the image’s dimensions. This prevents layout shifts when the image loads. However, this can cause issues if your app contains images with only one of their dimensions being styled without the other

[image:][image:]styled to auto. When not styled to auto, the dimension will default to the image to appear distorted.

dimension attribute’s value, which can cause the

Keeping the tag will reduce the amount of changes in your application and prevent the above issues. However, you’ll still want to<Image>

later migrate to the	component to take advantage of the automatic optimizations./public

1. Convert absolute import paths for images imported from

into relative imports:

// Before
import logo from '/logo.png'
import logo from '../public/logo.png'
// After

1. Pass the imagesrc

property instead of the whole image object to your

tag:

// Before

// After

Warning: If you’re using TypeScript, you might encounter type errors when accessing the those for now. They will be fixed by the end of this guide.src

Step 7: Migrate the Environment Variables

property. You can safely ignore

[image:]Next.js has support for .env environment variables similar to Vite. The main difference is the prefix used to expose environment variables on the client-side.
Change all environment variables with the	prefix to NEXT_PUBLIC_.VITE_
import.meta.env

Vite exposes a few built-in environment variables on the special to update their usage as follows:

object which aren’t supported by Next.js. You need

 import.meta.env.MODE import.meta.env.PROD import.meta.env.DEV import.meta.env.SSR
process.env.NODE_ENV process.env.NODE_ENV === 'production' process.env.NODE_ENV !== 'production' typeof window !== 'undefined'

Next.js also doesn’t provide a built-inBASE_URL

1. Add the following to your.env

file:

environment variable. However, you can still configure one, if you need it:

.env (bash)# ...
NEXT_PUBLIC_BASE_PATH="/some-base-path"

1. SetbasePath

to

in your

file:

next.config.mjs (js)/** @type {import('next').NextConfig} */
const nextConfig = {
output: 'export', // Outputs a Single-Page Application (SPA).
distDir: './dist', // Changes the build output directory to `./dist/`.
basePath: process.env.NEXT_PUBLIC_BASE_PATH, // Sets the base path to `/some-base-path`.
process.env.NEXT_PUBLIC_BASE_PATH
next.config.mjs

}
export default nextConfig

1. Updateimport.meta.env.BASE_URL

Step 8: Update Scripts in

usages to

You should now be able to run your application to test if you successfully migrated to Next.js. But before that, you need to update yourprocess.env.NEXT_PUBLIC_BASE_PATH
package.json
scripts
package.json
.next
next-env.d.ts

in your

with Next.js related commands, and add

and

to your .gitignore:
package.json (json){ "scripts": {
"dev": "next dev",
"build": "next build",
}
} "start": "next start"

.gitignore (txt)# ...
.next
next-env.d.ts

Now run npm run dev, and open http://localhost:3000. You should hopefully see your application now running on Next.js.
If your application followed a conventional Vite configuration, this is all you would need to do to have a working version of your application.
Example: Check out this pull request for a working example of a Vite application migrated to Next.js.
Step 9: Clean Up
You can now clean up your codebase from Vite related artifacts:
[image:] Delete main.tsx
[image:] Delete index.html
[image:] Delete vite-env.d.ts
[image:] Delete tsconfig.node.json
[image:] Delete vite.config.ts
[image:] Uninstall Vite dependencies
Next Steps
If everything went according to plan, you now have a functioning Next.js application running as a single-page application. However, you aren’t yet taking advantage of most of Next.js’ benefits, but you can now start making incremental changes to reap all the benefits.
Here’s what you might want to do next:
[image:] Migrate from React Router to the Next.js App Router to get: [image:] Automatic code splitting
[image:] Streaming Server-Rendering [image:] React Server Components
[image:] Optimize images with the <Image> component
[image:] Optimize fonts with next/font
[image:] Optimize third-party scripts with the <Script> component [image:] Update your ESLint configuration to support Next.js rules

3.2 - API Reference
Documentation path: /02-app/02-api-reference/index
Description: Next.js API Reference for the App Router.

The Next.js API reference is divided into the following sections:

3.2.1 - Components
Documentation path: /02-app/02-api-reference/01-components/index
Description: API Reference for Next.js built-in components.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

3.2.1.1 - Font Module
Documentation path: /02-app/02-api-reference/01-components/font
Description: Optimizing loading web fonts with the built-in `next/font` loaders.
{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}next/font/google

This API reference will help you understand how to use the Optimizing Fonts page.
Font Function Arguments
For usage, review Google Fonts and Local Fonts.

and next/font/local. For features and usage, please see

	Key
	font/google
	font/local
	Type
	Required

	src
	
	
	String or Array of Objects
	Yes

	weight
	
	
	String or Array
	Required/Optional

	style
	
	
	String or Array
	-

	subsets
	
	
	Array of Strings
	-

	axes
	
	
	Array of Strings
	-

	display
	
	
	String
	-

	preload
	
	
	Boolean
	-

	fallback
	
	
	Array of Strings
	-

	adjustFontFallback
	
	
	Boolean or String
	-

	variable
	
	
	String
	-

	declarations
	
	
	Array of Objects
	-

src

The path of the font file as a string or an array of objects (with type Array<{path: string, weight?: string, style?: string}>) relative to the directory where the font loader function is called.
Used in next/font/local
[image:] Required Examples:
[image:] src:'./fonts/my-font.woff2' where my-font.woff2 is placed in a directory named fonts inside the app directory
[image:] src:[{path: './inter/Inter-Thin.ttf', weight: '100',},{path: './inter/Inter-Regular.ttf',weight: '400',},{path: './inter/Inter-Bold-Italic.ttf', weight: '700',style: 'italic',},]
[image:] if the font loader function is called in app/page.tsx using src:'../styles/fonts/my-font.ttf', then my-font.ttf is placed in styles/fonts at the root of the project
weight

The font	with the following possibilities:
A string with possible values of the weights available for the specific font or a range of values if it’s a variable fontweight
next/font/google

An array of weight values if the font is not a variable google font. It applies to	only.
Used in	andnext/font/google
next/font/local

[image:] Required if the font being used is not variable Examples:

weight: '400': A string for a single weight value - for the font Inter, the possible values are '100', '200', '300', '400', '500', '600', '700', '800', '900' or 'variable' where 'variable' is the default)
[image:]weight: '100 900': A string for the range between 100 and 900 for a variable font
weight: ['100','400','900']: An array of 3 possible values for a non variable font
style

The font	with the following possibilities:

A string value with default value of 'normal'style

An array of style values if the font is not a variable google font. It applies tonext/font/local

only.

Used innext/font/google
next/font/google

[image:] Optional Examples:

and

style: 'italic': A string - it can be normal or italic for next/font/google
style: 'oblique': A string - it can take any value for next/font/local but is expected to come from standard font stylesnormal
italic

style: ['italic','normal']: An array of 2 values for next/font/google - the values are from	and
subsets

The font subsets defined by an array of string values with the names of each subset you would like to be preloaded. Fonts specified via

subsets will have a link preload tag injected into the head when the Used in next/font/googlepreload

[image:] Optional Examples:latin

[image:] subsets: ['latin']: An array with the subset
You can find a list of all subsets on the Google Fonts page for your font.

option is true, which is the default.

axes

[image:]Some variable fonts have extra axes that can be included. By default, only the font weight is included to keep the file size down. The possible values of axes depend on the specific font.
Used in next/font/google
[image:] Optional Examples:
[image:][image:][image:][image:] axes: ['slnt']: An array with value slnt for the Inter variable font which has slnt as additional axes as shown here. You can find the possible axes values for your font by using the filter on the Google variable fonts page and looking for axes other than wght
display

The font display with possible string values of 'auto', 'block', 'swap', Used in next/font/google and next/font/local'fallback'

[image:] Optional Examples:'optional'
optional

or

with default value of 'swap'.

[image:]display: 'optional': A string assigned to the	valuenext/font/google
next/font/local

preload

A boolean value that specifies whether the font should be preloaded or not. The default is true.
Used in	and

[image:] Optional Examples:preload: false

fallback

The fallback font to use if the font cannot be loaded. An array of strings of fallback fonts with no default. [image:] Optional

Used in Examples:next/font/google

and

fallback: ['system-ui', 'arial']: An array setting the fallback fonts to	ornext/font/local
system-ui
arial

adjustFontFallback

For next/font/google: A boolean value that sets whether an automatic fallback font should be used to reduce Cumulative Layout Shift. The default is true.
For next/font/local: A string or boolean false value that sets whether an automatic fallback font should be used to reduce'Times New Roman'

Cumulative Layout Shift. The possible values are 'Arial',	or false. The default is 'Arial'.next/font/local

Used innext/font/google

[image:] Optional Examples:adjustFontFallback: false: for next/font/google adjustFontFallback: 'Times New Roman': for next/font/local

and

variable

A string value to define the CSS variable name to be used if the style is applied with the CSS variable method.

Used in
[image:] Optional Examples:next/font/google
next/font/local
--my-font

and

variable: '--my-font': The CSS variable	is declared
declarations

An array of font face descriptor key-value pairs that define the generated Used in@font-face
next/font/local

[image:] Optional Examples:declarations: [{ prop: 'ascent-override', value: '90%' }]

further.

Applying Styles
You can apply the font styles in three ways:Returns a read-only CSS className for the loaded font to be passed to an HTML element.
<p className={inter.className}>Hello, Next.js!</p>

className style

CSS Variables
className

style

Returns a read-only CSS style object for the loaded font to be passed to an HTML element, including the font family name and fallback fonts.style.fontFamily

to access

<p style={inter.style}>Hello World</p>

CSS Variables
If you would like to set your styles in an external style sheet and specify additional options there, use the CSS variable method.
In addition to importing the font, also import the CSS file where the CSS variable is defined and set the variable option of the font loader object as follows:
app/page.tsx (tsx)import { Inter } from 'next/font/google'
import styles from '../styles/component.module.css'
const inter = Inter({
} variable: '--font-inter',
)

app/page.js (jsx)import { Inter } from 'next/font/google'
import styles from '../styles/component.module.css'
const inter = Inter({
} variable: '--font-inter',
)

To use the font, set the className of the parent container of the text you would like to style to the font loader’s	value andvariable
className

the

of the text to the styles property from the external CSS file.

app/page.tsx (tsx)<main className={inter.variable}>
< <p className={styles.text}>Hello World</p>
/main>

app/page.js (jsx)<main className={inter.variable}>
< <p className={styles.text}>Hello World</p>
/main>

Define the

selector class in the

CSS file as follows:

styles/component.module.css (css).text {
font-family: var(--font-inter);
} font-style: italic;
font-weight: 200;
text
component.module.css

In the example above, the textHello World
and font-style: italic.

is styled using the

font and the generated font fallback with

Using a font definitions fileInter
font-weight: 200

Every time you call the localFont or Google font function, that font will be hosted as one instance in your application. Therefore, if you need to use the same font in multiple places, you should load it in one place and import the related font object where you need it. This is done using a font definitions file.fonts.ts
styles

For example, create a

file in a

folder at the root of your app directory.

Then, specify your font definitions as follows:

styles/fonts.ts (ts)import { Inter, Lora, Source_Sans_3 } from 'next/font/google'
import localFont from 'next/font/local'
// define your variable fonts
const inter = Inter()

const lora = Lora()
// define 2 weights of a non-variable font
const sourceCodePro400 = Source_Sans_3({ weight: '400' })
const sourceCodePro700 = Source_Sans_3({ weight: '700' })
// define a custom local font where GreatVibes-Regular.ttf is stored in the styles folder
const greatVibes = localFont({ src: './GreatVibes-Regular.ttf' })
export { inter, lora, sourceCodePro400, sourceCodePro700, greatVibes }

styles/fonts.js (js)import { Inter, Lora, Source_Sans_3 } from 'next/font/google'
import localFont from 'next/font/local'
// define your variable fonts
const inter = Inter()
const lora = Lora()
// define 2 weights of a non-variable font
const sourceCodePro400 = Source_Sans_3({ weight: '400' })
const sourceCodePro700 = Source_Sans_3({ weight: '700' })
// define a custom local font where GreatVibes-Regular.ttf is stored in the styles folder
const greatVibes = localFont({ src: './GreatVibes-Regular.ttf' })
export { inter, lora, sourceCodePro400, sourceCodePro700, greatVibes }

You can now use these definitions in your code as follows:

app/page.tsx (tsx)import { inter, lora, sourceCodePro700, greatVibes } from '../styles/fonts'
export default function Page() {
return (
<div>
<p className={inter.className}>Hello world using Inter font</p>
<p style={lora.style}>Hello world using Lora font</p>
<p className={sourceCodePro700.className}>
< <p className={greatVibes.className}>My title in Great Vibes font</p>
< Hello world using Source_Sans_3 font with weight 700
/p>
/div>
})

app/page.js (jsx)import { inter, lora, sourceCodePro700, greatVibes } from '../styles/fonts'
export default function Page() {
return (
<div>
<p className={inter.className}>Hello world using Inter font</p>
<p style={lora.style}>Hello world using Lora font</p>
<p className={sourceCodePro700.className}>
< <p className={greatVibes.className}>My title in Great Vibes font</p>
< Hello world using Source_Sans_3 font with weight 700
/p>
/div>
})

To make it easier to access the font definitions in your code, you can define a path alias in your files as follows:

or
tsconfig.json (json){ "compilerOptions": {
"paths": {
} }
} "@/fonts": ["./styles/fonts"]
tsconfig.json
jsconfig.json

You can now import any font definition as follows:

app/about/page.tsx (tsx)import { greatVibes, sourceCodePro400 } from '@/fonts'

app/about/page.js (jsx)import { greatVibes, sourceCodePro400 } from '@/fonts'

Version Changes

	Version
	Changes

	v13.2.0
	@next/font renamed to next/font. Installation no longer required.

	v13.0.0
	@next/font was added.

3.2.1.2 - <Image>
Documentation path: /02-app/02-api-reference/01-components/image
Description: Optimize Images in your Next.js Application using the built-in `next/image` Component.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
[image:] Examples
Good to know: If you are using a version of Next.js prior to 13, you’ll want to use the next/legacy/image documentation since the component was renamed.
This API reference will help you understand how to use props and configuration options available for the Image Component. For features and usage, please see the Image Component page.
app/page.js (jsx)import Image from 'next/image'
export default function Page() {
return (
<Image
src="/profile.png"
width={500}
/ alt="Picture of the author"
height={500}
}
) >

Props
Here’s a summary of the props available for the Image Component:
| Prop | Example | Type | Status | |	|	|	|	| | [`src`](#src) |
`src="/profile.png"` | String | Required | | [`width`](#width) | `width={500}` | Integer (px) | Required | | [`height`](#height) | `height=
{500}` | Integer (px) | Required | | [`alt`](#alt) | `alt="Picture of the author"` | String | Required | | [`loader`](#loader) | `loader=
{imageLoader}` | Function | - | | [`fill`](#fill) | `fill={true}` | Boolean | - | | [`sizes`](#sizes) | `sizes="(max-width: 768px) 100vw, 33vw"` | String | - | | [`quality`](#quality) | `quality={80}` | Integer (1-100) | - | | [`priority`](#priority) | `priority={true}` | Boolean | - | | [`placeholder`](#placeholder) | `placeholder="blur"` | String | - | | [`style`](#style) | `style={{objectFit: "contain"}}` | Object | - | | [`onLoadingComplete`](#onloadingcomplete) | `onLoadingComplete={img => done())}` | Function | Deprecated | | [`onLoad`](#onload) |
`onLoad={event => done())}` | Function | - | | [`onError`](#onerror) | `onError(event => fail()}` | Function | - | | [`loading`](#loading) |
`loading="lazy"` | String | - | | [`blurDataURL`](#blurdataurl) | `blurDataURL="data:image/jpeg..."` | String | - |
Required Props
[image:][image:]The Image Component requires the following properties: src, width, height, and alt.
app/page.js (jsx)import Image from 'next/image'
export default function Page() {
return (
<div>
<Image
src="/profile.png"
width={500}
</ > >
/ alt="Picture of the author"
height={500}
div
})

src

Must be one of the following:
[image:] A statically imported image file
[image:] A path string. This can be either an absolute external URL, or an internal path depending on the loader prop.

When using an external URL, you must add it to remotePatterns in next.config.js.width

width

The	property represents the rendered width in pixels, so it will affect how large the image appears.
Required, except for statically imported images or images with the	property.fill
height

height

The	property represents the rendered height in pixels, so it will affect how large the image appears.
Required, except for statically imported images or images with the	property.fill

alt

The alt property is used to describe the image for screen readers and search engines. It is also the fallback text if images have been disabled or an error occurs while loading the image.
[image:]It should contain text that could replace the image without changing the meaning of the page. It is not meant to supplement the image and should not repeat information that is already provided in the captions above or below the image.alt

If the image is purely decorative or not intended for the user, the Learn more
Optional Props

property should be an empty string (alt="").

The <Image /> component accepts a number of additional properties beyond those which are required. This section describes the most commonly-used properties of the Image component. Find details about more rarely-used properties in the Advanced Props section.loader

loader

A custom function used to resolve image URLs.
A	is a function returning a URL string for the image, given the following parameters:
src width quality

Here is an example of using a custom loader:

Good to know: Using props like loader, which accept a function, require using Client Components to serialize the provided function.'use client'
import Image from 'next/image'
const imageLoader = ({ src, width, quality }) => {
} return `https://example.com/${src}?w=${width}&q=${quality || 75}`
export default function Page() {
return (
<Image
loader={imageLoader}
src="me.png"
alt="Picture of the author"
/ height={500}
width={500}
}
) >
next.config.js
next/image

Alternatively, you can use the loaderFile configuration in application, without passing a prop.

to configure every instance of

in your

fill

fill={true} // {true} | {false}

A boolean that causes the image to fill the parent element, which is useful when the width and height are unknown. The parent element must assign position: "relative", position: "fixed", or position: "absolute" style. By default, the img element will automatically be assigned the position: "absolute" style.
If no styles are applied to the image, the image will stretch to fit the container. You may prefer to set object-fit: "contain" for an image which is letterboxed to fit the container and preserve aspect ratio.
Alternatively, object-fit: "cover" will cause the image to fill the entire container and be cropped to preserve aspect ratio. For this to look correct, the overflow: "hidden" style should be assigned to the parent element.
For more information, see also:
position object-fit object-position
sizes

A string, similar to a media query, that provides information about how wide the image will be at different breakpoints. The value of
sizes will greatly affect performance for images using	or which are styled to have a responsive size.fill

The sizes property serves two important purposes related to image performance:
[image:] First, the value of sizes is used by the browser to determine which size of the image to download, from next/image’s automatically generated srcset. When the browser chooses, it does not yet know the size of the image on the page, so it selects an image that is the same size or larger than the viewport. The sizes property allows you to tell the browser that the image willfill
100vw

actually be smaller than full screen. If you don’t specify a sizes value in an image with the (full screen width) is used.

property, a default value of

[image:]Second, the sizes property changes the behavior of the automatically generated srcset value. If no sizes value is present, a small srcset is generated, suitable for a fixed-size image (1x/2x/etc). If sizes is defined, a large srcset is generated, suitable for a responsive image (640w/750w/etc). If the sizes property includes sizes such as 50vw, which represent a percentage of thesrcset

viewport width, then the	is trimmed to not include any values which are too small to ever be necessary.
For example, if you know your styling will cause an image to be full-width on mobile devices, in a 2-column layout on tablets, and a 3- column layout on desktop displays, you should include a sizes property such as the following:import Image from 'next/image'
export default function Page() {
return (
<div className="grid-element">
<Image
fill
src="/example.png"
</ > >
/ sizes="(max-width: 768px) 100vw, (max-width: 1200px) 50vw, 33vw"
div
})

This example sizes could have a dramatic effect on performance metrics. Without the 33vw sizes, the image selected from the server

[image:]would be 3 times as wide as it needs to be. Because file size is proportional to the square of the width, without download an image that’s 9 times larger than necessary.sizes
srcset

the user would

Learn more about
[image:][image:] web.dev [image:] mdn100
to 75.

and sizes:

quality

quality={75} // {number 1-100}

The quality of the optimized image, an integer between 1 and 100, where	is the best quality and therefore largest file size. Defaults

priority

priority={false} // {false} | {true}

When true, the image will be considered high priority and preload. Lazy loading is automatically disabled for images using priority. You should use the priority property on any image detected as the Largest Contentful Paint (LCP) element. It may be appropriate to have multiple priority images, as different images may be the LCP element for different viewport sizes.
Should only be used when the image is visible above the fold. Defaults to false.
placeholder
placeholder = 'empty' // "empty" | "blur" | "data:image/..."

A placeholder to use while the image is loading. Possible values are blur, empty, or data:image/	Defaults to empty.
[image:]When blur, the blurDataURL property will be used as the placeholder. If src is an object from a static import and the imported imageblurDataURL
base64

is .jpg, .png, .webp, or .avif, then animated.blurDataURL

will be automatically populated, except when the image is detected to be

For dynamic images, you must provide the

property. Solutions such as Plaiceholder can help with

generation.

When data:image/..., the Data URL will be used as the placeholder while the image is loading. When empty, there will be no placeholder while the image is loading, only empty space.
Try it out:
[image:] Demo the blur placeholderDemo the shimmer effect with data URL placeholder prop Demo the color effect with blurDataURL prop

Advanced Props
In some cases, you may need more advanced usage. The

component optionally accepts the following advanced properties.<Image />

style

Allows passing CSS styles to the underlying image element.

components/ProfileImage.js (jsx)const imageStyle = {
} border: '1px solid #fff',
borderRadius: '50%',
export default function ProfileImage() {
} return <Image src="..." style={imageStyle} />

Remember that the required width and height props can interact with your styling. If you use styling to modify an image’s width, youauto

should also style its height to	to preserve its intrinsic aspect ratio, or your image will be distorted.
onLoadingComplete
'use client'
<Image onLoadingComplete={(img) => console.log(img.naturalWidth)} />

Warning: Deprecated since Next.js 14 in favor of onLoad.
A callback function that is invoked once the image is completely loaded and the placeholder has been removed.

The callback function will be called with one argument, a reference to the underlying	element.
Good to know: Using props like onLoadingComplete, which accept a function, require using Client Components to serialize the provided function.
onLoad

<Image onLoad={(e) => console.log(e.target.naturalWidth)} />

A callback function that is invoked once the image is completely loaded and the placeholder has been removed.target

The callback function will be called with one argument, the Event which has a

that references the underlying

element.

Good to know: Using props like onLoad, which accept a function, require using Client Components to serialize the provided function.
onError
<Image onError={(e) => console.error(e.target.id)} />

A callback function that is invoked if the image fails to load.
Good to know: Using props like onError, which accept a function, require using Client Components to serialize the provided function.
loading

Recommendation: This property is only meant for advanced use cases. Switching an image to load with eager will normally
hurt performance. We recommend using the	property instead, which will eagerly preload the image.priority

loading = 'lazy' // {lazy} | {eager}

The loading behavior of the image. Defaults to lazy.
[image:]When lazy, defer loading the image until it reaches a calculated distance from the viewport. When eager, load the image immediately.loading

Learn more about the	attribute.placeholder="blur".

blurDataURL

A Data URL to be used as a placeholder image before the	image successfully loads. Only takes effect when combined with

Must be a base64-encoded image. It will be enlarged and blurred, so a very small image (10px or less) is recommended. Including larger images as placeholders may harm your application performance.src

Try it out:
[image:] Demo the default blurDataURL prop
[image:] Demo the color effect with blurDataURL prop
You can also generate a solid color Data URL to match the image.
unoptimized
unoptimized = {false} // {false} | {true}
When true, the source image will be served as-is instead of changing quality, size, or format. Defaults to false. import Image from 'next/image'
const UnoptimizedImage = (props) => {
} return <Image {...props} unoptimized />

Since Next.js 12.3.0, this prop can be assigned to all images by updating

with the following configuration:
next.config.js (js)module.exports = {
images: {
} ,
} unoptimized: true,
next.config.js

Other Props

Other properties on the

component will be passed to the underlying

element with the exception of the following:

[image:] srcSet. Use Device Sizes instead.<Image />
img

[image:] decoding. It is always "async".
Configuration Options
In addition to props, you can configure the Image Component in next.config.js. The following options are available:
remotePatterns

To protect your application from malicious users, configuration is required in order to use external images. This ensures that only external images from your account can be served from the Next.js Image Optimization API. These external images can be configured

with theremotePatterns
next.config.js

property in your

file, as shown below:

next.config.js (js)module.exports = {
images: {
remotePatterns: [
{ protocol: 'https',
hostname: 'example.com',
port: '',
], ,
} },
} pathname: '/account123/**',

[image:]Good to know: The example above will ensure the src property of next/image must start with https://example.com/account123/. Any other protocol, hostname, port, or unmatched path will respond with 400 Bad Request.remotePatterns
next.config.js

Below is another example of the

property in the

file:

next.config.js (js)module.exports = {
images: {
remotePatterns: [
{ protocol: 'https',
], ,
} },
} hostname: '**.example.com',

[image:]Good to know: The example above will ensure the src property of next/image must start with https://img1.example.com or https://me.avatar.example.com or any number of subdomains. Any other protocol or unmatched hostname will respond with 400 Bad Request.hostname

Wildcard patterns can be used for bothpathname

* match a single path segment or subdomain**

and

and have the following syntax:

The

** match any number of path segments at the end or subdomains at the beginning syntax does not work in the middle of the pattern.

domains

Warning: Deprecated since Next.js 14 in favor of strict remotePatterns in order to protect your application from maliciousdomains

users. Only use	if you own all the content served from the domain.
Similar to remotePatterns, the	configuration can be used to provide a list of allowed hostnames for external images.domains

However, the domains configuration does not support wildcard pattern matching and it cannot restrict protocol, port, or pathname.next.config.js

Below is an example of the domains property in the

file:

next.config.js (js)module.exports = {

images: {
} ,
} domains: ['assets.acme.com'],

loaderFile

If you want to use a cloud provider to optimize images instead of using the Next.js built-in Image Optimization API, you can configure

theloaderFile
next.config.js

in your

like the following:

next.config.js (js)module.exports = {
images: {
loader: 'custom',
} ,
} loaderFile: './my/image/loader.js',

This must point to a file relative to the root of your Next.js application. The file must export a default function that returns a string, for example:'use client'
export default function myImageLoader({ src, width, quality }) {
} return `https://example.com/${src}?w=${width}&q=${quality || 75}`

Alternatively, you can use the Examples:loader

prop to configure each instance of next/image.

[image:] Custom Image Loader Configuration
Good to know: Customizing the image loader file, which accepts a function, require using Client Components to serialize the provided function.
Advanced
The following configuration is for advanced use cases and is usually not necessary. If you choose to configure the properties below, you will override any changes to the Next.js defaults in future updates.
deviceSizes

If you know the expected device widths of your users, you can specify a list of device width breakpoints using the deviceSizes

property in next.config.js. These widths are used when the is served for user’s device.next/image
sizes

If no configuration is provided, the default below is used.

component uses

prop to ensure the correct image

next.config.js (js)module.exports = {
images: {
} ,
} deviceSizes: [640, 750, 828, 1080, 1200, 1920, 2048, 3840],

imageSizes

You can specify a list of image widths using the images.imageSizes property in your next.config.js file. These widths are concatenated with the array of device sizes to form the full array of sizes used to generate image srcsets.sizes

The reason there are two separate lists is that imageSizes is only used for images which provide a	prop, which indicates that the
image is less than the full width of the screen. Therefore, the sizes in imageSizes should all be smaller than the smallest size in deviceSizes.
If no configuration is provided, the default below is used.
next.config.js (js)module.exports = {
images: {
} ,
} imageSizes: [16, 32, 48, 64, 96, 128, 256, 384],

formats

The default Image Optimization API will automatically detect the browser’s supported image formats via the request’s	header.
If the Accept head matches more than one of the configured formats, the first match in the array is used. Therefore, the array order matters. If there is no match (or the source image is animated), the Image Optimization API will fallback to the original image’s format. If no configuration is provided, the default below is used.
next.config.js (js)module.exports = {
images: {
} ,
} formats: ['image/webp'],
Accept

You can enable AVIF support with the following configuration.

next.config.js (js)module.exports = {
images: {
} ,
} formats: ['image/avif', 'image/webp'],

Good to know:
[image:] AVIF generally takes 20% longer to encode but it compresses 20% smaller compared to WebP. This means that the first time an image is requested, it will typically be slower and then subsequent requests that are cached will be faster.Accept

[image:] If you self-host with a Proxy/CDN in front of Next.js, you must configure the Proxy to forward the
Caching Behavior

header.

The following describes the caching algorithm for the default loader. For all other loaders, please refer to your cloud provider’s documentation.
Images are optimized dynamically upon request and stored in the <distDir>/cache/images directory. The optimized image file will be served for subsequent requests until the expiration is reached. When a request is made that matches a cached but expired file, the expired image is served stale immediately. Then the image is optimized again in the background (also called revalidation) and saved to the cache with the new expiration date.x-nextjs-cache

The cache status of an image can be determined by reading the value of the the following:
[image:] MISS - the path is not in the cache (occurs at most once, on the first visit)

response header. The possible values are

[image:] STALE - the path is in the cache but exceeded the revalidate time so it will be updated in the background
[image:] HIT - the path is in the cache and has not exceeded the revalidate time
The expiration (or rather Max Age) is defined by either the minimumCacheTTL configuration or the upstream image Cache-Control
header, whichever is larger. Specifically, the max-age value of the Cache-Control header is used. If both s-maxage and max-age ares-maxage

found, then	is preferred. The max-age is also passed-through to any downstream clients including CDNs and browsers.
You can configure minimumCacheTTL to increase the cache duration when the upstream image does not include header or the value is very low.Cache-Control

You can configure deviceSizes and imageSizes to reduce the total number of possible generated images.
You can configure formats to disable multiple formats in favor of a single image format.
minimumCacheTTL

You can configure the Time to Live (TTL) in seconds for cached optimized images. In many cases, it’s better to use a Static Image Import

which will automatically hash the file contents and cache the image forever with aCache-Control

header of immutable.
next.config.js (js)module.exports = {
images: {
} ,
} minimumCacheTTL: 60,

The expiration (or rather Max Age) of the optimized image is defined by either the	or the upstream imageminimumCacheTTL
Cache-

header, whichever is larger.Control

If you need to change the caching behavior per image, you can configure/_next/image

to set theheaders

header on the upstreamCache-Control

image (e.g. /some-asset.jpg, not	itself).minimumCacheTTL

There is no mechanism to invalidate the cache at this time, so its best to keep	low. Otherwise you may need tosrc

manually change the	prop or delete <distDir>/cache/images.
disableStaticImages

The default behavior allows you to import static files such as property.import icon from './icon.png'
src

and then pass that to the

In some cases, you may wish to disable this feature if it conflicts with other plugins that expect the import to behave differently. You can disable static image imports inside your next.config.js:
next.config.js (js)module.exports = {
images: {
} ,
} disableStaticImages: true,

dangerouslyAllowSVG

The default loader does not optimize SVG images for a few reasons. First, SVG is a vector format meaning it can be resized losslessly. Second, SVG has many of the same features as HTML/CSS, which can lead to vulnerabilities without a proper Content Security Policy.
If you need to serve SVG images with the default Image Optimization API, you can set	inside yournext.config.js:

next.config.js (js)module.exports = {
images: {
dangerouslyAllowSVG: true,
contentDispositionType: 'attachment',
} ,
} contentSecurityPolicy: "default-src 'self'; script-src 'none'; sandbox;",
dangerouslyAllowSVG

In addition, it is strongly recommended to also set contentDispositionType to force the browser to download the image, as well as to prevent scripts embedded in the image from executing.contentSecurityPolicy

Animated Images
The default loader will automatically bypass Image Optimization for animated images and serve the image as-is.
Auto-detection for animated files is best-effort and supports GIF, APNG, and WebP. If you want to explicitly bypass Image Optimization for a given animated image, use the unoptimized prop.
Responsive Images
[image:][image:]The default generated srcset contains 1x and 2x images in order to support different device pixel ratios. However, you may wish tosizes
style

render a responsive image that stretches with the viewport. In that case, you’ll need to set You can render a responsive image using one of the following methods below.
Responsive image using a static import
If the source image is not dynamic, you can statically import to create a responsive image:

as well as

(or className).

components/author.js (jsx)import Image from 'next/image'
import me from '../photos/me.jpg'
export default function Author() {
return (
<Image
src={me}
alt="Picture of the author"
sizes="100vw"
style={{

} height: 'auto',
width: '100%',
})
/> }

Try it out:
[image:] Demo the image responsive to viewport
Responsive image with aspect ratio
If the source image is a dynamic or a remote url, you will also need to provide responsive image:width

and

to set the correct aspect ratio of theheight

components/page.js (jsx)import Image from 'next/image'
export default function Page({ photoUrl }) {
return (
<Image
src={photoUrl}
alt="Picture of the author"
sizes="100vw"
style={{
} height: 'auto',
width: '100%',
}
/ height={300}
width={500}
}
) >

Try it out:
[image:] Demo the image responsive to viewport
Responsive image withfill

If you don’t know the aspect ratio, you will need to set the fill prop and setobject-fit

on the parent. Optionally, you canposition: relative

set

style depending on the desired stretch vs crop behavior:

app/page.js (jsx)import Image from 'next/image'
export default function Page({ photoUrl }) {
return (
<div style={{ position: 'relative', width: '500px', height: '300px' }}>
<Image
src={photoUrl}
alt="Picture of the author"
sizes="500px"
fill
style={{
} objectFit: 'contain',
}
/> }
) </div>

Try it out:
Demo the fill prop

Theme Detection
If you want to display a different image for light and dark mode, you can create a new component that wraps two and reveals the correct one based on a CSS media query.<Image>

components

components/theme-image.module.css (css)

.imgDark {
} display: none;
@media (prefers-color-scheme: dark) {
.imgLight {
} display: none;
.imgDark {
}
} display: unset;

components/theme-image.tsx (tsx)import styles from './theme-image.module.css'
import Image, { ImageProps } from 'next/image'
type Props = Omit<ImageProps, 'src' | 'priority' | 'loading'> & {
} srcDark: string
srcLight: string
const ThemeImage = (props: Props) => {
const { srcLight, srcDark, ...rest } = props
return (
<>
< <Image {...rest} src={srcDark} className={styles.imgDark} />
<Image {...rest} src={srcLight} className={styles.imgLight} />
}
) />

components/theme-image.js (jsx)import styles from './theme-image.module.css'
import Image from 'next/image'
const ThemeImage = (props) => {
const { srcLight, srcDark, ...rest } = props
return (
<>
< <Image {...rest} src={srcDark} className={styles.imgDark} />
<Image {...rest} src={srcLight} className={styles.imgLight} />
}
) />

Good to know: The default behavior of loading="lazy" ensures that only the correct image is loaded. You cannot use because that would cause both images to load. Instead, you can usepriority or loading="eager" fetchPriority="high".

Try it out:
[image:] Demo light/dark mode theme detection
Known Browser Bugs
This next/image component uses browser native lazy loading, which may fallback to eager loading for older browsers before Safari
[image:]15.4. When using the blur-up placeholder, older browsers before Safari 12 will fallback to empty placeholder. When using styles with width/height of auto, it is possible to cause Layout Shift on older browsers before Safari 15 that don’t preserve the aspect ratio. For more details, see this MDN video.
[image:] Safari 15 - 16.3 display a gray border while loading. Safari 16.4 fixed this issue. Possible solutions:Use CSS @supports (font: -apple-system-body) and (-webkit-appearance: none) { img[loading="lazy"] { clip-path: inset(0.6px) } }
Use priority if the image is above the fold
Firefox 67+ displays a white background while loading. Possible solutions:

Enable AVIF formats
Use placeholder

Version History

	Version
	Changes

	v14.0.0
	onLoadingComplete prop and domains config deprecated.

	v13.4.14
	placeholder prop support for data:/image...

	v13.2.0
	contentDispositionType configuration added.

	v13.0.6
	ref prop added.

	
v13.0.0
	The next/image import was renamed to next/legacy/image. The next/future/image import was renamed to next/image. A codemod is available to safely and automatically rename your imports. wrapper removed. layout, objectFit, objectPosition, lazyBoundary, lazyRoot props removed. alt is required. onLoadingComplete receives reference to img element. Built-in loader config removed.

	v12.3.0
	remotePatterns and unoptimized configuration is stable.

	v12.2.0
	Experimental remotePatterns and experimental unoptimized configuration added. layout="raw" removed.

	v12.1.1
	style prop added. Experimental support for layout="raw" added.

	v12.1.0
	dangerouslyAllowSVG and contentSecurityPolicy configuration added.

	v12.0.9
	lazyRoot prop added.

	v12.0.0
	formats configuration added. AVIF support added.
Wrapper <div> changed to .

	v11.1.0
	onLoadingComplete and lazyBoundary props added.

	v11.0.0
	src prop support for static import. placeholder prop added. blurDataURL prop added.

	v10.0.5
	loader prop added.

	v10.0.1
	layout prop added.

	v10.0.0
	next/image introduced.

3.2.1.3 - <Link>
Documentation path: /02-app/02-api-reference/01-components/link
Description: Enable fast client-side navigation with the built-in `next/link` component.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
[image:] Examples
[image:]<Link> is a React component that extends the HTML <a> element to provide prefetching and client-side navigation between routes. It is the primary way to navigate between routes in Next.js.
app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
} return <Link href="/dashboard">Dashboard</Link>

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
} return <Link href="/dashboard">Dashboard</Link>

For an example, consider a	directory with the following files:pages

pages/index.js pages/about.js pages/blog/[slug].js

We can have a link to each of these pages like so:

Propsreturn (

< <Link href="/">Home</Link>

/li>
< <Link href="/about">About Us</Link>

/li>
</ /li>
< <Link href="/blog/hello-world">Blog Post</Link>
ul>
})
export default Home
function Home() {
import Link from 'next/link'

Here’s a summary of the props available for the Link Component:

	Prop
	Example
	Type
	Required

	href
	href="/dashboard"
	String or Object
	Yes

	replace
	replace={false}
	Boolean
	-

	scroll
	scroll={false}
	Boolean
	-

	prefetch
	prefetch={false}
	Boolean
	-

Good to know:	tag attributes such as<a>
className
target="_blank"
<a>

or

can be added to

as props and will be

passed to the underlying
(required)href

The path or URL to navigate to.

element.

<Link href="/dashboard">Dashboard</Link>

href can also accept an object, for example:
// Navigate to /about?name=test
<Link
href={{
> }
} query: { name: 'test' },
pathname: '/about',
< About
/Link>
replace

[image:]Defaults to false. When true, history stack.

will replace the current history state instead of adding a new URL into the browser’s
app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<Link href="/dashboard" replace>
< Dashboard
}
) /Link>
next/link

<Link>

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
return (
<Link href="/dashboard" replace>
< Dashboard
}
) /Link>

scroll

Defaults to true. The default behavior of <Link> is to scroll to the top of a new route or to maintain the scroll position for backwards and forwards navigation. When false, next/link will not scroll to the top of the page after a navigation.
app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<Link href="/dashboard" scroll={false}>
< Dashboard
}
) /Link>

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
return (
<Link href="/dashboard" scroll={false}>
< Dashboard
/Link>

})

prefetch

Defaults to true. When true, next/link will prefetch the page (denoted by the href) in the background. This is useful for improving the performance of client-side navigations. Any <Link /> in the viewport (initially or through scroll) will be preloaded.
[image:][image:]Prefetch can be disabled by passing prefetch={false}. Prefetching is only enabled in production.
app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
return (
<Link href="/dashboard" prefetch={false}>
< Dashboard
}
) /Link>

app/page.js (jsx)import Link from 'next/link'
export default function Page() {
return (
<Link href="/dashboard" prefetch={false}>
< Dashboard
}
) /Link>

Other Props
legacyBehavior

An <a> element is no longer required as a child of <Link>. Add the legacyBehavior prop to use the legacy behavior or remove the
<a> to upgrade. A codemod is available to automatically upgrade your code.anchor
next/link

[image:]Good to know: when legacyBehavior is not set to true, all as, className, onClick, etc.

tag properties can be passed to

as well such

passHref

ForcesLink

to send the

property to its child. Defaults to

scroll

Scroll to the top of the page after a navigation. Defaults tohref
false
true
getServerSideProps

shallow

Update the path of the current page without rerunning getStaticProps,	or getInitialProps. Defaults to
locale

The active locale is automatically prepended. as the default behavior is disabled.false
locale

Examples
Linking to Dynamic Routes

allows for providing a different locale. When

has to include the locale

For dynamic routes, it can be handy to use template literals to create the link’s path. For example, you can generate a list of links to the dynamic routefalse href
pages/blog/[slug].js

pages/blog/index.js (jsx)import Link from 'next/link'
function Posts({ posts }) {
return (

{posts.map((post) => (
<li key={post.id}>
</u }
)) /li>
< <Link href={`/blog/${post.slug}`}>{post.title}</Link>
}
)	l>
export default Posts

For example, you can generate a list of links to the dynamic route app/blog/[slug]/page.js:

app/blog/page.js (jsx)import Link from 'next/link'
function Page({ posts }) {
return (

{posts.map((post) => (
<li key={post.id}>
</u }
)) /li>
< <Link href={`/blog/${post.slug}`}>{post.title}</Link>
l>
})

If the child is a custom component that wraps an	tag<a>

If you’re using emotion’s JSX pragma feature (@jsx jsx), you must use passHref even if you use an	tag directly.If the child of Link is a custom component that wraps an <a> tag, you must add passHref to Link. This is necessary if you’re using libraries like styled-components. Without this, the <a> tag will not have the href attribute, which hurts your site’s accessibility and might affect SEO. If you’re using ESLint, there is a built-in rule next/link-passhref to ensure correct usage of passHref.
If the child of Link is a custom component that wraps an <a> tag, you must add passHref to Link. This is necessary if you’re using libraries like styled-components. Without this, the <a> tag will not have the href attribute, which hurts your site’s accessibility and might affect SEO. If you’re using ESLint, there is a built-in rule next/link-passhref to ensure correct usage of passHref.
import Link from 'next/link'
const RedLink = styled.a`
function NavLink({ href, name }) {
import styled from 'styled-components'
// This creates a custom component that wraps an <a> tag
) /Link>
` color: red;
export default NavLink
return (
<Link href={href} passHref legacyBehavior>

}
< <RedLink>{name}</RedLink>
<a>
onClick

The component should support	property to trigger navigation correctly

If the child is a functional component
If the child of Link is a functional component, in addition to usingpassHref

React.forwardRef:
import Link from 'next/link'

and legacyBehavior, you must wrap the component in

// `onClick`, `href`, and `ref` need to be passed to the DOM element

// for proper handling
const MyButton = React.forwardRef(({ onClick, href }, ref) => {
return (

< Click Me
})
) /a>
function Home() {
return (
<Link href="/about" passHref legacyBehavior>

}
) /Link>
< <MyButton />
export default Home

With URL Object
Link can also receive a URL object and it will automatically format it to create the URL string. Here’s how to do it:
import Link from 'next/link'
function Home() {
return (

<Link
href={{
> }
} query: { name: 'test' },
pathname: '/about',
</ /Link>
< li>
< About us
li>
<Link
href={{
pathname: '/blog/[slug]',
> }
} query: { slug: 'my-post' },
</u li>
</ /Link>
< Blog Post
}
)	l>
export default Home

The above example has a link to:
[image:] A predefined route: /about?name=test
[image:] A dynamic route: /blog/my-post
You can use every property as defined in the Node.js URL module documentation.
Replace the URL instead of pushpush
history
replace

The default behavior of the	component is toLink

a new URL into the

stack. You can use the

prop to prevent

adding a new entry, as in the following example:<Link href="/about" replace>
< About us
/Link>

Disable scrolling to the top of the page
The default behavior of	is to scroll to the top of the page. When there is a hash defined it will scroll to the specific id, like a normalLink

<a> tag. To prevent scrolling to the top / hash scroll={false} can be added to Link:
<Link href="/#hashid" scroll={false}>
< Disables scrolling to the top
/Link>

Middleware
It’s common to use Middleware for authentication or other purposes that involve rewriting the user to a different page. In order for the
<Link /> component to properly prefetch links with rewrites via Middleware, you need to tell Next.js both the URL to display and the
URL to prefetch. This is required to avoid un-necessary fetches to middleware to know the correct route to prefetch.
For example, if you want to serve a /dashboard route that has authenticated and visitor views, you may add something similar to the following in your Middleware to redirect the user to the correct page:
middleware.js (js)export function middleware(req) {
const nextUrl = req.nextUrl
if (nextUrl.pathname === '/dashboard') {
if (req.cookies.authToken) {
} return NextResponse.rewrite(new URL('/auth/dashboard', req.url))
else {
} }
} return NextResponse.rewrite(new URL('/public/dashboard', req.url))

In this case, you would want to use the following code in your <Link /> component:
import Link from 'next/link'
import useIsAuthed from './hooks/useIsAuthed'
export default function Page() {
const isAuthed = useIsAuthed()
const path = isAuthed ? '/auth/dashboard' : '/dashboard'
return (
<Link as="/dashboard" href={path}>
< Dashboard
}
) /Link>

Good to know: If you’re using Dynamic Routes, you’ll need to adapt your as and href props. For example, if you have a
[image:]Dynamic Route like	that you want to present differently via middleware, you would write:/dashboard/[user]
{{ pathname: '/dashboard/authed/[user]', query: { user: username } }}
as="/dashboard/[user]">Profile</Link>.
<Link href=

Version History

	Version
	Changes

	v13.0.0
	No longer requires a child <a> tag. A codemod is provided to automatically update your codebase.

	v10.0.0
	href props pointing to a dynamic route are automatically resolved and no longer require an as prop.

	v8.0.0
	Improved prefetching performance.

	v1.0.0
	next/link introduced.

3.2.1.4 - <Script>
Documentation path: /02-app/02-api-reference/01-components/script
Description: Optimize third-party scripts in your Next.js application using the built-in `next/script` Component.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
This API reference will help you understand how to use props available for the Script Component. For features and usage, please see the Optimizing Scripts page.
app/dashboard/page.tsx (tsx)import Script from 'next/script'
export default function Dashboard() {
return (
<>
< <Script src="https://example.com/script.js" />
}
) />

app/dashboard/page.js (jsx)import Script from 'next/script'
export default function Dashboard() {
return (
<>
< <Script src="https://example.com/script.js" />
}
) />

Props
Here’s a summary of the props available for the Script Component:

	Prop
	Example
	Type
	Required

	src
	src="http://example.com/script"
	String
	Required unless inline script is used

	strategy
	strategy="lazyOnload"
	String
	-

	onLoad
	onLoad={onLoadFunc}
	Function
	-

	onReady
	onReady={onReadyFunc}
	Function
	-

	onError
	onError={onErrorFunc}
	Function
	-

Required Props
The	component requires the following properties.<Script />

src

A path string specifying the URL of an external script. This can be either an absolute external URL or an internal path. The is required unless an inline script is used.src

Optional Props

property

The	component accepts a number of additional properties beyond those which are required.<Script />

strategy

The loading strategy of the script. There are four different strategies that can be used:
[image:] beforeInteractive: Load before any Next.js code and before any page hydration occurs.

afterInteractive: (default) Load early but after some hydration on the page occurs.
lazyOnload: Load during browser idle time.
worker: (experimental) Load in a web worker.
beforeInteractive

Scripts that load with the beforeInteractive strategy are injected into the initial HTML from the server, downloaded before any Next.js module, and executed in the order they are placed before any hydration occurs on the page.
Scripts denoted with this strategy are preloaded and fetched before any first-party code, but their execution does not block page hydration from occurring.
beforeInteractive scripts must be placed inside the root layout (app/layout.tsx) and are designed to load scripts that are needed by the entire site (i.e. the script will load when any page in the application has been loaded server-side).
This strategy should only be used for critical scripts that need to be fetched before any part of the page becomes interactive.
app/layout.tsx (tsx)import Script from 'next/script'
export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
<body>{children}</body>
<Script
</ > l>
/ strategy="beforeInteractive"
src="https://example.com/script.js"
htm
})

app/layout.js (jsx)import Script from 'next/script'
export default function RootLayout({ children }) {
return (
<html lang="en">
<body>{children}</body>
<Script
src="https://example.com/script.js"
</ > l>
/ strategy="beforeInteractive"
htm
})

import { Html, Head, Main, NextScript } from 'next/document'
import Script from 'next/script'
export default function Document() {
return (
<Html>
<Head />
<body>
<Main />
<NextScript />
<Script
</H bod
</ > y>
/ strategy="beforeInteractive"
src="https://example.com/script.js"
)	tml>
}

Good to know: Scripts with beforeInteractive will always be injected inside the where it’s placed in the component.head

of the HTML document regardless of

Some examples of scripts that should be loaded as soon as possible withbeforeInteractive

[image:] Bot detectors
[image:] Cookie consent managers

include:

afterInteractive

Scripts that use the	strategy are injected into the HTML client-side and will load after some (or all) hydrationafterInteractive

occurs on the page. This is the default strategy of the Script component and should be used for any script that needs to load as soon as possible but not before any first-party Next.js code.
afterInteractive scripts can be placed inside of any page or layout and will only load and execute when that page (or group of pages) is opened in the browser.
app/page.js (jsx)import Script from 'next/script'
export default function Page() {
return (
<>
< <Script src="https://example.com/script.js" strategy="afterInteractive" />
}
) />

Some examples of scripts that are good candidates for [image:] Tag managersafterInteractive

[image:] Analytics

include:

lazyOnload

Scripts that use the lazyOnload strategy are injected into the HTML client-side during browser idle time and will load after all resources on the page have been fetched. This strategy should be used for any background or low priority scripts that do not need to load early.
lazyOnload scripts can be placed inside of any page or layout and will only load and execute when that page (or group of pages) is opened in the browser.
app/page.js (jsx)import Script from 'next/script'
export default function Page() {
return (
<>
< <Script src="https://example.com/script.js" strategy="lazyOnload" />
}
) />

Examples of scripts that do not need to load immediately and can be fetched with [image:] Chat support pluginslazyOnload

[image:] Social media widgets

include:

worker

Warning: The worker strategy is not yet stable and does not yet work with the	directory. Use with caution.app

Scripts that use the worker strategy are off-loaded to a web worker in order to free up the main thread and ensure that only critical, first-party resources are processed on it. While this strategy can be used for any script, it is an advanced use case that is not guaranteed to support all third-party scripts.worker
nextScriptWorkers

To use

as a strategy, the

flag must be enabled in next.config.js:

next.config.js (js)module.exports = {
experimental: {
} ,
} nextScriptWorkers: true,

scripts can only currently be used in theworker

directory:

pages/home.tsx (tsx)import Script from 'next/script'
export default function Home() {
return (
<>
< <Script src="https://example.com/script.js" strategy="worker" />
}
) />
pages/

pages/home.js (jsx)import Script from 'next/script'
export default function Home() {
return (
<>
< <Script src="https://example.com/script.js" strategy="worker" />
}
) />

onLoad

Warning: onLoad does not yet work with Server Components and can only be used in Client Components. Further,
can’t be used with beforeInteractive – consider using	instead.onLoad
onReady

Some third-party scripts require users to run JavaScript code once after the script has finished loading in order to instantiate content or call a function. If you are loading a script with either afterInteractive or lazyOnload as a loading strategy, you can execute code after it has loaded using the onLoad property.
Here’s an example of executing a lodash method only after the library has been loaded.
app/page.tsx (tsx)'use client'
import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.20/lodash.min.js"
onLoad={() => {
} console.log(_.sample([1, 2, 3, 4]))
}
/> }
) </>

app/page.js (jsx)'use client'
import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.20/lodash.min.js"
onLoad={() => {
} console.log(_.sample([1, 2, 3, 4]))
}
/> }
) </>

onReady

Warning:

does not yet work with Server Components and can only be used in Client Components.

Some third-party scripts require users to run JavaScript code after the script has finished loading and every time the component is mounted (after a route navigation for example). You can execute code after the script’s load event when it first loads and then after every subsequent component re-mount using the onReady property.onReady

Here’s an example of how to re-instantiate a Google Maps JS embed every time the component is mounted:
app/page.tsx (tsx)'use client'
import { useRef } from 'react'
import Script from 'next/script'
export default function Page() {
const mapRef = useRef()
return (
<>
<div ref={mapRef}></div>
<Script
id="google-maps"
src="https://maps.googleapis.com/maps/api/js"
onReady={() => {
new google.maps.Map(mapRef.current, {
center: { lat: -34.397, lng: 150.644 },
< />
}})
} zoom: 8,
/>
})

app/page.js (jsx)'use client'
import { useRef } from 'react'
import Script from 'next/script'
export default function Page() {
const mapRef = useRef()
return (
<>
<div ref={mapRef}></div>
<Script
id="google-maps"
src="https://maps.googleapis.com/maps/api/js"
onReady={() => {
new google.maps.Map(mapRef.current, {
center: { lat: -34.397, lng: 150.644 },
< />
}})
} zoom: 8,
/>
})

import { useRef } from 'react';
import Script from 'next/script';
export default function Page() {
const mapRef = useRef();
return (
<PagesOnly>
<div ref={mapRef}></div>
<Script
id="google-maps"
src="https://maps.googleapis.com/maps/api/js"
onReady={() => {
new google.maps.Map(mapRef.current, {
center: { lat: -34.397, lng: 150.644 },

< />
}});
} zoom: 8,
/>
});

onError

Warning: onError does not yet work with Server Components and can only be used in Client Components. used with the beforeInteractive loading strategy.onError

Sometimes it is helpful to catch when a script fails to load. These errors can be handled with the onError property:

cannot be

app/page.tsx (tsx)'use client'
import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onError={(e: Error) => {
} console.error('Script failed to load', e)
}
/> }
) </>

app/page.js (jsx)'use client'
import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onError={(e: Error) => {
} console.error('Script failed to load', e)
}
/> }
) </>

import Script from 'next/script'
export default function Page() {
return (
<>
<Script
src="https://example.com/script.js"
onError={(e: Error) => {
} console.error('Script failed to load', e)
}
/> }
) </>

Version History

	Version
	Changes

	v13.0.0
	beforeInteractive and afterInteractive is modified to support app.

	Version
	Changes

	v12.2.4
	onReady prop added.

	v12.2.2
	Allow next/script with beforeInteractive to be placed in _document.

	v11.0.0
	next/script introduced.

3.2.2 - File Conventions
Documentation path: /02-app/02-api-reference/02-file-conventions/index
Description: API Reference for Next.js Special Files.

3.2.2.1 - Metadata Files API Reference
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/index
Description: API documentation for the metadata file conventions.

This section of the docs covers Metadata file conventions. File-based metadata can be defined by adding special metadata files to route segments.
Each file convention can be defined using a static file (e.g. opengraph-image.jpg), or a dynamic variant that uses code to generate the file (e.g. opengraph-image.js).
Once a file is defined, Next.js will automatically serve the file (with hashes in production for caching) and update the relevant head elements with the correct metadata, such as the asset’s URL, file type, and image size.

3.2.2.1.1 - favicon, icon, and apple-icon
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/app-icons
Description: API Reference for the Favicon, Icon and Apple Icon file conventions.
[image:]The favicon, icon, or	file conventions allow you to set icons for your application.apple-icon

They are useful for adding app icons that appear in places like web browser tabs, phone home screens, and search engine results. There are two ways to set app icons:
[image:] Using image files (.ico, .jpg, .png)
[image:] Using code to generate an icon (.js, .ts, .tsx)
Image files (.ico, .jpg, .png)apple-icon
/app
favicon

[image:]Use an image file to set an app icon by placing a favicon, icon, or image can only be located in the top level of app/.

image file within your

directory. The

Next.js will evaluate the file and automatically add the appropriate tags to your app’s	element.<head>

	File convention
	Supported file types
	Valid locations

	favicon
	.ico
	app/

	icon
	.ico, .jpg, .jpeg, .png, .svg
	app/**/*

	apple-icon
	.jpg, .jpeg, .png
	app/**/*

favicon

Add a

image file to the root

route segment.

output (html)<link rel="icon" href="/favicon.ico" sizes="any" />
favicon.ico
/app

icon

Add anicon.(ico|jpg|jpeg|png|svg)

image file.

output (html)<link
rel="icon"
href="/icon?<generated>"
/ sizes="<generated>"
type="image/<generated>"
>

apple-icon

Add an

image file.

output (html)<link
rel="apple-touch-icon"
href="/apple-icon?<generated>"
/ sizes="<generated>"
type="image/<generated>"
>
apple-icon.(jpg|jpeg|png)

Good to know
[image:] You can set multiple icons by adding a number suffix to the file name. For example, icon1.png, icon2.png, etc. Numbered files will sort lexically./app

Favicons can only be set in the root	segment. If you need more granularity, you can use icon.<link>
sizes

[image:][image:][image:]The appropriatetype="image/png"
sizes="32x32"

tags and attributes such as rel, href, type, and

are determined by the icon type and

metadata of the evaluated file. For example, a 32 by 32px.png

file will have

and

attributes.

is added tosizes="any"

output to avoid a browser bug where an

icon is favored over .svg.

[image:]Generate icons using code (.js, .ts, .tsx)favicon.ico
.ico

In addition to using literal image files, you can programmatically generate icons using code.icon
apple-icon

Generate an app icon by creating an

or

route that default exports a function.

	File convention
	Supported file types

	icon
	.js, .ts, .tsx

	apple-icon
	.js, .ts, .tsx

The easiest way to generate an icon is to use theImageResponse

import { ImageResponse } from 'next/og'
// Route segment config export const runtime = 'edge'
// Image metadata export const size = {
width: 32,
} height: 32,
export const contentType = 'image/png'
// Image generation
export default function Icon() { return new ImageResponse(
(// ImageResponse JSX element
<div
style={{ fontSize: 24,
background: 'black', width: '100%',
height: '100%', display: 'flex', alignItems: 'center',
justifyContent: 'center', color: 'white',
· }}
A
</div>
),
// ImageResponse options

API from next/og.

app/icon.tsx (tsx)

{ // For convenience, we can re-use the exported icons size metadata
// config to also set the ImageResponse's width and height.
} ...size,
})
app/icon.js (jsx)import { ImageResponse } from 'next/og'
// Route segment config
export const runtime = 'edge'
// Image metadata
export const size = {
} height: 32,
width: 32,
export const contentType = 'image/png'
// Image generation
export default function Icon() {

return new ImageResponse(
(// ImageResponse JSX element
<div
style={{
fontSize: 24,
background: 'black',
width: '100%',
height: '100%',
display: 'flex',
alignItems: 'center',
> }
} color: 'white',
justifyContent: 'center',
), /di
< A v>
// ImageResponse options
{ // For convenience, we can re-use the exported icons size metadata
// config to also set the ImageResponse's width and height.
})
} ...size,

output (html)<link rel="icon" href="/icon?<generated>" type="image/png" sizes="32x32" />

Good to know
[image:] By default, generated icons are statically optimized (generated at build time and cached) unless they use dynamic functions or uncached data.
[image:] You can generate multiple icons in the same file using generateImageMetadata.favicon
icon

[image:] You cannot generate a	icon. Use	or a favicon.ico file instead.
Props

The default export function receives the following props:
(optional)params

An object containing the dynamic route parameters object from the root segment down to the segment colocated in.icon

or	is

app/shop/[slug]/icon.tsx (tsx)export default function Icon({ params }: { params: { slug: string } }) {
} // ...
apple-icon

app/shop/[slug]/icon.js (jsx)export default function Icon({ params }) {
} // ...

	Route
	URL
	params

	app/shop/icon.js
	/shop
	undefined

	app/shop/[slug]/icon.js
	/shop/1
	{ slug: '1' }

	app/shop/[tag]/[item]/icon.js
	/shop/1/2
	{ tag: '1', item: '2' }

	app/shop/[...slug]/icon.js
	/shop/1/2
	{ slug: ['1', '2'] }

ReturnsReadableStream

The default export function should return a

|Blob

|ArrayBuffer

|TypedArray

|DataView

| Response.

Good to know:ImageResponse

Config exportscontentType
icon
apple-icon

satisfies this return type.

You can optionally configure the icon’s metadata by exportingsize

and

variables from the

or

route.

	Option
	Type

	size
	{ width: number; height: number }

	contentType
	string - image MIME type

size

icon.tsx | apple-icon.tsx (tsx)

icon.js | apple-icon.js (jsx)export const size = { width: 32, height: 32 }
export default function Icon() {}
export const size = { width: 32, height: 32 }
export default function Icon() {}

output (html)<link rel="icon" sizes="32x32" />

contentType

icon.tsx | apple-icon.tsx (tsx)

icon.js | apple-icon.js (jsx)export const contentType = 'image/png'
export default function Icon() {}
export const contentType = 'image/png'
export default function Icon() {}

output (html)<link rel="icon" type="image/png" />

Route Segment Config
d	are specialized Route Handlers that can use the same route segment configuration options as Pages andicon an Layouts.
apple-icon

	Option
	Type
	Default

	dynamic
	'auto' \| 'force-dynamic' \| 'error' \| 'force-static'
	'auto'

	revalidate
	false \| 'force-cache' \| 0 \| number
	false

	runtime
	'nodejs' \| 'edge'
	'nodejs'

	preferredRegion
	'auto' \| 'global' \| 'home' \| string \| string[]
	'auto'

app/icon.tsx (tsx)export const runtime = 'edge'
export default function Icon() {}

app/icon.js (jsx)export const runtime = 'edge'
export default function Icon() {}

Version History

	Version
	Changes

	v13.3.0
	favicon icon and apple-icon introduced

3.2.2.1.2 - manifest.json
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/manifest
Description: API Reference for manifest.json file.app

Add or generate a

file that matches the Web Manifest Specification in the root of

directory to

provide information about your web application for the browser.manifest.(json|webmanifest)

Static Manifest file

app/manifest.json | app/manifest.webmanifest (json){ "name": "My Next.js Application",
"short_name": "Next.js App",
"description": "An application built with Next.js",
} // ...
"start_url": "/"

Generate a Manifest filemanifest.js
manifest.ts
Manifest

Add a

or

file that returns a

object.

app/manifest.ts (ts)import { MetadataRoute } from 'next'
export default function manifest(): MetadataRoute.Manifest {
return {
name: 'Next.js App',
short_name: 'Next.js App',
description: 'Next.js App',
start_url: '/',
display: 'standalone',
background_color: '#fff',
theme_color: '#fff',
icons: [
{ src: '/favicon.ico',
} type: 'image/x-icon',
sizes: 'any',
} }
], ,

app/manifest.js (js)export default function manifest() {
return {
name: 'Next.js App',
short_name: 'Next.js App',
description: 'Next.js App',
start_url: '/',
display: 'standalone',
background_color: '#fff',
theme_color: '#fff',
icons: [
{ src: '/favicon.ico',
} type: 'image/x-icon',
sizes: 'any',
} }
], ,

Manifest Object
The manifest object contains an extensive list of options that may be updated due to new web standards. For information on all theMetadataRoute.Manifest

current options, refer to the	type in your code editor if using TypeScript or see the MDN docs.

3.2.2.1.3 - opengraph-image and twitter-image
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/opengraph-image
Description: API Reference for the Open Graph Image and Twitter Image file conventions.twitter-image

Theopengraph-image

and

file conventions allow you to set Open Graph and Twitter images for a route segment.

They are useful for setting the images that appear on social networks and messaging apps when a user shares a link to your site. There are two ways to set Open Graph and Twitter images:
[image:] Using image files (.jpg, .png, .gif)
[image:] Using code to generate images (.js, .ts, .tsx)
Image files (.jpg, .png, .gif)
Use an image file to set a route segment’s shared image by placing an opengraph-image or twitter-image image file in the segment. Next.js will evaluate the file and automatically add the appropriate tags to your app’s <head> element.

	File convention
	Supported file types

	opengraph-image
	.jpg, .jpeg, .png, .gif

	twitter-image
	.jpg, .jpeg, .png, .gif

	opengraph-image.alt
	.txt

	twitter-image.alt
	.txt

opengraph-image

Add an

image file to any route segment.

output (html)<meta property="og:image" content="<generated>" />
<meta property="og:image:type" content="<generated>" />
<meta property="og:image:width" content="<generated>" />
<meta property="og:image:height" content="<generated>" />
opengraph-image.(jpg|jpeg|png|gif)

twitter-image

Add a

image file to any route segment.

output (html)<meta name="twitter:image" content="<generated>" />
<meta name="twitter:image:type" content="<generated>" />
<meta name="twitter:image:width" content="<generated>" />
<meta name="twitter:image:height" content="<generated>" />
twitter-image.(jpg|jpeg|png|gif)

opengraph-image.alt.txt

Add an accompanying image it’s alt text.opengraph-image.alt.txt

file in the same route segment as the

opengraph-image.alt.txt (txt)About Acme
opengraph-image.(jpg|jpeg|png|gif)

output (html)<meta property="og:image:alt" content="About Acme" />

twitter-image.alt.txt

Add an accompanying it’s alt text.twitter-image.alt.txt

file in the same route segment as the

image
twitter-image.alt.txt (txt)About Acme
twitter-image.(jpg|jpeg|png|gif)

output (html)<meta property="twitter:image:alt" content="About Acme" />

Generate images using code (.js, .ts, .tsx)
In addition to using literal image files, you can programmatically generate images using code.opengraph-image
twitter-image

Generate a route segment’s shared image by creating an

or

route that default exports a function.

	File convention
	Supported file types

	opengraph-image
	.js, .ts, .tsx

	twitter-image
	.js, .ts, .tsx

Good to know
[image:] By default, generated images are statically optimized (generated at build time and cached) unless they use dynamic functions or uncached data.
[image:] You can generate multiple Images in the same file using generateImageMetadata.
The easiest way to generate an image is to use the ImageResponse API from next/og.

import { ImageResponse } from 'next/og'
// Route segment config export const runtime = 'edge'
// Image metadata
export const alt = 'About Acme' export const size = {
width: 1200,
} height: 630,
export const contentType = 'image/png'
// Image generation
export default async function Image() {
// Font
const interSemiBold = fetch(
new URL('./Inter-SemiBold.ttf', import.meta.url)
).then((res) => res.arrayBuffer())
return new ImageResponse(
(// ImageResponse JSX element
<div
style={{ fontSize: 128,
background: 'white', width: '100%',
height: '100%', display: 'flex', alignItems: 'center',
justifyContent: 'center',
· }}
About Acme
</div>
),
// ImageResponse options
{ // For convenience, we can re-use the exported opengraph-image
// size config to also set the ImageResponse's width and height.
...size, fonts: [
{ name: 'Inter',
data: await interSemiBold, style: 'normal',
weight: 400,

app/about/opengraph-image.tsx (tsx)

] },
})
} ,

import { ImageResponse } from 'next/og'
// Route segment config export const runtime = 'edge'
// Image metadata
export const alt = 'About Acme' export const size = {
width: 1200,
} height: 630,
export const contentType = 'image/png'
// Image generation
export default async function Image() {
// Font
const interSemiBold = fetch(
new URL('./Inter-SemiBold.ttf', import.meta.url)
).then((res) => res.arrayBuffer())
return new ImageResponse(
(// ImageResponse JSX element
<div
style={{ fontSize: 128,
background: 'white', width: '100%',
height: '100%', display: 'flex', alignItems: 'center',
justifyContent: 'center',
· }}
About Acme
</div>
),
// ImageResponse options
{ // For convenience, we can re-use the exported opengraph-image
// size config to also set the ImageResponse's width and height.
...size, fonts: [
{ name: 'Inter',
data: await interSemiBold, style: 'normal',
weight: 400,
},
}],

app/about/opengraph-image.js (jsx)

})

output (html)<meta property="og:image" content="<generated>" />
<meta property="og:image:alt" content="About Acme" />
<meta property="og:image:type" content="image/png" />
<meta property="og:image:width" content="1200" />
<meta property="og:image:height" content="630" />

Props
The default export function receives the following props:
(optional)params

An object containing the dynamic route parameters object from the root segment down to the segment	or is colocated in.opengraph-image
twitter-image

app/shop/[slug]/opengraph-image.tsx (tsx)export default function Image({ params }: { params: { slug: string } }) {
} // ...

app/shop/[slug]/opengraph-image.js (jsx)export default function Image({ params }) {
} // ...

	Route
	URL
	params

	app/shop/opengraph-image.js
	/shop
	undefined

	app/shop/[slug]/opengraph-image.js
	/shop/1
	{ slug: '1' }

	app/shop/[tag]/[item]/opengraph-image.js
	/shop/1/2
	{ tag: '1', item: '2' }

	app/shop/[...slug]/opengraph-image.js
	/shop/1/2
	{ slug: ['1', '2'] }

Returns
The default export function should return aImageResponse

|Blob

|ArrayBuffer

|TypedArray

|DataView

| Response.

Good to know:ReadableStream

Config exportsopengraph-image

satisfies this return type.

[image:][image:]You can optionally configure the image’s metadata by exporting alt, size, and route.contentType
twitter-image

variables from	or

	Option
	Type

	alt
	string

	size
	{ width: number; height: number }

	contentType
	string - image MIME type

alt

opengraph-image.tsx | twitter-image.tsx (tsx)

opengraph-image.js | twitter-image.js (jsx)export const alt = 'My images alt text'
export default function Image() {}
export const alt = 'My images alt text'
export default function Image() {}

output (html)<meta property="og:image:alt" content="My images alt text" />

size

opengraph-image.tsx | twitter-image.tsx (tsx)

opengraph-image.js | twitter-image.js (jsx)export const size = { width: 1200, height: 630 }
export default function Image() {}
export const size = { width: 1200, height: 630 }

export default function Image() {}

output (html)<meta property="og:image:width" content="1200" />
<meta property="og:image:height" content="630" />

contentType

opengraph-image.tsx | twitter-image.tsx (tsx)

opengraph-image.js | twitter-image.js (jsx)export const contentType = 'image/png'
export default function Image() {}
export const contentType = 'image/png'
export default function Image() {}

output (html)<meta property="og:image:type" content="image/png" />

Route Segment Config
andopengraph-image
Pages and Layouts.
twitter-image

are specialized Route Handlers that can use the same route segment configuration options as

	Option
	Type
	Default

	dynamic
	'auto' \| 'force-dynamic' \| 'error' \| 'force-static'
	'auto'

	revalidate
	false \| 'force-cache' \| 0 \| number
	false

	runtime
	'nodejs' \| 'edge'
	'nodejs'

	preferredRegion
	'auto' \| 'global' \| 'home' \| string \| string[]
	'auto'

app/opengraph-image.tsx (tsx)export const runtime = 'edge'
export default function Image() {}

app/opengraph-image.js (jsx)export const runtime = 'edge'
export default function Image() {}

Examples
Using external data
This example uses the

object and external data to generate the image.params

Good to know: By default, this generated image will be statically optimized. You can configure the individual or route segments options to change this behavior.fetch options

app/posts/[slug]/opengraph-image.tsx (tsx)import { ImageResponse } from 'next/og'
export const runtime = 'edge'
export const alt = 'About Acme'
export const size = {
} height: 630,
width: 1200,
export const contentType = 'image/png'

export default async function Image({ params }: { params: { slug: string } }) {
const post = await fetch(`https://.../posts/${params.slug}`).then((res) =>
) res.json()
return new ImageResponse(
(<div
style={{
fontSize: 48,
background: 'white',
width: '100%',
height: '100%',
display: 'flex',
> }
} justifyContent: 'center',
alignItems: 'center',
), /div>
< {post.title}
}
{ ...size,
) }

import { ImageResponse } from 'next/og' export const runtime = 'edge'
export const alt = 'About Acme' export const size = {
width: 1200,
} height: 630,
export const contentType = 'image/png'
export default async function Image({ params }) {

app/posts/[slug]/opengraph-image.js (jsx)

const post = await fetch(`https://.../posts/${params.slug}`).then((res) =>
) res.json()
return new ImageResponse((<div
style={{
fontSize: 48, background: 'white', width: '100%',
height: '100%', display: 'flex', alignItems: 'center',
justifyContent: 'center',
· }}
{post.title}
</div>
),
{ ...size,
) }
}
Version History

	Version
	Changes

	v13.3.0
	opengraph-image and twitter-image introduced.

3.2.2.1.4 - robots.txt
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/robots
Description: API Reference for robots.txt file.app

Add or generate a

file that matches the Robots Exclusion Standard in the root of

directory to tell search engine

crawlers which URLs they can access on your site.robots.txt

Staticrobots.txt

app/robots.txt (txt)User-Agent: *
Allow: /
Disallow: /private/
Sitemap: https://acme.com/sitemap.xml

Generate a Robots filerobots.js
robots.ts
Robots

Add a

or

file that returns a

object.

app/robots.ts (ts)import { MetadataRoute } from 'next'
export default function robots(): MetadataRoute.Robots {
return {
rules: {
userAgent: '*',
} disallow: '/private/',
allow: '/',
,
}
} sitemap: 'https://acme.com/sitemap.xml',

app/robots.js (js)export default function robots() {
return {
rules: {
userAgent: '*',
} disallow: '/private/',
allow: '/',
,
}
} sitemap: 'https://acme.com/sitemap.xml',

Output:User-Agent: *
Allow: /
Disallow: /private/
Sitemap: https://acme.com/sitemap.xml

Robots object
type Robots = {
rules:
| { userAgent?: string | string[]
allow?: string | string[]
disallow?: string | string[]
| Array<{
} crawlDelay?: number
userAgent: string | string[]
allow?: string | string[]
disallow?: string | string[]

site > ?: string | string[]
} crawlDelay?: number
}
hos map tring
t?: s

Version History

	Version
	Changes

	v13.3.0
	robots introduced.

3.2.2.1.5 - sitemap.xml
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/sitemap
Description: API Reference for the sitemap.xml file.
Related:
Title: Next Steps
Related Description: Learn how to use the generateSitemaps function.
Links:
[image:] app/api-reference/functions/generate-sitemaps

sitemap.(xml|js|ts)

efficiently.
Sitemap files (.xml)

is a special file that matches the Sitemaps XML format to help search engine crawlers index your site more

For smaller applications, you can create a

file and place it in the root of your

directory.

app/sitemap.xml (xml)<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://acme.com</loc>
<lastmod>2023-04-06T15:02:24.021Z</lastmod>
< <priority>1</priority>
<changefreq>yearly</changefreq>
<url>
/url>
<loc>https://acme.com/about</loc>
<lastmod>2023-04-06T15:02:24.021Z</lastmod>
< <priority>0.8</priority>
<changefreq>monthly</changefreq>
<url>
/url>
<loc>https://acme.com/blog</loc>
<lastmod>2023-04-06T15:02:24.021Z</lastmod>
<changefreq>weekly</changefreq>
</ /url>
< <priority>0.5</priority>
urlset>
sitemap.xml
app

Generating a sitemap using code (.js, .ts)
You can use the	file convention to programmatically generate a sitemap by exporting a default function thatsitemap.(js|ts)
Sitemap

returns an array of URLs. If using TypeScript, a

type is available.

app/sitemap.ts (ts)import { MetadataRoute } from 'next'
export default function sitemap(): MetadataRoute.Sitemap {
return [
{ url: 'https://acme.com',
lastModified: new Date(),
} priority: 1,
changeFrequency: 'yearly',
{ url: 'https://acme.com/about',
,
lastModified: new Date(),
} priority: 0.8,
changeFrequency: 'monthly',
{ url: 'https://acme.com/blog',
,
lastModified: new Date(),
} priority: 0.5,
changeFrequency: 'weekly',
}
] ,

app/sitemap.js (js)export default function sitemap() {
return [
{ url: 'https://acme.com',
lastModified: new Date(),
} priority: 1,
changeFrequency: 'yearly',
{ url: 'https://acme.com/about',
,
lastModified: new Date(),
} priority: 0.8,
changeFrequency: 'monthly',
{ url: 'https://acme.com/blog',
,
lastModified: new Date(),
} priority: 0.5,
changeFrequency: 'weekly',
}
] ,

Output:

acme.com/sitemap.xml (xml)<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://acme.com</loc>
<lastmod>2023-04-06T15:02:24.021Z</lastmod>
< <priority>1</priority>
<changefreq>yearly</changefreq>
<url>
/url>
<loc>https://acme.com/about</loc>
<lastmod>2023-04-06T15:02:24.021Z</lastmod>
< <priority>0.8</priority>
<changefreq>monthly</changefreq>
<url>
/url>
<loc>https://acme.com/blog</loc>
<lastmod>2023-04-06T15:02:24.021Z</lastmod>
<changefreq>weekly</changefreq>
</ /url>
< <priority>0.5</priority>
urlset>

Generating multiple sitemaps
While a single sitemap will work for most applications. For large web applications, you may need to split a sitemap into multiple files. There are two ways you can create multiple sitemaps:
[image:] By nesting sitemap.(xml|js|ts) inside multiple route segments e.g. [image:] By using the generateSitemaps function.app/sitemap.xml
and app/products/sitemap.xml.

[image:]For example, to split a sitemap using generateSitemaps, return an array of objects with the sitemap id. Then, use the	to generate the unique sitemaps.id

app/product/sitemap.ts (ts)import { BASE_URL } from '@/app/lib/constants'
export async function generateSitemaps() {
} return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
// Fetch the total number of products and calculate the number of sitemaps needed
export default async function sitemap({
} id,
} id: number etadataRoute.Sitemap> {
: {
): Promise<M
// Google's limit is 50,000 URLs per sitemap
const start = id * 50000

const end = start + 50000
const products = await getProducts(
) `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
return products.map((product) => ({
url: `${BASE_URL}/product/${id}`,
}))
} lastModified: product.date,

app/product/sitemap.js (js)import { BASE_URL } from '@/app/lib/constants'
export async function generateSitemaps() {
} return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
// Fetch the total number of products and calculate the number of sitemaps needed
export default async function sitemap({ id }) {
// Google's limit is 50,000 URLs per sitemap
const start = id * 50000
const end = start + 50000
const products = await getProducts(
) `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
return products.map((product) => ({
url: `${BASE_URL}/product/${id}`
}))
} lastModified: product.date,

In production, your generated sitemaps will be available at /.../sitemap/[id].xml. For example, /product/sitemap/1.xml. In development, you can view the generated sitemap on /.../sitemap.xml/[id]. For example, /product/sitemap.xml/1. This difference is temporary and will follow the production format.generateSitemaps

See the
Returns

API reference for more information.

The default function exported from sitemap.(xml|ts|js) should return an array of objects with the following properties:
type Sitemap = Array<{
url: string
lastModified?: string | Date
changeFrequency?:
| 'always'
| 'hourly'
| 'daily'
| 'weekly'
| 'monthly'
| 'yearly'
}> riority?: n
p | 'never' umber

Version History

	Version
	Changes

	v13.3.0
	sitemap introduced.

	v13.4.5
	Add changeFrequency and priority attributes to sitemaps.

3.2.2.2 - default.js
Documentation path: /02-app/02-api-reference/02-file-conventions/default
Description: API Reference for the default.js file.

This documentation is still being written. Please check back later.

3.2.2.3 - error.js
Documentation path: /02-app/02-api-reference/02-file-conventions/error
Description: API reference for the error.js special file.
Related:
Title: Learn more about error handling Related Description: No related description Links:
[image:] app/building-your-application/routing/error-handling

An error file defines an error UI boundary for a route segment.
It is useful for catching unexpected errors that occur in Server Components and Client Components and displaying a fallback UI.
app/dashboard/error.tsx (tsx)
'use client' // Error components must be Client Components import { useEffect } from 'react'
export default function Error({ error,
reset,
}: {
error: Error & { digest?: string } reset: () => void
}) {
useEffect(() => {
// Log the error to an error reporting service console.error(error)
}, [error])
return (
<div>
<h2>Something went wrong!</h2>
<button onClick={
// Attempt to recover by trying to re-render the segment
} () => reset()
· Try again
</button>
) </div>
}

app/dashboard/error.js (jsx)'use client' // Error components must be Client Components
import { useEffect } from 'react'
export default function Error({ error, reset }) {
useEffect(() => {
} console.error(error)
// Log the error to an error reporting service
, [error])
return (
<div>
<h2>Something went wrong!</h2>
<button
onClick={
// Attempt to recover by trying to re-render the segment
< </button>
} () => reset()
· Try again
}
) /div>

Props
error

An instance of anError

object forwarded to the

Client Component.

error.message

The error message.error.js

[image:] For errors forwarded from Client Components, this will be the original Error’s message.
[image:] For errors forwarded from Server Components, this will be a generic error message to avoid leaking sensitive details. can be used to match the corresponding error in server-side logs.errors.digest

error.digest

An automatically generated hash of the error thrown in a Server Component. It can be used to match the corresponding error in server- side logs.
reset

A function to reset the error boundary. When executed, the function will try to re-render the Error boundary’s contents. If successful, the fallback error component is replaced with the result of the re-render.
Can be used to prompt the user to attempt to recover from the error.
Good to know:
[image:] error.js boundaries must be Client Components.
[image:] In Production builds, errors forwarded from Server Components will be stripped of specific error details to avoid leaking sensitive information.layout.js

An error.js boundary will not handle errors thrown in a boundary is nested inside that layouts component.

component in the same segment because the error

To handle errors for a specific layout, place an error.js file in the layouts parent segment.error.js

To handle errors within the root layout or template, use a variation of	called app/global-error.js.
global-error.js

To specifically handle errors in root layout.js, use a variation of directory.error.js

called

located in the root
app/global-error.tsx (tsx)'use client'
export default function GlobalError({
} reset,
error,
: {
} reset: () => void
error: Error & { digest?: string }
) {
return (
<html>
<body>
<h2>Something went wrong!</h2>
</ /body>
< <button onClick={() => reset()}>Try again</button>
html>
})
app/global-error.js
app

app/global-error.js (jsx)'use client'
export default function GlobalError({ error, reset }) {
return (
<html>
<body>

<h2>Something went wrong!</h2>
</ /body>
< <button onClick={() => reset()}>Try again</button>
html>
})

Good to know:

replaces the rootglobal-error.js

when active and so must define its ownlayout.js

and<html>

tags.<body>

[image:] While designing error UI, you may find it helpful to use the React Developer Tools to manually toggle Error boundaries.
not-found.jsnot-found
notFound()

The

file is used to render UI when the

function is thrown within a route segment.

Version History

	Version
	Changes

	v13.1.0
	global-error introduced.

	v13.0.0
	error introduced.

3.2.2.4 - layout.js
Documentation path: /02-app/02-api-reference/02-file-conventions/layout
Description: API reference for the layout.js file.

A layout is UI that is shared between routes.
app/dashboard/layout.tsx (tsx)export default function DashboardLayout({
} children,
} children: React.ReactNode
: {
} return <section>{children}</section>
) {

app/dashboard/layout.js (jsx)export default function DashboardLayout({ children }) {
} return <section>{children}</section>
<html>

A root layout is the top-most layout in the root shared UI.app

directory. It is used to define the

and

tags and other globally
app/layout.tsx (tsx)export default function RootLayout({
} children,
} children: React.ReactNode
: {
) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>
<body>

app/layout.js (jsx)export default function RootLayout({ children }) {
return (
<html lang="en">
< <body>{children}</body>
}
) /html>

Props
(required)children
children
children

Layout components should accept and use a

prop. During rendering,

will be populated with the route segments

the layout is wrapping. These will primarily be the component of a child Layout (if it exists) or Page, but could also be other special files like Loading or Error when applicable.
(optional)params

The dynamic route parameters object from the root segment down to that layout.

	Example
	URL
	params

	app/dashboard/[team]/layout.js
	/dashboard/1
	{ team: '1' }

	app/shop/[tag]/[item]/layout.js
	/shop/1/2
	{ tag: '1', item: '2' }

	app/blog/[...slug]/layout.js
	/blog/1/2
	{ slug: ['1', '2'] }

For example:

app/shop/[tag]/[item]/layout.tsx (tsx)export default function ShopLayout({
} params,
children,
: {
children: React.ReactNode
params: {
tag: string
}) {
} item: string
// URL -> /shop/shoes/nike-air-max-97
} return <section>{children}</section>
// `params` -> { tag: 'shoes', item: 'nike-air-max-97' }

app/shop/[tag]/[item]/layout.js (jsx)export default function ShopLayout({ children, params }) {
// URL -> /shop/shoes/nike-air-max-97
} return <section>{children}</section>
// `params` -> { tag: 'shoes', item: 'nike-air-max-97' }

Good to know
Layouts do not receivesearchParams

Unlike Pages, Layout components do not receive the searchParams prop. This is because a shared layout is not re-rendered duringsearchParams

navigation which could lead to stale	between navigations.
When using client-side navigation, Next.js automatically only renders the part of the page below the common layout between two routes.dashboard/layout.tsx
/dashboard/settings

For example, in the following directory structure,
/dashboard/analytics:

is the common layout for both

and

When navigating from /dashboard/settings to /dashboard/analytics, page.tsx in /dashboard/analytics will rerender on the server, while dashboard/layout.tsx will not rerender because it’s a common UI shared between the two routes.
This performance optimization allows navigation between pages that share a layout to be quicker as only the data fetching and rendering for the page has to run, instead of the entire route that could include shared layouts that fetch their own data.searchParams

Because dashboard/layout.tsx doesn’t re-render, the after navigation.
[image:] Instead, use the Page searchParams prop or the client with the latest searchParams.useSearchParams

Root Layouts

prop in the layout Server Component might become stale

hook in a Client Component, which is re-rendered on the

The	directory must include a root app/layout.js.app

The root layout must define <html> and <body> tags.
You should not manually add <head> tags such as <title> and <meta> to root layouts. Instead, you should use the Metadata API

which automatically handles advanced requirements such as streaming and de-duplicating You can use route groups to create multiple root layouts.<head>

elements.

Navigating across multiple root layouts will cause a full page load (as opposed to a client-side navigation). For example,/blog
app/(marketing)/layout.js

navigating from /cart that uses app/(shop)/layout.js to load. This only applies to multiple root layouts.
Version History

that uses

will cause a full page

	Version
	Changes

	v13.0.0
	layout introduced.

3.2.2.5 - loading.js
Documentation path: /02-app/02-api-reference/02-file-conventions/loading
Description: API reference for the loading.js file.

A loading file can create instant loading states built on Suspense.
By default, this file is a Server Component - but can also be used as a Client Component through the

directive."use client"

app/feed/loading.tsx (tsx)export default function Loading() {
} return <p>Loading...</p>
// Or a custom loading skeleton component

app/feed/loading.js (jsx)export default function Loading() {
} return <p>Loading...</p>
// Or a custom loading skeleton component

Loading UI components do not accept any parameters.
Good to know
[image:] While designing loading UI, you may find it helpful to use the React Developer Tools to manually toggle Suspense boundaries.
Version History

	Version
	Changes

	v13.0.0
	loading introduced.

3.2.2.6 - not-found.js
Documentation path: /02-app/02-api-reference/02-file-conventions/not-found
Description: API reference for the not-found.js file.

The not-found file is used to render UI when the	function is thrown within a route segment. Along with serving a custom UI,notFound
200
404

Next.js will return a

HTTP status code for streamed responses, and

for non-streamed responses.

app/not-found.tsx (tsx)import Link from 'next/link'
export default function NotFound() {
return (
<div>
<h2>Not Found</h2>
< <Link href="/">Return Home</Link>
<p>Could not find requested resource</p>
}
) /div>

app/blog/not-found.js (jsx)import Link from 'next/link'
export default function NotFound() {
return (
<div>
<h2>Not Found</h2>
< <Link href="/">Return Home</Link>
<p>Could not find requested resource</p>
}
) /div>

Good to know: In addition to catching expected

errors, the root

file also handles any

unmatched URLs for your whole application. This means users that visit a URL that is not handled by your app will be shown thenotFound()
app/not-found.js
app/not-found.js

UI exported by the
Props

file.

components do not accept any props.not-found.js

Data Fetchingnot-found
async

By default,

is a Server Component. You can mark it as

to fetch and display data:

app/not-found.tsx (tsx)import Link from 'next/link'
import { headers } from 'next/headers'
export default async function NotFound() {
const headersList = headers()
const domain = headersList.get('host')
const data = await getSiteData(domain)
return (
<div>
<h2>Not Found: {data.name}</h2>
<p>Could not find requested resource</p>
<p>
</ /p>
< View <Link href="/blog">all posts</Link>
div>
})

app/not-found.jsx (jsx)import Link from 'next/link'
import { headers } from 'next/headers'

export default async function NotFound() {
const headersList = headers()
const domain = headersList.get('host')
const data = await getSiteData(domain)
return (
<div>
<h2>Not Found: {data.name}</h2>
<p>Could not find requested resource</p>
<p>
</ /p>
< View <Link href="/blog">all posts</Link>
div>
})

If you need to use Client Component hooks like side instead.usePathname

Version History

to display content based on the path, you must fetch data on the client-

	Version
	Changes

	v13.3.0
	Root app/not-found handles global unmatched URLs.

	v13.0.0
	not-found introduced.

3.2.2.7 - page.js
Documentation path: /02-app/02-api-reference/02-file-conventions/page
Description: API reference for the page.js file.

A page is UI that is unique to a route.
app/blog/[slug]/page.tsx (tsx)export default function Page({
} searchParams,
params,
: {
} searchParams: { [key: string]: string | string[] | undefined }
params: { slug: string }
} return <h1>My Page</h1>
) {

app/blog/[slug]/page.js (jsx)export default function Page({ params, searchParams }) {
} return <h1>My Page</h1>

Props
(optional)params

An object containing the dynamic route parameters from the root segment down to that page. For example:

	Example
	URL
	params

	app/shop/[slug]/page.js
	/shop/1
	{ slug: '1' }

	app/shop/[category]/[item]/page.js
	/shop/1/2
	{ category: '1', item: '2' }

	app/shop/[...slug]/page.js
	/shop/1/2
	{ slug: ['1', '2'] }

(optional)searchParams

An object containing the search parameters of the current URL. For example:

	URL
	searchParams

	/shop?a=1
	{ a: '1' }

	/shop?a=1&b=2
	{ a: '1', b: '2' }

	/shop?a=1&a=2
	{ a: ['1', '2'] }

Good to know:
is a Dynamic API whose values cannot be known ahead of time. Using it will opt the page into dynamicsearchParams

rendering at request time.searchParams
URLSearchParams

returns a plain JavaScript object and not a
Version History

instance.

	Version
	Changes

	v13.0.0
	page introduced.

3.2.2.8 - Route Segment Config
Documentation path: /02-app/02-api-reference/02-file-conventions/route-segment-config
Description: Learn about how to configure options for Next.js route segments.

The Route Segment options allows you configure the behavior of a Page, Layout, or Route Handler by directly exporting the following variables:

	Option
	Type
	Default

	dynamic
	'auto' \| 'force-dynamic' \| 'error' \| 'force-static'
	'auto'

	dynamicParams
	boolean
	true

	revalidate
	false \| 'force-cache' \| 0 \| number
	false

	fetchCache
	'auto' \| 'default-cache' \| 'only-cache' \| 'force-cache' \| 'force-no- store' \| 'default-no-store' \| 'only-no-store'
	'auto'

	runtime
	'nodejs' \| 'edge'
	'nodejs'

	preferredRegion
	'auto' \| 'global' \| 'home' \| string \| string[]
	'auto'

	maxDuration
	number
	Set by deployment platform

layout.tsx | page.tsx | route.ts (tsx)export const dynamic = 'auto'
export const dynamicParams = true
export const revalidate = false
export const fetchCache = 'auto'
export const runtime = 'nodejs'
export const preferredRegion = 'auto'
export const maxDuration = 5
export default function MyComponent() {}

layout.js | page.js | route.js (jsx)export const dynamic = 'auto'
export const dynamicParams = true
export const revalidate = false
export const fetchCache = 'auto'
export const runtime = 'nodejs'
export const preferredRegion = 'auto'
export const maxDuration = 5
export default function MyComponent() {}

Good to know:
[image:] The values of the config options currently need be statically analyzable. For examplerevalidate = 600
revalidate = 60 * 10

is not.

is valid, but

Options
dynamic

Change the dynamic behavior of a layout or page to fully static or fully dynamic.

layout.tsx | page.tsx | route.ts (tsx)export const dynamic = 'auto'
// 'auto' | 'force-dynamic' | 'error' | 'force-static'

layout.js | page.js | route.js (js)export const dynamic = 'auto'
// 'auto' | 'force-dynamic' | 'error' | 'force-static'

Good to know: The new model in the app directory favors granular caching control at the fetch request level over the binary all-or-nothing model of getServerSideProps and getStaticProps at the page-level in the pages directory. Thedynamic

option is a way to opt back in to the previous model as a convenience and provides a simpler migration path.
default): The default option to cache as much as possible without preventing any components from opting into dynamic'auto' (behavior.

'force-dynamic': Force dynamic rendering, which will result in routes being rendered for each user at request time. This optionpages

is equivalent to getServerSideProps() in the	directory.
'error': Force static rendering and cache the data of a layout or page by causing an error if any components use dynamic functions or uncached data. This option is equivalent to:
getStaticProps() in the pages directory.
Setting the option of every fetch() request in a layout or page to { cache: 'force-cache' }. Setting the segment config to fetchCache = 'only-cache', dynamicParams = false.
dynamic = 'error' changes the default of dynamicParams from true to false. You can opt back into dynamically rendering pages for dynamic params not generated by generateStaticParams by manually setting dynamicParams = true.
'force-static': Force static rendering and cache the data of a layout or page by forcing cookies(), headers() and
useSearchParams() to return empty values.
Good to know:getStaticProps
dynamic: 'force-dynamic'

Instructions on how to migrate from getServerSideProps anddynamic: 'error'

can be found in the upgrade guide.

to

and

dynamicParams

Control what happens when a dynamic segment is visited that was not generated with generateStaticParams.
layout.tsx | page.tsx (tsx)export const dynamicParams = true // true | false,

layout.js | page.js | route.js (js)export const dynamicParams = true // true | false,

true (default): Dynamic segments not included in generateStaticParams are generated on demand.
false: Dynamic segments not included in generateStaticParams will return a 404.
Good to know:
[image:] This option replaces the fallback: true | false | blocking option of getStaticPaths in the [image:] When dynamicParams = true, the segment uses Streaming Server Rendering.dynamicParams

[image:] If the dynamic = 'error' and dynamic = 'force-static' are used, it’ll change the default of
false.

directory.
topages

revalidate

Set the default revalidation time for a layout or page. This option does not override the requests.

value set by individual
layout.tsx | page.tsx | route.ts (tsx)export const revalidate = false
// false | 'force-cache' | 0 | number
revalidate
fetch

layout.js | page.js | route.js (js)export const revalidate = false
// false | 'force-cache' | 0 | number

[image:]false: (default) The default heuristic to cache any fetch requests that set their cache option to 'force-cache' or are discovered before a dynamic function is used. Semantically equivalent to revalidate: Infinity which effectively means the resource should be cached indefinitely. It is still possible for individual fetch requests to use cache: 'no-store' or revalidate: 0 to avoid being cached and make the route dynamically rendered. Or set revalidate to a positive number lower than the route default to increase the revalidation frequency of a route.
0: Ensure a layout or page is always dynamically rendered even if no dynamic functions or uncached data fetches are discovered.fetch
cache
'no-store'
fetch

This option changes the default of

requests that do not set a

option to

but leaves

requests that

opt into 'force-cache' or use a positive revalidate as is.
[image:] number: (in seconds) Set the default revalidation frequency of a layout or page to n seconds.
Good to know: The revalidate option is only available when using the Node.js Runtime. This means using the option with runtime = 'edge' will not work.revalidate

Revalidation Frequency
[image:] The lowest revalidate across each layout and page of a single route will determine the revalidation frequency of the entire route. This ensures that child pages are revalidated as frequently as their parent layouts.
[image:] Individual fetch requests can set a lower revalidate than the route’s default revalidate to increase the revalidation frequency
of the entire route. This allows you to dynamically opt-in to more frequent revalidation for certain routes based on some criteria.
fetchCache

This is an advanced option that should only be used if you specifically need to override the default behavior.
runtime

layout.tsx | page.tsx | route.ts (tsx)

layout.js | page.js | route.js (js)export const runtime = 'nodejs'
// 'edge' | 'nodejs'
export const runtime = 'nodejs'
// 'edge' | 'nodejs'

(default)nodejs edge

Learn more about the Edge and Node.js runtimes.
preferredRegion

layout.tsx | page.tsx | route.ts (tsx)

layout.js | page.js | route.js (js)export const preferredRegion = 'auto'
// 'auto' | 'global' | 'home' | ['iad1', 'sfo1']
export const preferredRegion = 'auto'
// 'auto' | 'global' | 'home' | ['iad1', 'sfo1']

Support for preferredRegion, and regions supported, is dependent on your deployment platform.
Good to know:
[image:] If a preferredRegion is not specified, it will inherit the option of the nearest parent layout.all

The root layout defaults to	regions.
maxDuration

Based on your deployment platform, you may be able to use a higher default execution time for your function. This setting allows you

to opt into a higher execution time within your plans limit. Note: This settings requires Next.js13.4.10

or higher.
layout.tsx | page.tsx | route.ts (tsx)export const maxDuration = 5

layout.js | page.js | route.js (js)export const maxDuration = 5

Good to know: [image:] If amaxDuration

is not specified, the default value is dependent on your deployment platform and plan.

generateStaticParams

The generateStaticParams function can be used in combination with dynamic route segments to define the list of route segment parameters that will be statically generated at build time instead of on-demand at request time.
See the API reference for more details.

3.2.2.9 - route.js
Documentation path: /02-app/02-api-reference/02-file-conventions/route
Description: API reference for the route.js special file.

Route Handlers allow you to create custom request handlers for a given route using the Web Request and Response APIs.
HTTP Methods
[image:][image:][image:][image:]A route file allows you to create custom request handlers for a given route. The following HTTP methods are supported: GET, POST, PUT, PATCH, DELETE, HEAD, and OPTIONS.
route.ts (ts)export async function GET(request: Request) {} export async function HEAD(request: Request) {} export async function POST(request: Request) {} export async function PUT(request: Request) {} export async function DELETE(request: Request) {}
export async function PATCH(request: Request) {}
// If `OPTIONS` is not defined, Next.js will automatically implement `OPTIONS` and set the appropriate R
export async function OPTIONS(request: Request) {}

route.js (js)export async function GET(request) {} export async function HEAD(request) {} export async function POST(request) {} export async function PUT(request) {} export async function DELETE(request) {}
export async function PATCH(request) {}
// If `OPTIONS` is not defined, Next.js will automatically implement `OPTIONS` and set the appropriate R
export async function OPTIONS(request) {}

Good to know: Route Handlers are only available inside the	directory. You do not need to use API Routes (pages) andapp

[image:]Route Handlers (app) together, as Route Handlers should be able to handle all use cases.
Parameters
(optional)request

The	object is a NextRequest object, which is an extension of the Web Request API. NextRequest gives you further controlrequest
cookies

over the incoming request, including easily accessing
(optional)context

and an extended, parsed, URL object nextUrl.

app/dashboard/[team]/route.js (ts)export async function GET(request, context: { params }) {
} const team = params.team // '1'

Currently, the only value of	is params, which is an object containing the dynamic route parameters for the current route.context

	Example
	URL
	params

	app/dashboard/[team]/route.js
	/dashboard/1
	{ team: '1' }

	Example
	URL
	params

	app/shop/[tag]/[item]/route.js
	/shop/1/2
	{ tag: '1', item: '2' }

	app/blog/[...slug]/route.js
	/blog/1/2
	{ slug: ['1', '2'] }

NextResponse
Route Handlers can extend the Web Response API by returning a redirect, and rewrite. View the API reference.NextResponse

Version History

object. This allows you to easily set cookies, headers,

	Version
	Changes

	v13.2.0
	Route handlers are introduced.

3.2.2.10 - template.js
Documentation path: /02-app/02-api-reference/02-file-conventions/template
Description: API Reference for the template.js file.

A template file is similar to a layout in that it wraps each child layout or page. Unlike layouts that persist across routes and maintain state, templates create a new instance for each of their children on navigation.
app/template.tsx (tsx)export default function Template({ children }: { children: React.ReactNode }) {
} return <div>{children}</div>

app/template.jsx (jsx)export default function Template({ children }) {
} return <div>{children}</div>

[image:]
While less common, you might choose a template over a layout if you want:
[image:] Features that rely on useEffect (e.g logging page views) and useState (e.g a per-page feedback form).
[image:] To change the default framework behavior. For example, Suspense Boundaries inside layouts only show the fallback the first time the Layout is loaded and not when switching pages. For templates, the fallback is shown on each navigation.
Props

(required)children

Template components should accept and use a

prop.children

is rendered between a layout and its children. For example:template

Output (jsx)<Layout>
< <Template key={routeParam}>{children}</Template>
{/* Note that the template is given a unique key. */}
/Layout>

Good to know:
[image:] By default, directive.template

is a Server Component, but can also be used as a Client Component through the"use client"

[image:] When a user navigates between routes that share a template, a new instance of the component is mounted, DOM elements are recreated, state is not preserved, and effects are re-synchronized.
Version History

	Version
	Changes

	v13.0.0
	template introduced.

3.2.3 - Functions
Documentation path: /02-app/02-api-reference/04-functions/index
Description: API Reference for Next.js Functions and Hooks.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

3.2.3.1 - cookies
Documentation path: /02-app/02-api-reference/04-functions/cookies
Description: API Reference for the cookies function.
Related:
Title: Next Steps
Related Description: For more information on what to do next, we recommend the following sections
Links:
[image:] app/building-your-application/data-fetching/server-actions-and-mutations

The	function allows you to read the HTTP incoming request cookies from a Server Component or write outgoing requestcookies

cookies in a Server Action or Route Handler.
Good to know:	is a Dynamic Function whose returned values cannot be known ahead of time. Using it in a layoutcookies()

or page will opt a route into dynamic rendering at request time.
cookies().get(name)

A method that takes a cookie name and returns an object with name and value. If a cookie with If multiple cookies match, it will only return the first match.

isn’t found, it returns undefined.
app/page.js (jsx)import { cookies } from 'next/headers'
export default function Page() {
const cookieStore = cookies()
} return '...'
const theme = cookieStore.get('theme')
name

cookies().getAll()

[image:][image:]A method that is similar to get, but returns a list of all the cookies with a matching name. If available cookies.

is unspecified, it returns all the
app/page.js (jsx)import { cookies } from 'next/headers'
export default function Page() {
const cookieStore = cookies()
return cookieStore.getAll().map((cookie) => (
<div key={cookie.name}>
< <p>Value: {cookie.value}</p>
<p>Name: {cookie.name}</p>
}
)) /div>
name

cookies().has(name)

A method that takes a cookie name and returns a

based on if the cookie exists (true) or not (false).

[image:]app/page.js (jsx)import { cookies } from 'next/headers'
export default function Page() {
const cookiesList = cookies()
} return '...'
const hasCookie = cookiesList.has('theme')
boolean

cookies().set(name, value, options)

A method that takes a cookie name, value, and options and sets the outgoing request cookie.
Good to know: HTTP does not allow setting cookies after streaming starts, so you must use Handler.

in a Server Action or Route

app/actions.js (js)'use server'
import { cookies } from 'next/headers'
async function create(data) {
cookies().set('name', 'lee')
// or
cookies().set('name', 'lee', { secure: true })
// or
cookies().set({
name: 'name',
value: 'lee',
httpOnly: true,
})
} path: '/',
.set()

Deleting cookies
Good to know: You can only delete cookies in a Server Action or Route Handler.
There are several options for deleting a cookie:
cookies().delete(name)

You can explicitly delete a cookie with a given name.

app/actions.js (js)'use server'
import { cookies } from 'next/headers'
async function delete(data) {
} cookies().delete('name')

cookies().set(name, '')

Alternatively, you can set a new cookie with the same name and an empty value.

app/actions.js (js)'use server'
import { cookies } from 'next/headers'
async function delete(data) {
} cookies().set('name', '')

Good to know:	is only available in a Server Action or Route Handler..set()

cookies().set(name, value, { maxAge: 0 })

Setting

to 0 will immediately expire a cookie.

app/actions.js (js)'use server'
import { cookies } from 'next/headers'
async function delete(data) {
} cookies().set('name', 'value', { maxAge: 0 })
maxAge

cookies().set(name, value, { expires: timestamp })

Setting

to any value in the past will immediately expire a cookie.

app/actions.js (js)'use server'
import { cookies } from 'next/headers' async function delete(data) {
} cookies().set('name', 'value', { expires: Date.now() - oneDay })
const oneDay = 24 * 60 * 60 * 1000
expires

Good to know: You can only delete cookies that belong to the same domain from which .set() is called. Additionally, the code must be executed on the same protocol (HTTP or HTTPS) as the cookie you want to delete.
Version History

	Version
	Changes

	v13.0.0
	cookies introduced.

3.2.3.2 - draftMode
Documentation path: /02-app/02-api-reference/04-functions/draft-mode
Description: API Reference for the draftMode function.

The

function allows you to detect Draft Mode inside a Server Component.

app/page.js (jsx)import { draftMode } from 'next/headers'
export default function Page() {
const { isEnabled } = draftMode()
return (
<main>
< <p>Draft Mode is currently {isEnabled ? 'Enabled' : 'Disabled'}</p>
<h1>My Blog Post</h1>
}
) /main>
draftMode

Version History

	Version
	Changes

	v13.4.0
	draftMode introduced.

3.2.3.3 - fetch
Documentation path: /02-app/02-api-reference/04-functions/fetch
Description: API reference for the extended fetch function.
Next.js extends the native Web fetch() API to allow each request on the server to set its own persistent caching semantics.
In the browser, the cache option indicates how a fetch request will interact with the browser’s HTTP cache. With this extension, indicates how a server-side fetch request will interact with the framework’s persistent HTTP cache.cache
fetch
async
await

You can call

with

and

directly within Server Components.

app/page.tsx (tsx)export default async function Page() {
// This request should be cached until manually invalidated.
// Similar to `getStaticProps`.
// `force-cache` is the default and can be omitted.
const staticData = await fetch(`https://...`, { cache: 'force-cache' })
// This request should be refetched on every request.
// Similar to `getServerSideProps`.
const dynamicData = await fetch(`https://...`, { cache: 'no-store' })
// This request should be cached with a lifetime of 10 seconds.
// Similar to `getStaticProps` with the `revalidate` option.
const revalidatedData = await fetch(`https://...`, {
} next: { revalidate: 10 },
)
} return <div>...</div>

app/page.js (jsx)export default async function Page() {
// This request should be cached until manually invalidated.
// Similar to `getStaticProps`.
// `force-cache` is the default and can be omitted.
const staticData = await fetch(`https://...`, { cache: 'force-cache' })
// This request should be refetched on every request.
// Similar to `getServerSideProps`.
const dynamicData = await fetch(`https://...`, { cache: 'no-store' })
// This request should be cached with a lifetime of 10 seconds.
// Similar to `getStaticProps` with the `revalidate` option.
const revalidatedData = await fetch(`https://...`, {
} next: { revalidate: 10 },
)
} return <div>...</div>

fetch(url, options)

Since Next.js extends the Web fetch() API, you can use any of the native options available.
options.cache

Configure how the request should interact with Next.js Data Cache.
fetch(`https://...`, { cache: 'force-cache' | 'no-store' })

(default) - Next.js looks for a matching request in its Data Cache.force-cache

If there is a match and it is fresh, it will be returned from the cache.
If there is no match or a stale match, Next.js will fetch the resource from the remote server and update the cache with the downloaded resource.no-store

- Next.js fetches the resource from the remote server on every request without looking in the cache, and it will not
update the cache with the downloaded resource.
Good to know:

If you don’t provide a cache option, Next.js will default to force-cache, unless a dynamic function such as	is used, in which case it will default to no-store.cookies()
no-cache
no-store

The

option behaves the same way as

in Next.js.

options.next.revalidate

fetch(`https://...`, { next: { revalidate: false | 0 | number } })

Set the cache lifetime of a resource (in seconds).
[image:] false - Cache the resource indefinitely. Semantically equivalent to revalidate: Infinity. The HTTP cache may evict older resources over time.
[image:] 0 - Prevent the resource from being cached.
[image:] number - (in seconds) Specify the resource should have a cache lifetime of at most n seconds.
Good to know:default revalidate

If an individual fetch() request sets a revalidate number lower than the route revalidation interval will be decreased.

of a route, the whole

If two fetch requests with the same URL in the same route have different revalidate values, the lower value will be used.cache:

As a convenience, it is not necessary to set the cache option if revalidate is set to a number since 0 implies
'no-store' and a positive value implies cache: 'force-cache'.
Conflicting options such as { revalidate: 0, cache: 'force-cache' } or { revalidate: 10, cache: 'no-store' }

will cause an error.
options.next.tags
fetch(`https://...`, { next: { tags: ['collection'] } })

Set the cache tags of a resource. Data can then be revalidated on-demand using revalidateTag. The max length for a custom tag is 256 characters.
Version History

	Version
	Changes

	v13.0.0
	fetch introduced.

3.2.3.4 - generateImageMetadata
Documentation path: /02-app/02-api-reference/04-functions/generate-image-metadata
Description: Learn how to generate multiple images in a single Metadata API special file.
Related:
Title: Next Steps
Related Description: View all the Metadata API options.
Links:
[image:] app/api-reference/file-conventions/metadata
[image:] app/building-your-application/optimizing/metadata

You can use generateImageMetadata to generate different versions of one image or return multiple images for one route segment. This is useful for when you want to avoid hard-coding metadata values, such as for icons.
Parameters
function accepts the following parameters:generateImageMetadata

(optional)params

An object containing the dynamic route parameters object from the root segment down to the segment called from.

is
icon.tsx (tsx)export function generateImageMetadata({
} params,
} params: { slug: string }
: {
} // ...
) {
generateImageMetadata

icon.js (jsx)export function generateImageMetadata({ params }) {
} // ...

	Route
	URL
	params

	app/shop/icon.js
	/shop
	undefined

	app/shop/[slug]/icon.js
	/shop/1
	{ slug: '1' }

	app/shop/[tag]/[item]/icon.js
	/shop/1/2
	{ tag: '1', item: '2' }

	app/shop/[...slug]/icon.js
	/shop/1/2
	{ slug: ['1', '2'] }

Returns
[image:]The generateImageMetadata function should return an array of objects containing the image’s metadata such as	and size. Inalt
id

addition, each item must include an	value which will be passed to the props of the image generating function.

	Image Metadata Object
	Type

	id
	string (required)

	alt
	string

	size
	{ width: number; height: number }

	contentType
	string

icon.tsx (tsx)

import { ImageResponse } from 'next/og'
export function generateImageMetadata() {
return [
{ contentType: 'image/png',
} id: 'small',
size: { width: 48, height: 48 },
{ contentType: 'image/png',
,
} id: 'medium',
size: { width: 72, height: 72 },
}
] ,
export default function Icon({ id }: { id: string }) {
return new ImageResponse(
(<div
style={{
width: '100%',
height: '100%',
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
fontSize: 88,
> }
} color: '#fafafa',
background: '#000',
< Icon {id}
})
) /div>

icon.js (jsx)import { ImageResponse } from 'next/og'
export function generateImageMetadata() {
return [
{ contentType: 'image/png',
} id: 'small',
size: { width: 48, height: 48 },
{ contentType: 'image/png',
,
} id: 'medium',
size: { width: 72, height: 72 },
}
] ,
export default function Icon({ id }) {
return new ImageResponse(
(<div
style={{
width: '100%',
height: '100%',
display: 'flex',
alignItems: 'center',
justifyContent: 'center',
fontSize: 88,
> }
} color: '#fafafa',
background: '#000',
< Icon {id}
})
) /div>

Examples
Using external data
This example uses the

object and external data to generate multiple Open Graph images for a route segment.params

app/products/[id]/opengraph-image.tsx (tsx)

import { ImageResponse } from 'next/og'
import { getCaptionForImage, getOGImages } from '@/app/utils/images'
export async function generateImageMetadata({ params,
}: {
params: { id: string }
}) {
const images = await getOGImages(params.id)
return images.map((image, idx) => ({ id: idx,
size: { width: 1200, height: 600 }, alt: image.text,
contentType: 'image/png',
} }))
export default async function Image({ params,
id,
}: {
params: { id: string } id: number
}) {
const productId = params.id const imageId = id
const text = await getCaptionForImage(productId, imageId)
return new ImageResponse((<div
style={
{ // ...
} }
· {text}
) </div>
})

app/products/[id]/opengraph-image.js (jsx)import { ImageResponse } from 'next/og'
import { getCaptionForImage, getOGImages } from '@/app/utils/images'
export async function generateImageMetadata({ params }) {
const images = await getOGImages(params.id)
return images.map((image, idx) => ({
id: idx,
size: { width: 1200, height: 600 },
}))
} contentType: 'image/png',
alt: image.text,
export default async function Image({ params, id }) {
const productId = params.id
const imageId = id
const text = await getCaptionForImage(productId, imageId)
return new ImageResponse(
(<div
style={
{

> }
} // ...
< {text}
})
) /div>

Version History

	Version
	Changes

	v13.3.0
	generateImageMetadata introduced.

3.2.3.5 - Metadata Object and generateMetadata Options
Documentation path: /02-app/02-api-reference/04-functions/generate-metadata
Description: Learn how to add Metadata to your Next.js application for improved search engine optimization (SEO) and web shareability.
Related:
Title: Next Steps
Related Description: View all the Metadata API options.
Links:
[image:] app/api-reference/file-conventions/metadata
[image:] app/api-reference/functions/generate-viewport
[image:] app/building-your-application/optimizing/metadata

This page covers all Config-based Metadata options with

and the static metadata object.

layout.tsx | page.tsx (tsx)import { Metadata } from 'next'
// either Static metadata
export const metadata: Metadata = {
} title: '...',
// or Dynamic metadata
export async function generateMetadata({ params }) {
return {
}
} title: '...',
generateMetadata

layout.js | page.js (jsx)// either Static metadata
export const metadata = {
} title: '...',
// or Dynamic metadata
export async function generateMetadata({ params }) {
return {
}
} title: '...',

Good to know:
[image:] The	object and generateMetadata function exports are only supported in Server Components.metadata
generateMetadata

[image:] You cannot export both the metadata object and
The	objectmetadata
Metadata

function from the same route segment.

To define static metadata, export a

object from a

or

file.

layout.tsx | page.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
} description: '...',
export default function Page() {}
title: '...',
layout.js
page.js

layout.js | page.js (jsx)export const metadata = {
title: '...',
description: '...',

}
export default function Page() {}

See the Metadata Fields for a complete list of supported options.
functiongenerateMetadata

Dynamic metadata depends on dynamic information, such as the current route parameters, external data, orgenerateMetadata
Metadata

in parentmetadata

segments, can be set by exporting a

function that returns a

object.

app/products/[id]/page.tsx (tsx)

import { Metadata, ResolvingMetadata } from 'next'
type Props = {
params: { id: string }
} searchParams: { [key: string]: string | string[] | undefined }
export async function generateMetadata(
{ params, searchParams }: Props, parent: ResolvingMetadata
): Promise<Metadata> {
// read route params const id = params.id
// fetch data
const product = await fetch(`https://.../${id}`).then((res) => res.json())
// optionally access and extend (rather than replace) parent metadata const previousImages = (await parent).openGraph?.images || []
return {
title: product.title, openGraph: {
images: ['/some-specific-page-image.jpg', ...previousImages],
} },
}
export default function Page({ params, searchParams }: Props) {}

app/products/[id]/page.js (jsx)export async function generateMetadata({ params, searchParams }, parent) {
// read route params
const id = params.id
const product = await fetch(`https://.../${id}`).then((res) => res.json())
// fetch data
// optionally access and extend (rather than replace) parent metadata
const previousImages = (await parent).openGraph?.images || []
return {
title: product.title,
openGraph: {
} images: ['/some-specific-page-image.jpg', ...previousImages],
}
} ,
export default function Page({ params, searchParams }) {}

Parameters
function accepts the following parameters:generateMetadata

props - An object containing the parameters of the current route:
params - An object containing the dynamic route parameters object from the root segment down to the segment
generateMetadata is called from. Examples:

	Route
	URL
	params

	app/shop/[slug]/page.js
	/shop/1
	{ slug: '1' }

	app/shop/[tag]/[item]/page.js
	/shop/1/2
	{ tag: '1', item: '2' }

	app/shop/[...slug]/page.js
	/shop/1/2
	{ slug: ['1', '2'] }

- An object containing the current URL’s search params. Examples:searchParams

	URL
	searchParams

	/shop?a=1
	{ a: '1' }

	/shop?a=1&b=2
	{ a: '1', b: '2' }

	/shop?a=1&a=2
	{ a: ['1', '2'] }

- A promise of the resolved metadata from parent route segments.parent

ReturnsgenerateMetadata
Metadata

Good to know:

should return a

object containing one or more metadata fields.

If metadata doesn’t depend on runtime information, it should be defined using the static
generateMetadata.metadata

object rather than

fetch requests are automatically memoized for the same data across generateMetadata, generateStaticParams, Layouts, Pages, and Server Components. React cache can be used if fetch is unavailable.
searchParams are only available in page.js segments.notFound()

[image:] The redirect() and
Metadata Fields

Next.js methods can also be used inside generateMetadata.

export const metadata = {
title: {
default: '...',

title

The	attribute is used to set the title of the document. It can be defined as a simple string or an optional template object.title

String
layout.js | page.js (jsx)export const metadata = {
} title: 'Next.js',


```html filename=” output” hideLineNumbers#### Template object
<div class="code-header"><i>app/layout.tsx (tsx)</i></div>
```tsx
import { Metadata } from 'next'
export const metadata: Metadata = {
title: {
template: '...',
default: '...',
} ,
} absolute: '...',

app/layout.js (jsx)

template: '...',
} ,
} absolute: '...',

Default

can be used to provide a fallback title to child route segments that don’t define a title.title.default

app/layout.tsx (tsx)import type { Metadata } from 'next'
export const metadata: Metadata = {
title: {
} ,
} default: 'Acme',

app/about/page.tsx (tsx)import type { Metadata } from 'next' export const metadata: Metadata = {}
// Output: <title>Acme</title>

Template

can be used to add a prefix or a suffix totitle.template

defined in child route segments.titles

app/layout.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
title: {
template: '%s | Acme',
} ,
} default: 'Acme', // a default is required when creating a template

app/layout.js (jsx)export const metadata = {
title: {
template: '%s | Acme',
} ,
} default: 'Acme', // a default is required when creating a template

app/about/page.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
} title: 'About',
// Output: <title>About | Acme</title>

app/about/page.js (jsx)export const metadata = {
} title: 'About',
// Output: <title>About | Acme</title>

Good to know:
[image:] title.template applies to child route segments and not the segment it’s defined in. This means:
[image:] title.default is required when you add a title.template.page.js

title.template defined in layout.js will not apply to a title defined in a	of the same route segment.
title.template defined in page.js has no effect because a page is always the terminating segment (it doesn’t have any children route segments).

Absolutetitle.template
title
title.absolute

has no effect if a route has not defined a can be used to provide a title that ignores

or title.default.

set in parent segments.

app/layout.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
title: {
} ,
} template: '%s | Acme',
title.template

app/layout.js (jsx)export const metadata = {
title: {
} ,
} template: '%s | Acme',

app/about/page.tsx (tsx)import { Metadata } from 'next'
export const metadata: Metadata = {
title: {
} ,
} absolute: 'About',
// Output: <title>About</title>

app/about/page.js (jsx)export const metadata = {
title: {
} ,
} absolute: 'About',
// Output: <title>About</title>

Good to know:
[image:] layout.js
[image:] title (string) and title.default define the default title for child segments (that do not define their own title). It will augment title.template from the closest parent segment if it exists.title.template

title.absolute defines the default title for child segments. It ignores title.template defines a new title template for child segments. page.js
If a page does not define its own title the closest parents resolved title will be used.

from parent segments.

title (string) defines the routes title. It will augment title.template from the closest parent segment if it exists.
title.absolute defines the route title. It ignores title.template from parent segments.page.js

title.template has no effect in	because a page is always the terminating segment of a route.
description

layout.js | page.js (jsx)


```html filename=” output” hideLineNumbers### Basic Fields
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
} description: 'The React Framework for the Web',

export const metadata = {
generator: 'Next.js',
applicationName: 'Next.js',
referrer: 'origin-when-cross-origin',
keywords: ['Next.js', 'React', 'JavaScript'],
authors: [{ name: 'Seb' }, { name: 'Josh', url: 'https://nextjs.org' }],
creator: 'Jiachi Liu',
publisher: 'Sebastian Markbåge',
formatDetection: {
email: false,
address: false,
} ,
} telephone: false,

```html filename=” output” hideLineNumbers### `metadataBase`
`metadataBase` is a convenience option to set a base URL prefix for `metadata` fields that require a full
- `metadataBase` allows URL-based `metadata` fields defined in the **current route segment and below** to
- The field's relative path will be composed with `metadataBase` to form a fully qualified URL.
- If not configured, `metadataBase` is **automatically populated** with a [default value](#default-value)
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
metadataBase: new URL('https://acme.com'),
alternates: {
canonical: '/',
languages: {
'en-US': '/en-US',
}, ,
} 'de-DE': '/de-DE',
openGraph: {
} ,
} images: '/og-image.png',

```html filename=” output” hideLineNumbers
· **Good to know**:- When [`VERCEL_URL`](https://vercel.com/docs/concepts/projects/environment-variables/system-environment-
- When overriding the default, we recommend using environment variables to compute the URL. This allows c

>
· - `metadataBase` is typically set in root `app/layout.js` to apply to URL-based `metadata` fields acros
· - All URL-based `metadata` fields that require absolute URLs can be configured with a `metadataBase` op
· - `metadataBase` can contain a subdomain e.g. `https://app.acme.com` or base path e.g. `https://acme.co
· - If a `metadata` field provides an absolute URL, `metadataBase` will be ignored.
· - Using a relative path in a URL-based `metadata` field without configuring a `metadataBase` will cause
· - Next.js will normalize duplicate slashes between `metadataBase` (e.g. `https://acme.com/`) and a rela
#### Default value
If not configured, `metadataBase` has a **default value**


#### URL Composition
URL composition favors developer intent over default directory traversal semantics.
· Trailing slashes between `metadataBase` and `metadata` fields are normalized.
· An "absolute" path in a `metadata` field (that typically would replace the whole URL path) is treated a
For example, given the following `metadataBase`:
<div class="code-header"><i>app/layout.tsx (tsx)</i></div>
```tsx
import { Metadata } from 'next'
export const metadata: Metadata = {
} metadataBase: new URL('https://acme.com'),

app/layout.js (jsx)export const metadata = {
} metadataBase: new URL('https://acme.com'),
metadataBase

Anymetadata

fields that inherit the above

and set their own value will be resolved as follows:

	metadata field
	Resolved URL

	/
	https://acme.com

	./
	https://acme.com

	payments
	https://acme.com/payments

	/payments
	https://acme.com/payments

	./payments
	https://acme.com/payments

	../payments
	https://acme.com/payments

	https://beta.acme.com/payments
	https://beta.acme.com/payments

openGraph

layout.js | page.js (jsx)


```html filename=” output” hideLineNumbers<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
openGraph: {
title: 'Next.js',
description: 'The React Framework for the Web',
type: 'article',
publishedTime: '2023-01-01T00:00:00.000Z',
} ,
} authors: ['Seb', 'Josh'],
export const metadata = {
openGraph: {
title: 'Next.js',
description: 'The React Framework for the Web',
url: 'https://nextjs.org',
siteName: 'Next.js',
images: [
{ url: 'https://nextjs.org/og.png',
} height: 600,
width: 800,
{ url: 'https://nextjs.org/og-alt.png',
,
width: 1800,
height: 1600,
], ,
} alt: 'My custom alt',
locale: 'en_US',
} ,
} type: 'website',

```html filename=” output” hideLineNumbers
· **Good to know**:
· 
· - It may be more convenient to use the [file-based Metadata API](/docs/app/api-reference/file-conventio ### `robots`
```tsx


import type { Metadata } from 'next'
export const metadata: Metadata = {
robots: {
index: false,
follow: true,
nocache: true,
googleBot: {
index: true,
follow: false,
noimageindex: true,
'max-video-preview': -1,
} 'max-snippet': -1,
'max-image-preview': 'large',
}
}, ,

```html filename=” output” hideLineNumbers### `icons`
· **Good to know**: We recommend using the [file-based Metadata API](/docs/app/api-reference/file-convent
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
icons: {
icon: '/icon.png',
shortcut: '/shortcut-icon.png',
apple: '/apple-icon.png',
other: {
} url: '/apple-touch-icon-precomposed.png',
rel: 'apple-touch-icon-precomposed',
}
}, ,

```html filename=” output” hideLineNumbers
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
icons: {
icon: [
{ url: '/icon.png' },
] { url: '/icon-dark.png', media: '(prefers-color-scheme: dark)' },
new URL('/icon.png', 'https://example.com'),
shortcut: ['/shortcut-icon.png'],
,
apple: [
] { url: '/apple-icon-x3.png', sizes: '180x180', type: 'image/png' },
{ url: '/apple-icon.png' },
other: [
,
{ rel: 'apple-touch-icon-precomposed',
], ,
} },
} url: '/apple-touch-icon-precomposed.png',

```html filename=” output” hideLineNumbers· **Good to know**: The `msapplication-*` meta tags are no longer supported in Chromium builds of Microso ### `themeColor`
· **Deprecated**: The `themeColor` option in `metadata` is deprecated as of Next.js 14. Please use the [` ### `manifest`
A web application manifest, as defined in the [Web Application Manifest specification](https://developer.
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>


```jsx
export const metadata = {
} manifest: 'https://nextjs.org/manifest.json',

```html filename=” output” hideLineNumbers### `twitter`
Learn more about the [Twitter Card markup reference](https://developer.twitter.com/en/docs/twitter-for-we
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
twitter: {
card: 'summary_large_image',
title: 'Next.js',
description: 'The React Framework for the Web',
siteId: '1467726470533754880',
creator: '@nextjs',
creatorId: '1467726470533754880',
} ,
} images: ['https://nextjs.org/og.png'],

```html filename=” output” hideLineNumbers
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
twitter: {
card: 'app',
title: 'Next.js',
description: 'The React Framework for the Web',
siteId: '1467726470533754880',
creator: '@nextjs',
creatorId: '1467726470533754880',
images: {
} alt: 'Next.js Logo',
url: 'https://nextjs.org/og.png',
app: {
,
name: 'twitter_app',
id: {
iphone: 'twitter_app://iphone',
} googleplay: 'twitter_app://googleplay',
ipad: 'twitter_app://ipad',
url: {
,
iphone: 'https://iphone_url',
}, ,
} },
} ipad: 'https://ipad_url',

```html filename=” output” hideLineNumbers### `viewport`
· **Deprecated**: The `viewport` option in `metadata` is deprecated as of Next.js 14. Please use the [`vi ### `verification`
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
verification: {
google: 'google',
yandex: 'yandex',
yahoo: 'yahoo',
other: {
} me: ['my-email', 'my-link'],
}
}, ,


```html filename=” output” hideLineNumbers### `appleWebApp`
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
itunes: {
} appArgument: 'myAppArgument',
appId: 'myAppStoreID',
appleWebApp: {
,
title: 'Apple Web App',
statusBarStyle: 'black-translucent',
startupImage: [
'/assets/startup/apple-touch-startup-image-768x1004.png',
{ url: '/assets/startup/apple-touch-startup-image-1536x2008.png',
], ,
} },
} media: '(device-width: 768px) and (device-height: 1024px)',

```html filename=” output” hideLineNumbers
### `alternates`
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
alternates: {
canonical: 'https://nextjs.org',
languages: {
} 'de-DE': 'https://nextjs.org/de-DE',
'en-US': 'https://nextjs.org/en-US',
media: {
,
} 'only screen and (max-width: 600px)': 'https://nextjs.org/mobile',
types: {
,
} 'application/rss+xml': 'https://nextjs.org/rss',
}
}, ,

```html filename=” output” hideLineNumbers### `appLinks`
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
appLinks: {
ios: {
} app_store_id: 'app_store_id',
url: 'https://nextjs.org/ios',
android: {
,
} app_name: 'app_name_android',
package: 'com.example.android/package',
web: {
,
} should_fallback: true,
url: 'https://nextjs.org/web',
}
}, ,

```html filename=” output” hideLineNumbers
### `archives`
Describes a collection of records, documents, or other materials of historical interest ([source](https:/
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>


```jsx
export const metadata = {
} archives: ['https://nextjs.org/13'],

```html filename=” output” hideLineNumbers### `assets`
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
} assets: ['https://nextjs.org/assets'],

```html filename=” output” hideLineNumbers
### `bookmarks`
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
} bookmarks: ['https://nextjs.org/13'],

```html filename=” output” hideLineNumbers### `category`
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
} category: 'technology',

```html filename=” output” hideLineNumbers
### `other`
All metadata options should be covered using the built-in support. However, there may be custom metadata 
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
other: {
} ,
} custom: 'meta',

```html filename=” output” hideLineNumbersIf you want to generate multiple same key meta tags you can use array value.
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
other: {
} ,
} custom: ['meta1', 'meta2'],

```html filename=” output” hideLineNumbers
## Unsupported Metadata
The following metadata types do not currently have built-in support. However, they can still be rendered 
| Metadata
|
| Recommendation
| `<meta http-equiv="...">`
|
| `<base>`
| Use appropriate HTTP Headers via [`redirect()`](/docs/app/api-reference
| `<noscript>`
| Render the tag in the layout or page itself.
| `<style>`
| Render the tag in the layout or page itself.
| `<script>`
| Learn more about [styling in Next.js](/docs/app/building-your-applicati
| `<link rel="stylesheet" />`
| Learn more about [using scripts](/docs/app/building-your-application/op
| `import` stylesheets directly in the layout or page itself.


| `<link rel="preload />`
| `<link rel="preconnect" />`	| Use [ReactDOM preconnect method](#link-relpreconnect)
| Use [ReactDOM preload method](#link-relpreload)
| `<link rel="dns-prefetch" />` | Use [ReactDOM prefetchDNS method](#link-reldns-prefetch)
### Resource hints
The `<link>` element has a number of `rel` keywords that can be used to hint to the browser that an exter While the Metadata API doesn't directly support these hints, you can use new [`ReactDOM` methods](https:/
<div class="code-header"><i>app/preload-resources.tsx (tsx)</i></div>
```tsx
'use client'
import ReactDOM from 'react-dom'
export function PreloadResources() {
ReactDOM.preload('...', { as: '...' })
ReactDOM.prefetchDNS('...')
} return null
ReactDOM.preconnect('...', { crossOrigin: '...' })

app/preload-resources.js (jsx)'use client'
import ReactDOM from 'react-dom'
export function PreloadResources() {
ReactDOM.preload('...', { as: '...' })
ReactDOM.prefetchDNS('...')
} return null
ReactDOM.preconnect('...', { crossOrigin: '...' })

<link rel="preload">

Start loading a resource early in the page rendering (browser) lifecycle. MDN Docs.
ReactDOM.preload(href: string, options: { as: string })

```html filename=” output” hideLineNumbers##### `<link rel="preconnect">`
Preemptively initiate a connection to an origin. [MDN Docs](https://developer.mozilla.org/docs/Web/HTML/A
ReactDOM.preconnect(href: string, options?: { crossOrigin?: string })
```tsx

```html filename=” output” hideLineNumbers
##### `<link rel="dns-prefetch">`
Attempt to resolve a domain name before resources get requested. [MDN Docs](https://developer.mozilla.org
ReactDOM.prefetchDNS(href: string)
```tsx

```html filename=” output” hideLineNumbers· **Good to know**:
· 
· - These methods are currently only supported in Client Components, which are still Server Side Rendered
· - Next.js in-built features such as `next/font`, `next/image` and `next/script` automatically handle re
· - React 18.3 does not yet include type definitions for `ReactDOM.preload`, `ReactDOM.preconnect`, and ` ## Types
You can add type safety to your metadata by using the `Metadata` type. If you are using the [built-in Typ
### `metadata` object


```tsx
import type { Metadata } from 'next'
export const metadata: Metadata = {
} title: 'Next.js',

functiongenerateMetadata

Regular function
import type { Metadata } from 'next'
export function generateMetadata(): Metadata {
return {
}
} title: 'Next.js',

Async function
import type { Metadata } from 'next'
export async function generateMetadata(): Promise<Metadata> {
return {
}
} title: 'Next.js',

With segment props
import type { Metadata } from 'next'
type Props = {
} searchParams: { [key: string]: string | string[] | undefined }
params: { id: string }
export function generateMetadata({ params, searchParams }: Props): Metadata {
return {
}
} title: 'Next.js',
export default function Page({ params, searchParams }: Props) {}

With parent metadata
import type { Metadata, ResolvingMetadata } from 'next'
export async function generateMetadata(
) parent: ResolvingMetadata
{ params, searchParams }: Props,
: Promise<Metadata> {
return {
}
} title: 'Next.js',

JavaScript Projects
For JavaScript projects, you can use JSDoc to add type safety./** @type {import("next").Metadata} */
export const metadata = {
} title: 'Next.js',

Version History

	Version
	Changes

	v13.2.0
	viewport, themeColor, and colorScheme deprecated in favor of the viewport configuration.

	v13.2.0
	metadata and generateMetadata introduced.

3.2.3.6 - generateSitemaps
Documentation path: /02-app/02-api-reference/04-functions/generate-sitemaps
Description: Learn how to use the generateSiteMaps function to create multiple sitemaps for your application.
Related:
Title: Next Steps
Related Description: Learn how to create sitemaps for your Next.js application.
Links:
[image:] app/api-reference/file-conventions/metadata/sitemap

You can use thegenerateSiteMaps

Returnsid

function to generate multiple sitemaps for your application.

ThegenerateSitemaps

URLs

returns an array of objects with an

property.

In production, your generated sitemaps will be available at /.../sitemap/[id].xml. For example, /product/sitemap/1.xml. In development, you can view the generated sitemap on /.../sitemap.xml/[id]. For example, /product/sitemap.xml/1. This difference is temporary and will follow the production format.
Example
[image:]For example, to split a sitemap using generateSitemaps, return an array of objects with the sitemap id. Then, use the	to generate the unique sitemaps.id

app/product/sitemap.ts (ts)import { BASE_URL } from '@/app/lib/constants'
export async function generateSitemaps() {
} return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
// Fetch the total number of products and calculate the number of sitemaps needed
export default async function sitemap({
} id,
} id: number oute.Sitemap {
: {
): MetadataR
// Google's limit is 50,000 URLs per sitemap
const start = id * 50000
const end = start + 50000
const products = await getProducts(
) `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
return products.map((product) => ({
url: `${BASE_URL}/product/${product.id}`
}))
} lastModified: product.date,

app/product/sitemap.js (js)import { BASE_URL } from '@/app/lib/constants'
export async function generateSitemaps() {
} return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
// Fetch the total number of products and calculate the number of sitemaps needed
export default async function sitemap({ id }) {
// Google's limit is 50,000 URLs per sitemap
const start = id * 50000
const end = start + 50000
const products = await getProducts(

) `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
return products.map((product) => ({
url: `${BASE_URL}/product/${id}`
}))
} lastModified: product.date,

3.2.3.7 - generateStaticParams
Documentation path: /02-app/02-api-reference/04-functions/generate-static-params
Description: API reference for the generateStaticParams function.

The	function can be used in combination with dynamic route segments to statically generate routes at buildgenerateStaticParams

time instead of on-demand at request time.

app/blog/[slug]/page.js (jsx)// Return a list of `params` to populate the [slug] dynamic segment
export async function generateStaticParams() {
const posts = await fetch('https://.../posts').then((res) => res.json())
return posts.map((post) => ({
}))
} slug: post.slug,
// Multiple versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
export default function Page({ params }) {
} // ...
const { slug } = params

Good to know
[image:] You can use the dynamicParams segment config option to control what happens when a dynamic segment is visited that was not generated with generateStaticParams.
[image:] During next dev, generateStaticParams will be called when you navigate to a route.
[image:] During next build, generateStaticParams runs before the corresponding Layouts or Pages are generated. [image:] During revalidation (ISR), generateStaticParams will not be called again.
[image:] generateStaticParams replaces the getStaticPaths function in the Pages Router.
Parameters
(optional)options.params
generateStaticParams

If multiple dynamic segments in a route use generateStaticParams, the child each set of params the parent generates.params

function is executed once for

The params object contains the populated
params in a child segment.
ReturnsgenerateStaticParams

from the parent generateStaticParams, which can be used to generate the

route.

should return an array of objects where each object represents the populated dynamic segments of a single

Each property in the object is a dynamic segment to be filled in for the route.
The properties name is the segment’s name, and the properties value is what that segment should be filled in with.

	Example Route
	generateStaticParams Return Type

	/product/[id]
	{ id: string }[]

	/products/[category]/[product]
	{ category: string, product: string }[]

	/products/[...slug]
	{ slug: string[] }[]

Single Dynamic Segment

app/product/[id]/page.tsx (tsx)export function generateStaticParams() {
} return [{ id: '1' }, { id: '2' }, { id: '3' }]

// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/1
// - /product/2
// - /product/3
export default function Page({ params }: { params: { id: string } }) {
} // ...
const { id } = params

app/product/[id]/page.js (jsx)export function generateStaticParams() {
} return [{ id: '1' }, { id: '2' }, { id: '3' }]
// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/1
// - /product/2
// - /product/3
export default function Page({ params }) {
} // ...
const { id } = params

Multiple Dynamic Segments

app/products/[category]/[product]/page.tsx (tsx)export function generateStaticParams() {
return [
{ category: 'a', product: '1' },
{ category: 'b', product: '2' },
}
] { category: 'c', product: '3' },
// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /products/a/1
// - /products/b/2
// - /products/c/3
export default function Page({
} params,
} params: { category: string; product: string }
: {
) {
} // ...
const { category, product } = params

app/products/[category]/[product]/page.js (jsx)export function generateStaticParams() {
return [
{ category: 'a', product: '1' },

}
] { category: 'c', product: '3' },
{ category: 'b', product: '2' },
// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /products/a/1
// - /products/b/2
// - /products/c/3
export default function Page({ params }) {
} // ...
const { category, product } = params

Catch-all Dynamic Segment

app/product/[...slug]/page.tsx (tsx)export function generateStaticParams() {
} return [{ slug: ['a', '1'] }, { slug: ['b', '2'] }, { slug: ['c', '3'] }]
// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/a/1
// - /product/b/2
// - /product/c/3
export default function Page({ params }: { params: { slug: string[] } }) {
} // ...
const { slug } = params

app/product/[...slug]/page.js (jsx)export function generateStaticParams() {
} return [{ slug: ['a', '1'] }, { slug: ['b', '2'] }, { slug: ['c', '3'] }]
// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/a/1
// - /product/b/2
// - /product/c/3
export default function Page({ params }) {
} // ...
const { slug } = params

Examples
Multiple Dynamic Segments in a Route
You can generate params for dynamic segments above the current layout or page, but not below. For example, given the
app/products/[category]/[product] route:
[image:] app/products/[category]/[product]/page.js can generate params for both [category] and [product]. [image:] app/products/[category]/layout.js can only generate params for [category].
There are two approaches to generating params for a route with multiple dynamic segments:
Generate params from the bottom up
Generate multiple dynamic segments from the child route segment.
app/products/[category]/[product]/page.tsx (tsx)// Generate segments for both [category] and [product]
export async function generateStaticParams() {
const products = await fetch('https://.../products').then((res) => res.json())
return products.map((product) => ({
}))
} product: product.id,
category: product.category.slug,
export default function Page({
} params,
} params: { category: string; product: string }
: {
} // ...
) {

app/products/[category]/[product]/page.js (jsx)// Generate segments for both [category] and [product]
export async function generateStaticParams() {
const products = await fetch('https://.../products').then((res) => res.json())
return products.map((product) => ({
category: product.category.slug,

}))
} product: product.id,
export default function Page({ params }) {
} // ...

Generate params from the top down
Generate the parent segments first and use the result to generate the child segments.
app/products/[category]/layout.tsx (tsx)// Generate segments for [category]
export async function generateStaticParams() {
const products = await fetch('https://.../products').then((res) => res.json())
return products.map((product) => ({
}))
} category: product.category.slug,
export default function Layout({ params }: { params: { category: string } }) {
} // ...

app/products/[category]/layout.js (jsx)// Generate segments for [category]
export async function generateStaticParams() {
const products = await fetch('https://.../products').then((res) => res.json())
return products.map((product) => ({
}))
} category: product.category.slug,
export default function Layout({ params }) {
} // ...

A child route segment’s generates.generateStaticParams
generateStaticParams
generateStaticParams

function is executed once for each segment a parent

The child

function can use the

returned from the parent

function to

dynamically generate its own segments.

app/products/[category]/[product]/page.tsx (tsx)// Generate segments for [product] using the `params` passed from
// the parent segment's `generateStaticParams` function
export async function generateStaticParams({
} params: { category },
} params: { category: string }
: {
) {
const products = await fetch(
) `https://.../products?category=${category}`
.then((res) => res.json())
return products.map((product) => ({
}))
} product: product.id,
export default function Page({
} params,
} params: { category: string; product: string }
: {
} // ...
) {
params
generateStaticParams

app/products/[category]/[product]/page.js (jsx)// Generate segments for [product] using the `params` passed from
// the parent segment's `generateStaticParams` function

export async function generateStaticParams({ params: { category } }) {
const products = await fetch(
) `https://.../products?category=${category}`
.then((res) => res.json())
return products.map((product) => ({
}))
} product: product.id,
export default function Page({ params }) {
} // ...

Good to know:	requests are automatically memoized for the same data across all generate-prefixed functions,fetch
cache
fetch

Layouts, Pages, and Server Components. React	can be used if	is unavailable.
Version History

	Version
	Changes

	v13.0.0
	generateStaticParams introduced.

3.2.3.8 - generateViewport
Documentation path: /02-app/02-api-reference/04-functions/generate-viewport
Description: API Reference for the generateViewport function.
Related:
Title: Next Steps
Related Description: View all the Metadata API options.
Links:
[image:] app/api-reference/file-conventions/metadata
[image:] app/building-your-application/optimizing/metadatagenerateViewport

You can customize the initial viewport of the page with the staticviewport

Good to know:

object or the dynamic

function.

The	object and generateViewport function exports are only supported in Server Components.viewport
generateViewport

You cannot export both the viewport object and	function from the same route segment.

The

If you’re coming from migrating metadata exports, you can use metadata-to-viewport-export codemod to update your changes.
objectviewport
viewport
layout.js
page.js

To define the viewport options, export a

object from a

or

file.

layout.tsx | page.tsx (tsx)import type { Viewport } from 'next'
export const viewport: Viewport = {
} themeColor: 'black',
export default function Page() {}

layout.js | page.js (jsx)export const viewport = {
} themeColor: 'black',
export default function Page() {}

functiongenerateViewport
Viewport

should return agenerateViewport

object containing one or more viewport fields.

layout.tsx | page.tsx (tsx)export function generateViewport({ params }) {
return {
}
} themeColor: '...',

layout.js | page.js (jsx)export function generateViewport({ params }) {
return {
}
} themeColor: '...',

Good to know:
[image:] If the viewport doesn’t depend on runtime information, it should be defined using the staticgenerateMetadata.

object rather thanviewport

Viewport Fields
themeColor

Learn more about theme-color.
Simple theme color
layout.js | page.js (jsx)export const viewport = {
} themeColor: 'black',


```html filename=” output” hideLineNumbers**With media attribute**
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const viewport = {
themeColor: [
{ media: '(prefers-color-scheme: light)', color: 'cyan' },
} ,
] { media: '(prefers-color-scheme: dark)', color: 'black' },

```html filename=” output” hideLineNumbers
### `width`, `initialScale`, and `maximumScale`
· **Good to know**: The `viewport` meta tag is automatically set with the following default values. Usual
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const viewport = {
width: 'device-width',
initialScale: 1,
maximumScale: 1,
} // interactiveWidget: 'resizes-visual',
// Also supported by less commonly used

```html filename=” output” hideLineNumbers### `colorScheme`
Learn more about [`color-scheme`](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta/name#:~:
<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const viewport = {
} colorScheme: 'dark',

```html filename=” output” hideLineNumbers
## Types
You can add type safety to your viewport object by using the `Viewport` type. If you are using the [built ### `viewport` object
import type { Viewport } from 'next'
```tsx
export const viewport: Viewport = {
} themeColor: 'black',

functiongenerateViewport

Regular function
import type { Viewport } from 'next'

export function generateViewport(): Viewport {
return {
}
} themeColor: 'black',

With segment props
import type { Viewport } from 'next'
type Props = {
} searchParams: { [key: string]: string | string[] | undefined }
params: { id: string }
export function generateViewport({ params, searchParams }: Props): Viewport {
return {
}
} themeColor: 'black',
export default function Page({ params, searchParams }: Props) {}

JavaScript Projects
For JavaScript projects, you can use JSDoc to add type safety./** @type {import("next").Viewport} */
export const viewport = {
} themeColor: 'black',

Version History

	Version
	Changes

	v14.0.0
	viewport and generateViewport introduced.

3.2.3.9 - headers
Documentation path: /02-app/02-api-reference/04-functions/headers
Description: API reference for the headers function.

The	function allows you to read the HTTP incoming request headers from a Server Component.headers

headers()

This API extends the Web Headers API. It is read-only, meaning you cannot

/

the outgoing request headers.

app/page.tsx (tsx)import { headers } from 'next/headers'
export default function Page() {
const referer = headersList.get('referer')
} return <div>Referer: {referer}</div>
const headersList = headers()
set
delete

app/page.js (jsx)import { headers } from 'next/headers'
export default function Page() {
const referer = headersList.get('referer')
} return <div>Referer: {referer}</div>
const headersList = headers()

Good to know:
[image:] headers() is a Dynamic Function whose returned values cannot be known ahead of time. Using it in a layout or page will opt a route into dynamic rendering at request time.
API Reference
const headersList = headers()

Parameters
does not take any parameters.headers

Returns
returns a read-only Web Headers object.headers

[image:] Headers.entries(): Returns an iterator allowing to go through all key/value pairs contained in this object.
[image:] Headers.forEach(): Executes a provided function once for each key/value pair in this Headers object.
[image:] Headers.get(): Returns a String sequence of all the values of a header within a Headers object with a given name.
[image:] Headers.has(): Returns a boolean stating whether a Headers object contains a certain header.
[image:] Headers.keys(): Returns an iterator allowing you to go through all keys of the key/value pairs contained in this object.
[image:] Headers.values(): Returns an iterator allowing you to go through all values of the key/value pairs contained in this object.
Examples
Usage with Data Fetching
can be used in combination with Suspense for Data Fetching.headers()

app/page.js (jsx)import { Suspense } from 'react'
import { headers } from 'next/headers'
const authorization = headers().get('authorization')
async function User() {

const res = await fetch('...', {
const user = await res.json()
} return <h1>{user.name}</h1>
} headers: { authorization }, // Forward the authorization header
)
export default function Page() {
return (
<Suspense fallback={null}>
< <User />
}
) /Suspense>

IP Address

headers()

can be used to get the IP address of the client.

app/page.js (jsx)import { Suspense } from 'react'
import { headers } from 'next/headers'
function IP() {
const forwardedFor = headers().get('x-forwarded-for')
} return forwardedFor.split(',')[0] ?? FALLBACK_IP_ADDRESS
} return headers().get('x-real-ip') ?? FALLBACK_IP_ADDRESS
const FALLBACK_IP_ADDRESS = '0.0.0.0'
if (forwardedFor) {
export default function Page() {
return (
<Suspense fallback={null}>
< <IP /> e>
}
) /Suspens

In addition to x-forwarded-for,	can also read:headers()

x-real-ip
x-forwarded-host x-forwarded-port x-forwarded-proto

Version History

	Version
	Changes

	v13.0.0
	headers introduced.

3.2.3.10 - ImageResponse
Documentation path: /02-app/02-api-reference/04-functions/image-response
Description: API Reference for the ImageResponse constructor.

The	constructor allows you to generate dynamic images using JSX and CSS. This is useful for generating social mediaImageResponse

images such as Open Graph images, Twitter cards, and more.The following options are available for ImageResponse: import { ImageResponse } from 'next/og'
new ImageResponse(
element: ReactElement,
options: {
width?: number = 1200
height?: number = 630
emoji?: 'twemoji' | 'blobmoji' | 'noto' | 'openmoji' = 'twemoji',
fonts?: {
name: string,
data: ArrayBuffer,
} style: 'normal' | 'italic'
weight: number,
debug?: boolean = false
[]
// Options that will be passed to the HTTP response
status?: number = 200
statusText?: string
) ,
} headers?: Record<string, string>

Supported CSS Properties
Please refer to Satori’s documentation for a list of supported HTML and CSS features.
Version History

	Version
	Changes

	v14.0.0
	ImageResponse moved from next/server to next/og

	v13.3.0
	ImageResponse can be imported from next/server.

	v13.0.0
	ImageResponse introduced via @vercel/og package.

3.2.3.11 - NextRequest
Documentation path: /02-app/02-api-reference/04-functions/next-request
Description: API Reference for NextRequest.

{/ The content of this doc is shared between the app and pages router. You can use the<PagesOnly>Content</PagesOnly>

to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /} NextRequest extends the Web Request API with additional convenience methods.

component

cookies

Read or mutate the	header of the request.Set-Cookie

set(name, value)

Given a name, set a cookie with the given value on the request.
// Given incoming request /home
// Set a cookie to hide the banner
// request will have a `Set-Cookie:show-banner=false;path=/home` header
request.cookies.set('show-banner', 'false')

get(name)

Given a cookie name, return the value of the cookie. If the cookie is not found, the first one is returned.undefined

is returned. If multiple cookies are found,

// Given incoming request /home
// { name: 'show-banner', value: 'false', Path: '/home' }
request.cookies.get('show-banner')

getAll()

Given a cookie name, return the values of the cookie. If no name is given, return all cookies on the request.
// Given incoming request /home
// [
//	{ name: 'experiments', value: 'new-pricing-page', Path: '/home' },
//	{ name: 'experiments', value: 'winter-launch', Path: '/home' },
//]
request.cookies.getAll('experiments')
// Alternatively, get all cookies for the request
request.cookies.getAll()

delete(name)

Given a cookie name, delete the cookie from the request.
// Returns true for deleted, false is nothing is deleted
request.cookies.delete('experiments')

has(name)
Given a cookie name, return true if the cookie exists on the request.
// Returns true if cookie exists, false if it does not
request.cookies.has('experiments')
clear()
Remove the Set-Cookie header from the request.
request.cookies.clear()
nextUrl

Extends the native URL API with additional convenience methods, including Next.js specific properties.
// Given a request to /home, pathname is /home
request.nextUrl.pathname
// Given a request to /home?name=lee, searchParams is { 'name': 'lee' }
request.nextUrl.searchParams

The following options are available:

	Property
	Type
	Description

	basePath
	string
	The base path of the URL.

	buildId
	string | undefined
	The build identifier of the Next.js application. Can be customized.

	defaultLocale
	string | undefined
	The default locale for internationalization.

	domainLocale
	
	

	- defaultLocale
	string
	The default locale within a domain.

	- domain
	string
	The domain associated with a specific locale.

	- http
	boolean | undefined
	Indicates if the domain is using HTTP.

	locales
	string[] | undefined
	An array of available locales.

	locale
	string | undefined
	The currently active locale.

	url
	URL
	The URL object.

	Property
	Type
	Description

	basePath
	string
	The base path of the URL.

	buildId
	string | undefined
	The build identifier of the Next.js application. Can be customized.

	url
	URL
	The URL object.

	pathname
	string
	The pathname of the URL.

	searchParams
	Object
	The search parameters of the URL.

Note: The internationalization properties from the Pages Router are not available for usage in the App Router. Learn more about internationalization with the App Router.
ip

The	property is a string that contains the IP address of the request. This value can optionally be provided by your hosting platform.

Good to know: On Vercel, this value is provided by default. On other platforms, you can use the provide the IP address.ip
X-Forwarded-For

header to

// Provided by Vercel
request.ip
// Self-hosting
request.headers.get('X-Forwarded-For')

geo

The geo property is an object that contains the geographic information of the request. This value can optionally be provided by your hosting platform.

[image:]Good to know: On Vercel, this value is provided by default. On other platforms, you can use the provide the IP address, then use a third-party service to lookup the geographic information.X-Forwarded-For

header to

// Provided by Vercel
request.geo.city

request.geo.country
request.geo.region
request.geo.latitude
request.geo.longitude
// Self-hosting
function getGeo(request) {
} // Use a third-party service to lookup the geographic information
let ip = request.headers.get('X-Forwarded-For')

Version History

	Version
	Changes

	v13.0.0
	useSearchParams introduced.

3.2.3.12 - NextResponse
Documentation path: /02-app/02-api-reference/04-functions/next-response
Description: API Reference for NextResponse.

{/ The content of this doc is shared between the app and pages router. You can use the<PagesOnly>Content</PagesOnly>

to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /} NextResponse extends the Web Response API with additional convenience methods.

component

cookies

Read or mutate the	header of the response.Set-Cookie

set(name, value)

Given a name, set a cookie with the given value on the response.
// Given incoming request /home
let response = NextResponse.next()
// Set a cookie to hide the banner
response.cookies.set('show-banner', 'false')
// Response will have a `Set-Cookie:show-banner=false;path=/home` header
return response

get(name)

Given a cookie name, return the value of the cookie. If the cookie is not found, the first one is returned.undefined

is returned. If multiple cookies are found,

// Given incoming request /home
let response = NextResponse.next()
// { name: 'show-banner', value: 'false', Path: '/home' }
response.cookies.get('show-banner')

getAll()

Given a cookie name, return the values of the cookie. If no name is given, return all cookies on the response.
// Given incoming request /home
let response = NextResponse.next()
// [
//	{ name: 'experiments', value: 'new-pricing-page', Path: '/home' },
//	{ name: 'experiments', value: 'winter-launch', Path: '/home' },
//]
response.cookies.getAll('experiments')
// Alternatively, get all cookies for the response
response.cookies.getAll()

delete(name)

Given a cookie name, delete the cookie from the response.
// Given incoming request /home
let response = NextResponse.next()
// Returns true for deleted, false is nothing is deleted
response.cookies.delete('experiments')

json()

Produce a response with the given JSON body.

app/api/route.ts (ts)import { NextResponse } from 'next/server'
export async function GET(request: Request) {
} return NextResponse.json({ error: 'Internal Server Error' }, { status: 500 })

app/api/route.js (js)import { NextResponse } from 'next/server'
} return NextResponse.json({ error: 'Internal Server Error' }, { status: 500 })
export async function GET(request) {

redirect()

Produce a response that redirects to a URL.
import { NextResponse } from 'next/server'
return NextResponse.redirect(new URL('/new', request.url))

The URL can be created and modified before being used in the	method. For example, you can use therequest.nextUrl property to get the current URL, and then modify it to redirect to a different URL.
import { NextResponse } from 'next/server'
// Given an incoming request...
const loginUrl = new URL('/login', request.url)
// Add ?from=/incoming-url to the /login URL
loginUrl.searchParams.set('from', request.nextUrl.pathname)
// And redirect to the new URL
return NextResponse.redirect(loginUrl)
NextResponse.redirect()

rewrite()

Produce a response that rewrites (proxies) the given URL while preserving the original URL.
import { NextResponse } from 'next/server'
// Incoming request: /about, browser shows /about
// Rewritten request: /proxy, browser shows /about
return NextResponse.rewrite(new URL('/proxy', request.url))

next()
The next() method is useful for Middleware, as it allows you to return early and continue routing.
import { NextResponse } from 'next/server'
return NextResponse.next()
You can also forward headers when producing the response:
import { NextResponse } from 'next/server'
// Given an incoming request...
const newHeaders = new Headers(request.headers)
// Add a new header
newHeaders.set('x-version', '123')
// And produce a response with the new headers
return NextResponse.next({
request: {
// New request headers
}) ,
} headers: newHeaders,

3.2.3.13 - notFound
Documentation path: /02-app/02-api-reference/04-functions/not-found
Description: API Reference for the notFound function.<meta name="robots"

The notFound function allows you to render thenot-found file

content="noindex" /> tag.

within a route segment as well as inject a

notFound()

Invoking the

function throws a

error and terminates rendering of the route segment in which it was

thrown. Specifying a not-found file allows you to gracefully handle such errors by rendering a Not Found UI within the segment.notFound()
NEXT_NOT_FOUND

app/user/[id]/page.js (jsx)import { notFound } from 'next/navigation'
async function fetchUser(id) {
const res = await fetch('https://...')
} return res.json()
if (!res.ok) return undefined
export default async function Profile({ params }) {
const user = await fetchUser(params.id)
} notFound()
} // ...
if (!user) {

Good to know:notFound()

Version History

does not require you to use

due to using the TypeScript

type.

return notFound()
never

	Version
	Changes

	v13.0.0
	notFound introduced.

3.2.3.14 - permanentRedirect
Documentation path: /02-app/02-api-reference/04-functions/permanentRedirect
Description: API Reference for the permanentRedirect function.
Related:
Title: Related
Related Description: No related description
Links:
[image:] app/api-reference/functions/redirect

The permanentRedirect function allows you to redirect the user to another URL. Components, Client Components, Route Handlers, and Server Actions.permanentRedirect

can be used in Server

When used in a streaming context, this will insert a meta tag to emit the redirect on the client side. When used in a server action, it will serve a 303 HTTP redirect response to the caller. Otherwise, it will serve a 308 (Permanent) HTTP redirect response to the caller.notFound

If a resource doesn’t exist, you can use the	function instead.
Good to know: If you prefer to return a 307 (Temporary) HTTP redirect instead of 308 (Permanent), you can use the function instead.redirect

Parameters
The permanentRedirect function accepts two arguments:
permanentRedirect(path, type)

	Parameter
	Type
	Description

	path
	string
	The URL to redirect to. Can be a relative or absolute path.

	type
	'replace' (default) or 'push' (default in Server Actions)
	The type of redirect to perform.

[image:]By default, permanentRedirect will use push (adding a new entry to the browser history stack) in Server Actions and replace (replacing the current URL in the browser history stack) everywhere else. You can override this behavior by specifying the type parameter.type

The	parameter has no effect when used in Server Components.
Returns
does not return any value.permanentRedirect

Example

Invoking the permanentRedirect() function throws a it was thrown.

error and terminates rendering of the route segment in which
app/team/[id]/page.js (jsx)import { permanentRedirect } from 'next/navigation'
async function fetchTeam(id) {
const res = await fetch('https://...')
} return res.json()
if (!res.ok) return undefined
export default async function Profile({ params }) {
const team = await fetchTeam(params.id)
} permanentRedirect('/login')
} // ...
if (!team) {
NEXT_REDIRECT

Good to know:permanentRedirect
return permanentRedirect()
never

type.

does not require you to use

as it uses the TypeScript

3.2.3.15 - redirect
Documentation path: /02-app/02-api-reference/04-functions/redirect
Description: API Reference for the redirect function.
Related:
Title: Related
Related Description: No related description
Links:
[image:] app/api-reference/functions/permanentRedirect

The redirect function allows you to redirect the user to another URL. Components, Route Handlers, and Server Actions.redirect

can be used in Server Components, Client

When used in a streaming context, this will insert a meta tag to emit the redirect on the client side. When used in a server action, it will serve a 303 HTTP redirect response to the caller. Otherwise, it will serve a 307 HTTP redirect response to the caller.notFound

If a resource doesn’t exist, you can use the	function instead.
Good to know: If you prefer to return a 308 (Permanent) HTTP redirect instead of 307 (Temporary), you can use the function instead.permanentRedirect

Parameters
The redirect function accepts two arguments:
redirect(path, type)

	Parameter
	Type
	Description

	path
	string
	The URL to redirect to. Can be a relative or absolute path.

	type
	'replace' (default) or 'push' (default in Server Actions)
	The type of redirect to perform.

[image:]By default, redirect will use push (adding a new entry to the browser history stack) in Server Actions and replace (replacing the current URL in the browser history stack) everywhere else. You can override this behavior by specifying the type parameter.type

The	parameter has no effect when used in Server Components.
Returns
does not return any value.redirect

Exampleredirect()
NEXT_REDIRECT

Invoking the thrown.

function throws a

error and terminates rendering of the route segment in which it was

Good to know: If you need to programmatically redirect the user after a certain event in a Client Component, you can use the hook.useRouter

app/team/[id]/page.js (jsx)import { redirect } from 'next/navigation'
async function fetchTeam(id) {
const res = await fetch('https://...')
} return res.json()
if (!res.ok) return undefined
export default async function Profile({ params }) {
const team = await fetchTeam(params.id)
if (!team) {
} redirect('/login')

} // ...

Good to know:
FAQ
Why doesredirect

does not require you to use

use 307 and 308?redirect

as it uses the TypeScript

type.

[image:][image:]When using redirect() you may notice that the status codes used are 307 for a temporary redirect, and 308 for a permanent redirect. While traditionally a 302 was used for a temporary redirect, and a 301 for a permanent redirect, many browsers changed thereturn redirect()
never
POST

request method of the redirect, from a	to GET request when using a 302, regardless of the origins request method.
[image:]Taking the following example of a redirect from /users to /people, if you make a POST request to /users to create a new user, and are conforming to a 302 temporary redirect, the request method will be changed from a POST to a GET request. This doesn’t makePOST

sense, as to create a new user, you should be making a	request to /people, and not a GET request.307

The introduction of the	status code means that the request method is preserved as POST.
302 - Temporary redirect, will change the request method from POST toGET

307 - Temporary redirect, will preserve the request method as POST302

method uses a Learn more about HTTP Redirects.The redirect() POST requests.
307

Version History

by default, instead of a

temporary redirect, meaning your requests will always be preserved as

	Version
	Changes

	v13.0.0
	redirect introduced.

3.2.3.16 - revalidatePath
Documentation path: /02-app/02-api-reference/04-functions/revalidatePath
Description: API Reference for the revalidatePath function.

allows you to purge cached data on-demand for a specific path.revalidatePath

Good to know:
is available in both Node.js and Edge runtimes.revalidatePath revalidatePath
revalidatePath

only invalidates the cache when the included path is next visited. This means calling
with a dynamic route segment will not immediately trigger many revalidations at once. The invalidation only happens when the path is next visited.
Parameters
revalidatePath(path: string, type?: 'page' | 'layout'): void;

path: Either a string representing the filesystem path associated with the data you want to revalidate (for example,
/product/[slug]/page), or the literal route segment (for example, /product/123). Must be less than 1024 characters.'layout'

[image:] type: (optional) 'page' or
Returns

string to change the type of path to revalidate.

does not return any value.revalidatePath

Examples
Revalidating A Specific URL
import { revalidatePath } from 'next/cache'
revalidatePath('/blog/post-1')

This will revalidate one specific URL on the next page visit.
Revalidating A Page Path
import { revalidatePath } from 'next/cache'
revalidatePath('/blog/[slug]', 'page')
// or with route groups
revalidatePath('/(main)/post/[slug]', 'page')

This will revalidate any URL that matches the provided page file on the next page visit. This will not invalidate pages beneath the

specific page. For example,/blog/[slug]

Revalidating A Layout Path

won’t invalidate /blog/[slug]/[author].

import { revalidatePath } from 'next/cache'
revalidatePath('/blog/[slug]', 'layout')
// or with route groups
revalidatePath('/(main)/post/[slug]', 'layout')

This will revalidate any URL that matches the provided	file on the next page visit. This will cause pages beneath with the samelayout
/blog/[slug]/[another]

layout to revalidate on the next visit. For example, in the above case, visit.
Revalidating All Data

would also revalidate on the next

import { revalidatePath } from 'next/cache'
revalidatePath('/', 'layout')

This will purge the Client-side Router Cache, and revalidate the Data Cache on the next page visit.
Server Action

app/actions.ts (ts)'use server'
import { revalidatePath } from 'next/cache' export default async function submit() {
} revalidatePath('/')
await submitForm()

Route Handler
app/api/revalidate/route.ts (ts)import { revalidatePath } from 'next/cache'
import { NextRequest } from 'next/server'
export async function GET(request: NextRequest) {
const path = request.nextUrl.searchParams.get('path')
if (path) {
} return Response.json({ revalidated: true, now: Date.now() })
revalidatePath(path)
return Response.json({
revalidated: false,
now: Date.now(),
})
} message: 'Missing path to revalidate',

app/api/revalidate/route.js (js)import { revalidatePath } from 'next/cache'
export async function GET(request) {
const path = request.nextUrl.searchParams.get('path')
if (path) {
} return Response.json({ revalidated: true, now: Date.now() })
revalidatePath(path)
return Response.json({
revalidated: false,
now: Date.now(),
})
} message: 'Missing path to revalidate',

3.2.3.17 - revalidateTag
Documentation path: /02-app/02-api-reference/04-functions/revalidateTag
Description: API Reference for the revalidateTag function.

allows you to purge cached data on-demand for a specific cache tag.revalidateTag

Good to know:revalidateTag

is available in both Node.js and Edge runtimes.revalidateTag revalidateTag

only invalidates the cache when the path is next visited. This means calling

with a

dynamic route segment will not immediately trigger many revalidations at once. The invalidation only happens when the path is next visited.
Parameters
revalidateTag(tag: string): void;

[image:] tag: A string representing the cache tag associated with the data you want to revalidate. Must be less than or equal to 256 characters.
[image:]You can add tags to fetch as follows:
fetch(url, { next: { tags: [...] } });
Returns

revalidateTag

Examples
Server Action

does not return any value.

app/actions.ts (ts)'use server'
import { revalidateTag } from 'next/cache' export default async function submit() {
} revalidateTag('posts')
await addPost()

app/actions.js (js)'use server'
import { revalidateTag } from 'next/cache' export default async function submit() {
} revalidateTag('posts')
await addPost()

Route Handler
app/api/revalidate/route.ts (ts)import { NextRequest } from 'next/server'
import { revalidateTag } from 'next/cache'
export async function GET(request: NextRequest) {
const tag = request.nextUrl.searchParams.get('tag')
} return Response.json({ revalidated: true, now: Date.now() })
revalidateTag(tag)

app/api/revalidate/route.js (js)

import { revalidateTag } from 'next/cache'
export async function GET(request) {
const tag = request.nextUrl.searchParams.get('tag')
} return Response.json({ revalidated: true, now: Date.now() })
revalidateTag(tag)

3.2.3.18 - unstable_cache
Documentation path: /02-app/02-api-reference/04-functions/unstable_cache
Description: API Reference for the unstable_cache function.

allows you to cache the results of expensive operations, like database queries, and reuse them across multipleunstable_cache
requests.

import { getUser } from './data';
import { unstable_cache } from 'next/cache';
const getCachedUser = unstable_cache(
) ['my-app-user']
async (id) => getUser(id),
;
export default async function Component({ userID }) {
} ...
const user = await getCachedUser(userID);

Warning: This API is unstable and may change in the future. We will provide migration documentation and codemods, if needed, as this API stabilizes.
Parameters
const data = unstable_cache(fetchData, keyParts, options)()

[image:] fetchData: This is an asynchronous function that fetches the data you want to cache. It must be a function that returns a Promise. [image:] keyParts: This is an array that identifies the cached key. It must contain globally unique values that together identify the key of the
data being cached. The cache key also includes the arguments passed to the function.
[image:] options: This is an object that controls how the cache behaves. It can contain the following properties:
[image:] tags: An array of tags that can be used to control cache invalidation.
[image:] revalidate: The number of seconds after which the cache should be revalidated.
Returns
unstable_cache returns a function that when invoked, returns a Promise that resolves to the cached data. If the data is not in the cache, the provided function will be invoked, and its result will be cached and returned.
Version History

	Version
	Changes

	v14.0.0
	unstable_cache introduced.

3.2.3.19 - unstable_noStore
Documentation path: /02-app/02-api-reference/04-functions/unstable_noStore
Description: API Reference for the unstable_noStore function.
unstable_noStore can be used to declaratively opt out of static rendering and indicate a particular component should not be cached.
import { unstable_noStore as noStore } from 'next/cache';
export default async function Component() {
noStore();
} ...
const result = await db.query(...);

Good to know:

is equivalent to cache: 'no-store' on a fetchunstable_noStore unstable_noStore

is preferred over export const dynamic = 'force-dynamic' as it is more granular and can be

used on a per-component basis

Using

inside

will not opt out of static generation. Instead, it will defer to the cache

configuration to determine whether to cache the result or not.unstable_noStore
unstable_cache

Usage
If you prefer not to pass additional options to fetch, likenoStore() as a replacement for all of these use cases.
import { unstable_noStore as noStore } from 'next/cache';
export default async function Component() {
noStore();
} ...
const result = await db.query(...);
cache: 'no-store'

or next: { revalidate: 0 }, you can use

Version History

	Version
	Changes

	v14.0.0
	unstable_noStore introduced.

3.2.3.20 - useParams
Documentation path: /02-app/02-api-reference/04-functions/use-params
Description: API Reference for the useParams hook.

is a Client Component hook that lets you read a route’s dynamic params filled in by the current URL.useParams

app/example-client-component.tsx (tsx)'use client'
import { useParams } from 'next/navigation'
export default function ExampleClientComponent() {
const params = useParams<{ tag: string; item: string }>()
// Route -> /shop/[tag]/[item]
// URL -> /shop/shoes/nike-air-max-97
console.log(params)
} return <></>
// `params` -> { tag: 'shoes', item: 'nike-air-max-97' }

app/example-client-component.js (jsx)'use client'
import { useParams } from 'next/navigation'
export default function ExampleClientComponent() {
const params = useParams()
// Route -> /shop/[tag]/[item]
// URL -> /shop/shoes/nike-air-max-97
console.log(params)
} return <></>
// `params` -> { tag: 'shoes', item: 'nike-air-max-97' }

Parameters
const params = useParams()

does not take any parameters.
ReturnsuseParams

returns an object containing the current route’s filled in dynamic parameters.useParams

[image:] Each property in the object is an active dynamic segment.
[image:] The properties name is the segment’s name, and the properties value is what the segment is filled in with.string

The properties value will either be a	or array of string’s depending on the type of dynamic segment.
If the route contains no dynamic parameters, useParams returns an empty object.useParams

[image:] If used in pages, For example:

will return null.

	Route
	URL
	useParams()

	app/shop/page.js
	/shop
	null

	app/shop/[slug]/page.js
	/shop/1
	{ slug: '1' }

	app/shop/[tag]/[item]/page.js
	/shop/1/2
	{ tag: '1', item: '2' }

	app/shop/[...slug]/page.js
	/shop/1/2
	{ slug: ['1', '2'] }

Version History

	Version
	Changes

	v13.3.0
	useParams introduced.

3.2.3.21 - usePathname
Documentation path: /02-app/02-api-reference/04-functions/use-pathname
Description: API Reference for the usePathname hook.

is a Client Component hook that lets you read the current URL’s pathname.usePathname

app/example-client-component.tsx (tsx)'use client'
import { usePathname } from 'next/navigation' export default function ExampleClientComponent() {
} return <p>Current pathname: {pathname}</p>
const pathname = usePathname()

app/example-client-component.js (jsx)'use client'
import { usePathname } from 'next/navigation' export default function ExampleClientComponent() {
} return <p>Current pathname: {pathname}</p>
const pathname = usePathname()

usePathname intentionally requires using a Client Component. It’s important to note Client Components are not a de-optimization. They are an integral part of the Server Components architecture.
For example, a Client Component with usePathname will be rendered into HTML on the initial page load. When navigating to a new route, this component does not need to be re-fetched. Instead, the component is downloaded once (in the client JavaScript bundle), and re-renders based on the current state.
Good to know:
[image:] Reading the current URL from a Server Component is not supported. This design is intentional to support layout state being preserved across page navigations.
[image:] Compatibility mode:

[image:]usePathname can return null when a fallback route is being rendered or when a automatically statically optimized by Next.js and the router is not ready.pages
app
pages

directory page has been

[image:] Next.js will automatically update your types if it detects both an
Parameters

and

directory in your project.

const pathname = usePathname()

Returns

does not take any parameters.

returns a string of the current URL’s pathname. For example:usePathname
usePathname

	URL
	Returned value

	/
	'/'

	/dashboard
	'/dashboard'

	/dashboard?v=2
	'/dashboard'

	/blog/hello-world
	'/blog/hello-world'

Examples
Do something in response to a route change

app/example-client-component.tsx (tsx)'use client'
import { usePathname, useSearchParams } from 'next/navigation'
function ExampleClientComponent() {
const pathname = usePathname()
const searchParams = useSearchParams()
useEffect(() => {
} , [pathname, searchParams
} // Do something here...])

app/example-client-component.js (jsx)'use client'
import { usePathname, useSearchParams } from 'next/navigation'
function ExampleClientComponent() {
const pathname = usePathname()
const searchParams = useSearchParams()
useEffect(() => {
} , [pathname, searchParams
} // Do something here...])

	Version
	Changes

	v13.0.0
	usePathname introduced.

3.2.3.22 - useReportWebVitals
Documentation path: /02-app/02-api-reference/04-functions/use-report-web-vitals
Description: API Reference for the useReportWebVitals function.
{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}useReportWebVitals

The

hook allows you to report Core Web Vitals, and can be used in combination with your analytics service.
pages/_app.js (jsx)import { useReportWebVitals } from 'next/web-vitals'
function MyApp({ Component, pageProps }) {
useReportWebVitals((metric) => {
} console.log(metric)
)
} return <Component {...pageProps} />

app/_components/web-vitals.js (jsx)'use client'
import { useReportWebVitals } from 'next/web-vitals'
export function WebVitals() {
useReportWebVitals((metric) => {
})
} console.log(metric)

app/layout.js (jsx)import { WebVitals } from './_components/web-vitals'
export default function Layout({ children }) {
return (
<html>
<body>
<WebVitals />
</ /body>
< {children}
html>
})

Since the useReportWebVitals hook requires the "use client" directive, the most performant approach is to create aWebVitals

separate component that the root layout imports. This confines the client boundary exclusively to the
useReportWebVitals

component.

The

object passed as the hook’s argument consists of a number of properties:
id: Unique identifier for the metric in the context of the current page loadmetric

name: The name of the performance metric. Possible values include names of Web Vitals metrics (TTFB, FCP, LCP, FID, CLS) specific to a web application.
delta: The difference between the current value and the previous value of the metric. The value is typically in milliseconds and
represents the change in the metric’s value over time.
entries: An array of Performance Entries associated with the metric. These entries provide detailed information about the
performance events related to the metric.
navigationType: Indicates the type of navigation that triggered the metric collection. Possible values include "navigate", "reload", "back_forward", and "prerender".
rating: A qualitative rating of the metric value, providing an assessment of the performance. Possible values are "good", "needs- improvement", and "poor". The rating is typically determined by comparing the metric value against predefined thresholds that indicate acceptable or suboptimal performance.
value: The actual value or duration of the performance entry, typically in milliseconds. The value provides a quantitative measure
of the performance aspect being tracked by the metric. The source of the value depends on the specific metric being measured and

can come from various Performance APIs.
Web Vitals
Web Vitals are a set of useful metrics that aim to capture the user experience of a web page. The following web vitals are all included: [image:] Time to First Byte (TTFB)
[image:] First Contentful Paint (FCP)
[image:] Largest Contentful Paint (LCP) [image:] First Input Delay (FID)
[image:] Cumulative Layout Shift (CLS) [image:] Interaction to Next Paint (INP)name

You can handle all the results of these metrics using the

property.

pages/_app.js (jsx)import { useReportWebVitals } from 'next/web-vitals'
function MyApp({ Component, pageProps }) {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP': {
} // handle FCP results
case 'LCP': {
} // handle LCP results
})
} // ...
} return <Component {...pageProps} />

app/components/web-vitals.tsx (tsx)'use client'
import { useReportWebVitals } from 'next/web-vitals'
export function WebVitals() {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP': {
} // handle FCP results
case 'LCP': {
} // ...
} })
} // handle LCP results

app/components/web-vitals.js (jsx)'use client'
import { useReportWebVitals } from 'next/web-vitals'
export function WebVitals() {
useReportWebVitals((metric) => {
switch (metric.name) {
case 'FCP': {
} // handle FCP results
case 'LCP': {
} // ...
} })
} // handle LCP results

Custom Metrics
In addition to the core metrics listed above, there are some additional custom metrics that measure the time it takes for the page to hydrate and render:
[image:] Next.js-hydration: Length of time it takes for the page to start and finish hydrating (in ms)
[image:] Next.js-route-change-to-render: Length of time it takes for a page to start rendering after a route change (in ms)
[image:] Next.js-render: Length of time it takes for a page to finish render after a route change (in ms)
You can handle all the results of these metrics separately:export function reportWebVitals(metric) {
switch (metric.name) {
case 'Next.js-hydration':
c break xt.js-route-change-to-render':
// handle hydration results
ase 'Ne
c break xt.js-render':
// handle route-change to render results
ase 'Ne
d break
// handle render results
efault:
break
} }

These metrics work in all browsers that support the User Timing API.
Usage on Vercel
Vercel Speed Insights are automatically configured on Vercel deployments, and don’t require the use of useReportWebVitals. This hook is useful in local development, or if you’re using a different analytics service.
Sending results to external systems
You can send results to any endpoint to measure and track real user performance on your site. For example:useReportWebVitals((metric) => {
const body = JSON.stringify(metric)
const url = 'https://example.com/analytics'
// Use `navigator.sendBeacon()` if available, falling back to `fetch()`.
if (navigator.sendBeacon) {
} navigator.sendBeacon(url, body)
else {
})
} fetch(url, { body, method: 'POST', keepalive: true })

Good to know: If you use Google Analytics, using the calculate percentiles, etc.)id

value can allow you to construct metric distributions manually (to

js useReportWebVitals(metric => { // Use `window.gtag` if you initialized Google Analytics as this
unique to current page load non_interaction: true, // avoids affecting bounce rate. }); }
example: // https://github.com/vercel/next.js/blob/canary/examples/with-google-
analytics/pages/_app.js window.gtag('event', metric.name, { value: Math.round(metric.name === 'CLS'
? metric.value * 1000 : metric.value), // values must be integers event_label: metric.id, // id

Read more about sending results to Google Analytics.

3.2.3.23 - useRouter
Documentation path: /02-app/02-api-reference/04-functions/use-router
Description: API reference for the useRouter hook.

The	hook allows you to programmatically change routes inside Client Components.useRouter

Recommendation: Use the

component for navigation unless you have a specific requirement for using useRouter.
app/example-client-component.tsx (tsx)'use client'
import { useRouter } from 'next/navigation'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.push('/dashboard')}>
< Dashboard
}
) /button>
<Link>

app/example-client-component.js (jsx)'use client'
import { useRouter } from 'next/navigation'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.push('/dashboard')}>
< Dashboard
}
) /button>

useRouter()

router.push(href: string, { scroll: boolean }): Perform a client-side navigation to the provided route. Adds a new entry into the browser’s history stack.
router.replace(href: string, { scroll: boolean }): Perform a client-side navigation to the provided route without
adding a new entry into the browser’s history stack.
router.refresh(): Refresh the current route. Making a new request to the server, re-fetching data requests, and re-rendering
Server Components. The client will merge the updated React Server Component payload without losing unaffected client-side React (e.g. useState) or browser state (e.g. scroll position).
router.prefetch(href: string): Prefetch the provided route for faster client-side transitions. router.back(): Navigate back to the previous route in the browser’s history stack. router.forward(): Navigate forwards to the next page in the browser’s history stack.
Good to know:
[image:] The <Link> component automatically prefetch routes as they become visible in the viewport.cookies

[image:] refresh() could re-produce the same result if fetch requests are cached. Other dynamic functions like
headers could also change the response.
Migrating fromnext/router

[image:] The useRouter hook should be imported from next/navigation and not next/router when using the App Router [image:] The pathname string has been removed and is replaced by usePathname()
[image:] The query object has been removed and is replaced by useSearchParams() [image:] router.events has been replaced. See below.
View the full migration guide.

and

Examples
Router events
You can listen for page changes by composing other Client Component hooks likeusePathname
and useSearchParams.

app/components/navigation-events.js (jsx)'use client'
import { useEffect } from 'react'
import { usePathname, useSearchParams } from 'next/navigation'
export function NavigationEvents() {
const pathname = usePathname()
const searchParams = useSearchParams()
useEffect(() => {
const url = `${pathname}?${searchParams}`
console.log(url)
} // ... ame, searchParams])
// You can now use the current URL
, [pathn
} return null

Which can be imported into a layout.
```jsx filename=”app/layout.js” highlight={2,10-12} import { Suspense } from ‘react’ import { NavigationEvents } from ‘./components/navigation-events’
export default function Layout({ children }) { return (<Suspense fallback={null}>
</h body>
</ /Suspense>
< <NavigationEvents /> tml>

) }
· **Good to know**: `<NavigationEvents>` is wrapped in a [`Suspense` boundary](/docs/app/building-your-ap ### Disabling scroll restoration
By default, Next.js will scroll to the top of the page when navigating to a new route. You can disable th
<div class="code-header"><i>app/example-client-component.tsx (tsx)</i></div>
```tsx
'use client'
import { useRouter } from 'next/navigation'
export default function Page() {
const router = useRouter()
return (
<button
· onClick={() => router.push('/dashboard', { scroll: false })}
type="button"
< Dashboard
}
) /button>

app/example-client-component.jsx (jsx)'use client'
import { useRouter } from 'next/navigation'
export default function Page() {
const router = useRouter()
return (
<button

· onClick={() => router.push('/dashboard', { scroll: false })}
type="button"
< Dashboard
}
) /button>

Version History

	Version
	Changes

	v13.0.0
	useRouter from next/navigation introduced.

3.2.3.24 - useSearchParams
Documentation path: /02-app/02-api-reference/04-functions/use-search-params
Description: API Reference for the useSearchParams hook.

is a Client Component hook that lets you read the current URL’s query string.useSearchParams useSearchParams
URLSearchParams

returns a read-only version of the

interface.

app/dashboard/search-bar.tsx (tsx)'use client'
import { useSearchParams } from 'next/navigation'
export default function SearchBar() {
const searchParams = useSearchParams() const search = searchParams.get('search')
// URL -> `/dashboard?search=my-project`
} return <>Search: {search}</>
// `search` -> 'my-project'

app/dashboard/search-bar.js (jsx)'use client'
import { useSearchParams } from 'next/navigation'
export default function SearchBar() {
const searchParams = useSearchParams() const search = searchParams.get('search')
// URL -> `/dashboard?search=my-project`
} return <>Search: {search}</>
// `search` -> 'my-project'

Parameters
const searchParams = useSearchParams()

Returns

URL’s query string:

does not take any parameters.

returns a read-only version of theuseSearchParams
useSearchParams

interface, which includes utility methods for reading theURLSearchParams

URLSearchParams.get(): Returns the first value associated with the search parameter. For example:

	URL
	searchParams.get("a")

	/dashboard?a=1
	'1'

	/dashboard?a=
	''

	/dashboard?b=3
	null

	/dashboard?a=1&a=2
	'1' - use getAll() to get all values

URLSearchParams.has(): Returns a boolean value indicating if the given parameter exists. For example:

	URL
	searchParams.has("a")

	/dashboard?a=1
	true

	URL
	searchParams.has("a")

	/dashboard?b=3
	false

Learn more about other read-only methods of URLSearchParams, including the getAll(), keys(), values(), entries(), forEach(), and toString().
Good to know:
is a Client Component hook and is not supported in Server Components to prevent stale values duringuseSearchParams
partial rendering.

[image:][image:] If an application includes the /pages directory, useSearchParams will return ReadonlyURLSearchParams | null. The null value is for compatibility during migration since search params cannot be known during pre-rendering of a page that doesn’t usegetServerSideProps

Behavior
Static RenderinguseSearchParams()
Suspense

If a route is statically rendered, calling rendered.searchParams

will cause the tree up to the closest

boundary to be client-side

This allows a part of the page to be statically rendered while the dynamic part that uses	is client-side rendered.useSearchParams

You can reduce the portion of the route that is client-side rendered by wrapping the component that uses boundary. For example:Suspense

in a

app/dashboard/search-bar.tsx (tsx)'use client'
import { useSearchParams } from 'next/navigation' export default function SearchBar() {
console.log(search)
} return <>Search: {search}</>
const searchParams = useSearchParams() const search = searchParams.get('search')
// This will not be logged on the server when using static rendering

app/dashboard/search-bar.js (jsx)'use client'
import { useSearchParams } from 'next/navigation' export default function SearchBar() {
console.log(search)
} return <>Search: {search}</>
const searchParams = useSearchParams() const search = searchParams.get('search')
// This will not be logged on the server when using static rendering

app/dashboard/page.tsx (tsx)import { Suspense } from 'react'
import SearchBar from './search-bar'
// This component passed as a fallback to the Suspense boundary
// will be rendered in place of the search bar in the initial HTML.
// When the value is available during React hydration the fallback
// will be replaced with the `<SearchBar>` component.
function SearchBarFallback() {
} return <>placeholder</>

export default function Page() {
return (
<>
<nav>
<Suspense fallback={<SearchBarFallback />}>
< <SearchBar />
</ h1>Das
</ /Suspense>
< nav> hboard</h1>
)	>
}

app/dashboard/page.js (jsx)import { Suspense } from 'react'
import SearchBar from './search-bar'
// This component passed as a fallback to the Suspense boundary
// will be rendered in place of the search bar in the initial HTML.
// When the value is available during React hydration the fallback
// will be replaced with the `<SearchBar>` component.
function SearchBarFallback() {
} return <>placeholder</>
export default function Page() {
return (
<>
<nav>
<Suspense fallback={<SearchBarFallback />}>
</ h1>Das
</ /Suspense>
< nav> hboard</h1>
< <SearchBar />
)	>
}

Dynamic Rendering
If a route is dynamically rendered, Component.useSearchParams
dynamic

will be available on the server during the initial server render of the Client

Good to know: Setting the For example:

route segment config option to

can be used to force dynamic rendering.

app/dashboard/search-bar.tsx (tsx)'use client'
import { useSearchParams } from 'next/navigation'
export default function SearchBar() {
const searchParams = useSearchParams() const search = searchParams.get('search')
// This will be logged on the server during the initial render
console.log(search)
} return <>Search: {search}</>
// and on the client on subsequent navigations.
force-dynamic

app/dashboard/search-bar.js (jsx)'use client'
import { useSearchParams } from 'next/navigation'
export default function SearchBar() {
const searchParams = useSearchParams()
const search = searchParams.get('search')

// This will be logged on the server during the initial render
console.log(search)
} return <>Search: {search}</>
// and on the client on subsequent navigations.

app/dashboard/page.tsx (tsx)import SearchBar from './search-bar'
export const dynamic = 'force-dynamic'
export default function Page() {
return (
<>
<nav>
< <h1>Dashboard</h1>
< <SearchBar />
/nav>
/>
})

app/dashboard/page.js (jsx)import SearchBar from './search-bar'
export const dynamic = 'force-dynamic'
export default function Page() {
return (
<>
<nav>
< <h1>Dashboard</h1>
< <SearchBar />
/nav>
/>
})

Server Components
Pages
To access search params in Pages (Server Components), use the
Layouts
Unlike Pages, Layouts (Server Components) do not receive thesearchParams

prop.

prop. This is because a shared layout is not re-renderedsearchParams

during navigation which could lead to stale searchParams between navigations. View detailed explanation.
Instead, use the Page searchParams prop or the useSearchParams hook in a Client Component, which is re-rendered on the client with the latest searchParams.
Examples
UpdatingsearchParams
page.js

You can use useRouter or updated searchParams prop.Link

to set new searchParams. After a navigation is performed, the current

will receive an

app/example-client-component.tsx (tsx)export default function ExampleClientComponent() {
const router = useRouter()
const pathname = usePathname()
const searchParams = useSearchParams()!
// Get a new searchParams string by merging the current
// searchParams with a provided key/value pair
const createQueryString = useCallback(
(name: string, value: string) => {
const params = new URLSearchParams(searchParams)

params.set(name, value)
) [searchParams]
} return params.toString()
,
return (
<>
<p>Sort By</p>
{/* using useRouter */}
<button
onClick={() => {
· }
} router.push(pathname + '?' + createQueryString('sort', 'asc'))
// <pathname>?sort=asc
< ASC on>
/butt
{/* using <Link> */}
<Link
href={
< </Link>
} pathname + '?' + createQueryString('sort', 'desc')
· DESC
// <pathname>?sort=desc
/>
})

export default function ExampleClientComponent() { const router = useRouter()
const pathname = usePathname()
const searchParams = useSearchParams()
// Get a new searchParams string by merging the current
// searchParams with a provided key/value pair const createQueryString = useCallback(
(name, value) => {
const params = new URLSearchParams(searchParams) params.set(name, value)
return params.toString()
},
) [searchParams]
return (
<>
<p>Sort By</p>
{/* using useRouter */}
<button onClick={() => {
// <pathname>?sort=asc
router.push(pathname + '?' + createQueryString('sort', 'asc'))
· }}
ASC
</button>
{/* using <Link> */}
<Link
href={
// <pathname>?sort=desc
} pathname + '?' + createQueryString('sort', 'desc')
· DESC
</Link>
</>

app/example-client-component.js (jsx)

})

Version History

	Version
	Changes

	v13.0.0
	useSearchParams introduced.

3.2.3.25 - useSelectedLayoutSegment
Documentation path: /02-app/02-api-reference/04-functions/use-selected-layout-segment
Description: API Reference for the useSelectedLayoutSegment hook.

is a Client Component hook that lets you read the active route segment one level below the Layout ituseSelectedLayoutSegment

is called from.
It is useful for navigation UI, such as tabs inside a parent layout that change style depending on the active child segment.
app/example-client-component.tsx (tsx)'use client'
import { useSelectedLayoutSegment } from 'next/navigation'
export default function ExampleClientComponent() {
const segment = useSelectedLayoutSegment()
} return <p>Active segment: {segment}</p>

app/example-client-component.js (jsx)'use client'
import { useSelectedLayoutSegment } from 'next/navigation'
export default function ExampleClientComponent() {
const segment = useSelectedLayoutSegment()
} return <p>Active segment: {segment}</p>

Good to know:
[image:] Since useSelectedLayoutSegment is a Client Component hook, and Layouts are Server Components by default,
useSelectedLayoutSegment is usually called via a Client Component that is imported into a Layout.
[image:] useSelectedLayoutSegment only returns the segment one level down. To return all active segments, see
useSelectedLayoutSegments
ParametersuseSelectedLayoutSegment

const segment = useSelectedLayoutSegment(parallelRoutesKey?: string)

that slot.
Returns

optionally accepts a parallelRoutesKey, which allows you to read the active route segment within

returns a string of the active segment or	if one doesn’t exist.useSelectedLayoutSegment
null

For example, given the Layouts and URLs below, the returned segment would be:

	Layout
	Visited URL
	Returned Segment

	app/layout.js
	/
	null

	app/layout.js
	/dashboard
	'dashboard'

	app/dashboard/layout.js
	/dashboard
	null

	app/dashboard/layout.js
	/dashboard/settings
	'settings'

	app/dashboard/layout.js
	/dashboard/analytics
	'analytics'

	app/dashboard/layout.js
	/dashboard/analytics/monthly
	'analytics'

Examples

Creating an active link component
You can use	to create an active link component that changes style depending on the active segment. ForuseSelectedLayoutSegment

example, a featured posts list in the sidebar of a blog:

app/blog/blog-nav-link.tsx (tsx)'use client'
import { useSelectedLayoutSegment } from 'next/navigation'
import Link from 'next/link'
// This *client* component will be imported into a blog layout
export default function BlogNavLink({
} children,
slug,
: {
} children: React.ReactNode
slug: string
) {
// Navigating to `/blog/hello-world` will return 'hello-world'
// for the selected layout segment
const segment = useSelectedLayoutSegment()
const isActive = slug === segment
return (
<Link
href={`/blog/${slug}`}
· style={{ fontWeight: isActive ? 'bold' : 'normal' }}
// Change style depending on whether the link is active
< {children}
}
) /Link>

app/blog/blog-nav-link.js (jsx)'use client'
import { useSelectedLayoutSegment } from 'next/navigation'
import Link from 'next/link'
// This *client* component will be imported into a blog layout
export default function BlogNavLink({ slug, children }) {
// Navigating to `/blog/hello-world` will return 'hello-world'
// for the selected layout segment
const segment = useSelectedLayoutSegment()
const isActive = slug === segment
return (
<Link
href={`/blog/${slug}`}
· style={{ fontWeight: isActive ? 'bold' : 'normal' }}
// Change style depending on whether the link is active
< {children}
}
) /Link>

app/blog/layout.tsx (tsx)// Import the Client Component into a parent Layout (Server Component)
import { BlogNavLink } from './blog-nav-link'
import getFeaturedPosts from './get-featured-posts'
export default async function Layout({
} children,
} children: React.ReactNode
: {
) {
const featuredPosts = await getFeaturedPosts()
return (
<div>
{featuredPosts.map((post) => (
<div key={post.id}>
<BlogNavLink slug={post.slug}>{post.title}</BlogNavLink>

< <div>{children}</div>
) </div>
)}
/div>
})

app/blog/layout.js (jsx)// Import the Client Component into a parent Layout (Server Component)
import { BlogNavLink } from './blog-nav-link'
import getFeaturedPosts from './get-featured-posts'
export default async function Layout({ children }) {
const featuredPosts = await getFeaturedPosts()
return (
<div>
{featuredPosts.map((post) => (
<div key={post.id}>
</ div
)) /div>
< } >{children}</div>
< <BlogNavLink slug={post.slug}>{post.title}</BlogNavLink>
div>
})

Version History

	Version
	Changes

	v13.0.0
	useSelectedLayoutSegment introduced.

3.2.3.26 - useSelectedLayoutSegments
Documentation path: /02-app/02-api-reference/04-functions/use-selected-layout-segments
Description: API Reference for the useSelectedLayoutSegments hook.

is a Client Component hook that lets you read the active route segments below the Layout it is calleduseSelectedLayoutSegments

from.
It is useful for creating UI in parent Layouts that need knowledge of active child segments such as breadcrumbs.
app/example-client-component.tsx (tsx)'use client'
import { useSelectedLayoutSegments } from 'next/navigation'
export default function ExampleClientComponent() {
const segments = useSelectedLayoutSegments()
return (

{segments.map((segment, index) => (
</)}
) <li key={index}>{segment}
ul>
})

app/example-client-component.js (jsx)'use client'
import { useSelectedLayoutSegments } from 'next/navigation'
export default function ExampleClientComponent() {
const segments = useSelectedLayoutSegments()
return (

{segments.map((segment, index) => (
</)}
) <li key={index}>{segment}
ul>
})

Good to know:
[image:] Since useSelectedLayoutSegments is a Client Component hook, and Layouts are Server Components by default,
useSelectedLayoutSegments is usually called via a Client Component that is imported into a Layout.
[image:] The returned segments include Route Groups, which you might not want to be included in your UI. You can use the array method to remove items that start with a bracket.filter()

Parameters
const segments = useSelectedLayoutSegments(parallelRoutesKey?: string)

that slot.
Returns

optionally accepts a parallelRoutesKey, which allows you to read the active route segment within

returns an array of strings containing the active segments one level down from the layout the hookuseSelectedLayoutSegments
useSelectedLayoutSegments

was called from. Or an empty array if none exist.
For example, given the Layouts and URLs below, the returned segments would be:

	Layout
	Visited URL
	Returned Segments

	app/layout.js
	/
	[]

	Layout
	Visited URL
	Returned Segments

	app/layout.js
	/dashboard
	['dashboard']

	app/layout.js
	/dashboard/settings
	['dashboard', 'settings']

	app/dashboard/layout.js
	/dashboard
	[]

	app/dashboard/layout.js
	/dashboard/settings
	['settings']

Version History

	Version
	Changes

	v13.0.0
	useSelectedLayoutSegments introduced.

3.2.3.27 - userAgent
Documentation path: /02-app/02-api-reference/04-functions/userAgent
Description: The userAgent helper extends the Web Request API with additional properties and methods to interact with the user agent object from the request.

{/ The content of this doc is shared between the app and pages router. You can use the<PagesOnly>Content</PagesOnly>

to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}userAgent

component

The	helper extends the Web Request API with additional properties and methods to interact with the user agent object

from the request.

middleware.ts (ts)import { NextRequest, NextResponse, userAgent } from 'next/server'
export function middleware(request: NextRequest) {
const url = request.nextUrl
const { device } = userAgent(request)
const viewport = device.type === 'mobile' ? 'mobile' : 'desktop'
} return NextResponse.rewrite(url)
url.searchParams.set('viewport', viewport)

middleware.js (js)import { NextResponse, userAgent } from 'next/server'
export function middleware(request) {
const url = request.nextUrl
const { device } = userAgent(request)
const viewport = device.type === 'mobile' ? 'mobile' : 'desktop'
} return NextResponse.rewrite(url)
url.searchParams.set('viewport', viewport)

isBot

A boolean indicating whether the request comes from a known bot.
browser

An object containing information about the browser used in the request.
[image:] name: A string representing the browser’s name, or undefined if not identifiable.
[image:] version: A string representing the browser’s version, or undefined.
device

An object containing information about the device used in the request.
[image:] model: A string representing the model of the device, or undefined.
[image:] type: A string representing the type of the device, such as console, mobile, tablet, smarttv, wearable, embedded, or
undefined.
[image:] vendor: A string representing the vendor of the device, or undefined.
engine

An object containing information about the browser’s engine.
[image:][image:][image:] name: A string representing the engine’s name. Possible values include: Amaya, Blink, EdgeHTML, Flow, Gecko, Goanna, iCab, KHTML, Links, Lynx, NetFront, NetSurf, Presto, Tasman, Trident, w3m, WebKit or undefined.
[image:] version: A string representing the engine’s version, or undefined.
os

An object containing information about the operating system.
[image:] name: A string representing the name of the OS, or undefined.
[image:] version: A string representing the version of the OS, or undefined.
cpu

An object containing information about the CPU architecture.
[image:][image:][image:][image:] architecture: A string representing the architecture of the CPU. Possible values include: 68k, amd64, arm, arm64, armhf, avr,sparc64
undefined

[image:][image:]ia32, ia64, irix, irix64, mips, mips64, pa-risc, ppc, sparc,	or

3.2.4 - next.config.js Options
Documentation path: /02-app/02-api-reference/05-next-config-js/index
Description: Learn how to configure your application with next.config.js.
{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}next.config.js

Next.js can be configured through a

file in the root of your project directory (for example, by package.json).
next.config.js (js)/** @type {import('next').NextConfig} */
const nextConfig = {
} /* config options here */ module.exports = nextConfig

next.config.js is a regular Node.js module, not a JSON file. It gets used by the Next.js server and build phases, and it’s not included in the browser build.
If you need ECMAScript modules, you can use next.config.mjs:
next.config.mjs (js)/**
* @type {import('next').NextConfig}
const nextConfig = {
*/
} /* config options here */ export default nextConfig

You can also use a function:

next.config.mjs (js)export default (phase, { defaultConfig }) => {
/**
* @type {import('next').NextConfig}
*/
} /* config options here */
} return nextConfig
const nextConfig = {

Since Next.js 12.1.0, you can use an async function:

next.config.js (js)module.exports = async (phase, { defaultConfig }) => {
/**
* @type {import('next').NextConfig}
*/
} /* config options here */
} return nextConfig
const nextConfig = {

phase is the current context in which the configuration is loaded. You can see the available phases. Phases can be imported from
next/constants:
const { PHASE_DEVELOPMENT_SERVER } = require('next/constants')
module.exports = (phase, { defaultConfig }) => {
if (phase === PHASE_DEVELOPMENT_SERVER) {
return {
}
} /* development only config options here */
return {
/* config options for all phases except development here */

} }

The commented lines are the place where you can put the configs allowed by next.config.js, which are defined in this file.
However, none of the configs are required, and it’s not necessary to understand what each config does. Instead, search for the features you need to enable or modify in this section and they will show you what to do.next.config.js

Avoid using new JavaScript features not available in your target Node.js version. Webpack, Babel or TypeScript.
This page documents all the available configuration options:

will not be parsed by

3.2.4.1 - appDir
Documentation path: /02-app/02-api-reference/05-next-config-js/appDir
Description: Enable the App Router to use layouts, streaming, and more.

Good to know: This option is no longer needed as of Next.js 13.4. The App Router is now stable.
The App Router (app directory) enables support for layouts, Server Components, streaming, and colocated data fetching.app

Using the	directory will automatically enable React Strict Mode. Learn how to incrementally adopt app.

3.2.4.2 - assetPrefix
Documentation path: /02-app/02-api-reference/05-next-config-js/assetPrefix
Description: Learn how to use the assetPrefix config option to configure your CDN.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Attention: Deploying to Vercel automatically configures a global CDN for your Next.js project. You do not need to manually setup an Asset Prefix.
Attention: Deploying to Vercel automatically configures a global CDN for your Next.js project. You do not need to manually setup an Asset Prefix.
Good to know: Next.js 9.5+ added support for a customizable Base Path, which is better suited for hosting your application on a sub-path like /docs. We do not suggest you use a custom Asset Prefix for this use case.
To set up a CDN, you can set up an asset prefix and configure your CDN’s origin to resolve to the domain that Next.js is hosted on.next.config.js
assetPrefix

Open

and add the

config:

next.config.js (js)const isProd = process.env.NODE_ENV === 'production'
module.exports = {
} assetPrefix: isProd ? 'https://cdn.mydomain.com' : undefined,
// Use the CDN in production and localhost for development.

Next.js will automatically use your asset prefix for the JavaScript and CSS files it loads from the For example, with the above configuration, the following request for a JS chunk:/_next/

path (.next/static/ folder).

/_next/static/chunks/4b9b41aaa062cbbfeff4add70f256968c51ece5d.4d708494b3aed70c04f0.js

Would instead become:https://cdn.mydomain.com/_next/static/chunks/4b9b41aaa062cbbfeff4add70f256968c51ece5d.4d708494b3aed70c04f

The exact configuration for uploading your files to a given CDN will depend on your CDN of choice. The only folder you need to host on your CDN is the contents of .next/static/, which should be uploaded as _next/static/ as the above URL request indicates. Do not upload the rest of your .next/ folder, as you should not expose your server code and other configuration to the public.
While	covers requests to _next/static, it does not influence the following paths:
Files in the public folder; if you want to serve those assets over a CDN, you’ll have to introduce the prefix yourself Files in the public folder; if you want to serve those assets over a CDN, you’ll have to introduce the prefix yourselfassetPrefix
/_next/data/ r they’re not static.
getServerSideProps

equests for	pages. These requests will always be made against the main domain since
/_next/data/ requests for getStaticProps pages. These requests will always be made against the main domain to support Incremental Static Generation, even if you’re not using it (for consistency).

3.2.4.3 - basePath
Documentation path: /02-app/02-api-reference/05-next-config-js/basePath
Description: Use `basePath` to deploy a Next.js application under a sub-path of a domain.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
To deploy a Next.js application under a sub-path of a domain you can use the basePath config option.''

basePath allows you to set a path prefix for the application. For example, to use /docs instead of	(an empty string, the default),basePath

open next.config.js and add the

config:

next.config.js (js)module.exports = {
} basePath: '/docs',

Good to know: This value must be set at build time and cannot be changed without re-building as the value is inlined in the client-side bundles.
Links
When linking to other pages using
and next/router the basePath will be automatically applied.
For example, using /about will automatically become /docs/about when basePath is set to /docs.
export default function HomePage() {
return (
<>
< <Link href="/about">About Page</Link>
}
) />
next/link

Output html:
About Page

This makes sure that you don’t have to change all links in your application when changing thebasePath

Images

value.

When using the next/image component, you will need to add the basePath in front of src. When using the next/image component, you will need to add the basePath in front of src.
For example, using /docs/me.png will properly serve your image when basePath is set to /docs. import Image from 'next/image'
function Home() {
return (
<>
<h1>My Homepage</h1>
<Image
src="/docs/me.png"
alt="Picture of the author"
/ height={500}
width={500}
>
}
) />
< <p>Welcome to my homepage!</p>
export default Home

3.2.4.4 - compress
Documentation path: /02-app/02-api-reference/05-next-config-js/compress
Description: Next.js provides gzip compression to compress rendered content and static files, it only works with the server target. Learn more about it here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js provides gzip compression to compress rendered content and static files. In general you will want to enable compression on a HTTP proxy like nginx, to offload load from the Node.js process.compress

To disable compression, open next.config.js and disable the

config:

next.config.js (js)module.exports = {
} compress: false,

3.2.4.5 - devIndicators
Documentation path: /02-app/02-api-reference/05-next-config-js/devIndicators
Description: Optimized pages include an indicator to let you know if it's being statically optimized. You can opt-out of it here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
When you edit your code, and Next.js is compiling the application, a compilation indicator appears in the bottom right corner of the page.
Good to know: This indicator is only present in development mode and will not appear when building and running the app in production mode.
In some cases this indicator can be misplaced on your page, for example, when conflicting with a chat launcher. To change its position,open next.config.js and set
left, top-right or top-left:
buildActivityPosition
devIndicators
bottom-right
bottom-

the

in the

object to

(default),

next.config.js (js)module.exports = {
devIndicators: {
} ,
} buildActivityPosition: 'bottom-right',

In some cases this indicator might not be useful for you. To remove it, opennext.config.js
devIndicators

and disable the

config

in

object:

next.config.js (js)module.exports = {
devIndicators: {
} ,
} buildActivity: false,
buildActivity

Good to know: This indicator was removed in Next.js version 10.0.1. We recommend upgrading to the latest version of Next.js.
When a page qualifies for Automatic Static Optimization we show an indicator to let you know.
This is helpful since automatic static optimization can be very beneficial and knowing immediately in development if the page qualifies can be useful.next.config.js

In some cases this indicator might not be useful, like when working on electron applications. To remove it open	andautoPrerender

disable the

config in devIndicators:

next.config.js (js)module.exports = {
devIndicators: {
} ,
} autoPrerender: false,

3.2.4.6 - distDir
Documentation path: /02-app/02-api-reference/05-next-config-js/distDir
Description: Set a custom build directory to use instead of the default .next directory.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
You can specify a name to use for a custom build directory to use instead of .next.next.config.js
distDir

Open

and add the

config:

next.config.js (js)module.exports = {
} distDir: 'build',

Now if you run

Next.js will use

instead of the default .next folder.

should not leave your project directory. For example,	is an invalid directory.next build
build
distDir
../build

3.2.4.7 - env
Documentation path: /02-app/02-api-reference/05-next-config-js/env
Description: Learn to add and access environment variables in your Next.js application at build time.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Since the release of Next.js 9.4 we now have a more intuitive and ergonomic experience for adding environment variables. Give it a try!
Since the release of Next.js 9.4 we now have a more intuitive and ergonomic experience for adding environment variables. Give it a try!
Good to know: environment variables specified in this way will always be included in the JavaScript bundle, prefixing theNEXT_PUBLIC_

environment variable name with	only has an effect when specifying them through the environment or .env files.
Good to know: environment variables specified in this way will always be included in the JavaScript bundle, prefixing theNEXT_PUBLIC_

environment variable name with	only has an effect when specifying them through the environment or .env files.next.config.js
env

To add environment variables to the JavaScript bundle, open

and add the

config:

next.config.js (js)module.exports = {
env: {
} ,
} customKey: 'my-value',

Now you can access process.env.customKey in your code. For example:
} return <h1>The value of customKey is: {process.env.customKey}</h1> export default Page
function Page() {

Next.js will replace process.env.customKey with work due to the nature of webpack DefinePlugin. For example, the following line:'my-value'

at build time. Trying to destructure

variables won’t

return <h1>The value of customKey is: {process.env.customKey}</h1>

Will end up being:return <h1>The value of customKey is: {'my-value'}</h1>
process.env

3.2.4.8 - eslint
Documentation path: /02-app/02-api-reference/05-next-config-js/eslint
Description: Next.js reports ESLint errors and warnings during builds by default. Learn how to opt-out of this behavior here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
When ESLint is detected in your project, Next.js fails your production build (next build) when errors are present.
If you’d like Next.js to produce production code even when your application has ESLint errors, you can disable the built-in linting step completely. This is not recommended unless you already have ESLint configured to run in a separate part of your workflow (for example, in CI or a pre-commit hook).next.config.js
ignoreDuringBuilds
eslint

Open

and enable the

option in the

config:

next.config.js (js)module.exports = {
eslint: {
// Warning: This allows production builds to successfully complete even if
// your project has ESLint errors.
} ,
} ignoreDuringBuilds: true,

3.2.4.9 - exportPathMap (Deprecated)
Documentation path: /02-app/02-api-reference/05-next-config-js/exportPathMap
Description: Customize the pages that will be exported as HTML files when using `next export`.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}getStaticPaths
pages

This feature is exclusive tonext export
with app.
generateStaticParams

and currently deprecated in favor of

with	or

ExamplesexportPathMap exportPathMap

allows you to specify a mapping of request paths to page destinations, to be used during export. Paths defined in will also be available when using next dev.
Let’s start with an example, to create a custom exportPathMap for an app with the following pages:

pages/index.js pages/about.js pages/post.js

Open

and add the following

config:

next.config.js (js)module.exports = {
exportPathMap: async function (
) { dev, dir, outDir, distDir, buildId }
defaultPathMap,
{
return {
'/': { page: '/' },
'/about': { page: '/about' },
'/p/hello-nextjs': { page: '/post', query: { title: 'hello-nextjs' } },
} '/p/deploy-nextjs': { page: '/post', query: { title: 'deploy-nextjs' } },
} },
'/p/learn-nextjs': { page: '/post', query: { title: 'learn-nextjs' } },
next.config.js
exportPathMap

Good to know: the query field in exportPathMap cannot be used with automatically statically optimized pages or getStaticProps pages as they are rendered to HTML files at build-time and additional query information cannot be provided during next export.
The pages will then be exported as HTML files, for example,	will become /about.html./about

exportPathMap is an async function that receives 2 arguments: the first one is defaultPathMap, which is the default map used by Next.js. The second argument is an object with:false

dev - true when exportPathMap is being called in development.
exportPathMap is used to define routes.
dir - Absolute path to the project directory

when running next export. In development

outDir - Absolute path to the out/ directory (configurable with -o). When dev is true the value of
distDir - Absolute path to the .next/ directory (configurable with the distDir config)
buildId - The generated build idkey
pathname
value

will be null.

[image:]The returned object is a map of pages where theoutDir

is the

and the

is an object that accepts the following fields:

the page inside the pages directory to renderpage: String -
query: Object
query
getInitialProps
{}

- the	object passed to

when prerendering. Defaults to

The exported pathname can also be a filename (for example, /readme.md), but you may need to set the to text/html when serving its content if it is different than .html.Content-Type

Adding a trailing slashindex.html
/about

header

It is possible to configure Next.js to export pages as

files and require trailing slashes,

becomes

and is routable via /about/. This was the default behavior prior to Next.js 9./about/index.html
trailingSlash

To switch back and add a trailing slash, open next.config.js and enable the

config:

next.config.js (js)module.exports = {
} trailingSlash: true,

Customizing the output directoryout out
-o
-o

will use will usenext export next export

as the default output directory, you can customize this using the as the default output directory, you can customize this using the

argument, like so: argument, like so:

Terminal (bash)next export -o outdir

Warning: Using exportPathMap is deprecated and is overridden by using them together.getStaticPaths

inside pages. We don’t recommend

3.2.4.10 - generateBuildId
Documentation path: /02-app/02-api-reference/05-next-config-js/generateBuildId
Description: Configure the build id, which is used to identify the current build in which your application is being served.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js generates an ID during next build to identify which version of your application is being served. The same build should be used and boot up multiple containers.
If you are rebuilding for each stage of your environment, you will need to generate a consistent build ID to use between containers. UsegenerateBuildId

the

command in next.config.js:

next.config.js (jsx)module.exports = {
generateBuildId: async () => {
// This could be anything, using the latest git hash
} ,
} return process.env.GIT_HASH

3.2.4.11 - generateEtags
Documentation path: /02-app/02-api-reference/05-next-config-js/generateEtags
Description: Next.js will generate etags for every page by default. Learn more about how to disable etag generation here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js will generate etags for every page by default. You may want to disable etag generation for HTML pages depending on your cache strategy.next.config.js
generateEtags

Open

and disable the

option:

next.config.js (js)module.exports = {
} generateEtags: false,

3.2.4.12 - headers
Documentation path: /02-app/02-api-reference/05-next-config-js/headers
Description: Add custom HTTP headers to your Next.js app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Headers allow you to set custom HTTP headers on the response to an incoming request on a given path.headers

To set custom HTTP headers you can use the

key in next.config.js:

next.config.js (js)module.exports = {
async headers() {
return [
{ source: '/about',
headers: [
{ key: 'x-custom-header',
} value: 'my custom header value',
{ key: 'x-another-custom-header',
,
} value: 'my other custom header value',
] },
} },
], ,

headers is an async function that expects an array to be returned holding objects withsource

[image:] source is the incoming request path pattern.
[image:][image:] headers is an array of response header objects, with key and value properties.headers

and

properties:

basePath: false or undefined - if false the basePath won’t be included when matching, can be used for external rewrites only.
locale: false or undefined - whether the locale should not be included when matching.
[image:]has is an array of has objects with the type, key and value properties.
missing is an array of missing objects with the type, key and value properties./public

Headers are checked before the filesystem which includes pages and
Header Overriding Behavior

files.

If two headers match the same path and set the same header key, the last header key will override the first. Using the below headers,/hello
x-hello
world

the path

will result in the header

being

due to the last header value set being world.

next.config.js (js)module.exports = {
async headers() {
return [
{ source: '/:path*',
headers: [
{ key: 'x-hello',
} value: 'there',
},
], ,
{ source: '/hello',
headers: [
{ key: 'x-hello',
} value: 'world',
},
], ,

]
} },

Path Matching
Path matches are allowed, for example

will match/blog/:slug

(no nested paths):/blog/hello-world

next.config.js (js)module.exports = {
async headers() {
return [
{ source: '/blog/:slug',
headers: [
{ key: 'x-slug',
} value: ':slug', // Matched parameters can be used in the value
{ key: 'x-slug-:slug', // Matched parameters can be used in the key
,
} value: 'my other custom header value',
] },
} },
], ,

Wildcard Path Matching
To match a wildcard path you can use * after a parameter, for example

will match /blog/a/b/c/d/hello-world:/blog/:slug*

next.config.js (js)module.exports = {
async headers() {
return [
{ source: '/blog/:slug*',
headers: [
{ key: 'x-slug',
} value: ':slug*', // Matched parameters can be used in the value
{ key: 'x-slug-:slug*', // Matched parameters can be used in the key
,
} value: 'my other custom header value',
] },
} },
], ,

Regex Path Matching
To match a regex path you can wrap the regex in parenthesis after a parameter, for example but not /blog/abc:/blog/123

will match

next.config.js (js)module.exports = {
async headers() {
return [
{ source: '/blog/:post(\\d{1,})',
headers: [
{ key: 'x-post',
], ,
} value: ':post',
] },
},
/blog/:slug(\\d{1,})

}

The following characters (,), {, }, :, *, +, ? are used for regex path matching, so when used in the must be escaped by adding \\ before them:

as non-special values they

next.config.js (js)module.exports = {
async headers() {
return [
{ // this will match `/english(default)/something` being requested
source: '/english\\(default\\)/:slug',
headers: [
{ key: 'x-header',
} value: 'value',
] },
} },
], ,
source

Header, Cookie, and Query Matching
To only apply a header when header, cookie, or query values also match thehas
missing

field or don’t match thehas

field can be used.missing

Both the source and allhas

items must match and all

items must not match for the header to be applied.

and missing items can have the following fields:
[image:]type: String - must be either header, cookie, host, or query. key: String - the key from the selected type to match against.undefined

value: String or	- the value to check for, if undefined any value will match. A regex like string can be used to capturefirst-(?<paramName>.*)
first-second
second

a specific part of the value, e.g. if the value the destination with :paramName.

is used for

then

will be usable in

next.config.js (js)module.exports = {
async headers() {
return [
// if the header `x-add-header` is present,
// the `x-another-header` header will be applied
{ source: '/:path*',
has: [
{ type: 'header',
], ,
} key: 'x-add-header',
headers: [
{ key: 'x-another-header',
} value: 'hello',
},
], ,
// if the header `x-no-header` is not present,
// the `x-another-header` header will be applied
{ source: '/:path*',
missing: [
{ type: 'header',
], ,
} key: 'x-no-header',
headers: [
{ key: 'x-another-header',
], ,
} value: 'hello',

},
// if the source, query, and cookie are matched,
// the `x-authorized` header will be applied
{ source: '/specific/:path*', has: [
{ type: 'query',
key: 'page',
// the page value will not be available in the
// header key/values since value is provided and
// doesn't use a named capture group e.g. (?<page>home) value: 'home',
},
{ type: 'cookie', key: 'authorized', value: 'true',
},
],
headers: [
{ key: 'x-authorized', value: ':authorized',
},
],
},
// if the header `x-authorized` is present and
// contains a matching value, the `x-another-header` will be applied
{ source: '/:path*', has: [
{ type: 'header', key: 'x-authorized',
value: '(?<authorized>yes|true)',
},
],
headers: [
{ key: 'x-another-header', value: ':authorized',
},
],
},
// if the host is `example.com`,
// this header will be applied
{ source: '/:path*', has: [
{ type: 'host',
value: 'example.com',
},
],
headers: [
{ key: 'x-another-header', value: ':authorized',
},
],
] },
} },
Headers with basePath supportsource

When leveragingbasePath
false

to the header:

support with headers each

is automatically prefixed with the

unless you add

next.config.js (js)module.exports = {
basePath: '/docs',
basePath
basePath:

async headers() {
return [
{ source: '/with-basePath', // becomes /docs/with-basePath
headers: [
{ key: 'x-hello',
},
], ,
} value: 'world',
{ source: '/without-basePath', // is not modified since basePath: false is set
headers: [
{ key: 'x-hello',
], ,
} value: 'world',
] ,
} },
} basePath: false,

Headers with i18n support
When leveraging i18n support with headers each source is automatically prefixed to handle the configuredsource

unless you addlocales

locale: false to the header. If locale: false is used you must prefix the	with a locale for it to be matched correctly.locales

When leveraging i18n support with headers each source is automatically prefixed to handle the configured	unless you addsource

locale: false to the header. If locale: false is used you must prefix the

with a locale for it to be matched correctly.
next.config.js (js)module.exports = {
i18n: {
} defaultLocale: 'en',
locales: ['en', 'fr', 'de'],
,
async headers() {
return [
{ source: '/with-locale', // automatically handles all locales
headers: [
{ key: 'x-hello',
} value: 'world',
},
], ,
{ // does not handle locales automatically since locale: false is set
source: '/nl/with-locale-manual',
locale: false,
headers: [
{ key: 'x-hello',
},
], ,
} value: 'world',
{ // this matches '/' since `en` is the defaultLocale
source: '/en',
locale: false,
headers: [
{ key: 'x-hello',
},
], ,
} value: 'world',
{ // this gets converted to /(en|fr|de)/(.*) so will not match the top-level

// `/` or `/fr` routes like /:path* would
source: '/(.*)',
headers: [
{ key: 'x-hello',
} value: 'world',
] },
} },
], ,

Cache-Control
You cannot set Cache-Control headers in next.config.js for pages or assets, as these headers will be overwritten in production to ensure that responses and static assets are cached effectively.
Learn more about caching with the App Router.revalidate

If you need to revalidate the cache of a page that has been statically generated, you can do so by setting the page’s getStaticProps function.res.setHeader

prop in the

You can set the Cache-Control header in your API Routes by using the

method:

pages/api/hello.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
type ResponseData = {
} message: string
export default function handler(
) res: NextApiResponse<ResponseData>
req: NextApiRequest,
{
} res.status(200).json({ message: 'Hello from Next.js!' })
res.setHeader('Cache-Control', 's-maxage=86400')

pages/api/hello.js (js)export default function handler(req, res) {
} res.status(200).json({ message: 'Hello from Next.js!' })
res.setHeader('Cache-Control', 's-maxage=86400')

Options
X-DNS-Prefetch-Control
This header controls DNS prefetching, allowing browsers to proactively perform domain name resolution on external links, images, CSS, JavaScript, and more. This prefetching is performed in the background, so the DNS is more likely to be resolved by the time the referenced items are needed. This reduces latency when the user clicks a link.{ key: 'X-DNS-Prefetch-Control',
} value: 'on'

Strict-Transport-Security
This header informs browsers it should only be accessed using HTTPS, instead of using HTTP. Using the configuration below, all presentmax-age

and future subdomains will use HTTPS for a over HTTP.your next.config.js.
{ key: 'Strict-Transport-Security',
} value: 'max-age=63072000; includeSubDomains; preload'
headers

of 2 years. This blocks access to pages or subdomains that can only be served

If you’re deploying to Vercel, this header is not necessary as it’s automatically added to all deployments unless you declare	in

X-Frame-Options
This header indicates whether the site should be allowed to be displayed within an iframe. This can prevent against clickjacking attacks.
This header has been superseded by CSP’s frame-ancestors option, which has better support in modern browsers.
{ key: 'X-Frame-Options',
} value: 'SAMEORIGIN'

Permissions-Policy
This header allows you to control which features and APIs can be used in the browser. It was previously named Feature-Policy.
{ key: 'Permissions-Policy',
} value: 'camera=(), microphone=(), geolocation=(), browsing-topics=()'

X-Content-Type-Options
This header prevents the browser from attempting to guess the type of content if the can prevent XSS exploits for websites that allow users to upload and share files.Content-Type

header is not explicitly set. This

For example, a user trying to download an image, but having it treated as a different Content-Type like an executable, which could bemalicious. This header also applies to downloading browser extensions. The only valid value for this header is nosniff.
{ key: 'X-Content-Type-Options',
} value: 'nosniff'

Referrer-Policy
This header controls how much information the browser includes when navigating from the current website (origin) to another.{ key: 'Referrer-Policy',
} value: 'origin-when-cross-origin'

Content-Security-Policy
Learn more about adding a Content Security Policy to your application.
Version History

	Version
	Changes

	v13.3.0
	missing added.

	v10.2.0
	has added.

	v9.5.0
	Headers added.

3.2.4.13 - httpAgentOptions
Documentation path: /02-app/02-api-reference/05-next-config-js/httpAgentOptions
Description: Next.js will automatically use HTTP Keep-Alive by default. Learn more about how to disable HTTP Keep-Alive here.
{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}fetch()

In Node.js versions prior to 18, Next.js automatically polyfills	with undici and enables HTTP Keep-Alive by default.fetch()
next.config.js

To disable HTTP Keep-Alive for all

calls on the server-side, open

and add the

config:
next.config.js (js)module.exports = {
httpAgentOptions: {
} ,
} keepAlive: false,
httpAgentOptions

3.2.4.14 - images
Documentation path: /02-app/02-api-reference/05-next-config-js/images
Description: Custom configuration for the next/image loader

{/ The content of this doc is shared between the app and pages router. You can use the<PagesOnly>Content</PagesOnly>

to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

component

If you want to use a cloud provider to optimize images instead of using the Next.js built-in Image Optimization API, you can configure with the following:next.config.js

next.config.js (js)module.exports = {
images: {
loader: 'custom',
} ,
} loaderFile: './my/image/loader.js',

This	must point to a file relative to the root of your Next.js application. The file must export a default function that returnsloaderFile

a string, for example:export default function myImageLoader({ src, width, quality }) {
} return `https://example.com/${src}?w=${width}&q=${quality || 75}`

Alternatively, you can use the Alternatively, you can use theloader loader

prop to pass the function to each instance of next/image. prop to pass the function to each instance of next/image.

Example Loader Configuration
[image:] Akamai
[image:] Cloudinary [image:] Cloudflare [image:] Contentful [image:] Fastly
[image:] Gumlet
[image:] ImageEngine [image:] Imgix
[image:] Thumbor [image:] Sanity
[image:] Sirv
[image:] Supabase
Akamai
// Docs: https://techdocs.akamai.com/ivm/reference/test-images-on-demand
export default function akamaiLoader({ src, width, quality }) {
} return `https://example.com/${src}?imwidth=${width}`

Cloudinary
// Demo: https://res.cloudinary.com/demo/image/upload/w_300,c_limit,q_auto/turtles.jpg
export default function cloudinaryLoader({ src, width, quality }) {
} return `https://example.com/${params.join(',')}${src}`
const params = ['f_auto', 'c_limit', `w_${width}`, `q_${quality || 'auto'}`]

Cloudflare
// Docs: https://developers.cloudflare.com/images/url-format
export default function cloudflareLoader({ src, width, quality }) {
} return `https://example.com/cdn-cgi/image/${params.join(',')}/${src}`
const params = [`width=${width}`, `quality=${quality || 75}`, 'format=auto']

Contentful
// Docs: https://www.contentful.com/developers/docs/references/images-api/
export default function contentfulLoader({ src, width, quality }) {
const url = new URL(`https://example.com${src}`)
url.searchParams.set('fm', 'webp')
url.searchParams.set('w', width.toString())
} return url.href
url.searchParams.set('q', (quality || 75).toString())

Fastly
// Docs: https://developer.fastly.com/reference/io/
export default function fastlyLoader({ src, width, quality }) {
const url = new URL(`https://example.com${src}`)
url.searchParams.set('auto', 'webp')
url.searchParams.set('width', width.toString())
} return url.href
url.searchParams.set('quality', (quality || 75).toString())

Gumlet
// Docs: https://docs.gumlet.com/reference/image-transform-size
export default function gumletLoader({ src, width, quality }) {
const url = new URL(`https://example.com${src}`)
url.searchParams.set('format', 'auto')
url.searchParams.set('w', width.toString())
} return url.href
url.searchParams.set('q', (quality || 75).toString())

ImageEngine
// Docs: https://support.imageengine.io/hc/en-us/articles/360058880672-Directives
export default function imageengineLoader({ src, width, quality }) {
const compression = 100 - (quality || 50)
} return `https://example.com${src}?imgeng=/${params.join('/')`
const params = [`w_${width}`, `cmpr_${compression}`)]

Imgix
// Demo: https://static.imgix.net/daisy.png?format=auto&fit=max&w=300
export default function imgixLoader({ src, width, quality }) {
const url = new URL(`https://example.com${src}`)
const params = url.searchParams
params.set('auto', params.getAll('auto').join(',') || 'format')
params.set('fit', params.get('fit') || 'max')
params.set('w', params.get('w') || width.toString())
} return url.href
params.set('q', (quality || 50).toString())

Thumbor
// Docs: https://thumbor.readthedocs.io/en/latest/
export default function thumborLoader({ src, width, quality }) {
} return `https://example.com${params.join('/')}${src}`
const params = [`${width}x0`, `filters:quality(${quality || 75})`]

Sanity
// Docs: https://www.sanity.io/docs/image-urls
export default function sanityLoader({ src, width, quality }) {
const prj = 'zp7mbokg'
const dataset = 'production'
const url = new URL(`https://cdn.sanity.io/images/${prj}/${dataset}${src}`)

url.searchParams.set('auto', 'format')
url.searchParams.set('fit', 'max')
url.searchParams.set('w', width.toString())
} url.searchParams.set('q', quality.toString())
} return url.href
if (quality) {

Sirv
// Docs: https://sirv.com/help/articles/dynamic-imaging/
export default function sirvLoader({ src, width, quality }) {
const url = new URL(`https://example.com${src}`)
const params = url.searchParams
params.set('format', params.getAll('format').join(',') || 'optimal')
params.set('w', params.get('w') || width.toString())
} return url.href
params.set('q', (quality || 85).toString())

Supabase
// Docs: https://supabase.com/docs/guides/storage/image-transformations#nextjs-loader
export default function supabaseLoader({ src, width, quality }) {
const url = new URL(`https://example.com${src}`)
url.searchParams.set('width', width.toString())
} return url.href
url.searchParams.set('quality', (quality || 75).toString())

3.2.4.15 - incrementalCacheHandlerPath
Documentation path: /02-app/02-api-reference/05-next-config-js/incrementalCacheHandlerPath
Description: Configure the Next.js cache used for storing and revalidating data.

In Next.js, the default cache handler uses the filesystem cache. This requires no configuration, however, you can customize the cacheincrementalCacheHandlerPath

handler by using the

field in next.config.js.

next.config.js (js)module.exports = {
experimental: {
} ,
} incrementalCacheHandlerPath: require.resolve('./cache-handler.js'),

Here’s an example of a custom cache handler:

cache-handler.js (js)const cache = new Map()
module.exports = class CacheHandler {
constructor(options) {
} this.cache = {}
this.options = options
async get(key) {
} return cache.get(key)
async set(key, data) {
cache.set(key, {
} lastModified: Date.now(),
value: data,
}
})

API Reference
[image:][image:]The cache handler can implement the following methods: get, set, and revalidateTag.
get()

	Parameter
	Type
	Description

	key
	string
	The key to the cached value.

Returns the cached value or	if not found.null

set()

	Parameter
	Type
	Description

	key
	string
	The key to store the data under.

	data
	Data or null
	The data to be cached.

Returns Promise<void>.
revalidateTag()

	Parameter
	Type
	Description

	tag
	string
	The cache tag to revalidate.

Returns Promise<void>. Learn more about revalidating data or the	function.revalidateTag()

3.2.4.16 - logging
Documentation path: /02-app/02-api-reference/05-next-config-js/logging
Description: Configure how data fetches are logged to the console when running Next.js in development mode.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
You can configure the logging level and whether the full URL is logged to the console when running Next.js in development mode.logging
fetch

Currently,

only applies to data fetching using the

API. It does not yet apply to other logs inside of Next.js.

next.config.js (js)module.exports = {
logging: {
fetches: {
} fullUrl: true,
}
}, ,

3.2.4.17 - mdxRs
Documentation path: /02-app/02-api-reference/05-next-config-js/mdxRs
Description: Use the new Rust compiler to compile MDX files in the App Router.
For use with @next/mdx. Compile MDX files using the new Rust compiler.
next.config.js (js)const withMDX = require('@next/mdx')()
/** @type {import('next').NextConfig} */
const nextConfig = {
pageExtensions: ['ts', 'tsx', 'mdx'],
experimental: {
} ,
} mdxRs: true,
module.exports = withMDX(nextConfig)

3.2.4.18 - onDemandEntries
Documentation path: /02-app/02-api-reference/05-next-config-js/onDemandEntries
Description: Configure how Next.js will dispose and keep in memory pages created in development.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js exposes some options that give you some control over how the server will dispose or keep in memory built pages in development.next.config.js
onDemandEntries

To change the defaults, open

and add the

config:

next.config.js (js)module.exports = {
onDemandEntries: {
// period (in ms) where the server will keep pages in the buffer
maxInactiveAge: 25 * 1000,
// number of pages that should be kept simultaneously without being disposed
} ,
} pagesBufferLength: 2,

3.2.4.19 - optimizePackageImports
Documentation path: /02-app/02-api-reference/05-next-config-js/optimizePackageImports
Description: API Reference for optmizedPackageImports Next.js Config Option

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Some packages can export hundreds or thousands of modules, which can cause performance issues in development and production. Adding a package to experimental.optimizePackageImports will only load the modules you are actually using, while still giving you the convenience of writing import statements with many named exports.
next.config.js (js)module.exports = {
experimental: {
} ,
} optimizePackageImports: ['package-name'],

Libraries like @mui/icons-material, @mui/material, date-fns, lodash, lodash-es, react-bootstrap, @headlessui/react, @heroicons/react, and lucide-react are already optimized by default.

3.2.4.20 - output
Documentation path: /02-app/02-api-reference/05-next-config-js/output
Description: Next.js automatically traces which files are needed by each page to allow for easy deployment of your application. Learn how it works here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
During a build, Next.js will automatically trace each page and its dependencies to determine all of the files that are needed for deploying a production version of your application.
This feature helps reduce the size of deployments drastically. Previously, when deploying with Docker you would need to have all files from your package’s dependencies installed to run next start. Starting with Next.js 12, you can leverage Output File Tracing in the.next/

directory to only include the necessary files.serverless

Furthermore, this removes the need for the deprecated unnecessary duplication.
How it Works@vercel/nft

target which can cause various issues and also creates

During next build, Next.js will use page might load.fs

to statically analyze import, require, and

usage to determine all files that a

Next.js’ production server is also traced for its needed files and output at in production..next/next-server.js.nft.json

which can be leveraged

To leverage the .nft.json files emitted to the .next output directory, you can read the list of files in each trace that are relative to the .nft.json file and then copy them to your deployment location.
Automatically Copying Traced Filesstandalone

Next.js can automatically create a files in node_modules.

folder that copies only the necessary files for a production deployment including select

To leverage this automatic copying you can enable it in your next.config.js:

next.config.js (js)module.exports = {
} output: 'standalone',

This will create a folder at .next/standalone which can then be deployed on its own without installing node_modules.
Additionally, a minimal server.js file is also output which can be used instead of next start. This minimal server does not copy the
public or .next/static folders by default as these should ideally be handled by a CDN instead, although these folders can be copiedserver.js

to the standalone/public and standalone/.next/static folders manually, after which automatically.
Good to know:

file will serve these

If your project needs to listen to a specific port or hostname, you can define PORT or HOSTNAME environment variables before running server.js. For example, run PORT=8080 HOSTNAME=0.0.0.0 node server.js to start the server on http://0.0.0.0:8080.sharp

[image:] If your project uses Image Optimization with the default loader, you must install	as a dependency:
Good to know:
next.config.js is read during next build and serialized into the server.js output file. If the legacy serverRuntimeConfig or publicRuntimeConfig options are being used, the values will be specific to values at build time.
If your project needs to listen to a specific port or hostname, you can define PORT or HOSTNAME environment variables
before running server.js. For example, run PORT=8080 HOSTNAME=0.0.0.0 node server.js to start the server on
http://0.0.0.0:8080.sharp

If your project uses Image Optimization with the default loader, you must install	as a dependency:
Terminal (bash)

npm i sharp

Terminal (bash)yarn add sharp

Terminal (bash)pnpm add sharp

Terminal (bash)bun add sharp

Caveats
[image:] While tracing in monorepo setups, the project directory is used for tracing by default. For next build packages/web-app, packages/web-app would be the tracing root and any files outside of that folder will not be included. To include files outside ofexperimental.outputFileTracingRoot

this folder you can set

in your next.config.js.

packages/web-app/next.config.js (js)module.exports = {
experimental: {
// this includes files from the monorepo base two directories up
} ,
} outputFileTracingRoot: path.join(dirname, '../../'),

There are some cases in which Next.js might fail to include required files, or might incorrectly include unused files. In those cases, you can leverage experimental.outputFileTracingExcludes and experimental.outputFileTracingIncludes respectively in next.config.js. Each config accepts an object with minimatch globs for the key to match specific pages and a value of an array with globs relative to the project’s root to either include or exclude in the trace.
next.config.js (js)module.exports = {
experimental: {
outputFileTracingExcludes: {
} '/api/hello': ['./un-necessary-folder/**/*'],
outputFileTracingIncludes: {
,
} '/api/another': ['./necessary-folder/**/*'],
}
}, ,

Currently, Next.js does not do anything with the emitted .nft.json files. The files must be read by your deployment platform, for.nft.json

example Vercel, to create a minimal deployment. In a future release, a new command is planned to utilize these
Experimentalturbotrace

Tracing dependencies can be slow because it requires very complex computations and analysis. We created faster and smarter alternative to the JavaScript implementation.turbotrace

To enable it, you can add the following configuration to your next.config.js:

files.

in Rust as a

next.config.js (js)module.exports = {
experimental: {
turbotrace: {
// control the log level of the turbotrace, default is `error`
logLevel?:
| 'bug'
| 'fatal'
| 'error'
| 'warning'
| 'hint'
| 'note'
| 'suggestions'
| 'info',
// control if the log of turbotrace should contain the details of the analysis, default is `false`
logDetail?: boolean

// show all log messages without limit
// turbotrace only show 1 log message for each categories by default
logAll?: boolean
// control the context directory of the turbotrace
// files outside of the context directory will not be traced
// set the `experimental.outputFileTracingRoot` has the same effect
// if the `experimental.outputFileTracingRoot` and this option are both set, the `experimental.turb
contextDirectory?: string
// if there is `process.cwd()` expression in your code, you can set this option to tell `turbotrace
// for example the require(process.cwd() + '/package.json') will be traced as require('/path/to/cwd
processCwd?: string
} memoryLimit?: number
// control the maximum memory usage of the `turbotrace`, in `MB`, default is `6000`.
}
}, ,

3.2.4.21 - pageExtensions
Documentation path: /02-app/02-api-reference/05-next-config-js/pageExtensions
Description: Extend the default page extensions used by Next.js when resolving pages in the Pages Router.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
[image:][image:][image:][image:][image:][image:]By default, Next.js accepts files with the following extensions: .tsx, .ts, .jsx, .js. This can be modified to allow other extensions like markdown (.md, .mdx).
next.config.js (js)const withMDX = require('@next/mdx')()
/** @type {import('next').NextConfig} */
const nextConfig = {
pageExtensions: ['ts', 'tsx', 'mdx'],
experimental: {
} ,
} mdxRs: true,
module.exports = withMDX(nextConfig)

[image:][image:][image:][image:]You can extend the default Page extensions (.tsx, .ts, .jsx, .js) used by Next.js. Inside next.config.js, add the config:pageExtensions

next.config.js (js)module.exports = {
} pageExtensions: ['mdx', 'md', 'jsx', 'js', 'tsx', 'ts'],

Changing these values affects all Next.js pages, including the following:
middleware.js instrumentation.js pages/_document.js pages/_app.js pages/api/

For example, if you reconfigure .ts page extensions to .page.ts, you would need to rename pages like middleware.page.ts, instrumentation.page.ts, _app.page.ts.
Including non-page files in the	directorypages
pages

You can colocate test files or other files used by components in the config:pageExtensions

directory. Inside next.config.js, add the

next.config.js (js)module.exports = {
} pageExtensions: ['page.tsx', 'page.ts', 'page.jsx', 'page.js'],
MyPage.tsx

Then, rename your pages to have a file extension that includes rename all Next.js pages, including the files mentioned above..page

(e.g. rename

to MyPage.page.tsx). Ensure you

3.2.4.22 - Partial Prerendering (experimental)
Documentation path: /02-app/02-api-reference/05-next-config-js/partial-prerendering
Description: Learn how to enable Partial Prerendering (experimental) in Next.js 14.

Warning: Partial Prerendering is an experimental feature and is currently not suitable for production environments.
Partial Prerendering is an experimental feature that allows static portions of a route to be prerendered and served from the cache with dynamic holes streamed in, all in a single HTTP request.
Partial Prerendering is available in next@canary:
Terminal (bash)npm install next@canary

You can enable Partial Prerendering by setting the experimental

flag:

next.config.js (js)/** @type {import('next').NextConfig} */
const nextConfig = {
experimental: {
} ,
} ppr: true,
module.exports = nextConfig
ppr

Good to know:
[image:] Partial Prerendering does not yet apply to client-side navigations. We are actively working on this.
[image:] Partial Prerendering is designed for the Node.js runtime only. Using the subset of the Node.js runtime is not needed when you can instantly serve the static shell.
Learn more about Partial Prerendering in the Next.js Learn course.

3.2.4.23 - poweredByHeader
Documentation path: /02-app/02-api-reference/05-next-config-js/poweredByHeader
Description: Next.js will add the `x-powered-by` header by default. Learn to opt-out of it here.
{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}x-powered-by
next.config.js
poweredByHeader

By default Next.js will add the config:

header. To opt-out of it, open

and disable the

next.config.js (js)module.exports = {
} poweredByHeader: false,

3.2.4.24 - productionBrowserSourceMaps
Documentation path: /02-app/02-api-reference/05-next-config-js/productionBrowserSourceMaps
Description: Enables browser source map generation during the production build.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Source Maps are enabled by default during development. During production builds, they are disabled to prevent you leaking your source on the client, unless you specifically opt-in with the configuration flag.
Next.js provides a configuration flag you can use to enable browser source map generation during the production build:
next.config.js (js)module.exports = {
} productionBrowserSourceMaps: true,

When the productionBrowserSourceMaps option is enabled, the source maps will be output in the same directory as the JavaScript files. Next.js will automatically serve these files when requested.
[image:] Adding source maps can increase next build time [image:] Increases memory usage during next build

3.2.4.25 - reactStrictMode
Documentation path: /02-app/02-api-reference/05-next-config-js/reactStrictMode
Description: The complete Next.js runtime is now Strict Mode-compliant, learn how to opt-in

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Good to know: Since Next.js 13.4, Strict Mode is true by default with app router, so the above configuration is only necessary for pages. You can still disable Strict Mode by setting reactStrictMode: false.
Suggested: We strongly suggest you enable Strict Mode in your Next.js application to better prepare your application for the future of React.
React’s Strict Mode is a development mode only feature for highlighting potential problems in an application. It helps to identify unsafe lifecycles, legacy API usage, and a number of other features.
The Next.js runtime is Strict Mode-compliant. To opt-in to Strict Mode, configure the following option in your next.config.js:
next.config.js (js)module.exports = {
} reactStrictMode: true,

If you or your team are not ready to use Strict Mode in your entire application, that’s OK! You can incrementally migrate on a page-by- page basis using <React.StrictMode>.

3.2.4.26 - redirects
Documentation path: /02-app/02-api-reference/05-next-config-js/redirects
Description: Add redirects to your Next.js app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Redirects allow you to redirect an incoming request path to a different destination path.redirects

To use redirects you can use the

key in next.config.js:

next.config.js (js)module.exports = {
async redirects() {
return [
{ source: '/about',
destination: '/',
] ,
} },
} permanent: true,

is an async function that expects an array to be returned holding objects with source, destination, andredirects
properties:
permanent

source is the incoming request path pattern.
destination is the path you want to route to.
[image:]permanent true or false - if true will use the 308 status code which instructs clients/search engines to cache the redirect forever, if false will use the 307 status code which is temporary and is not cached.
[image:]Why does Next.js use 307 and 308? Traditionally a 302 was used for a temporary redirect, and a 301 for a permanent redirect, but many browsers changed the request method of the redirect to GET, regardless of the original method. For example, if the browser made a request to POST /v1/users which returned status code 302 with location /v2/users, the subsequent request might be GET /v2/users instead of the expected POST /v2/users. Next.js uses the 307 temporary redirect, and 308 permanent redirect status codes to explicitly preserve the request method used.
basePath: false or undefined - if false the basePath won’t be included when matching, can be used for external redirects only.
locale: false or undefined - whether the locale should not be included when matching.
[image:]has is an array of has objects with the type, key and value properties.value

[image:] missing is an array of missing objects with the type, key and	properties.
Redirects are checked before the filesystem which includes pages and	files./public

[image:]Redirects are not applied to client-side routing (Link, router.push), unless Middleware is present and matches the path.
When a redirect is applied, any query values provided in the request will be passed through to the redirect destination. For example, see the following redirect configuration:{ source: '/old-blog/:path*',
} permanent: false
destination: '/blog/:path*',

When/old-blog/post-1?hello=world

Path Matching

is requested, the client will be redirected to /blog/post-1?hello=world.

Path matches are allowed, for example/old-blog/:slug

will match

(no nested paths):

next.config.js (js)module.exports = {
async redirects() {
return [
{ source: '/old-blog/:slug',
destination: '/news/:slug', // Matched parameters can be used in the destination
/old-blog/hello-world

] ,
} },
} permanent: true,

Wildcard Path Matching
To match a wildcard path you can use * after a parameter, for example

will match /blog/a/b/c/d/hello-world:/blog/:slug*

next.config.js (js)module.exports = {
async redirects() {
return [
{ source: '/blog/:slug*',
destination: '/news/:slug*', // Matched parameters can be used in the destination
] ,
} },
} permanent: true,

Regex Path Matching
To match a regex path you can wrap the regex in parentheses after a parameter, for example but not /post/abc:/post/123

will match

next.config.js (js)module.exports = {
async redirects() {
return [
{ source: '/post/:slug(\\d{1,})',
destination: '/news/:slug', // Matched parameters can be used in the destination
] ,
} },
} permanent: false,
/post/:slug(\\d{1,})

The following characters (,), {, }, :, *, +, ? are used for regex path matching, so when used in the must be escaped by adding \\ before them:

as non-special values they

next.config.js (js)module.exports = {
async redirects() {
return [
{ // this will match `/english(default)/something` being requested
source: '/english\\(default\\)/:slug',
destination: '/en-us/:slug',
] ,
} },
} permanent: false,
source

Header, Cookie, and Query Matching
[image:]To only match a redirect when header, cookie, or query values also match the has field or don’t match the missing field can be used.has
missing

Both the source and allhas

items must match and all

items must not match for the redirect to be applied.

and missing items can have the following fields:
[image:]type: String - must be either header, cookie, host, or query. key: String - the key from the selected type to match against.
value: String or undefined - the value to check for, if undefined any value will match. A regex like string can be used to capturefirst-(?<paramName>.*)
first-second
second

a specific part of the value, e.g. if the value the destination with :paramName.

is used for

then

will be usable in

next.config.js (js)

module.exports = { async redirects() {
return [
// if the header `x-redirect-me` is present,
// this redirect will be applied
{ source: '/:path((?!another-page$).*)', has: [
{ type: 'header',
key: 'x-redirect-me',
},
],
permanent: false, destination: '/another-page',
},
// if the header `x-dont-redirect` is present,
// this redirect will NOT be applied
{ source: '/:path((?!another-page$).*)', missing: [
{ type: 'header',
key: 'x-do-not-redirect',
},
],
permanent: false, destination: '/another-page',
},
// if the source, query, and cookie are matched,
// this redirect will be applied
{ source: '/specific/:path*', has: [
{ type: 'query',
key: 'page',
// the page value will not be available in the
// destination since value is provided and doesn't
// use a named capture group e.g. (?<page>home) value: 'home',
},
{ type: 'cookie', key: 'authorized', value: 'true',
},
],
permanent: false,
destination: '/another/:path*',
},
// if the header `x-authorized` is present and
// contains a matching value, this redirect will be applied
{ source: '/', has: [
{ type: 'header', key: 'x-authorized',
value: '(?<authorized>yes|true)',
},
],
permanent: false,
destination: '/home?authorized=:authorized',
},
// if the host is `example.com`,
// this redirect will be applied
{ source: '/:path((?!another-page$).*)', has: [
{ type: 'host',
value: 'example.com',
},
],
permanent: false, destination: '/another-page',

] },
} },

Redirects with basePath support
When leveraging basePath support with redirects each you add basePath: false to the redirect:source

and

is automatically prefixed with thedestination

unlessbasePath

next.config.js (js)module.exports = {
basePath: '/docs',
async redirects() {
return [
{ source: '/with-basePath', // automatically becomes /docs/with-basePath
} permanent: false,
destination: '/another', // automatically becomes /docs/another
{ // does not add /docs since basePath: false is set
,
source: '/without-basePath',
destination: 'https://example.com',
basePath: false,
] ,
} },
} permanent: false,

Redirects with i18n supportsource

When leveraginglocales

support with redirects each

and destination is automatically prefixed to handle the configured

unless you addi18n
locale: false

to the redirect. If locale: false is used you must prefix the

and

with a locale for it to be matched correctly.source
destination
i18n
source

When leveraging	support with redirects eachlocales
locale: false

and destination is automatically prefixed to handle the configured

unless you add

to the redirect. If locale: false is used you must prefix the

and

with a locale for it to be matched correctly.

module.exports = { i18n: {
locales: ['en', 'fr', 'de'], defaultLocale: 'en',
},
async redirects() { return [
{ source: '/with-locale', // automatically handles all locales destination: '/another', // automatically passes the locale on permanent: false,
},
{ // does not handle locales automatically since locale: false is set source: '/nl/with-locale-manual',
destination: '/nl/another', locale: false,
permanent: false,
},
{ // this matches '/' since `en` is the defaultLocale source: '/en',
destination: '/en/another', locale: false,
permanent: false,
},
// it's possible to match all locales even when locale: false is set
{ source: '/:locale/page', destination: '/en/newpage',

next.config.js (js)source
destination

} locale: false,
permanent: false,
{ // this gets converted to /(en|fr|de)/(.*) so will not match the top-level
,
// `/` or `/fr` routes like /:path* would
source: '/(.*)',
destination: '/another',
] ,
} },
} permanent: false,

In some rare cases, you might need to assign a custom status code for older HTTP Clients to properly redirect. In these cases, you canstatusCode
permanent
Refresh

use the

property instead of the

property, but not both. To to ensure IE11 compatibility, a

header is

automatically added for the 308 status code.
Other Redirects
[image:] Inside API Routes and Route Handlers, you can redirect based on the incoming request.getStaticProps

[image:] Inside	and getServerSideProps, you can redirect specific pages at request-time.
Version History

	Version
	Changes

	v13.3.0
	missing added.

	v10.2.0
	has added.

	v9.5.0
	redirects added.

3.2.4.27 - rewrites
Documentation path: /02-app/02-api-reference/05-next-config-js/rewrites
Description: Add rewrites to your Next.js app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Rewrites allow you to map an incoming request path to a different destination path.
Rewrites act as a URL proxy and mask the destination path, making it appear the user hasn’t changed their location on the site. In contrast, redirects will reroute to a new page and show the URL changes.
Rewrites act as a URL proxy and mask the destination path, making it appear the user hasn’t changed their location on the site. In contrast, redirects will reroute to a new page and show the URL changes.rewrites

To use rewrites you can use the

key in next.config.js:

next.config.js (js)module.exports = {
async rewrites() {
return [
{ source: '/about',
] ,
} },
} destination: '/',

Rewrites are applied to client-side routing, a	will have the rewrite applied in the above example.<Link href="/about">
source

rewrites is an async function that expects to return either an array or an object of arrays (see below) holding objects with
destination properties:
[image:] source: String - is the incoming request path pattern.
[image:] destination: String is the path you want to route to.

and

basePath: false or undefined - if false the basePath won’t be included when matching, can be used for external rewrites only.
locale: false or undefined - whether the locale should not be included when matching.
[image:]has is an array of has objects with the type, key and value properties.value

missing is an array of missing objects with the type, key and	properties.
When the rewrites function returns an array, rewrites are applied after checking the filesystem (pages and /public files) and before dynamic routes. When the rewrites function returns an object of arrays with a specific shape, this behavior can be changed and more finely controlled, as of v10.1 of Next.js:
next.config.js (js)module.exports = {
async rewrites() {
return {
beforeFiles: [
// These rewrites are checked after headers/redirects
// and before all files including _next/public files which
// allows overriding page files
{ source: '/some-page',
], ,
} has: [{ type: 'query', key: 'overrideMe' }],
destination: '/somewhere-else',
afterFiles: [
// These rewrites are checked after pages/public files
// are checked but before dynamic routes
{ source: '/non-existent',
], ,
} destination: '/somewhere-else',
fallback: [
// These rewrites are checked after both pages/public files
// and dynamic routes are checked
{

], ,
} destination: `https://my-old-site.com/:path*`,
source: '/:path*',
} ,
} }

Good to know: rewrites in beforeFiles do not check the filesystem/dynamic routes immediately after matching a source, they continue until all beforeFiles have been checked.
The order Next.js routes are checked is:
1. headers are checked/applied
2. redirects are checked/applied
3. beforeFiles rewrites are checked/applied
4. static files from the public directory, _next/static files, and non-dynamic pages are checked/served
5. afterFiles rewrites are checked/applied, if one of these rewrites is matched we check dynamic routes/static files after each matchfallback
have been

6. rewrites are checked/applied, these are applied before rendering the 404 page and after dynamic routes/all static assetsrewrites

checked. If you use fallback: true/’blocking’ in getStaticPaths, the fallback will not be run.next.config.js

1. headers are checked/applied
2. redirects are checked/applied
3. beforeFiles rewrites are checked/applied

defined in your

4. static files from the public directory, _next/static files, and non-dynamic pages are checked/served
5. afterFiles rewrites are checked/applied, if one of these rewrites is matched we check dynamic routes/static files after each matchfallback
have been

6. rewrites are checked/applied, these are applied before rendering the 404 page and after dynamic routes/all static assetsrewrites

checked. If you use fallback: true/’blocking’ in getStaticPaths, the fallback will not be run.next.config.js

Rewrite parameters

defined in your

When using parameters in a rewrite the parameters will be passed in the query by default when none of the parameters are used in thedestination.

next.config.js (js)module.exports = {
async rewrites() {
return [
{ source: '/old-about/:path*',
] ,
} },
} destination: '/about', // The :path parameter isn't used here so will be automatically passed in

If a parameter is used in the destination none of the parameters will be automatically passed in the query.

next.config.js (js)module.exports = {
async rewrites() {
return [
{ source: '/docs/:path*',
] ,
} },
} destination: '/:path*', // The :path parameter is used here so will not be automatically passed i

You can still pass the parameters manually in the query if one is already used in the destination by specifying the query in thedestination.

next.config.js (js)module.exports = {

async rewrites() {
return [
{ source: '/:first/:second',
destination: '/:first?second=:second',
// Since the :first parameter is used in the destination the :second parameter
// will not automatically be added in the query although we can manually add it
] ,
} },
} // as shown above

Good to know: Static pages from Automatic Static Optimization or prerendering params from rewrites will be parsed on the client after hydration and provided in the query.
Path Matching/blog/:slug
/blog/hello-world

Path matches are allowed, for example

will match

(no nested paths):

next.config.js (js)module.exports = {
async rewrites() {
return [
{ source: '/blog/:slug',
] ,
} },
} destination: '/news/:slug', // Matched parameters can be used in the destination

Wildcard Path Matching
To match a wildcard path you can use * after a parameter, for example

will match /blog/a/b/c/d/hello-world:/blog/:slug*

next.config.js (js)module.exports = {
async rewrites() {
return [
{ source: '/blog/:slug*',
] ,
} },
} destination: '/news/:slug*', // Matched parameters can be used in the destination

Regex Path Matching
To match a regex path you can wrap the regex in parenthesis after a parameter, for example but not /blog/abc:/blog/123

will match

next.config.js (js)module.exports = {
async rewrites() {
return [
{ source: '/old-blog/:post(\\d{1,})',
] ,
} },
} destination: '/blog/:post', // Matched parameters can be used in the destination
/blog/:slug(\\d{1,})

The following characters (,), {, }, :, *, +, ? are used for regex path matching, so when used in the must be escaped by adding \\ before them:

as non-special values they

next.config.js (js)module.exports = {
async rewrites() {
return [
{
source

// this will match `/english(default)/something` being requested
source: '/english\\(default\\)/:slug',
] ,
} },
} destination: '/en-us/:slug',

Header, Cookie, and Query Matching
To only match a rewrite when header, cookie, or query values also match thehas
missing

field or don’t match thehas

field can be used.missing

Both the source and allhas

items must match and all

items must not match for the rewrite to be applied.

and missing items can have the following fields:
[image:]type: String - must be either header, cookie, host, or query. key: String - the key from the selected type to match against.undefined

value: String or	- the value to check for, if undefined any value will match. A regex like string can be used to capturefirst-(?<paramName>.*)
first-second
second

a specific part of the value, e.g. if the value the destination with :paramName.

module.exports = { async rewrites() {
return [
// if the header `x-rewrite-me` is present,
// this rewrite will be applied
{ source: '/:path*', has: [
{ type: 'header',
key: 'x-rewrite-me',
},
],
destination: '/another-page',
},
// if the header `x-rewrite-me` is not present,
// this rewrite will be applied
{ source: '/:path*', missing: [
{ type: 'header',
key: 'x-rewrite-me',
},
],
destination: '/another-page',
},
// if the source, query, and cookie are matched,
// this rewrite will be applied
{ source: '/specific/:path*', has: [
{ type: 'query',
key: 'page',

is used for

then

will be usable in

next.config.js (js)

// the page value will not be available in the
// destination since value is provided and doesn't
// use a named capture group e.g. (?<page>home) value: 'home',
},
{ type: 'cookie', key: 'authorized', value: 'true',
},
],
destination: '/:path*/home',
},
// if the header `x-authorized` is present and
// contains a matching value, this rewrite will be applied
{

source: '/:path*',
has: [
{ type: 'header',
key: 'x-authorized',
} destination: '/home?authorized=:authorized',
], ,
} value: '(?<authorized>yes|true)',
// if the host is `example.com`,
,
// this rewrite will be applied
{ source: '/:path*',
has: [
{ type: 'host',
], ,
} value: 'example.com',
] ,
} },
} destination: '/another-page',

Rewriting to an external URL
[image:] Examples
Rewrites allow you to rewrite to an external url. This is especially useful for incrementally adopting Next.js. The following is an example/blog

rewrite for redirecting the

route of your main app to an external site.

next.config.js (js)module.exports = {
async rewrites() {
return [
{ source: '/blog',
} destination: 'https://example.com/blog',
{ source: '/blog/:slug',
,
] ,
} },
} destination: 'https://example.com/blog/:slug', // Matched parameters can be used in the destinati

If you’re using trailingSlash: true, you also need to insert a trailing slash in the	parameter. If the destination server is alsosource
destination

expecting a trailing slash it should be included in the

parameter as well.

next.config.js (js)module.exports = {
trailingSlash: true,
async rewrites() {
return [
{ source: '/blog/',
} destination: 'https://example.com/blog/',
{ source: '/blog/:path*/',
,
] ,
} },
} destination: 'https://example.com/blog/:path*/',

Incremental adoption of Next.js
You can also have Next.js fall back to proxying to an existing website after checking all Next.js routes. This way you don’t have to change the rewrites configuration when migrating more pages to Next.js

next.config.js (js)

module.exports = {
async rewrites() {
return {
fallback: [
{ source: '/:path*',
], ,
} destination: `https://custom-routes-proxying-endpoint.vercel.app/:path*`,
} ,
} }

Rewrites with basePath support
When leveraging basePath support with rewrites each you add basePath: false to the rewrite:source

and

is automatically prefixed with thedestination

unlessbasePath

next.config.js (js)module.exports = {
basePath: '/docs',
async rewrites() {
return [
{ source: '/with-basePath', // automatically becomes /docs/with-basePath
} destination: '/another', // automatically becomes /docs/another
{ // does not add /docs to /without-basePath since basePath: false is set
,
// Note: this can not be used for internal rewrites e.g. `destination: '/another'`
source: '/without-basePath',
destination: 'https://example.com',
] ,
} },
} basePath: false,

Rewrites with i18n supportsource

When leveraginglocales

support with rewrites each

and destination is automatically prefixed to handle the configured

unless you addi18n
locale: false
source

a locale for it to be matched correctly.source
destination
i18n
source
destination

to the rewrite. If locale: false is used you must prefix the

and

with

When leveraginglocales

support with rewrites each

and destination is automatically prefixed to handle the configured

unless you addlocale: false

a locale for it to be matched correctly.

to the rewrite. If locale: false is used you must prefix the

and

with
next.config.js (js)module.exports = {
i18n: {
} defaultLocale: 'en',
locales: ['en', 'fr', 'de'],
,
async rewrites() {
return [
{ source: '/with-locale', // automatically handles all locales
} destination: '/another', // automatically passes the locale on
{ // does not handle locales automatically since locale: false is set
,
source: '/nl/with-locale-manual',
} locale: false,
destination: '/nl/another',
{ // this matches '/' since `en` is the defaultLocale
,
source: '/en',
} locale: false,
destination: '/en/another',
,

{ // it's possible to match all locales even when locale: false is set
source: '/:locale/api-alias/:path*',
} locale: false,
destination: '/api/:path*',
{ // this gets converted to /(en|fr|de)/(.*) so will not match the top-level
,
// `/` or `/fr` routes like /:path* would
source: '/(.*)',
] ,
} },
} destination: '/another',

Version History

	Version
	Changes

	v13.3.0
	missing added.

	v10.2.0
	has added.

	v9.5.0
	Headers added.

3.2.4.28 - serverActions
Documentation path: /02-app/02-api-reference/05-next-config-js/serverActions
Description: Configure Server Actions behavior in your Next.js application.

Options for configuring Server Actions behavior in your Next.js application.
allowedOrigins

A list of extra safe origin domains from which Server Actions can be invoked. Next.js compares the origin of a Server Action request with the host domain, ensuring they match to prevent CSRF attacks. If not provided, only the same origin is allowed.
next.config.js (js)/** @type {import('next').NextConfig} */
module.exports = {
experimental: {
serverActions: {
} allowedOrigins: ['my-proxy.com', '*.my-proxy.com'],
}
}, ,

bodySizeLimit

By default, the maximum size of the request body sent to a Server Action is 1MB, to prevent the consumption of excessive server resources in parsing large amounts of data, as well as potential DDoS attacks.
[image:]However, you can configure this limit using the serverActions.bodySizeLimit option. It can take the number of bytes or any string format supported by bytes, for example 1000, '500kb' or '3mb'.
next.config.js (js)/** @type {import('next').NextConfig} */
module.exports = {
experimental: {
serverActions: {
} bodySizeLimit: '2mb',
}
}, ,

Enabling Server Actions (v13)
Server Actions became a stable feature in Next.js 14, and are enabled by default. However, if you are using an earlier version of Next.js,experimental.serverActions

[image:]you can enable them by setting

to true.

next.config.js (js)/** @type {import('next').NextConfig} */
const config = {
experimental: {
} ,
} serverActions: true,
module.exports = config

3.2.4.29 - serverComponentsExternalPackages
Documentation path: /02-app/02-api-reference/05-next-config-js/serverComponentsExternalPackages
Description: Opt-out specific dependencies from the Server Components bundling and use native Node.js `require`.

Dependencies used inside Server Components and Route Handlers will automatically be bundled by Next.js.
If a dependency is using Node.js specific features, you can choose to opt-out specific dependencies from the Server Components bundling and use native Node.js require.
next.config.js (js)/** @type {import('next').NextConfig} */
const nextConfig = {
experimental: {
} ,
} serverComponentsExternalPackages: ['@acme/ui'],
module.exports = nextConfig

Next.js includes a short list of popular packages that currently are working on compatibility and automatically opt-ed out:
@aws-sdk/client-s3
@aws-sdk/s3-presigned-post @blockfrost/blockfrost-js @libsql/client
@jpg-store/lucid-cardano @mikro-orm/core
@mikro-orm/knex @prisma/client @sentry/nextjs @sentry/node @swc/core argon2 autoprefixer aws-crt
bcrypt
better-sqlite3 canvas
cpu-features cypress eslint express firebase-admin jest
jsdom libsql lodash
mdx-bundler mongodb mongoose
next-mdx-remote next-seo payload
pg playwright postcss prettier prisma puppeteer rimraf

sharp shiki sqlite3 tailwindcss ts-node typescript
vscode-oniguruma webpack

3.2.4.30 - trailingSlash
Documentation path: /02-app/02-api-reference/05-next-config-js/trailingSlash
Description: Configure Next.js pages to resolve with or without a trailing slash.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
By default Next.js will redirect urls with trailing slashes to their counterpart without a trailing slash. For example /about/ will redirect to /about. You can configure this behavior to act the opposite way, where urls without trailing slashes are redirected to their counterparts with trailing slashes.next.config.js
trailingSlash

Open

and add the

config:

next.config.js (js)module.exports = {
} trailingSlash: true,

With this option set, urls like/about

Version History

will redirect to /about/.

	Version
	Changes

	v9.5.0
	trailingSlash added.

3.2.4.31 - transpilePackages
Documentation path: /02-app/02-api-reference/05-next-config-js/transpilePackages
Description: Automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependencies (`node_modules`).

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js can automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependenciesnext-transpile-modules

(node_modules). This replaces the

package.

next.config.js (js)/** @type {import('next').NextConfig} */
const nextConfig = {
} transpilePackages: ['@acme/ui', 'lodash-es'], module.exports = nextConfig

Version History

	Version
	Changes

	v13.0.0
	transpilePackages added.

3.2.4.32 - turbo (Experimental)
Documentation path: /02-app/02-api-reference/05-next-config-js/turbo
Description: Configure Next.js with Turbopack-specific options

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Warning: These features are experimental and will only work with next --turbo.
webpack loaders
Currently, Turbopack supports a subset of webpack’s loader API, allowing you to use some webpack loaders to transform code in Turbopack.
To configure loaders, add the names of the loaders you’ve installed and any options in next.config.js, mapping file extensions to a list of loaders:
next.config.js (js)module.exports = {
experimental: {
turbo: {
rules: {
// Option format
'*.md': [
{ loader: '@mdx-js/loader',
options: {
],
}, ,
} format: 'md',
// Option-less format
}, ,
} },
} '*.mdx': ['@mdx-js/loader'],

Then, given the above configuration, you can use transformed code from your app:import MyDoc from './my-doc.mdx'
export default function Home() {
} return <MyDoc />

Resolve Alias
Through next.config.js, Turbopack can be configured to modify module resolution through aliases, similar to webpack’s
resolve.alias configuration.
To configure resolve aliases, map imported patterns to their new destination in next.config.js:
next.config.js (js)module.exports = {
experimental: {
turbo: {
resolveAlias: {
underscore: 'lodash',
}, ,
} },
} mocha: { browser: 'mocha/browser-entry.js' },

This aliases imports of the underscore package to the	package. In other words,lodash
import underscore from 'underscore'
lodash

will load the	module instead of underscore.
Turbopack also supports conditional aliasing through this field, similar to Node.js’s conditional exports. At the moment only the

browser condition is supported. In the case above, imports of the Turbopack targets browser environments.mocha
mocha/browser-entry.js

module will be aliased to

when

For more information and guidance for how to migrate your app to Turbopack from webpack, see Turbopack’s documentation on webpack compatibility.

3.2.4.33 - typedRoutes (experimental)
Documentation path: /02-app/02-api-reference/05-next-config-js/typedRoutes
Description: Enable experimental support for statically typed links.

Experimental support for statically typed links. This feature requires using the App Router as well as TypeScript in your project.
next.config.js (js)/** @type {import('next').NextConfig} */
const nextConfig = {
experimental: {
} ,
} typedRoutes: true,
module.exports = nextConfig

3.2.4.34 - typescript
Documentation path: /02-app/02-api-reference/05-next-config-js/typescript
Description: Next.js reports TypeScript errors by default. Learn to opt-out of this behavior here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Next.js fails your production build (next build) when TypeScript errors are present in your project.
If you’d like Next.js to dangerously produce production code even when your application has errors, you can disable the built-in type checking step.
If disabled, be sure you are running type checks as part of your build or deploy process, otherwise this can be very dangerous.next.config.js
ignoreBuildErrors
typescript

Open

and enable the

option in the

config:

next.config.js (js)module.exports = {
typescript: {
// !! WARN !!
// Dangerously allow production builds to successfully complete even if
// your project has type errors.
// !! WARN !!
} ,
} ignoreBuildErrors: true,

3.2.4.35 - urlImports
Documentation path: /02-app/02-api-reference/05-next-config-js/urlImports
Description: Configure Next.js to allow importing modules from external URLs (experimental).

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
URL imports are an experimental feature that allows you to import modules directly from external servers (instead of from the local disk).
Warning: This feature is experimental. Only use domains that you trust to download and execute on your machine. Please exercise discretion, and caution until the feature is flagged as stable.
To opt-in, add the allowed URL prefixes inside next.config.js:
next.config.js (js)module.exports = {
experimental: {
} ,
} urlImports: ['https://example.com/assets/', 'https://cdn.skypack.dev'],

Then, you can import modules directly from URLs:import { a, b, c } from 'https://example.com/assets/some/module.js'

URL Imports can be used everywhere normal package imports can be used.
Security Model
This feature is being designed with security as the top priority. To start, we added an experimental flag forcing you to explicitly allow the domains you accept URL imports from. We’re working to take this further by limiting URL imports to execute in the browser sandbox using the Edge Runtime.
Lockfile
When using URL imports, Next.js will create a next.lock directory containing a lockfile and fetched assets. This directory must be committed to Git, not ignored by .gitignore.
[image:] When running next dev, Next.js will download and add all newly discovered URL Imports to your lockfile [image:] When running next build, Next.js will use only the lockfile to build the application for production
Typically, no network requests are needed and any outdated lockfile will cause the build to fail. One exception is resources thatno-cache

respond with Cache-Control: no-cache. These resources will have a the network on each build.
Examples
Skypack

entry in the lockfile and will always be fetched from

import confetti from 'https://cdn.skypack.dev/canvas-confetti'
import { useEffect } from 'react'
export default () => {
useEffect(() => {
} return <p>Hello</p>
} confetti()
)

Static Image Imports
import Image from 'next/image'
import logo from 'https://example.com/assets/logo.png'

export default () => (
<div>
) /div>
< <Image src={logo} placeholder="blur" />

URLs in CSS
.className {
} background: url('https://example.com/assets/hero.jpg');

Asset Imports
const logo = new URL('https://example.com/assets/file.txt', import.meta.url) console.log(logo.pathname)
// prints "/_next/static/media/file.a9727b5d.txt"

3.2.4.36 - webVitalsAttribution
Documentation path: /02-app/02-api-reference/05-next-config-js/webVitalsAttribution
Description: Learn how to use the webVitalsAttribution option to pinpoint the source of Web Vitals issues.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
When debugging issues related to Web Vitals, it is often helpful if we can pinpoint the source of the problem. For example, in the case of Cumulative Layout Shift (CLS), we might want to know the first element that shifted when the single largest layout shift occurred. Or, in the case of Largest Contentful Paint (LCP), we might want to identify the element corresponding to the LCP for the page. If the LCP element is an image, knowing the URL of the image resource can help us locate the asset we need to optimize.
Pinpointing the biggest contributor to the Web Vitals score, aka attribution, allows us to obtain more in-depth information like entries for PerformanceEventTiming, PerformanceNavigationTiming and PerformanceResourceTiming.
Attribution is disabled by default in Next.js but can be enabled per metric by specifying the following in next.config.js.
next.config.js (js)experimental: {
} webVitalsAttribution: ['CLS', 'LCP']
NextWebVitalsMetric

Valid attribution values are allweb-vitals

metrics specified in the

type.

3.2.4.37 - Custom Webpack Config
Documentation path: /02-app/02-api-reference/05-next-config-js/webpack
Description: Learn how to customize the webpack config used by Next.js

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
Good to know: changes to webpack config are not covered by semver so proceed at your own risk
Before continuing to add custom webpack configuration to your application make sure Next.js doesn’t already support your use-case: [image:] CSS imports
[image:] CSS modules
[image:] Sass/SCSS imports [image:] Sass/SCSS modules
[image:] CSS imports [image:] CSS modules
[image:] Sass/SCSS imports [image:] Sass/SCSS modules
[image:] Customizing babel configuration
Some commonly asked for features are available as plugins:
[image:] @next/mdx
[image:] @next/bundle-analyzer
In order to extend our usage of webpack, you can define a function that extends its config inside next.config.js, like so:
next.config.js (js)module.exports = {
webpack: (
) { buildId, dev, isServer, defaultLoaders, nextRuntime, webpack }
config,
=> {
// Important: return the modified config
} ,
} return config

The webpack function is executed three times, twice for the server (nodejs / edge runtime) and once for the client. This allowsisServer

you to distinguish between client and server configuration using the	property.
The second argument to the	function is an object with the following properties:webpack
undefined

buildId: String - The build id, used as a unique identifier between builds
dev: Boolean - Indicates if the compilation will be done in development
isServer: Boolean - It’s true for server-side compilation, and false for client-side compilation nextRuntime: String | undefined - The target runtime for server-side compilation; either for client-side compilation."edge"

defaultLoaders: Object - Default loaders used internally by Next.js:
babel: Object - Default babel-loader configuration

or "nodejs", it’s

Example usage of defaultLoaders.babel:
// Example config for adding a loader that depends on babel-loader
// This source was taken from the @next/mdx plugin source:
// https://github.com/vercel/next.js/tree/canary/packages/next-mdx
module.exports = {
webpack: (config, options) => {
config.module.rules.push({
test: /\.mdx/,
use: [
options.defaultLoaders.babel,
{ loader: '@mdx-js/loader',
} options: pluginOptions.options,
,

],
})
return config
} },

nextRuntime

[image:][image:]Notice that isServer is true when Components in edge runtime only.nextRuntime
"edge"

is

or "nodejs", nextRuntime “edge” is currently for middleware and Server

3.2.5 - create-next-app
Documentation path: /02-app/02-api-reference/06-create-next-app
Description: Create Next.js apps in one command with create-next-app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
The easiest way to get started with Next.js is by using create-next-app. This CLI tool enables you to quickly start building a new Next.js application, with everything set up for you.
You can create a new app using the default Next.js template, or by using one of the official Next.js examples.
Interactive
You can create a new project interactively by running:
Terminal (bash)npx create-next-app@latest

Terminal (bash)yarn create next-app

Terminal (bash)pnpm create next-app

Terminal (bash)bunx create-next-app

You will then be asked the following prompts:

Terminal (txt)What is your project named? my-app
Would you like to use TypeScript? No / Yes
Would you like to use ESLint? No / Yes
Would you like to use Tailwind CSS? No / Yes
Would you like to use `src/` directory? No / Yes
Would you like to use App Router? (recommended) No / Yes
Would you like to customize the default import alias (@/*)? No / Yes

Once you’ve answered the prompts, a new project will be created with the correct configuration depending on your answers.
Non-interactive
You can also pass command line arguments to set up a new project non-interactively. Further, you can negate default options by prefixing them with--no-
(e.g. --no-eslint).

See create-next-app --help:

Terminal (bash)Usage: create-next-app <project-directory> [options]
Options:
-V, --version
--ts, --typescript
output the version number
Initialize as a TypeScript project. (default)
--js, --javascript
Initialize as a JavaScript project.
--tailwind
Initialize with Tailwind CSS config. (default)
--eslint
Initialize with ESLint config.
--app

Initialize as an App Router project.
--src-dir
Initialize inside a `src/` directory.
--import-alias <alias-to-configure>
Specify import alias to use (default "@/*").
--use-npm
Explicitly tell the CLI to bootstrap the app using npm
--use-pnpm
Explicitly tell the CLI to bootstrap the app using pnpm
--use-yarn
Explicitly tell the CLI to bootstrap the app using Yarn
--use-bun
Explicitly tell the CLI to bootstrap the app using Bun
-e, --example [name]|[github-url]
An example to bootstrap the app with. You can use an example name from the official Next.js repo or a public GitHub URL. The URL can use any branch and/or subdirectory
--example-path <path-to-example>
In a rare case, your GitHub URL might contain a branch name with
a slash (e.g. bug/fix-1) and the path to the example (e.g. foo/bar). In this case, you must specify the path to the example separately:
--example-path foo/bar
--reset-preferences
Explicitly tell the CLI to reset any stored preferences
-h, --help	output usage information
Why use Create Next App?
allows you to create a new Next.js app within seconds. It is officially maintained by the creators of Next.js, and includes a number of benefits:create-next-app

Interactive Experience: Running guides you through setting up a project.npx create-next-app@latest

(with no arguments) launches an interactive experience that

Zero Dependencies: Initializing a project is as quick as one second. Create Next App has zero dependencies.
Offline Support: Create Next App will automatically detect if you’re offline and bootstrap your project using your local package cache.
Support for Examples: Create Next App can bootstrap your application using an example from the Next.js examples collection (e.g. npx create-next-app --example api-routes) or any public GitHub repository.
Tested: The package is part of the Next.js monorepo and tested using the same integration test suite as Next.js itself, ensuring it works as expected with every release.

3.2.6 - Edge Runtime
Documentation path: /02-app/02-api-reference/07-edge
Description: API Reference for the Edge Runtime.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
The Next.js Edge Runtime is based on standard Web APIs, it supports the following APIs:
Network APIs

	API
	Description

	Blob
	Represents a blob

	fetch
	Fetches a resource

	FetchEvent
	Represents a fetch event

	File
	Represents a file

	FormData
	Represents form data

	Headers
	Represents HTTP headers

	Request
	Represents an HTTP request

	Response
	Represents an HTTP response

	URLSearchParams
	Represents URL search parameters

	WebSocket
	Represents a websocket connection

Encoding APIs

	API
	Description

	atob
	Decodes a base-64 encoded string

	btoa
	Encodes a string in base-64

	TextDecoder
	Decodes a Uint8Array into a string

	TextDecoderStream
	Chainable decoder for streams

	TextEncoder
	Encodes a string into a Uint8Array

	TextEncoderStream
	Chainable encoder for streams

Stream APIs

	API
	Description

	ReadableStream
	Represents a readable stream

	ReadableStreamBYOBReader
	Represents a reader of a ReadableStream

	ReadableStreamDefaultReader
	Represents a reader of a ReadableStream

	TransformStream
	Represents a transform stream

	WritableStream
	Represents a writable stream

	WritableStreamDefaultWriter
	Represents a writer of a WritableStream

Crypto APIs

	API
	Description

	crypto
	Provides access to the cryptographic functionality of the platform

	CryptoKey
	Represents a cryptographic key

	SubtleCrypto
	Provides access to common cryptographic primitives, like hashing, signing, encryption or decryption

Web Standard APIs

	API
	Description

	AbortController
	Allows you to abort one or more DOM requests as and when desired

	Array
	Represents an array of values

	ArrayBuffer
	Represents a generic, fixed-length raw binary data buffer

	Atomics
	Provides atomic operations as static methods

	BigInt
	Represents a whole number with arbitrary precision

	BigInt64Array
	Represents a typed array of 64-bit signed integers

	BigUint64Array
	Represents a typed array of 64-bit unsigned integers

	Boolean
	Represents a logical entity and can have two values: true and false

	clearInterval
	Cancels a timed, repeating action which was previously established by a call to setInterval()

	clearTimeout
	Cancels a timed, repeating action which was previously established by a call to setTimeout()

	console
	Provides access to the browser’s debugging console

	DataView
	Represents a generic view of an ArrayBuffer

	Date
	Represents a single moment in time in a platform-independent format

	decodeURI
	Decodes a Uniform Resource Identifier (URI) previously created by encodeURI or by a similar routine

	decodeURIComponent
	Decodes a Uniform Resource Identifier (URI) component previously created by encodeURIComponent or by a similar routine

	DOMException
	Represents an error that occurs in the DOM

	encodeURI
	Encodes a Uniform Resource Identifier (URI) by replacing each instance of certain characters by one, two, three, or four escape sequences representing the UTF-8 encoding of the character

	encodeURIComponent
	Encodes a Uniform Resource Identifier (URI) component by replacing each instance of certain characters by one, two, three, or four escape sequences representing the UTF-8 encoding of the character

	Error
	Represents an error when trying to execute a statement or accessing a property

	EvalError
	Represents an error that occurs regarding the global function eval()

	Float32Array
	Represents a typed array of 32-bit floating point numbers

	Float64Array
	Represents a typed array of 64-bit floating point numbers

	Function
	Represents a function

	Infinity
	Represents the mathematical Infinity value

	Int8Array
	Represents a typed array of 8-bit signed integers

	Int16Array
	Represents a typed array of 16-bit signed integers

	Int32Array
	Represents a typed array of 32-bit signed integers

	Intl
	Provides access to internationalization and localization functionality

	isFinite
	Determines whether a value is a finite number

	isNaN
	Determines whether a value is NaN or not

	API
	Description

	JSON
	Provides functionality to convert JavaScript values to and from the JSON format

	Map
	Represents a collection of values, where each value may occur only once

	Math
	Provides access to mathematical functions and constants

	Number
	Represents a numeric value

	Object
	Represents the object that is the base of all JavaScript objects

	parseFloat
	Parses a string argument and returns a floating point number

	parseInt
	Parses a string argument and returns an integer of the specified radix

	Promise
	Represents the eventual completion (or failure) of an asynchronous operation, and its resulting value

	Proxy
	Represents an object that is used to define custom behavior for fundamental operations (e.g. property lookup, assignment, enumeration, function invocation, etc)

	queueMicrotask
	Queues a microtask to be executed

	RangeError
	Represents an error when a value is not in the set or range of allowed values

	ReferenceError
	Represents an error when a non-existent variable is referenced

	Reflect
	Provides methods for interceptable JavaScript operations

	RegExp
	Represents a regular expression, allowing you to match combinations of characters

	Set
	Represents a collection of values, where each value may occur only once

	setInterval
	Repeatedly calls a function, with a fixed time delay between each call

	setTimeout
	Calls a function or evaluates an expression after a specified number of milliseconds

	SharedArrayBuffer
	Represents a generic, fixed-length raw binary data buffer

	String
	Represents a sequence of characters

	structuredClone
	Creates a deep copy of a value

	Symbol
	Represents a unique and immutable data type that is used as the key of an object property

	SyntaxError
	Represents an error when trying to interpret syntactically invalid code

	TypeError
	Represents an error when a value is not of the expected type

	Uint8Array
	Represents a typed array of 8-bit unsigned integers

	Uint8ClampedArray
	Represents a typed array of 8-bit unsigned integers clamped to 0-255

	Uint32Array
	Represents a typed array of 32-bit unsigned integers

	URIError
	Represents an error when a global URI handling function was used in a wrong way

	URL
	Represents an object providing static methods used for creating object URLs

	URLPattern
	Represents a URL pattern

	URLSearchParams
	Represents a collection of key/value pairs

	WeakMap
	Represents a collection of key/value pairs in which the keys are weakly referenced

	WeakSet
	Represents a collection of objects in which each object may occur only once

	WebAssembly
	Provides access to WebAssembly

Next.js Specific Polyfills
AsyncLocalStorage

Environment Variables

You can use	to access Environment Variables for bothprocess.env
next dev
and next build.

Unsupported APIs
The Edge Runtime has some restrictions including:
[image:] Native Node.js APIs are not supported. For example, you can’t read or write to the filesystem.
[image:] node_modules can be used, as long as they implement ES Modules and do not use native Node.js APIs. [image:] Calling require directly is not allowed. Use ES Modules instead.
The following JavaScript language features are disabled, and will not work:

	API
	Description

	eval
	Evaluates JavaScript code represented as a string

	new Function(evalString)
	Creates a new function with the code provided as an argument

	WebAssembly.compile
	Compiles a WebAssembly module from a buffer source

	WebAssembly.instantiate
	Compiles and instantiates a WebAssembly module from a buffer source

In rare cases, your code could contain (or import) some dynamic code evaluation statements which can not be reached at runtime and which can not be removed by treeshaking. You can relax the check to allow specific files with your Middleware or Edge API Route exported configuration:export const config = {
runtime: 'edge', // for Edge API Routes only
unstable_allowDynamic: [
// allows a single file
'/lib/utilities.js',
// use a glob to allow anything in the function-bind 3rd party module
} ,
] '/node_modules/function-bind/**',

unstable_allowDynamic is a glob, or an array of globs, ignoring dynamic code evaluation for specific files. The globs are relative to your application root folder.
Be warned that if these statements are executed on the Edge, they will throw and cause a runtime error.

3.2.7 - Next.js CLI
Documentation path: /02-app/02-api-reference/08-next-cli
Description: The Next.js CLI allows you to start, build, and export your application. Learn more about it here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}
The Next.js CLI allows you to start, build, and export your application.
To get a list of the available CLI commands, run the following command inside your project directory:
Terminal (bash)npx next -h

(npx comes with npm 5.2+ and higher)
The output should look like this:

Terminal (bash)Usage
$ next <command>
Available commands
build, start, export, dev, lint, telemetry, info
Options
--version, -v
--help, -h
Version number
Displays this message
For more information run a command with the --help flag
$ next build --help

You can pass any node arguments to

commands:

Terminal (bash)NODE_OPTIONS='--throw-deprecation' next
NODE_OPTIONS='-r esm' next
NODE_OPTIONS='--inspect' next
next

Good to know: Runningnext

Build

without a command is the same as running

creates an optimized production build of your application. The output displays information about each route.next dev
next build

[image:] Size – The number of assets downloaded when navigating to the page client-side. The size for each route only includes its dependencies.
[image:] First Load JS – The number of assets downloaded when visiting the page from the server. The amount of JS shared by all is shown as a separate metric.
Both of these values are compressed with gzip. The first load is indicated by green, yellow, or red. Aim for green for performant applications.--profile

You can enable production profiling for React with the

flag in next build. This requires Next.js 9.5:

Terminal (bash)next build --profile

After that, you can use the profiler in the same way as you would in development.--debug

You can enable more verbose build output with the

flag in next build. This requires Next.js 9.5.3:

Terminal (bash)next build --debug

With this flag enabled additional build output like rewrites, redirects, and headers will be shown.
Development
starts the application in development mode with hot-code reloading, error reporting, and more:next dev

The application will start athttp://localhost:3000

by default. The default port can be changed with -p, like so:

[image:]Terminal (bash)npx next dev -p 4000

Or using the

environment variable:

Terminal (bash)PORT=4000 npx next dev
PORT

Good to know:

cannot be set in

as booting up the HTTP server happens before any other code is initialized.

You can also set the hostname to be different from the default of 0.0.0.0, this can be useful for making the application available for other devices on the network. The default hostname can be changed with -H, like so:PORT
.env

Terminal (bash)npx next dev -H 192.168.1.2

Production
starts the application in production mode. The application should be compiled with next build first.next start
http://localhost:3000

The application will start at

by default. The default port can be changed with -p, like so:

Terminal (bash)npx next start -p 4000

Or using the

environment variable:

Terminal (bash)PORT=4000 npx next start
PORT

Good to know:
[image:]-PORT cannot be set in

as booting up the HTTP server happens before any other code is initialized..env
output: 'standalone'

cannot be used withnext start

Keep Alive Timeout

or output: 'export'.

When deploying Next.js behind a downstream proxy (e.g. a load-balancer like AWS ELB/ALB) it’s important to configure Next’s underlying HTTP server with keep-alive timeouts that are larger than the downstream proxy’s timeouts. Otherwise, once a keep-alive timeout is reached for a given TCP connection, Node.js will immediately terminate that connection without notifying the downstream proxy. This results in a proxy error whenever it attempts to reuse a connection that Node.js has already terminated.--keepAliveTimeout

To configure the timeout values for the production Next.js server, pass

(in milliseconds) to next start, like so:
Terminal (bash)npx next start --keepAliveTimeout 70000

Lint
[image:][image:][image:]next lint runs ESLint for all files in the pages/, app/, components/, lib/, and src/ directories. It also provides a guided setup to install any required dependencies if ESLint is not already configured in your application.--dir

If you have other directories that you would like to lint, you can specify them using the

flag:

Terminal (bash)next lint --dir utils

Telemetry
Next.js collects completely anonymous telemetry data about general usage. Participation in this anonymous program is optional, and you may opt-out if you’d not like to share any information.
To learn more about Telemetry, please read this document.
Next Info
prints relevant details about the current system which can be used to report Next.js bugs. This information includesnext info

[image:]Operating System platform/arch/version, Binaries (Node.js, npm, Yarn, pnpm) and npm package versions (next, react, react-dom). Running the following in your project’s root directory:
Terminal (bash)next info

will give you information like this example:

Terminal (bash)Operating System:
Platform: linux
B Version: #22-Ubuntu SMP Fri Nov 5 13:21:36 UTC 2021
Arch: x64
inaries:
Node: 16.13.0
npm: 8.1.0
R pnpm: 6.24.2 es:
Yarn: 1.22.17
elevant packag
next: 12.0.8
react: 17.0.2
react-dom: 17.0.2

This information should then be pasted into GitHub Issues. In order to diagnose installation issues, you can run installation of next-related packages.next info --verbose

to print additional information about system and the

4 - Pages Router
Documentation path: /03-pages/index
Description: Before Next.js 13, the Pages Router was the main way to create routes in Next.js with an intuitive file-system router.

Before Next.js 13, the Pages Router was the main way to create routes in Next.js. It used an intuitive file-system router to map each file to a route. The Pages Router is still supported in newer versions of Next.js, but we recommend migrating to the new App Router to leverage React’s latest features.
Use this section of the documentation for existing applications that use the Pages Router.

4.1 - Building Your Application
Documentation path: /03-pages/01-building-your-application/index
Description: Learn how to use Next.js features to build your application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.1 - Routing
Documentation path: /03-pages/01-building-your-application/01-routing/index
Description: Learn the fundamentals of routing for front-end applications with the Pages Router.

The Pages Router has a file-system based router built on concepts of pages. When a file is added to the automatically available as a route. Learn more about routing in the Pages Router:pages

directory it’s

4.1.1.1 - Pages and Layouts
Documentation path: /03-pages/01-building-your-application/01-routing/01-pages-and-layouts
Description: Create your first page and shared layout with the Pages Router.

The Pages Router has a file-system based router built on the concept of pages.pages

When a file is added to the	directory, it’s automatically available as a route..tsx
pages

[image:][image:][image:]In Next.js, a page is a React Component exported from a .js, .jsx, .ts, or with a route based on its file name.

file in the

directory. Each page is associated

Example: If you create pages/about.js that exports a React component like below, it will be accessible at /about.
export default function About() {
} return <div>About</div>

Index routes
The router will automatically route files named

to the root of the directory.index

→pages/index.js → / pages/blog/index.js
/blog

Nested routes
The router supports nested files. If you create a nested folder structure, files will automatically be routed in the same way still.pages/blog/first-post.js → /blog/first-post pages/dashboard/settings/username.js → /dashboard/settings/username

Pages with Dynamic Routes
Next.js supports pages with dynamic routes. For example, if you create a file called pages/posts/[id].js, then it will be accessible at posts/1, posts/2, etc.
To learn more about dynamic routing, check the Dynamic Routing documentation.
Layout Pattern
The React model allows us to deconstruct a page into a series of components. Many of these components are often reused between pages. For example, you might have the same navigation bar and footer on every page.
components/layout.js (jsx)import Navbar from './navbar'
import Footer from './footer'
export default function Layout({ children }) {
return (
<>
<Navbar />
< <Footer />
<main>{children}</main>
}
) />

Examples
Single Shared Layout with Custom App
If you only have one layout for your entire application, you can create a Custom App and wrap your application with the layout. Since<Layout />

the

component is re-used when changing pages, its component state will be preserved (e.g. input values).

pages/_app.js (jsx)import Layout from '../components/layout'

export default function MyApp({ Component, pageProps }) {
return (
<Layout>
< <Component {...pageProps} />
}
) /Layout>

Per-Page Layouts
If you need multiple layouts, you can add a property getLayout to your page, allowing you to return a React component for the layout. This allows you to define the layout on a per-page basis. Since we’re returning a function, we can have complex nested layouts if desired.
pages/index.js (jsx)import Layout from '../components/layout'
import NestedLayout from '../components/nested-layout'
export default function Page() {
return (
}
) /** Your content */
Page.getLayout = function getLayout(page) {
return (
<Layout>
< <NestedLayout>{page}</NestedLayout>
}
) /Layout>

pages/_app.js (jsx)export default function MyApp({ Component, pageProps }) {
const getLayout = Component.getLayout || ((page) => page)
} return getLayout(<Component {...pageProps} />)
// Use the layout defined at the page level, if available

When navigating between pages, we want to persist page state (input values, scroll position, etc.) for a Single-Page Application (SPA) experience.
This layout pattern enables state persistence because the React component tree is maintained between page transitions. With the component tree, React can understand which elements have changed to preserve state.
Good to know: This process is called reconciliation, which is how React understands which elements have changed.
With TypeScript
When using TypeScript, you must first create a new type for your pages which includes a getLayout function. Then, you must create aAppProps
Component

new type for your

which overrides the

property to use the previously created type.

pages/index.tsx (tsx)import type { ReactElement } from 'react'
import Layout from '../components/layout'
import NestedLayout from '../components/nested-layout'
import type { NextPageWithLayout } from './_app'
const Page: NextPageWithLayout = () => {
} return <p>hello world</p>
Page.getLayout = function getLayout(page: ReactElement) {
return (
<Layout>

}
) /Layout>
< <NestedLayout>{page}</NestedLayout>
export default Page

pages/index.js (jsx)import Layout from '../components/layout'
import NestedLayout from '../components/nested-layout'
const Page = () => {
} return <p>hello world</p>
Page.getLayout = function getLayout(page) {
return (
<Layout>
< <NestedLayout>{page}</NestedLayout>
}
) /Layout>
export default Page

pages/_app.tsx (tsx)import type { ReactElement, ReactNode } from 'react'
import type { NextPage } from 'next'
import type { AppProps } from 'next/app'
export type NextPageWithLayout<P = {}, IP = P> = NextPage<P, IP> & {
} getLayout?: (page: ReactElement) => ReactNode
type AppPropsWithLayout = AppProps & {
} Component: NextPageWithLayout
export default function MyApp({ Component, pageProps }: AppPropsWithLayout) {
const getLayout = Component.getLayout ?? ((page) => page)
} return getLayout(<Component {...pageProps} />)
// Use the layout defined at the page level, if available

pages/_app.js (jsx)export default function MyApp({ Component, pageProps }) {
const getLayout = Component.getLayout ?? ((page) => page)
} return getLayout(<Component {...pageProps} />)
// Use the layout defined at the page level, if available

Data Fetching
Inside your layout, you can fetch data on the client-side usinggetStaticProps
getServerSideProps

or a library like SWR. Because this file is not a Page, youuseEffect

cannot use

or

currently.

components/layout.js (jsx)import useSWR from 'swr'
import Navbar from './navbar'
import Footer from './footer'
export default function Layout({ children }) {
const { data, error } = useSWR('/api/navigation', fetcher)
if (error) return <div>Failed to load</div>
if (!data) return <div>Loading...</div>
return (
<>
<Navbar links={data.links} />
< <Footer />
<main>{children}</main>
}
) />

4.1.1.2 - Dynamic Routes
Documentation path: /03-pages/01-building-your-application/01-routing/02-dynamic-routes
Description: Dynamic Routes are pages that allow you to add custom params to your URLs. Start creating Dynamic Routes and learn more here.
Related:
Title: Next Steps
Related Description: For more information on what to do next, we recommend the following sections
Links:
[image:] pages/building-your-application/routing/linking-and-navigating [image:] pages/api-reference/functions/use-router

When you don’t know the exact segment names ahead of time and want to create routes from dynamic data, you can use Dynamic Segments that are filled in at request time or prerendered at build time.
Convention
A Dynamic Segment can be created by wrapping a file or folder name in square brackets: [segmentName]. For example,	or Dynamic Segments can be accessed from useRouter.[id]
[slug].

Example
For example, a blog could include the following route pages/blog/[slug].js where [slug] is the Dynamic Segment for blog posts.
import { useRouter } from 'next/router'
export default function Page() {
} return <p>Post: {router.query.slug}</p>
const router = useRouter()

	Route
	Example URL
	params

	pages/blog/[slug].js
	/blog/a
	{ slug: 'a' }

	pages/blog/[slug].js
	/blog/b
	{ slug: 'b' }

	pages/blog/[slug].js
	/blog/c
	{ slug: 'c' }

Catch-all Segments
Dynamic Segments can be extended to catch-all subsequent segments by adding an ellipsis inside the brackets [...segmentName].pages/shop/[...slug].js

For example,
shirts, and so on.

will match /shop/clothes, but also /shop/clothes/tops, /shop/clothes/tops/t-

	Route
	Example URL
	params

	pages/shop/[...slug].js
	/shop/a
	{ slug: ['a'] }

	pages/shop/[...slug].js
	/shop/a/b
	{ slug: ['a', 'b'] }

	pages/shop/[...slug].js
	/shop/a/b/c
	{ slug: ['a', 'b', 'c'] }

Optional Catch-all Segments
Catch-all Segments can be made optional by including the parameter in double square brackets: [[...segmentName]].For example, pages/shop/[[...slug]].js
/shop/clothes/tops/t-shirts.

will also match /shop, in addition to /shop/clothes, /shop/clothes/tops,

The difference between catch-all and optional catch-all segments is that with optional, the route without the parameter is also matched (/shop in the example above).

	Route
	Example URL
	params

	pages/shop/[[...slug]].js
	/shop
	{ slug: [] }

	pages/shop/[[...slug]].js
	/shop/a
	{ slug: ['a'] }

	pages/shop/[[...slug]].js
	/shop/a/b
	{ slug: ['a', 'b'] }

	pages/shop/[[...slug]].js
	/shop/a/b/c
	{ slug: ['a', 'b', 'c'] }

4.1.1.3 - Linking and Navigating
Documentation path: /03-pages/01-building-your-application/01-routing/03-linking-and-navigating
Description: Learn how navigation works in Next.js, and how to use the Link Component and `useRouter` hook.

The Next.js router allows you to do client-side route transitions between pages, similar to a single-page application. AReact component called Link is provided to do this client-side route transition.
import Link from 'next/link'
function Home() {
return (

< <Link href="/">Home</Link>

/li>
< <Link href="/about">About Us</Link>

/li>
</ /li>
< <Link href="/blog/hello-world">Blog Post</Link>
ul>
})
export default Home

[image:]The example above uses multiple links. Each one maps a path (href) to a known page:
/ → pages/index.js
/about → pages/about.js
/blog/hello-world → pages/blog/[slug].js

Any	in the viewport (initially or through scroll) will be prefetched by default (including the corresponding data) for pages

using Static Generation. The corresponding data for server-rendered routes is fetched only when the<Link />
<Link />

Linking to dynamic paths

is clicked.

You can also use interpolation to create the path, which comes in handy for dynamic route segments. For example, to show a list of posts which have been passed to the component as a prop:import Link from 'next/link'
function Posts({ posts }) {
return (

{posts.map((post) => (
<li key={post.id}>
<Link href={`/blog/${encodeURIComponent(post.slug)}`}>
</ /Link>
< {post.title}
}
))} li>
)
export default Posts

is used in the example to keep the path utf-8 compatible.
Alternatively, using a URL Object:import Link from 'next/link'
function Posts({ posts }) {
return (

{posts.map((post) => (
encodeURIComponent

<li key={post.id}>
<Link
href={{
· }
} query: { slug: post.slug },
pathname: '/blog/[slug]',
</ /Link>
< {post.title}
}
))} li>
)
export default Posts

Now, instead of using interpolation to create the path, we use a URL object inhref

[image:] pathname is the name of the page in the pages directory./blog/[slug]

[image:] query is an object with the dynamic segment. slug in this case.
Injecting the router
[image:] Examplesrouter
useRouter
or withRouter.

where: in this case.

To access the	object in a React component you can use
In general we recommend using useRouter.
Imperative Routing
should be able to cover most of your routing needs, but you can also do client-side navigations without it, take a look at theThe following example shows how to do basic page navigations with useRouter: import { useRouter } from 'next/router'
export default function ReadMore() {
const router = useRouter()
return (
<button onClick={() => router.push('/about')}>
< Click here to read more
}
) /button>
documentation for next/router.
next/link

Shallow Routing
[image:] Examples
Shallow routing allows you to change the URL without running data fetching methods again, that includes getServerSideProps,or withRouter), without losing state.
To enable shallow routing, set the shallow option to true. Consider the following example:
import { useEffect } from 'react'
import { useRouter } from 'next/router'
// Current URL is '/'
function Page() {
const router = useRouter()
// Always do navigations after the first render
useEffect(() => {
} router.push('/?counter=10', undefined, { shallow: true })
, [])
useEffect(() => {
// The counter changed!
getStaticProps, and getInitialProps. You’ll receive the updated pathname and the
query
via the router object (added by
useRouter

} }, [router.query.counter]) export default Page

The URL will get updated to /?counter=10 and the page won’t get replaced, only the state of the route is changed. You can also watch for URL changes via componentDidUpdate as shown below:
componentDidUpdate(prevProps) {
const { pathname, query } = this.props.router
// verify props have changed to avoid an infinite loop
if (query.counter !== prevProps.router.query.counter) {
}
} // fetch data based on the new query

Caveats
Shallow routing only works for URL changes in the current page. For example, let’s assume we have another page calledpages/about.js, and you run this:
router.push('/?counter=10', '/about?counter=10', { shallow: true })

Since that’s a new page, it’ll unload the current page, load the new one and wait for data fetching even though we asked to do shallow routing.
When shallow routing is used with middleware it will not ensure the new page matches the current page like previously done without middleware. This is due to middleware being able to rewrite dynamically and can’t be verified client-side without a data fetch which is skipped with shallow, so a shallow route change must always be treated as shallow.

4.1.1.4 - Custom App
Documentation path: /03-pages/01-building-your-application/01-routing/04-custom-app
Description: Control page initialization and add a layout that persists for all pages by overriding the default App component used by Next.js.

Next.js uses the	component to initialize pages. You can override it and control the page initialization and:App

[image:] Create a shared layout between page changes [image:] Inject additional data into pages
[image:] Add global CSS
Usage
[image:]To override the default App, create the filepages/_app

as shown below:

pages/_app.tsx (tsx)import type { AppProps } from 'next/app'
export default function MyApp({ Component, pageProps }: AppProps) {
} return <Component {...pageProps} />

[image:]pages/_app.jsx (jsx)export default function MyApp({ Component, pageProps }) {
} return <Component {...pageProps} />
Component

The

prop is the active page, so whenever you navigate between routes,

will change to the new page. Therefore,

[image:]any props you send to Component will be received by the page.Component
pageProps

is an object with the initial props that were preloaded for your page by one of our data fetching methods, otherwise it’s an empty object.
Good to know
[image:][image:] If your app is running and you added a custom App, you’ll need to restart the development server. Only required if
pages/_app.js didn’t exist before.getStaticProps
or getServerSideProps.

[image:] App does not support Next.js Data Fetching methods like
withgetInitialProps
App
getInitialProps
App

Using

in

will disable Automatic Static Optimization for pages without getStaticProps.

We do not recommend using this pattern. Instead, consider incrementally adopting the App Router, which allows you to more easily fetch data for pages and layouts.
pages/_app.tsx (tsx)import App, { AppContext, AppInitialProps, AppProps } from 'next/app'
type AppOwnProps = { example: string }
export default function MyApp({
Component,
} example, & AppOwnProps) {
pageProps,
: AppProps
return (
<>
< <Component {...pageProps} />
<p>Data: {example}</p>
}
) />
MyApp.getInitialProps = async (
) context: AppContext & AppInitialProps> => {
: Promise<AppOwnProps
const ctx = await App.getInitialProps(context)

} return { ...ctx, example: 'data' }

pages/_app.jsx (jsx)import App from 'next/app'
export default function MyApp({ Component, pageProps, example }) {
return (
<>
< <Component {...pageProps} />
<p>Data: {example}</p>
}
) />
MyApp.getInitialProps = async (context) => {
const ctx = await App.getInitialProps(context)
} return { ...ctx, example: 'data' }

4.1.1.5 - Custom Document
Documentation path: /03-pages/01-building-your-application/01-routing/05-custom-document
Description: Extend the default document markup added by Next.js.<html>

A customDocument

can update the

and <body> tags used to render a Page.

To override the default Document, create the file pages/_document as shown below:

pages/_document.tsx (tsx)import { Html, Head, Main, NextScript } from 'next/document'
export default function Document() {
return (
<Html lang="en">
<Head />
<body>
<Main />
</ /body>
< <NextScript />
Html>
})

pages/_document.jsx (jsx)import { Html, Head, Main, NextScript } from 'next/document'
export default function Document() {
return (
<Html lang="en">
<Head />
<body>
<Main />
</ /body>
< <NextScript />
Html>
})

Good to know
[image:] _document is only rendered on the server, so event handlers like onClick cannot be used in this file.<Main />
<NextScript />

[image:] <Html>, <Head />,
Caveats

and

are required for the page to be properly rendered.

[image:] The <Head /> component used in _document is not the same as next/head. The <Head /> component used here should only be used for any <head> code that is common for all pages. For all other cases, such as <title> tags, we recommend using next/head in your pages or components.
[image:] React components outside of <Main /> will not be initialized by the browser. Do not add application logic here or custom CSS (like
styled-jsx). If you need shared components in all your pages (like a menu or a toolbar), read Layouts instead.getStaticProps
or getServerSideProps.

[image:] Document currently does not support Next.js Data Fetching methods like
CustomizingrenderPage

Customizing renderPage is advanced and only needed for libraries like CSS-in-JS to support server-side rendering. This is not needed for built-in styled-jsx support.
We do not recommend using this pattern. Instead, consider incrementally adopting the App Router, which allows you to more easily fetch data for pages and layouts.
pages/_document.tsx (tsx)import Document, {
Html,
Head,
Main,
NextScript,
DocumentContext,

DocumentInitialProps,
} from 'next/document'
class MyDocument extends Document { static async getInitialProps(
ctx: DocumentContext
): Promise<DocumentInitialProps> {
const originalRenderPage = ctx.renderPage
// Run the React rendering logic synchronously ctx.renderPage = () =>
originalRenderPage({
// Useful for wrapping the whole react tree enhanceApp: (App) => App,
// Useful for wrapping in a per-page basis enhanceComponent: (Component) => Component,
})
// Run the parent `getInitialProps`, it now includes the custom `renderPage` const initialProps = await Document.getInitialProps(ctx)
} return initialProps render() {
return (
<Html lang="en">
<Head />
<body>
<Main />
<NextScript />
</body>
) </Html>
} }
export default MyDocument

import Document, { Html, Head, Main, NextScript } from 'next/document' class MyDocument extends Document {
static async getInitialProps(ctx) {
const originalRenderPage = ctx.renderPage
// Run the React rendering logic synchronously ctx.renderPage = () =>
originalRenderPage({
// Useful for wrapping the whole react tree enhanceApp: (App) => App,
// Useful for wrapping in a per-page basis enhanceComponent: (Component) => Component,
})
// Run the parent `getInitialProps`, it now includes the custom `renderPage` const initialProps = await Document.getInitialProps(ctx)
} return initialProps render() {
return (
<Html lang="en">
<Head />
<body>
<Main />
<NextScript />
</body>
) </Html>

pages/_document.jsx (jsx)

} }
export default MyDocument

Good to know
[image:] getInitialProps in _document is not called during client-side transitions.
[image:] The ctx object for _document is equivalent to the one received in getInitialProps, with the addition of renderPage.

4.1.1.6 - Custom Errors
Documentation path: /03-pages/01-building-your-application/01-routing/06-custom-error
Description: Override and extend the built-in Error page to handle custom errors.

404 Page
A 404 page may be accessed very often. Server-rendering an error page for every visit increases the load of the Next.js server. This can result in increased costs and slow experiences.
To avoid the above pitfalls, Next.js provides a static 404 page by default without having to add any additional files.
Customizing The 404 Pagepages/404.js

To create a custom 404 page you can create a

file. This file is statically generated at build time.

pages/404.js (jsx)export default function Custom404() {
} return <h1>404 - Page Not Found</h1>

Good to know: You can usegetStaticProps

500 Page

inside this page if you need to fetch data at build time.

Server-rendering an error page for every visit adds complexity to responding to errors. To help users get responses to errors as fast as possible, Next.js provides a static 500 page by default without having to add any additional files.
Customizing The 500 Pagepages/500.js

To customize the 500 page you can create a

file. This file is statically generated at build time.

pages/500.js (jsx)export default function Custom500() {
} return <h1>500 - Server-side error occurred</h1>

Good to know: You can use	inside this page if you need to fetch data at build time.getStaticProps

More Advanced Error Page Customizing
500 errors are handled both client-side and server-side by the	component. If you wish to override it, define the filepages/_error.js and add the following code:
function Error({ statusCode }) {
return (
<p>
{statusCode
? `An error ${statusCode} occurred on server`
}
)
</p : 'An error occurred on client'}
·
Error.getInitialProps = ({ res, err }) => {
} return { statusCode } export default Error
const statusCode = res ? res.statusCode : err ? err.statusCode : 404
Error

is only used in production. In development you’ll get an error with the call stack to know where the errorpages/_error.js
originated from.

Reusing the built-in error page
If you want to render the built-in error page you can by importing the

component:Error

import Error from 'next/error'
export async function getServerSideProps() {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
const errorCode = res.ok ? false : res.status
const json = await res.json()
return {
}
} props: { errorCode, stars: json.stargazers_count },

export default function Page({ errorCode, stars }) {
} return <Error statusCode={errorCode} />
} return <div>Next stars: {stars}</div>
if (errorCode) {

TheError
Error
next/error

component also takes

as a property if you want to pass in a text message along with a statusCode.

If you have a custom Next.js.
Caveats

component be sure to import that one instead.

exports the default component used by

Error does not currently support Next.js Data Fetching methods liketitle
getStaticProps
or getServerSideProps.
_error

[image:]_error, like _app, is a reserved pathname.	is used to define the customized layouts and behaviors of the error pages.
/_error will render 404 when accessed directly via routing or rendering in a custom server.

4.1.1.7 - API Routes
Documentation path: /03-pages/01-building-your-application/01-routing/07-api-routes
Description: Next.js supports API Routes, which allow you to build your API without leaving your Next.js app. Learn how it works here.
[image:] Examples
Good to know: If you are using the App Router, you can use Server Components or Route Handlers instead of API Routes.
API routes provide a solution to build a public API with Next.js.
[image:]Any file inside the folder pages/api is mapped to /api/* and will be treated as an API endpoint instead of a page. They are server- side only bundles and won’t increase your client-side bundle size.
[image:]For example, the following API route returns a JSON response with a status code of 200:
pages/api/hello.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
type ResponseData = {
} message: string
export default function handler(
) res: NextApiResponse<ResponseData>
req: NextApiRequest,
} res.status(200).json({ message: 'Hello from Next.js!' })
{

pages/api/hello.js (js)export default function handler(req, res) {
} res.status(200).json({ message: 'Hello from Next.js!' })

Good to know:
[image:] API Routes do not specify CORS headers, meaning they are same-origin only by default. You can customize such behavior by wrapping the request handler with the CORS request helpers.
API Routes can’t be used with static exports. However, Route Handlers in the App Router can.pageExtensions

[image:] API Routes will be affected by
Parameters

configuration in next.config.js.

export default function handler(req: NextApiRequest, res: NextApiResponse) {
} // ...

[image:] req: An instance of http.IncomingMessage
[image:] res: An instance of http.ServerResponse
HTTP Methods
To handle different HTTP methods in an API route, you can use

in your request handler, like so:req.method

pages/api/hello.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default function handler(req: NextApiRequest, res: NextApiResponse) {
if (req.method === 'POST') {
} // Process a POST request
else {
}
} // Handle any other HTTP method

pages/api/hello.js (js)

export default function handler(req, res) {
if (req.method === 'POST') {
} // Process a POST request
else {
}
} // Handle any other HTTP method

Request Helpers
[image:]API Routes provide built-in request helpers which parse the incoming request (req):
[image:] req.cookies - An object containing the cookies sent by the request. Defaults to{}

[image:] req.query - An object containing the query string. Defaults to {}null

[image:] req.body - An object containing the body parsed by content-type, or	if no body was sent
Custom config
Every API Route can export a config object to change the default configuration, which is the following:
export const config = {
api: {
bodyParser: {
}, ,
} sizeLimit: '1mb',
} maxDuration: 5,
// Specifies the maximum allowed duration for this function to execute (in seconds)

is automatically enabled. If you want to consume the body as a	or with raw-body, you can set this to false.

One use case for disabling the automatic GitHub.bodyParsing

is to allow you to verify the raw body of a webhook request, for example from

bodyParser
Stream

export const config = {
api: {
} ,
} bodyParser: false,

bodyParser.sizeLimit is the maximum size allowed for the parsed body, in any format supported by bytes, like so:
export const config = {
api: {
bodyParser: {
} sizeLimit: '500kb',
}
}, ,

externalResolver is an explicit flag that tells the server that this route is being handled by an external resolver like express or
connect. Enabling this option disables warnings for unresolved requests.export const config = {
api: {
} ,
} externalResolver: true,

is automatically enabled, warning when an API Routes’ response body is over 4MB.
If you are not using Next.js in a serverless environment, and understand the performance implications of not using a CDN or dedicated media host, you can set this limit to false.responseLimit

export const config = { api: {
responseLimit: false,
} },
[image:]can also take the number of bytes or any string format supported by bytes, for example 1000,	or '3mb'.responseLimit
'500kb'

This value will be the maximum response size before a warning is displayed. Default is 4MB. (see above)export const config = {
api: {
} ,
} responseLimit: '8mb',

Response Helpers
[image:]The Server Response object, (often abbreviated as res) includes a set of Express.js-like helper methods to improve the developer experience and increase the speed of creating new API endpoints.
The included helpers are:
[image:][image:] res.status(code) - A function to set the status code. code must be a valid HTTP status code
[image:] res.json(body) - Sends a JSON response. body must be a serializable object
[image:] res.send(body) - Sends the HTTP response. body can be a string, an object or a Buffer
[image:] res.redirect([status,] path) - Redirects to a specified path or URL. status must be a valid HTTP status code. If not specified, status defaults to “307” “Temporary redirect”.urlPath

[image:] res.revalidate(urlPath) - Revalidate a page on demand using getStaticProps.
Setting the status code of a response
[image:]When sending a response back to the client, you can set the status code of the response.200
message

must be a string.

The following example sets the status code of the response to as a JSON response:Next.js!

(OK) and returns a

property with the value of

pages/api/hello.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
type ResponseData = {
} message: string
export default function handler(
) res: NextApiResponse<ResponseData>
req: NextApiRequest,
} res.status(200).json({ message: 'Hello from Next.js!' })
{
Hello from

pages/api/hello.js (js)export default function handler(req, res) {
} res.status(200).json({ message: 'Hello from Next.js!' })

Sending a JSON response
When sending a response back to the client you can send a JSON response, this must be a serializable object. In a real world application you might want to let the client know the status of the request depending on the result of the requested endpoint.
[image:][image:]The following example sends a JSON response with the status code 200 (OK) and the result of the async operation. It’s contained in a try catch block to handle any errors that may occur, with the appropriate status code and error message caught and sent back to the client:
pages/api/hello.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
try {
} res.status(200).json({ result })
const result = await someAsyncOperation()
catch (err) {
}
} res.status(500).json({ error: 'failed to load data' })

pages/api/hello.js (js)export default async function handler(req, res) {
try {
} res.status(200).json({ result })
const result = await someAsyncOperation()
catch (err) {
}
} res.status(500).json({ error: 'failed to load data' })

Sending a HTTP response
Sending an HTTP response works the same way as when sending a JSON response. The only difference is that the response body can be a string, anobject
or a Buffer.
200

[image:]The following example sends a HTTP response with the status code	(OK) and the result of the async operation.
pages/api/hello.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
try {
} res.status(200).send({ result })
const result = await someAsyncOperation()
catch (err) {
}
} res.status(500).send({ error: 'failed to fetch data' })

pages/api/hello.js (js)export default async function handler(req, res) {
try {
} res.status(200).send({ result })
const result = await someAsyncOperation()
catch (err) {
}
} res.status(500).send({ error: 'failed to fetch data' })

Redirects to a specified path or URL
Taking a form as an example, you may want to redirect your client to a specified path or URL once they have submitted the form. The following example redirects the client to the / path if the form is successfully submitted:
pages/api/hello.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
const { name, message } = req.body
await handleFormInputAsync({ name, message })
try {
} res.redirect(307, '/')
catch (err) {
}
} res.status(500).send({ error: 'Failed to fetch data' })

pages/api/hello.js (js)export default async function handler(req, res) {
const { name, message } = req.body
try {
} res.redirect(307, '/')
await handleFormInputAsync({ name, message })
catch (err) {
res.status(500).send({ error: 'failed to fetch data' })

} }

Adding TypeScript types
You can make your API Routes more type-safe by importing the to those, you can also type your response data:NextApiRequest
NextApiResponse

and

types from next, in addition

import type { NextApiRequest, NextApiResponse } from 'next'
type ResponseData = {
} message: string
export default function handler(
) res: NextApiResponse<ResponseData>
req: NextApiRequest,
} res.status(200).json({ message: 'Hello from Next.js!' })
{

Good to know: The body of NextApiRequest is type/shape of the body at runtime before using it.any

Dynamic API Routes

because the client may include any payload. You should validate the

API Routes support dynamic routes, and follow the same file naming rules used for pages/.

pages/api/post/[pid].ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default function handler(req: NextApiRequest, res: NextApiResponse) {
} res.end(`Post: ${pid}`)
const { pid } = req.query

pages/api/post/[pid].js (js)export default function handler(req, res) {
} res.end(`Post: ${pid}`)
const { pid } = req.query

Now, a request to/api/post/abc

Catch all API routes

will respond with the text: Post: abc.

[image:]API Routes can be extended to catch all paths by adding three dots (...) inside the brackets. For example:
matches /api/post/a, but also /api/post/a/b,pages/api/post/[...slug].js
/api/post/a/b/c

[image:]Good to know: You can use names other than slug, such as:[...param]

and so on.

[image:]Matched parameters will be sent as a query parameter (slug in the example) to the page, and it will always be an array, so, the path
/api/post/a will have the following query object:
{ "slug": ["a"] }
And in the case of /api/post/a/b, and any other matching path, new parameters will be added to the array, like so:
{ "slug": ["a", "b"] }

[image:]For example:

pages/api/post/[...slug].ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default function handler(req: NextApiRequest, res: NextApiResponse) {
} res.end(`Post: ${slug.join(', ')}`)
const { slug } = req.query

pages/api/post/[...slug].js (js)export default function handler(req, res) {
} res.end(`Post: ${slug.join(', ')}`)
const { slug } = req.query

Now, a request to/api/post/a/b/c

Optional catch all API routes

will respond with the text: Post: a, b, c.

Catch all routes can be made optional by including the parameter in double brackets ([[...slug]]).pages/api/post/[[...slug]].js

For example,	will match /api/post, /api/post/a, /api/post/a/b, and so on.
The main difference between catch all and optional catch all routes is that with optional, the route without the parameter is alsomatched (/api/post in the example above). The query objects are as follows:
{ } // GET `/api/post` (empty object)
{ "slug": ["a"] } // `GET /api/post/a` (single-element array)
{ "slug": ["a", "b"] } // `GET /api/post/a/b` (multi-element array)

Caveats
[image:] Predefined API routes take precedence over dynamic API routes, and dynamic API routes over catch all API routes. Take a look at the following examples:
[image:] pages/api/post/create.js - Will match /api/post/create
[image:] pages/api/post/[pid].js - Will match /api/post/1, /api/post/abc, etc. But not /api/post/create
[image:] pages/api/post/[...slug].js - Will match /api/post/1/2, /api/post/a/b/c, etc. But not /api/post/create,
/api/post/abc
Edge API Routes
If you would like to use API Routes with the Edge Runtime, we recommend incrementally adopting the App Router and using Route Handlers instead.
The Route Handlers function signature is isomorphic, meaning you can use the same function for both Edge and Node.js runtimes.

4.1.1.8 - Internationalization (i18n) Routing
Documentation path: /03-pages/01-building-your-application/01-routing/08-internationalization
Description: Next.js has built-in support for internationalized routing and language detection. Learn more here.
[image:] Examples
Next.js has built-in support for internationalized (i18n) routing since v10.0.0. You can provide a list of locales, the default locale, and domain-specific locales and Next.js will automatically handle the routing.
The i18n routing support is currently meant to complement existing i18n library solutions like react-intl, react-i18next, lingui, rosetta, next-intl, next-translate, next-multilingual, tolgee, and others by streamlining the routes and locale parsing.
Getting startedi18n
next.config.js

To get started, add the

config to your

file.

Locales are UTS Locale Identifiers, a standardized format for defining locales.
Generally a Locale Identifier is made up of a language, region, and script separated by a dash: language-region-script. The region and script are optional. An example:
[image:] en-US - English as spoken in the United States
[image:] nl-NL - Dutch as spoken in the Netherlands
[image:] nl - Dutch, no specific region
If user locale is	and it is not listed in your configuration, they will be redirected to	if available, or to the default localenl-BE
nl

otherwise. If you don’t plan to support all regions of a country, it is therefore a good practice to include country locales that will act as fallbacks.

module.exports = { i18n: {
// These are all the locales you want to support in
// your application
locales: ['en-US', 'fr', 'nl-NL'],
// This is the default locale you want to be used when visiting
// a non-locale prefixed path e.g. `/hello` defaultLocale: 'en-US',
// This is a list of locale domains and the default locale they
// should handle (these are only required when setting up domain routing)

next.config.js (js)

// Note: subdomains must be included in the domain value to be matched e.g. "fr.example.com". domains: [
{ domain: 'example.com', defaultLocale: 'en-US',
},
{ domain: 'example.nl', defaultLocale: 'nl-NL',
},
{ domain: 'example.fr', defaultLocale: 'fr',
// an optional http field can also be used to test
// locale domains locally with http instead of https http: true,
},
],
} },
Locale Strategies
There are two locale handling strategies: Sub-path Routing and Domain Routing.
Sub-path Routing
Sub-path Routing puts the locale in the url path.
next.config.js (js)

module.exports = {
i18n: {
locales: ['en-US', 'fr', 'nl-NL'],
} ,
} defaultLocale: 'en-US',

[image:]With the above configuration en-US, fr, and nl-NL will be available to be routed to, anden-US

pages/blog.js the following urls would be available:

is the default locale. If you have a

/blog
/fr/blog
/nl-nl/blog

The default locale does not have a prefix.
Domain Routing
By using domain routing you can configure locales to be served from different domains:

next.config.js (js)module.exports = {
i18n: {
locales: ['en-US', 'fr', 'nl-NL', 'nl-BE'],
defaultLocale: 'en-US',
domains: [
{ // Note: subdomains must be included in the domain value to be matched
// e.g. www.example.com should be used if that is the expected hostname
} defaultLocale: 'en-US',
domain: 'example.com',
{ domain: 'example.fr',
,
} defaultLocale: 'fr',
{ domain: 'example.nl',
,
defaultLocale: 'nl-NL',
// specify other locales that should be redirected
// to this domain
], ,
} },
} locales: ['nl-BE'],

For example if you have pages/blog.js the following urls will be available:
example.com/blog www.example.com/blog example.fr/blog example.nl/blog example.nl/nl-BE/blog

Automatic Locale Detection
When a user visits the application root (generally /), Next.js will try to automatically detect which locale the user prefers based on the header and the current domain.Accept-Language

If a locale other than the default locale is detected, the user will be redirected to either:
[image:] When using Sub-path Routing: The locale prefixed path
[image:] When using Domain Routing: The domain with that locale specified as the defaultfr;q=0.9

When using Domain Routing, if a user with the Accept-Language header since that domain handles the fr locale by default.example.fr

When using Sub-path Routing, the user would be redirected to /fr.

visits example.com, they will be redirected to

Prefixing the Default Locale
With Next.js 12 and Middleware, we can add a prefix to the default locale with a workaround.next.config.js
"default"

For example, here’s a

file with support for a few languages. Note the

locale has been added intentionally.
next.config.js (js)module.exports = {
i18n: {
locales: ['default', 'en', 'de', 'fr'],
} trailingSlash: true,
} localeDetection: false,
defaultLocale: 'default',
,

Next, we can use Middleware to add custom routing rules:

middleware.ts (ts)import { NextRequest, NextResponse } from 'next/server'
const PUBLIC_FILE = /\.(.*)$/
export async function middleware(req: NextRequest) {
if (
req.nextUrl.pathname.startsWith('/_next') ||
) PUBLIC_FILE.test(req.nextUrl.pathname)
req.nextUrl.pathname.includes('/api/') ||
} return
{
if (req.nextUrl.locale === 'default') {
const locale = req.cookies.get('NEXT_LOCALE')?.value || 'en'
) new URL(`/${locale}${req.nextUrl.pathname}${req.nextUrl.search}`, req.url)
return NextResponse.redirect(
} }

[image:]This Middleware skips adding the default prefix to API Routes and public files like fonts or images. If a request is made to the default locale, we redirect to our prefix /en.
Disabling Automatic Locale Detection
The automatic locale detection can be disabled with:
next.config.js (js)module.exports = {
i18n: {
} ,
} localeDetection: false,

When localeDetection is set to false Next.js will no longer automatically redirect based on the user’s preferred locale and will only provide locale information detected from either the locale based domain or locale path as described above.
Accessing the locale informationuseRouter()

You can access the locale information via the Next.js router. For example, using the available:
[image:] locale contains the currently active locale.
[image:] locales contains all configured locales.
[image:] defaultLocale contains the configured default locale.getStaticProps
locales

hook the following properties are

When pre-rendering pages with to the function.

or getServerSideProps, the locale information is provided in the context provided

When leveraging getStaticPaths, the configured locales are provided in the context parameter of the function under the configured defaultLocale under defaultLocale.

and

Transition between locales
to transition between locales.You can use next/link or For next/link, a locale
next/router

prop can be provided to transition to a different locale from the currently active one. If no provided, the currently active locale is used during client-transitions. For example:
import Link from 'next/link'
export default function IndexPage(props) { return (
<Link href="/another" locale="fr"> To /fr/another
) </Link>

prop is

}
When using the example:next/router

methods directly, you can specify the

that should be used via the transition options. Forlocale

import { useRouter } from 'next/router'
export default function IndexPage(props) {
const router = useRouter()
return (
<div
onClick={() => {
· }
} router.push('/another', '/another', { locale: 'fr' })
< to /fr/another
}
) /div>

Note that to handle switching only the locale while preserving all routing information such as dynamic route query values or hidden href query values, you can provide the href parameter as an object:
import { useRouter } from 'next/router'
const router = useRouter()
const { pathname, asPath, query } = router
// change just the locale and maintain all other route information including href's query
router.push({ pathname, query }, asPath, { locale: nextLocale })

See here for more information on the object structure for router.push. If

Leveraging the	cookieyou have a href that already includes the locale you can opt-out of automatically handling the locale prefixing:
import Link from 'next/link'
export default function IndexPage(props) {
return (
<Link href="/fr/another" locale={false}>
< To /fr/another
}
) /Link>
NEXT_LOCALE

Next.js supports overriding the accept-language header with a	cookie. This cookie can be set using aNEXT_LOCALE=the-locale

language switcher and then when a user comes back to the site it will leverage the locale specified in the cookie when redirecting from
/ to the correct locale location.NEXT_LOCALE=en
en

For example, if a user prefers the locale fr in their accept-language header but a
visiting / the user will be redirected to the en locale location until the cookie is removed or expired.
Search Engine Optimizationlang
<html>

cookie is set the

locale when

Since Next.js knows what language the user is visiting it will automatically add thelocale

attribute to the

tag.

Next.js doesn’t know about variants of a page so it’s up to you to add the	meta tags using next/head. You can learn morehreflang
hreflang

about	in the Google Webmasters documentation.
How does this work with Static Generation?
Note that Internationalized Routing does not integrate with output: 'export' as it does not leverage the Next.js routing layer. Hybrid Next.js applications that do not use output: 'export' are fully supported.
Dynamic Routes and	PagesgetStaticProps

For pages using getStaticProps with Dynamic Routes, all locale variants of the page desired to be prerendered need to be returnedparams
locale

from getStaticPaths. Along with the you want to render. For example:

object returned for paths, you can also return a

field specifying which locale
pages/blog/[slug].js (jsx)export const getStaticPaths = ({ locales }) => {
return {
paths: [
// if no `locale` is provided only the defaultLocale will be generated
] { params: { slug: 'post-1' }, locale: 'fr' },
{ params: { slug: 'post-1' }, locale: 'en-US' },
,
}
} fallback: true,

For Automatically Statically Optimized and non-dynamic getStaticProps pages, a version of the page will be generated for each locale. This is important to consider because it can increase build times depending on how many locales are configured insidegetStaticProps.

For example, if you have 50 locales configured with 10 non-dynamic pages using getStaticProps, this means be called 500 times. 50 versions of the 10 pages will be generated during each build.getStaticProps

will

To decrease the build time of dynamic pages with getStaticProps, use a fallback mode. This allows you to return only the most popular paths and locales from getStaticPaths for prerendering during the build. Then, Next.js will build the remaining pages at runtime as they are requested.
Automatically Statically Optimized Pages
For pages that are automatically statically optimized, a version of the page will be generated for each locale.
Non-dynamic getStaticProps Pages
For non-dynamic getStaticProps pages, a version is generated for each locale like above. getStaticProps is called with eachlocale that is being rendered. If you would like to opt-out of a certain locale from being pre-rendered, you can return
true from getStaticProps and this variant of the page will not be generated.
export async function getStaticProps({ locale }) {
// Call an external API endpoint to get posts.
// You can use any data fetching library
const res = await fetch(`https://.../posts?locale=${locale}`)
const posts = await res.json()
if (posts.length === 0) {
return {
}
} notFound: true,
// By returning { props: posts }, the Blog component
// will receive `posts` as a prop at build time
return {
props: {
} posts,
}
} ,
notFound:

Limits for the i18n config

locales: 100 total locales
domains: 100 total locale domain items
Good to know: These limits have been added initially to prevent potential performance issues at build time. You can workaround these limits with custom routing using Middleware in Next.js 12.

4.1.1.9 - Authenticating
Documentation path: /03-pages/01-building-your-application/01-routing/09-authenticating
Description: Learn about authentication patterns in Next.js apps and explore a few examples.

Authentication verifies who a user is, while authorization controls what a user can access. Next.js supports multiple authentication patterns, each designed for different use cases. This page will go through each case so that you can choose based on your constraints.
Authentication Patterns
The first step to identifying which authentication pattern you need is understanding the data-fetching strategy you want. We can then determine which authentication providers support this strategy. There are two main patterns:
[image:] Use static generation to server-render a loading state, followed by fetching user data client-side. [image:] Fetch user data server-side to eliminate a flash of unauthenticated content.
Authenticating Statically Generated Pages
Next.js automatically determines that a page is static if there are no blocking data requirements. This means the absence of getServerSideProps and getInitialProps in the page. Instead, your page can render a loading state from the server, followed by fetching the user client-side.
One advantage of this pattern is it allows pages to be served from a global CDN and preloaded using next/link. In practice, this results in a faster TTI (Time to Interactive).
Let’s look at an example for a profile page. This will initially render a loading skeleton. Once the request for a user has finished, it will show the user’s name:
pages/profile.js (jsx)import useUser from '../lib/useUser'
import Layout from '../components/Layout'
const Profile = () => {
// Fetch the user client-side
const { user } = useUser({ redirectTo: '/login' })
// Server-render loading state
if (!user || user.isLoggedIn === false) {
} return <Layout>Loading...</Layout>
// Once the user request finishes, show the user
return (
<Layout>
<h1>Your Profile</h1>
}
) /Layout>
< <pre>{JSON.stringify(user, null, 2)}</pre>
export default Profile

You can view this example in action. Check out thewith-iron-session

Authenticating Server-Rendered Pages

example to see how it works.

If you export an async function called getServerSideProps from a page, Next.js will pre-render this page on each request using the data returned by getServerSideProps.
export async function getServerSideProps(context) {
return {
}
} props: {}, // Will be passed to the page component as props

Let’s transform the profile example to use server-side rendering. If there’s a session, return in the page. Notice there is not a loading skeleton in this example.user

as a prop to the

component
pages/profile.js (jsx)import withSession from '../lib/session'
Profile

import Layout from '../components/Layout'
export const getServerSideProps = withSession(async function ({ req, res }) { const { user } = req.session
if (!user) { return {
redirect: { destination: '/login', permanent: false,
} },
}
return {
} props: { user },
})
const Profile = ({ user }) => {
// Show the user. No loading state is required return (
<Layout>
<h1>Your Profile</h1>
<pre>{JSON.stringify(user, null, 2)}</pre>
) </Layout>
}
export default Profile
An advantage of this pattern is preventing a flash of unauthenticated content before redirecting. It’s important to note fetching user data in getServerSideProps will block rendering until the request to your authentication provider resolves. To prevent creating a bottleneck and increasing your TTFB (Time to First Byte), you should ensure your authentication lookup is fast. Otherwise, consider static generation.
Authentication Providers
Now that we’ve discussed authentication patterns, let’s look at specific providers and explore how they’re used with Next.js.
Bring Your Own Database
[image:] Examples
- [with-iron-session](https://github.com/vercel/next.js/tree/canary/examples/with-iron-session) - [next-auth-example] (https://github.com/nextauthjs/next-auth-example)
If you have an existing database with user data, you’ll likely want to utilize an open-source solution that’s provider agnostic.
[image:] If you want a low-level, encrypted, and stateless session utility use iron-session.
[image:] If you want a full-featured authentication system with built-in providers (Google, Facebook, GitHub…), JWT, JWE, email/password, magic links and more… use next-auth.
Both of these libraries support either authentication pattern. If you’re interested in Passport, we also have examples for it using secure and encrypted cookies:
[image:] with-passport
[image:] with-passport-and-next-connect
Other Providers
To see examples with other authentication providers, check out the examples folder. [image:] Examples
- [Auth0](https://github.com/vercel/next.js/tree/canary/examples/auth0) - [Clerk] (https://github.com/vercel/next.js/tree/canary/examples/with-clerk) - [Firebase] (https://github.com/vercel/next.js/tree/canary/examples/with-firebase) - [Magic] (https://github.com/vercel/next.js/tree/canary/examples/with-magic) - [Nhost] (https://github.com/vercel/next.js/tree/canary/examples/with-nhost-auth-realtime-graphql) - [Ory] (https://github.com/vercel/examples/tree/main/solutions/auth-with-ory) - [Supabase] (https://github.com/vercel/next.js/tree/canary/examples/with-supabase) - [Supertokens] (https://github.com/vercel/next.js/tree/canary/examples/with-supertokens) - [Userbase] (https://github.com/vercel/next.js/tree/canary/examples/with-userbase)

4.1.1.10 - Middleware
Documentation path: /03-pages/01-building-your-application/01-routing/10-middleware
Description: Learn how to use Middleware to run code before a request is completed.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.2 - Rendering
Documentation path: /03-pages/01-building-your-application/02-rendering/index
Description: Learn the fundamentals of rendering in React and Next.js.

By default, Next.js pre-renders every page. This means that Next.js generates HTML for each page in advance, instead of having it all done by client-side JavaScript. Pre-rendering can result in better performance and SEO.
Each generated HTML is associated with minimal JavaScript code necessary for that page. When a page is loaded by the browser, its JavaScript code runs and makes the page fully interactive (this process is called hydration in React).
Pre-rendering
Next.js has two forms of pre-rendering: Static Generation and Server-side Rendering. The difference is in when it generates the HTML for a page.
[image:] Static Generation: The HTML is generated at build time and will be reused on each request. [image:] Server-side Rendering: The HTML is generated on each request.
Importantly, Next.js lets you choose which pre-rendering form you’d like to use for each page. You can create a “hybrid” Next.js app by using Static Generation for most pages and using Server-side Rendering for others.
We recommend using Static Generation over Server-side Rendering for performance reasons. Statically generated pages can be cached by CDN with no extra configuration to boost performance. However, in some cases, Server-side Rendering might be the only option.
You can also use client-side data fetching along with Static Generation or Server-side Rendering. That means some parts of a page can be rendered entirely by clientside JavaScript. To learn more, take a look at the Data Fetching documentation.

4.1.2.1 - Server-side Rendering (SSR)
Documentation path: /03-pages/01-building-your-application/02-rendering/01-server-side-rendering
Description: Use Server-side Rendering to render pages on each request.

Also referred to as “SSR” or “Dynamic Rendering”.
If a page uses Server-side Rendering, the page HTML is generated on each request.export
async

To use Server-side Rendering for a page, you need to called by the server on every request.

an

function called getServerSideProps. This function will be

For example, suppose that your page needs to pre-render frequently updated data (fetched from an external API). You can write
getServerSideProps which fetches this data and passes it to Page like below:
export default function Page({ data }) {
} // Render data...
// This gets called on every request
export async function getServerSideProps() {
// Fetch data from external API
const res = await fetch(`https://.../data`) const data = await res.json()
// Pass data to the page via props
} return { props: { data } }getServerSideProps

As you can see,getServerSideProps

request instead of on build time. To learn more about howgetServerSideProps

is similar to getStaticProps, but the difference is that works, check out our Data Fetching documentation.

is run on every

4.1.2.2 - Static Site Generation (SSG)
Documentation path: /03-pages/01-building-your-application/02-rendering/02-static-site-generation
Description: Use Static Site Generation (SSG) to pre-render pages at build time.
[image:] Examples
If a page uses Static Generation, the page HTML is generated at build time. That means in production, the page HTML is generated when you run next build. This HTML will then be reused on each request. It can be cached by a CDN.
In Next.js, you can statically generate pages with or without data. Let’s take a look at each case.
Static Generation without data
By default, Next.js pre-renders pages using Static Generation without fetching data. Here’s an example:function About() {
} return <div>About</div> export default About

Note that this page does not need to fetch any external data to be pre-rendered. In cases like this, Next.js generates a single HTML file per page during build time.
Static Generation with data
Some pages require fetching external data for pre-rendering. There are two scenarios, and one or both might apply. In each case, you can use these functions that Next.js provides:
1. Your page content depends on external data: Use getStaticProps.
2. Your page paths depend on external data: Use getStaticPaths (usually in addition to getStaticProps).
Scenario 1: Your page content depends on external data
Example: Your blog page might need to fetch the list of blog posts from a CMS (content management system).// TODO: Need to fetch `posts` (by calling some API endpoint)
//
export default function Blog({ posts }) {
before this page can be pre-rendered.
return (

{posts.map((post) => (
</)}
) {post.title}
ul>
})

To fetch this data on pre-render, Next.js allows you to export an async function called getStaticProps from the same file. This

To learn more about how	works, check out the Data Fetching documentation.function gets called at build time and lets you pass fetched data to the page’s props on pre-render.
export default function Blog({ posts }) {
} // Render posts...
// This function gets called at build time
export async function getStaticProps() {
// Call an external API endpoint to get posts
const res = await fetch('https://.../posts')
const posts = await res.json()
// By returning { props: { posts } }, the Blog component
// will receive `posts` as a prop at build time
return {
props: {
} posts,
}
} ,
getStaticProps

Scenario 2: Your page paths depend on external data
Next.js allows you to create pages with dynamic routes. For example, you can create a file called pages/posts/[id].js to show aid: 1

[image:]single blog post based on id. This will allow you to show a blog post with	when you access posts/1.
To learn more about dynamic routing, check the Dynamic Routing documentation.
However, which	you want to pre-render at build time might depend on external data.id

Example: suppose that you’ve only added one blog post (with id: 1) to the database. In this case, you’d only want to pre-render at build time.posts/1

Later, you might add the second post with id: 2. Then you’d want to pre-render	as well.posts/2

So your page paths that are pre-rendered depend on external data. To handle this, Next.js lets you export an async function called getStaticPaths from a dynamic page (pages/posts/[id].js in this case). This function gets called at build time and lets you specify which paths you want to pre-render.// This function gets called at build time
export async function getStaticPaths() {
// Call an external API endpoint to get posts
const res = await fetch('https://.../posts')
const posts = await res.json()
// Get the paths we want to pre-render based on posts
const paths = posts.map((post) => ({
} params: { id: post.id },
))
// We'll pre-render only these paths at build time.
} return { paths, fallback: false }
// { fallback: false } means other routes should 404.

Also in pages/posts/[id].js, you need to export use it to pre-render the page:getStaticProps

so that you can fetch the data about the post with this

and

id

export default function Post({ post }) {
} // Render post...
export async function getStaticPaths() {
} // ...
// This also gets called at build time
export async function getStaticProps({ params }) {
// params contains the post `id`.
// If the route is like /posts/1, then params.id is 1
const res = await fetch(`https://.../posts/${params.id}`)
const post = await res.json()
} return { props: { post } }
// Pass post data to the page via props

To learn more about how	works, check out the Data Fetching documentation.getStaticPaths

When should I use Static Generation?
We recommend using Static Generation (with and without data) whenever possible because your page can be built once and served by CDN, which makes it much faster than having a server render the page on every request.
You can use Static Generation for many types of pages, including:
[image:] Marketing pages
[image:] Blog posts and portfolios
[image:] E-commerce product listings [image:] Help and documentation
You should ask yourself: “Can I pre-render this page ahead of a user’s request?” If the answer is yes, then you should choose Static Generation.
On the other hand, Static Generation is not a good idea if you cannot pre-render a page ahead of a user’s request. Maybe your page shows frequently updated data, and the page content changes on every request.

In cases like this, you can do one of the following:
[image:] Use Static Generation with Client-side data fetching: You can skip pre-rendering some parts of a page and then use client-side JavaScript to populate them. To learn more about this approach, check out the Data Fetching documentation.
[image:] Use Server-Side Rendering: Next.js pre-renders a page on each request. It will be slower because the page cannot be cached by a CDN, but the pre-rendered page will always be up-to-date. We’ll talk about this approach below.

4.1.2.3 - Automatic Static Optimization
Documentation path: /03-pages/01-building-your-application/02-rendering/04-automatic-static-optimization
Description: Next.js automatically optimizes your app to be static HTML whenever possible. Learn how it works here.

Next.js automatically determines that a page is static (can be prerendered) if it has no blocking data requirements. This determinationgetServerSideProps
getInitialProps

is made by the absence of

and

in the page.

This feature allows Next.js to emit hybrid applications that contain both server-rendered and statically generated pages.
Statically generated pages are still reactive: Next.js will hydrate your application client-side to give it full interactivity.
One of the main benefits of this feature is that optimized pages require no server-side computation, and can be instantly streamed to the end-user from multiple CDN locations. The result is an ultra fast loading experience for your users.
How it works
If getServerSideProps or getInitialProps is present in a page, Next.js will switch to render the page on-demand, per-request (meaning Server-Side Rendering).
If the above is not the case, Next.js will statically optimize your page automatically by prerendering the page to static HTML. During prerendering, the router’s query object will be empty since we do not have query information to provide during this phase.query

After hydration, Next.js will trigger an update to your application to provide the route parameters in the The cases where the query will be updated after hydration triggering another render are:
[image:] The page is a dynamic-route.
[image:] The page has query values in the URL.next.config.js

object.

Rewrites are configured in your	since these can have parameters that may need to be parsed and provided in thequery.

To be able to distinguish if the query is fully updated and ready for use, you can leverage the
Good to know: Parameters added with dynamic routes to a page that’s using the query object.getStaticProps
.html

field on next/router.
will always be available insideisReady

will emitnext build

files for statically optimized pages. For example, the result for the page

would be:
Terminal (bash).next/server/pages/about.html
pages/about.js

And if you add

to the page, it will then be JavaScript, like so:

Terminal (bash).next/server/pages/about.js
getServerSideProps

Caveats
[image:] If you have a custom App with getInitialProps then this optimization will be turned off in pages without Static Generation.
[image:] If you have a custom Document with getInitialProps be sure you check if ctx.req is defined before assuming the page is server-side rendered. ctx.req will be undefined for pages that are prerendered.
[image:][image:] Avoid using the asPath value on next/router in the rendering tree until the router’s isReady field is true. Statically optimized pages only know asPath on the client and not the server, so using it as a prop may lead to mismatch errors. Theactive-class-
name

example demonstrates one way to use asPath as a prop.

4.1.2.4 - Client-side Rendering (CSR)
Documentation path: /03-pages/01-building-your-application/02-rendering/05-client-side-rendering
Description: Learn how to implement client-side rendering in the Pages Router.
Related:
Title: Related
Related Description: Learn about the alternative rendering methods in Next.js.
Links:
[image:] pages/building-your-application/rendering/server-side-rendering [image:] pages/building-your-application/rendering/static-site-generation
[image:] pages/building-your-application/data-fetching/incremental-static-regeneration [image:] app/building-your-application/routing/loading-ui-and-streaming

In Client-Side Rendering (CSR) with React, the browser downloads a minimal HTML page and the JavaScript needed for the page. The JavaScript is then used to update the DOM and render the page. When the application is first loaded, the user may notice a slight delay before they can see the full page, this is because the page isn’t fully rendered until all the JavaScript is downloaded, parsed, and executed.
After the page has been loaded for the first time, navigating to other pages on the same website is typically faster, as only necessary data needs to be fetched, and JavaScript can re-render parts of the page without requiring a full page refresh.
In Next.js, there are two ways you can implement client-side rendering:
1. Using React’s useEffect() hook inside your pages instead of the server-side rendering methods (getStaticProps and
getServerSideProps).
2. Using a data fetching library like SWR or TanStack Query to fetch data on the client (recommended).useEffect()

Here’s an example of using

inside a Next.js page:

pages/index.js (jsx)import React, { useState, useEffect } from 'react'
export function Page() {
const [data, setData] = useState(null)
useEffect(() => {
const fetchData = async () => {
const response = await fetch('https://api.example.com/data')
if (!response.ok) {
} throw new Error(`HTTP error! status: ${response.status}`)
} setData(result)
const result = await response.json()
fetchData().catch((e) => {
// handle the error as needed
},))
} console.error('An error occurred while fetching the data: ', e)
[]
} return <p>{data ? `Your data: ${data}` : 'Loading...'}</p>

In the example above, the component starts by rendering Loading	Then, once the data is fetched, it re-renders and displays the
data.
Although fetching data in a useEffect is a pattern you may see in older React Applications, we recommend using a data-fetching library for better performance, caching, optimistic updates, and more. Here’s a minimum example using SWR to fetch data on the client:
pages/index.js (jsx)import useSWR from 'swr'
export function Page() {
const { data, error, isLoading } = useSWR(
) fetcher
'https://api.example.com/data',

if (isLoading) return <p>Loading...</p>
} return <p>Your Data: {data}</p>
if (error) return <p>Failed to load.</p>

Good to know:
Keep in mind that CSR can impact SEO. Some search engine crawlers might not execute JavaScript and therefore only see the initial empty or loading state of your application. It can also lead to performance issues for users with slower internet connections or devices, as they need to wait for all the JavaScript to load and run before they can see the full page. Next.js promotes a hybrid approach that allows you to use a combination of server-side rendering, static site generation, and client- side rendering, depending on the needs of each page in your application. In the App Router, you can also use Loading UI with Suspense to show a loading indicator while the page is being rendered.

4.1.2.5 - Edge and Node.js Runtimes
Documentation path: /03-pages/01-building-your-application/02-rendering/06-edge-and-nodejs-runtimes
Description: Learn more about the switchable runtimes (Edge and Node.js) in Next.js.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.3 - Data Fetching
Documentation path: /03-pages/01-building-your-application/03-data-fetching/index
Description: Next.js allows you to fetch data in multiple ways, with pre-rendering, server-side rendering or static-site generation, and incremental static regeneration. Learn how to manage your application data in Next.js.

Data fetching in Next.js allows you to render your content in different ways, depending on your application’s use case. These include pre-rendering with Server-side Rendering or Static Generation, and updating or creating content at runtime with Incremental Static Regeneration.
Examples
[image:] WordPress Example(Demo)
[image:] Blog Starter using markdown files (Demo) [image:] DatoCMS Example (Demo)
[image:] TakeShape Example (Demo) [image:] Sanity Example (Demo)
[image:] Prismic Example (Demo)
[image:] Contentful Example (Demo) [image:] Strapi Example (Demo)
[image:] Prepr Example (Demo)
[image:] Agility CMS Example (Demo) [image:] Cosmic Example (Demo)
[image:] ButterCMS Example (Demo) [image:] Storyblok Example (Demo) [image:] GraphCMS Example (Demo) [image:] Kontent Example (Demo)
[image:] Static Tweet Demo
[image:] Enterspeed Example (Demo)

4.1.3.1 - getStaticProps
Documentation path: /03-pages/01-building-your-application/03-data-fetching/01-get-static-props
Description: Fetch data and generate static pages with `getStaticProps`. Learn more about this API for data fetching in Next.js.

If you export a function called getStaticProps (Static Site Generation) from a page, Next.js will pre-render this page at build time using the props returned by getStaticProps.
pages/index.tsx (tsx)import type { InferGetStaticPropsType, GetStaticProps } from 'next'
type Repo = {
} stargazers_count: number
name: string
export const getStaticProps = (async (context) => {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { props: { repo } }
const repo = await res.json()
} repo: Repo
) satisfies GetStaticProps<{
·
export default function Page({
} repo, GetStaticPropsType<typeof getStaticProps>) {
} return repo.stargazers_count
: Infer

pages/index.js (jsx)export async function getStaticProps() {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { props: { repo } }
const repo = await res.json()
export default function Page({ repo }) {
} return repo.stargazers_count

Note that irrespective of rendering type, any	will be passed to the page component and can be viewed on the client-sideprops

in the initial HTML. This is to allow the page to be hydrated correctly. Make sure that you don’t pass any sensitive information that shouldn’t be available on the client in props.
When should I use getStaticProps?
You should use	if:getStaticProps

The data required to render the page is available at build time ahead of a user’s request The data comes from a headless CMSgetStaticProps
HTML
JSON

The page must be pre-rendered (for SEO) and be very fast — cached by a CDN for performance

generates

and

files, both of which can be

[image:] The data can be publicly cached (not user-specific). This condition can be bypassed in certain specific situation by using a Middleware to rewrite the path.
When does getStaticProps rungetStaticProps

always runs on the server and never on the client. You can validate code written inside from the client-side bundle with this tool.getStaticProps

always runs duringgetStaticProps getStaticProps getStaticProps getStaticProps getStaticProps
next build

runs in the background when using fallback: true
is called before initial render when using fallback: blocking
runs in the background when using revalidate
runs on-demand in the background when using revalidate()

is removed

When combined with Incremental Static Regeneration, revalidated, and the fresh page served to the browser.getStaticProps
getStaticProps

will run in the background while the stale page is being

does not have access to the incoming request (such as query parameters or HTTP headers) as it generates static HTML. If you need access to the request for your page, consider using Middleware in addition to getStaticProps.
Using getStaticProps to fetch data from a CMS
The following example shows how you can fetch a list of blog posts from a CMS.
pages/blog.tsx (tsx)// posts will be populated at build time by getStaticProps()
export default function Blog({ posts }) {
return (

{posts.map((post) => (
) {post.title}
}
)
</)}
ul>
// This function gets called at build time on server-side.
// It won't be called on client-side, so you can even do
// direct database queries.
export async function getStaticProps() {
// Call an external API endpoint to get posts.
// You can use any data fetching library
const res = await fetch('https://.../posts')
const posts = await res.json()
// By returning { props: { posts } }, the Blog component
// will receive `posts` as a prop at build time
return {
props: {
} posts,
}
} ,

pages/blog.js (jsx)// posts will be populated at build time by getStaticProps()
export default function Blog({ posts }) {
return (

{posts.map((post) => (
) {post.title}
}
)
</)}
ul>
// This function gets called at build time on server-side.
// It won't be called on client-side, so you can even do
// direct database queries.
export async function getStaticProps() {
// Call an external API endpoint to get posts.
// You can use any data fetching library
const res = await fetch('https://.../posts')
const posts = await res.json()
// By returning { props: { posts } }, the Blog component
// will receive `posts` as a prop at build time
return {
props: {
} posts,
}
} ,

The	API reference covers all parameters and props that can be used with getStaticProps.getStaticProps

Write server-side code directly

As getStaticProps runs only on the server-side, it will never run on the client-side. It won’t even be included in the JS bundle for the browser, so you can write direct database queries without them being sent to browsers.
This means that instead of fetching an API route from getStaticProps (that itself fetches data from an external source), you can write the server-side code directly in getStaticProps.
Take the following example. An API route is used to fetch some data from a CMS. That API route is then called directly fromgetStaticProps. This shared by using a lib/

produces an additional call, reducing performance. Instead, the logic for fetching the data from the CMS can be directory. Then it can be shared with getStaticProps.
lib/load-posts.js (js)// The following function is shared
// with getStaticProps and API routes
// from a `lib/` directory
export async function loadPosts() {
// Call an external API endpoint to get posts
const data = await res.json()
} return data
const res = await fetch('https://.../posts/')

pages/blog.js (jsx)// pages/blog.js
import { loadPosts } from '../lib/load-posts'
// This function runs only on the server side
export async function getStaticProps() {
// Instead of fetching your `/api` route you can call the same
// function directly in `getStaticProps`
const posts = await loadPosts()
} return { props: { posts } }
// Props returned will be passed to the page component

Alternatively, if you are not using API routes to fetch data, then the data.fetch()
getStaticProps

API can be used directly in

to fetch

To verify what Next.js eliminates from the client-side bundle, you can use the next-code-elimination tool.
Statically generates both HTML and JSON
When a page with getStaticProps is pre-rendered at build time, in addition to the page HTML file, Next.js generates a JSON file holding the result of running getStaticProps.
This JSON file will be used in client-side routing through next/link or next/router. When you navigate to a page that’s pre-rendered using getStaticProps, Next.js fetches this JSON file (pre-computed at build time) and uses it as the props for the page component.
This means that client-side page transitions will not call getStaticProps as only the exported JSON is used.
When using Incremental Static Generation, getStaticProps will be executed in the background to generate the JSON needed for client-side navigation. You may see this in the form of multiple requests being made for the same page, however, this is intended and has no impact on end-user performance.
Where can I use getStaticProps
[image:]can only be exported from a page. You cannot export it from non-page files, _app, _document, or _error.getStaticProps

One of the reasons for this restriction is that React needs to have all the required data before the page is rendered.getStaticProps
getStaticProps

Also, you must use export the page component.

as a standalone function — it will not work if you add

as a property of

Good to know: if you have created a custom app, ensure you are passing the the linked document, otherwise the props will be empty.pageProps

Runs on every request in developmentgetStaticProps

to the page component as shown in

In development (next dev),
Preview Mode

will be called on every request.

You can temporarily bypass static generation and render the page at request time instead of build time using Preview Mode. For example, you might be using a headless CMS and want to preview drafts before they’re published.

4.1.3.2 - getStaticPaths
Documentation path: /03-pages/01-building-your-application/03-data-fetching/02-get-static-paths
Description: Fetch data and generate static pages with `getStaticPaths`. Learn more about this API for data fetching in Next.js.
If a page has Dynamic Routes and uses getStaticProps, it needs to define a list of paths to be statically generated.
When you export a function called getStaticPaths (Static Site Generation) from a page that uses dynamic routes, Next.js will statically pre-render all the paths specified by getStaticPaths.

import type { InferGetStaticPropsType, GetStaticProps, GetStaticPaths,
} from 'next'
type Repo = { name: string
} stargazers_count: number
export const getStaticPaths = (async () => { return {
paths: [
{ params: {
name: 'next.js',
},
}, // See the "paths" section below
],
} fallback: true, // false or "blocking"
}) satisfies GetStaticPaths
export const getStaticProps = (async (context) => {
const res = await fetch('https://api.github.com/repos/vercel/next.js') const repo = await res.json()
return { props: { repo } }
}) satisfies GetStaticProps<{ repo: Repo
}>
export default function Page({ repo,
}: InferGetStaticPropsType<typeof getStaticProps>) {
} return repo.stargazers_count

pages/repo/[name].tsx (tsx)

pages/repo/[name].js (jsx)export async function getStaticPaths() {
return {
paths: [
{ params: {
],
}, , See the "paths" section below
} name: 'next.js',
//
fallback: true, // false or "blocking"
} }
export async function getStaticProps() {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { props: { repo } }
const repo = await res.json()
export default function Page({ repo }) {
} return repo.stargazers_count

The	API reference covers all parameters and props that can be used with getStaticPaths.getStaticPaths

When should I use getStaticPaths?
You should use	if you’re statically pre-rendering pages that use dynamic routes and:getStaticPaths

[image:] The data comes from a headless CMS [image:] The data comes from a database
[image:] The data comes from the filesystem
[image:] The data can be publicly cached (not user-specific)getStaticProps

[image:] The page must be pre-rendered (for SEO) and be very fast — cached by a CDN for performance
When does getStaticPaths run

generates

andHTML

files, both of which can beJSON

will only run during build in production, it will not be called during runtime. You can validate code written inside is removed from the client-side bundle with this tool.getStaticPaths getStaticPaths

How does getStaticProps run with regards to getStaticPaths
runs during	for any paths returned during buildgetStaticProps getStaticProps getStaticProps
next build

runs in the background when using fallback: true
is called before initial render when using fallback: blocking
Where can I use getStaticPaths
[image:] getStaticPaths must be used with getStaticProps
[image:] You cannot use getStaticPaths with getServerSideProps
[image:] You can export getStaticPaths from a Dynamic Route that also uses getStaticProps
[image:] You cannot export getStaticPaths from non-page file (e.g. your components folder)
[image:] You must export getStaticPaths as a standalone function, and not a property of the page component
Runs on every request in development
In development (next dev),	will be called on every request.getStaticPaths

Generating paths on-demand
allows you to control which pages are generated during the build instead of on-demand with fallback. Generating more pages during a build will cause slower builds.getStaticPaths

You can defer generating all pages on-demand by returning an empty array for paths. This can be especially helpful when deploying your Next.js application to multiple environments. For example, you can have faster builds by generating all pages on-demand for previews (but not production builds). This is helpful for sites with hundreds/thousands of static pages.
pages/posts/[id].js (jsx)export async function getStaticPaths() {
// When this is true (in preview environments) don't
// prerender any static pages
// (faster builds, but slower initial page load)
if (process.env.SKIP_BUILD_STATIC_GENERATION) {
return {
}
} fallback: 'blocking',
paths: [],
// Call an external API endpoint to get posts
const res = await fetch('https://.../posts')
const posts = await res.json()
// Get the paths we want to prerender based on posts
// In production environments, prerender all pages
// (slower builds, but faster initial page load)
const paths = posts.map((post) => ({
params: { id: post.id },

}))
} return { paths, fallback: false }
// { fallback: false } means other routes should 404

4.1.3.3 - Forms and Mutations
Documentation path: /03-pages/01-building-your-application/03-data-fetching/03-forms-and-mutations
Description: Learn how to handle form submissions and data mutations with Next.js.

Forms enable you to create and update data in web applications. Next.js provides a powerful way to handle form submissions and data mutations using API Routes.
Good to know:
[image:] We will soon recommend incrementally adopting the App Router and using Server Actions for handling form submissions and data mutations. Server Actions allow you to define asynchronous server functions that can be called directly from your components, without needing to manually create an API Route.
[image:] API Routes do not specify CORS headers, meaning they are same-origin only by default.
[image:] Since API Routes run on the server, we’re able to use sensitive values (like API keys) through Environment Variables without exposing them to the client. This is critical for the security of your application.
Examples
Server-only form
With the Pages Router, you need to manually create API endpoints to handle securely mutating data on the server.
pages/api/submit.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
const data = req.body
} res.status(200).json({ id })
const id = await createItem(data)

pages/api/submit.js (js)export default function handler(req, res) {
const data = req.body
} res.status(200).json({ id })
const id = await createItem(data)

Then, call the API Route from the client with an event handler:

pages/index.tsx (tsx)import { FormEvent } from 'react'
export default function Page() {
async function onSubmit(event: FormEvent<HTMLFormElement>) {
event.preventDefault()
const formData = new FormData(event.currentTarget)
const response = await fetch('/api/submit', {
} body: formData,
method: 'POST',
)
// Handle response if necessary
} // ...
const data = await response.json()
return (
<form onSubmit={onSubmit}>
< <button type="submit">Submit</button>
<input type="text" name="name" />
}
) /form>

pages/index.jsx (jsx)

export default function Page() {
async function onSubmit(event) {
event.preventDefault()
const formData = new FormData(event.target)
const response = await fetch('/api/submit', {
} body: formData,
method: 'POST',
)
// Handle response if necessary
} // ...
const data = await response.json()
return (
<form onSubmit={onSubmit}>
< <button type="submit">Submit</button>
<input type="text" name="name" />
}
) /form>

Form validation
We recommend using HTML validation like

andrequired

for basic client-side form validation.type="email"

For more advanced server-side validation, you can use a schema validation library like zod to validate the form fields before mutating the data:
pages/api/submit.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
import { z } from 'zod'
const schema = z.object({
} // ...
)
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
} // ...
const parsed = schema.parse(req.body)

pages/api/submit.js (js)import { z } from 'zod'
const schema = z.object({
} // ...
)
export default async function handler(req, res) {
} // ...
const parsed = schema.parse(req.body)

Error handling
You can use React state to show an error message when a form submission fails:
pages/index.tsx (tsx)import React, { useState, FormEvent } from 'react'
export default function Page() {
const [isLoading, setIsLoading] = useState<boolean>(false)
const [error, setError] = useState<string | null>(null)
async function onSubmit(event: FormEvent<HTMLFormElement>) {
event.preventDefault()
setIsLoading(true)
setError(null) // Clear previous errors when a new request starts

try {
const formData = new FormData(event.currentTarget) const response = await fetch('/api/submit', {
method: 'POST', body: formData,
})
if (!response.ok) {
} throw new Error('Failed to submit the data. Please try again.')
// Handle response if necessary const data = await response.json()
// ...
} catch (error) {
// Capture the error message to display to the user setError(error.message)
console.error(error)
} finally {
} setIsLoading(false)
}
return (
<div>
{error && <div style={{ color: 'red' }}>{error}</div>}
<form onSubmit={onSubmit}>
<input type="text" name="name" />
<button type="submit" disabled={isLoading}>
{isLoading ? 'Loading...' : 'Submit'}
</button>
</form>
) </div>
}

import React, { useState } from 'react' export default function Page() {
const [isLoading, setIsLoading] = useState(false) const [error, setError] = useState(null)
async function onSubmit(event) { event.preventDefault() setIsLoading(true)
setError(null) // Clear previous errors when a new request starts
try {
const formData = new FormData(event.currentTarget) const response = await fetch('/api/submit', {
method: 'POST', body: formData,
})
if (!response.ok) {
} throw new Error('Failed to submit the data. Please try again.')
// Handle response if necessary const data = await response.json()
// ...
} catch (error) {
// Capture the error message to display to the user setError(error.message)
console.error(error)
} finally {
} setIsLoading(false)

pages/index.jsx (jsx)

}
return (
<div>
{error && <div style={{ color: 'red' }}>{error}</div>}
<form onSubmit={onSubmit}>
<input type="text" name="name" />

<button type="submit" disabled={isLoading}>
</d form>
</ /button>
< {isLoading ? 'Loading...' : 'Submit'}
iv>
})

Displaying loading state
You can use React state to show a loading state when a form is submitting on the server:
import React, { useState, FormEvent } from 'react' export default function Page() {
const [isLoading, setIsLoading] = useState<boolean>(false)
async function onSubmit(event: FormEvent<HTMLFormElement>) { event.preventDefault()
setIsLoading(true) // Set loading to true when the request starts
try {
const formData = new FormData(event.currentTarget) const response = await fetch('/api/submit', {
method: 'POST', body: formData,
})
// Handle response if necessary const data = await response.json()
// ...
} catch (error) {
// Handle error if necessary console.error(error)
} finally {
} setIsLoading(false) // Set loading to false when the request completes

pages/index.tsx (tsx)

}
return (
<form onSubmit={onSubmit}>
<input type="text" name="name" />
<button type="submit" disabled={isLoading}>
{isLoading ? 'Loading...' : 'Submit'}
</button>
) </form>
}
pages/index.jsx (jsx)import React, { useState } from 'react'
export default function Page() {
const [isLoading, setIsLoading] = useState(false)
async function onSubmit(event) {
event.preventDefault()
setIsLoading(true) // Set loading to true when the request starts
try {
const formData = new FormData(event.currentTarget)
const response = await fetch('/api/submit', {
} body: formData,
method: 'POST',
)
// Handle response if necessary
} // ... error) {
const data = await response.json()
catch (
} console.error(error)
// Handle error if necessary
finally {
setIsLoading(false) // Set loading to false when the request completes

} }
return (
<form onSubmit={onSubmit}>
<input type="text" name="name" />
<button type="submit" disabled={isLoading}>
</ /button>
< {isLoading ? 'Loading...' : 'Submit'}
form>
})

Redirecting
If you would like to redirect the user to a different route after a mutation, you can

to any absolute or relative URL:redirect

pages/api/submit.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
} res.redirect(307, `/post/${id}`)
const id = await addPost()

pages/api/submit.js (js)export default async function handler(req, res) {
} res.redirect(307, `/post/${id}`)
const id = await addPost()

Setting cookies
You can set cookies inside an API Route using the

method on the response:setHeader

pages/api/cookie.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
} res.status(200).send('Cookie has been set.')
res.setHeader('Set-Cookie', 'username=lee; Path=/; HttpOnly')

pages/api/cookie.js (js)export default async function handler(req, res) {
} res.status(200).send('Cookie has been set.')
res.setHeader('Set-Cookie', 'username=lee; Path=/; HttpOnly')

Reading cookies
You can read cookies inside an API Route using the

request helper:cookies

pages/api/cookie.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
} // ...
const auth = req.cookies.authorization

pages/api/cookie.js (js)export default async function handler(req, res) {

} // ...
const auth = req.cookies.authorization

Deleting cookies
You can delete cookies inside an API Route using the

method on the response:setHeader

pages/api/cookie.ts (ts)import type { NextApiRequest, NextApiResponse } from 'next'
export default async function handler(
) res: NextApiResponse
req: NextApiRequest,
{
} res.status(200).send('Cookie has been deleted.')
res.setHeader('Set-Cookie', 'username=; Path=/; HttpOnly; Max-Age=0')

pages/api/cookie.js (js)export default async function handler(req, res) {
} res.status(200).send('Cookie has been deleted.')
res.setHeader('Set-Cookie', 'username=; Path=/; HttpOnly; Max-Age=0')

4.1.3.4 - getServerSideProps
Documentation path: /03-pages/01-building-your-application/03-data-fetching/03-get-server-side-props
Description: Fetch data on each request with `getServerSideProps`.

is a Next.js function that can be used to fetch data and render the contents of a page at request time.getServerSideProps

Example
You can use getServerSideProps by exporting it from a Page Component. The example below shows how you can fetch data from a 3rd party API in getServerSideProps, and pass the data to the page as props:
pages/index.tsx (tsx)import type { InferGetServerSidePropsType, GetServerSideProps } from 'next'
type Repo = {
} stargazers_count: number
name: string
export const getServerSideProps = (async () => {
// Fetch data from external API
const res = await fetch('https://api.github.com/repos/vercel/next.js')
const repo: Repo = await res.json()
} return { props: { repo } } ps<{ repo: Repo }>
// Pass data to the page via props
) satisfies GetServerSidePro
export default function Page({
} repo, GetServerSidePropsType<typeof getServerSideProps>) {
: Infer
return (
<main>
< <p>{repo.stargazers_count}</p>
}
) /main>

pages/index.js (jsx)export async function getServerSideProps() {
// Fetch data from external API
const res = await fetch('https://api.github.com/repos/vercel/next.js')
const repo = await res.json()
} return { props: { repo } }
// Pass data to the page via props
export default function Page({ repo }) {
return (
<main>
< <p>{repo.stargazers_count}</p>
}
) /main>

When should I use getServerSideProps?
You should use	if you need to render a page that relies on personalized user data, or information that can onlygetServerSideProps
authorization

be known at request time. For example,	headers or a geolocation.
If you do not need to fetch the data at request time, or would prefer to cache the data and pre-rendered HTML, we recommend usinggetStaticProps.

Behavior

runs on the server.getServerSideProps getServerSideProps getServerSideProps

can only be exported from a page. returns JSON.

When a user visits a page, initial HTML of the page.getServerSideProps

will be used to fetch data at request time, and the data is used to render the

props passed to the page component can be viewed on the client as part of the initial HTML. This is to allow the page to be hydrated correctly. Make sure that you don’t pass any sensitive information that shouldn’t be available on the client in props.next/link

When a user visits the page through
getServerSideProps.

or next/router, Next.js sends an API request to the server, which runs

[image:] You do not have to call a Next.js API Route to fetch data when using getServerSideProps since the function runs on the server. Instead, you can call a CMS, database, or other third-party APIs directly from inside getServerSideProps.
Good to know:
[image:] See getServerSideProps API reference for parameters and props that can be used with getServerSideProps. [image:] You can use the next-code-elimination tool to verify what Next.js eliminates from the client-side bundle.
Error Handling
If an error is thrown inside getServerSideProps, it will show the pages/500.js file. Check out the documentation for 500 page to learn more on how to create it. During development, this file will not be used and the development error overlay will be shown instead.
Edge Cases
Edge Runtime
can be used with both Serverless and Edge Runtimes, and you can set props in both.getServerSideProps

However, currently in the Edge Runtime, you do not have access to the response object. This means that you cannot — for example — add cookies in getServerSideProps. To have access to the response object, you should continue to use the Node.js runtime, which is the default runtime.
You can explicitly set the runtime on a per-page basis by modifying the config, for example:
pages/index.js (jsx)export const config = {
} runtime: 'nodejs', // or "edge"
export const getServerSideProps = async () => {}

Caching with Server-Side Rendering (SSR)
You can use caching headers (Cache-Control) insidewhile-revalidate.
// This value is considered fresh for ten seconds (s-maxage=10).
// If a request is repeated within the next 10 seconds, the previously
// cached value will still be fresh. If the request is repeated before 59 seconds,
// the cached value will be stale but still render (stale-while-revalidate=59).
//
// In the background, a revalidation request will be made to populate the cache
// with a fresh value. If you refresh the page, you will see the new value.
export async function getServerSideProps({ req, res }) {
res.setHeader(
) 'public, s-maxage=10, stale-while-revalidate=59'
'Cache-Control',
return {
}
} props: {},

to cache dynamic responses. For example, usinggetServerSideProps
stale-

However, before reaching for cache-control, we recommend seeing if	with ISR is a better fit for your use case.getStaticProps

4.1.3.5 - Incremental Static Regeneration
Documentation path: /03-pages/01-building-your-application/03-data-fetching/04-incremental-static-regeneration
Description: Learn how to create or update static pages at runtime with Incremental Static Regeneration.
[image:] Examples
Next.js allows you to create or update static pages after you’ve built your site. Incremental Static Regeneration (ISR) enables you to use static-generation on a per-page basis, without needing to rebuild the entire site. With ISR, you can retain the benefits of static while scaling to millions of pages.
Good to know: The edge runtime is currently not compatible with ISR, although you can leverage by setting the cache-control header manually.stale-while-revalidate

To use ISR, add the revalidate prop to getStaticProps: function Blog({ posts }) {
return (

{posts.map((post) => (
<li key={post.id}>{post.title}
))}
)
}
// This function gets called at build time on server-side.
// It may be called again, on a serverless function, if
// revalidation is enabled and a new request comes in export async function getStaticProps() {
const res = await fetch('https://.../posts') const posts = await res.json()
return { props: {
posts,
},
// Next.js will attempt to re-generate the page:
// - When a request comes in
// - At most once every 10 seconds
} revalidate: 10, // In seconds
}
// This function gets called at build time on server-side.
// It may be called again, on a serverless function, if
// the path has not been generated. export async function getStaticPaths() {
const res = await fetch('https://.../posts') const posts = await res.json()
// Get the paths we want to pre-render based on posts const paths = posts.map((post) => ({
params: { id: post.id },
}))
// We'll pre-render only these paths at build time.
// { fallback: 'blocking' } will server-render pages
// on-demand if the path doesn't exist.
} return { paths, fallback: 'blocking' }
export default Blog
When a request is made to a page that was pre-rendered at build time, it will initially show the cached page.
[image:] Any requests to the page after the initial request and before 10 seconds are also cached and instantaneous. [image:] After the 10-second window, the next request will still show the cached (stale) page
[image:] Next.js triggers a regeneration of the page in the background.
[image:] Once the page generates successfully, Next.js will invalidate the cache and show the updated page. If the background regeneration fails, the old page would still be unaltered.
When a request is made to a path that hasn’t been generated, Next.js will server-render the page on the first request. Future requests

will serve the static file from the cache. ISR on Vercel persists the cache globally and handles rollbacks.
Good to know: Check if your upstream data provider has caching enabled by default. You might need to disable (e.g.useCdn:
(for an

false), otherwise a revalidation won’t be able to pull fresh data to update the ISR cache. Caching can occur at a CDNCache-Control

endpoint being requested) when it returns the
On-Demand Revalidation

header.

[image:]If you set a revalidate time of 60, all visitors will see the same generated version of your site for one minute. The only way to invalidate the cache is from someone visiting that page after the minute has passed.
Starting with v12.2.0, Next.js supports On-Demand Incremental Static Regeneration to manually purge the Next.js cache for a specific page. This makes it easier to update your site when:
[image:] Content from your headless CMS is created or updated
[image:] Ecommerce metadata changes (price, description, category, reviews, etc.)
Inside getStaticProps, you do not need to specify revalidate to use on-demand revalidation. If revalidate is omitted, Next.js will use the default value of false (no revalidation) and only revalidate the page on-demand when revalidate() is called.
Good to know: Middleware won’t be executed for On-Demand ISR requests. Instead, call revalidate() on the exact path that you want revalidated. For example, if you have pages/blog/[slug].js and a rewrite from /post-1 -> /blog/post-1, you would need to call res.revalidate('/blog/post-1').
Using On-Demand Revalidation
First, create a secret token only known by your Next.js app. This secret will be used to prevent unauthorized access to the revalidation API Route. You can access the route (either manually or with a webhook) with the following URL structure:
Terminal (bash)https://<your-site.com>/api/revalidate?secret=<token>

Next, add the secret as an Environment Variable to your application. Finally, create the revalidation API Route:
pages/api/revalidate.js (js)export default async function handler(req, res) {
// Check for secret to confirm this is a valid request
if (req.query.secret !== process.env.MY_SECRET_TOKEN) {
} return res.status(401).json({ message: 'Invalid token' }) try {
// this should be the actual path not a rewritten path
// e.g. for "/blog/[slug]" this should be "/blog/post-1"
} return res.json({ revalidated: true })
await res.revalidate('/path-to-revalidate')
catch (err) {
// If there was an error, Next.js will continue
// to show the last successfully generated page
}
} return res.status(500).send('Error revalidating')

View our demo to see on-demand revalidation in action and provide feedback.
Testing on-Demand ISR during development
When running locally with next dev, getStaticProps is invoked on every request. To verify your on-demand ISR configuration is correct, you will need to create a production build and start the production server:
Terminal (bash)$ next build
$ next start

Then, you can confirm that static pages have successfully revalidated.
Error handling and revalidation
If there is an error inside getStaticProps when handling background regeneration, or you manually throw an error, the last successfully generated page will continue to show. On the next subsequent request, Next.js will retry calling getStaticProps.

export async function getStaticProps() {
// If this request throws an uncaught error, Next.js will
// not invalidate the currently shown page and
// retry getStaticProps on the next request.
const res = await fetch('https://.../posts')
const posts = await res.json()
if (!res.ok) {
// If there is a server error, you might want to
// throw an error instead of returning so that the cache is not updated
} throw new Error(`Failed to fetch posts, received status ${res.status}`)
// until the next successful request.
// If the request was successful, return the posts
// and revalidate every 10 seconds.
return {
props: {
} posts,
,
}
} revalidate: 10,

Self-hosting ISR
Incremental Static Regeneration (ISR) works on self-hosted Next.js sites out of the box when you use next start.
You can use this approach when deploying to container orchestrators such as Kubernetes or HashiCorp Nomad. By default, generated assets will be stored in-memory on each pod. This means that each pod will have its own copy of the static files. Stale data may be shown until that specific pod is hit by a request.
To ensure consistency across all pods, you can disable in-memory caching. This will inform the Next.js server to only leverage assets generated by ISR in the file system.
You can use a shared network mount in your Kubernetes pods (or similar setup) to reuse the same file-system cache between different containers. By sharing the same mount, the .next folder which contains the next/image cache will also be shared and re-used.
To disable in-memory caching, set isrMemoryCacheSize to 0 in your next.config.js file:
next.config.js (js)module.exports = {
experimental: {
// Defaults to 50MB
} ,
} isrMemoryCacheSize: 0, // cache size in bytes

Good to know: You might need to consider a race condition between multiple pods trying to update the cache at the same time, depending on how your shared mount is configured.
Version History

	Version
	Changes

	v12.2.0
	On-Demand ISR is stable

	v12.1.0
	On-Demand ISR added (beta).

	v12.0.0
	Bot-aware ISR fallback added.

	v9.5.0
	Base Path added.

4.1.3.6 - Client-side Fetching
Documentation path: /03-pages/01-building-your-application/03-data-fetching/05-client-side
Description: Learn about client-side data fetching, and how to use SWR, a data fetching React hook library that handles caching, revalidation, focus tracking, refetching on interval and more.

Client-side data fetching is useful when your page doesn’t require SEO indexing, when you don’t need to pre-render your data, or when the content of your pages needs to update frequently. Unlike the server-side rendering APIs, you can use client-side data fetching at the component level.
If done at the page level, the data is fetched at runtime, and the content of the page is updated as the data changes. When used at the component level, the data is fetched at the time of the component mount, and the content of the component is updated as the data changes.
It’s important to note that using client-side data fetching can affect the performance of your application and the load speed of your pages. This is because the data fetching is done at the time of the component or pages mount, and the data is not cached.
Client-side data fetching with useEffect
The following example shows how you can fetch data on the client side using the useEffect hook.import { useState, useEffect } from 'react'
function Profile() {
const [data, setData] = useState(null)
const [isLoading, setLoading] = useState(true)
useEffect(() => {
fetch('/api/profile-data')
.then((res) => res.json())
.then((data) => {
}, [)
} setLoading(false)
setData(data)
])
if (isLoading) return <p>Loading...</p>
if (!data) return <p>No profile data</p>
return (
<div>
< <p>{data.bio}</p>
<h1>{data.name}</h1>
}
) /div>

Client-side data fetching with SWR
The team behind Next.js has created a React hook library for data fetching called SWR. It is highly recommended if you are fetching data on the client-side. It handles caching, revalidation, focus tracking, refetching on intervals, and more.
Using the same example as above, we can now use SWR to fetch the profile data. SWR will automatically cache the data for us and will revalidate the data if it becomes stale.
For more information on using SWR, check out the SWR docs.import useSWR from 'swr'
const fetcher = (...args) => fetch(...args).then((res) => res.json())
const { data, error } = useSWR('/api/profile-data', fetcher)
function Profile() {
if (error) return <div>Failed to load</div>
if (!data) return <div>Loading...</div>
return (
<div>
< <p>{data.bio}</p>
<h1>{data.name}</h1>
/div>

})

4.1.4 - Styling
Documentation path: /03-pages/01-building-your-application/04-styling/index
Description: Learn the different ways you can style your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.4.1 - CSS Modules
Documentation path: /03-pages/01-building-your-application/04-styling/01-css-modules
Description: Style your Next.js Application using CSS Modules.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.4.2 - Tailwind CSS
Documentation path: /03-pages/01-building-your-application/04-styling/02-tailwind-css
Description: Style your Next.js Application using Tailwind CSS.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.4.3 - CSS-in-JS
Documentation path: /03-pages/01-building-your-application/04-styling/03-css-in-js
Description: Use CSS-in-JS libraries with Next.js

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.4.4 - Sass
Documentation path: /03-pages/01-building-your-application/04-styling/04-sass
Description: Learn how to use Sass in your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5 - Optimizations
Documentation path: /03-pages/01-building-your-application/05-optimizing/index
Description: Optimize your Next.js application for best performance and user experience.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.1 - Image Optimization
Documentation path: /03-pages/01-building-your-application/05-optimizing/01-images
Description: Optimize your images with the built-in `next/image` component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.2 - Font Optimization
Documentation path: /03-pages/01-building-your-application/05-optimizing/02-fonts
Description: Optimize your application's web fonts with the built-in `next/font` loaders.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.3 - Script Optimization
Documentation path: /03-pages/01-building-your-application/05-optimizing/03-scripts
Description: Optimize 3rd party scripts with the built-in Script component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.4 - Static Assets
Documentation path: /03-pages/01-building-your-application/05-optimizing/05-static-assets
Description: Next.js allows you to serve static files, like images, in the public directory. You can learn how it works here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.5 - Lazy Loading
Documentation path: /03-pages/01-building-your-application/05-optimizing/06-lazy-loading
Description: Lazy load imported libraries and React Components to improve your application's loading performance.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.6 - Analytics
Documentation path: /03-pages/01-building-your-application/05-optimizing/07-analytics
Description: Measure and track page performance using Next.js Speed Insights

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.7 - OpenTelemetry
Documentation path: /03-pages/01-building-your-application/05-optimizing/08-open-telemetry
Description: Learn how to instrument your Next.js app with OpenTelemetry.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.8 - Instrumentation
Documentation path: /03-pages/01-building-your-application/05-optimizing/09-instrumentation
Description: Learn how to use instrumentation to run code at server startup in your Next.js app

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.5.9 - Third Party Libraries
Documentation path: /03-pages/01-building-your-application/05-optimizing/11-third-party-libraries
Description: Optimize the performance of third-party libraries in your application with the `@next/third-parties` package.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.6 - Configuring
Documentation path: /03-pages/01-building-your-application/06-configuring/index
Description: Learn how to configure your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.6.1 - TypeScript
Documentation path: /03-pages/01-building-your-application/06-configuring/01-typescript
Description: Next.js provides a TypeScript-first development experience for building your React application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.6.2 - ESLint
Documentation path: /03-pages/01-building-your-application/06-configuring/02-eslint
Description: Next.js reports ESLint errors and warnings during builds by default. Learn how to opt-out of this behavior here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.6.3 - Environment Variables
Documentation path: /03-pages/01-building-your-application/06-configuring/03-environment-variables
Description: Learn to add and access environment variables in your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.6.4 - Absolute Imports and Module Path Aliases
Documentation path: /03-pages/01-building-your-application/06-configuring/04-absolute-imports-and-module-aliases
Description: Configure module path aliases that allow you to remap certain import paths.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in<PagesOnly>Content</PagesOnly>

your editor. You can use the
shared content should not be wrapped in a component. /}

component to add content that is specific to the Pages Router. Any

4.1.6.5 - src Directory
Documentation path: /03-pages/01-building-your-application/06-configuring/05-src-directory
Description: Save pages under the `src` directory as an alternative to the root `pages` directory.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.6.6 - Markdown and MDX
Documentation path: /03-pages/01-building-your-application/06-configuring/06-mdx
Description: Learn how to configure MDX to write JSX in your markdown files.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.6.7 - AMPamp-timeago

Documentation path: /03-pages/01-building-your-application/06-configuring/07-amp
Description: With minimal config, and without leaving React, you can start adding AMP and improve the performance and speed of your pages.
[image:] Examples
With Next.js you can turn any React page into an AMP page, with minimal config, and without leaving React. You can read more about AMP in the official amp.dev site.
Enabling AMP
To enable AMP support for a page, and to learn more about the different AMP configs, read the API documentation for next/amp.
Caveats
[image:] Only CSS-in-JS is supported. CSS Modules aren’t supported by AMP pages at the moment. You can contribute CSS Modules support to Next.js.
Adding AMP Components
The AMP community provides many components to make AMP pages more interactive. Next.js will automatically import all components used on a page and there is no need to manually import AMP component scripts:export const config = { amp: true }
function MyAmpPage() {
const date = new Date()
return (
<div>
<p>Some time: {date.toJSON()}</p>
<amp-timeago
width="0"
height="15"
· layout="responsive"
datetime={date.toJSON()}
</ /am
< . p-timeago>
div>
})
export default MyAmpPage

The above example uses the	component.
By default, the latest version of a component is always imported. If you want to customize the version, you can use next/head, as in the following example:import Head from 'next/head'
export const config = { amp: true }
function MyAmpPage() {
const date = new Date()
return (
<div>
<Head>
<script
async
key="amp-timeago"
</ > d>
/ src="https://cdn.ampproject.org/v0/amp-timeago-0.1.js"
custom-element="amp-timeago"
Hea

<p>Some time: {date.toJSON()}</p>
<amp-timeago
width="0"
height="15"
· layout="responsive"
datetime={date.toJSON()}
</ /am
< . p-timeago>
div>
})
export default MyAmpPage

AMP Validation
AMP pages are automatically validated with amphtml-validator during development. Errors and warnings will appear in the terminal where you started Next.js.
Pages are also validated during Static HTML export and any warnings / errors will be printed to the terminal. Any AMP errors will cause the export to exit with status code 1 because the export is not valid AMP.
Custom Validators
You can set up custom AMP validator in next.config.js as shown below:
module.exports = {
amp: {
} ,
} validator: './custom_validator.js',

Skip AMP Validation
To turn off AMP validation add the following code to next.config.js
experimental: {
amp: {
}
} skipValidation: true

AMP in Static HTML Export
When using Static HTML export statically prerender pages, Next.js will detect if the page supports AMP and change the exporting behavior based on that.pages/about.js

For example, the hybrid AMP page	would output:
[image:] out/about.html - HTML page with client-side React runtime
[image:] out/about.amp.html - AMP page
And if pages/about.js is an AMP-only page, then it would output:
- Optimized AMP pageout/about.html

Next.js will automatically insert a link to the AMP version of your page in the HTML version, so you don’t have to, like so:<link rel="amphtml" href="/about.amp.html" />

And the AMP version of your page will include a link to the HTML page:
<link rel="canonical" href="/about" />

When

is enabled the exported pages for

would be:

[image:] out/about/index.html - HTML pagetrailingSlash
pages/about.js

[image:] out/about.amp/index.html - AMP page
TypeScript

AMP currently doesn’t have built-in types for TypeScript, but it’s in their roadmap (#13791).amp.d.ts

As a workaround you can manually create a file called	inside your project and add these custom types.

4.1.6.8 - Babel
Documentation path: /03-pages/01-building-your-application/06-configuring/08-babel
Description: Extend the babel preset added by Next.js with your own configs.
[image:] Examples
Next.js includes the next/babel preset to your app, which includes everything needed to compile React applications and server-side code. But if you want to extend the default Babel configs, it’s also possible.
Adding Presets and Plugins
To start, you only need to define a .babelrc file (or babel.config.js) in the root directory of your project. If such a file is found, itnext/babel

will be considered as the source of truth, and therefore it needs to define what Next.js needs as well, which is the	preset..babelrc

Here’s an example

file:

.babelrc (json){ "presets": ["next/babel"],
} "plugins": []

You can take a look at this file to learn about the presets included by next/babel. To add presets/plugins without configuring them, you can do it this way:

.babelrc (json){ "presets": ["next/babel"],
} "plugins": ["@babel/plugin-proposal-do-expressions"]

Customizing Presets and Plugins
To add presets/plugins with custom configuration, do it on the

preset like so:next/babel

.babelrc (json){ "presets": [
["next/babel",
{ "preset-env": {},
"transform-runtime": {},
"styled-jsx": {},
} "plugins": []
]]
} "class-properties": {}
,

To learn more about the available options for each config, visit babel’s documentation site.
Good to know:
[image:] Next.js uses the current Node.js version for server-side compilations.modules
"preset-env"

The

option on

should be kept to false, otherwise webpack code splitting is turned off.

4.1.6.9 - PostCSS
Documentation path: /03-pages/01-building-your-application/06-configuring/09-post-css
Description: Extend the PostCSS config and plugins added by Next.js with your own.
[image:] Examples
- [Tailwind CSS Example](https://github.com/vercel/next.js/tree/canary/examples/with-tailwindcss)
Default Behavior
Next.js compiles CSS for its built-in CSS support using PostCSS.
Out of the box, with no configuration, Next.js compiles CSS with the following transformations:
[image:] Autoprefixer automatically adds vendor prefixes to CSS rules (back to IE11). [image:] Cross-browser Flexbox bugs are corrected to behave like the spec.
[image:] New CSS features are automatically compiled for Internet Explorer 11 compatibility:
[image:] all Property
[image:] Break Properties
[image:] font-variant Property
[image:] Gap Properties
[image:] Media Query Ranges
By default, CSS Grid and Custom Properties (CSS variables) are not compiled for IE11 support.
To compile CSS Grid Layout for IE11, you can place the following comment at the top of your CSS file:/* autoprefixer grid: autoplace */

You can also enable IE11 support for CSS Grid Layout in your entire project by configuring autoprefixer with the configuration shown below (collapsed). See “Customizing Plugins” below for more information.
[image:] Click to view the configuration to enable CSS Grid Layout
CSS variables are not compiled because it is not possible to safely do so. If you must use variables, consider using something like Sass variables which are compiled away by Sass.
Customizing Target Browsers
Next.js allows you to configure the target browsers (for Autoprefixer and compiled css features) through Browserslist.browserslist
package.json

To customize browserslist, create a

key in your

like so:

package.json (json){ "browserslist": [">0.3%", "not dead", "not op_mini all"]
}

You can use the browsersl.ist tool to visualize what browsers you are targeting.
CSS Modules
No configuration is needed to support CSS Modules. To enable CSS Modules for a file, rename the file to have the extension You can learn more about Next.js’ CSS Module support here..module.css.

Customizing Plugins
Warning: When you define a custom PostCSS configuration file, Next.js completely disables the default behavior. Be sure to manually configure all the features you need compiled, including Autoprefixer. You also need to install any plugins included in your custom configuration manually, i.e. npm install postcss-flexbugs-fixes postcss-preset-env.postcss.config.json

To customize the PostCSS configuration, create a This is the default configuration used by Next.js:

file in the root of your project.

postcss.config.json (json){ "plugins": [

"postcss-flexbugs-fixes",
["postcss-preset-env",
{ "autoprefixer": {
} "flexbox": "no-2009"
"stage": 3,
,
"features": {
} "custom-properties": false
] }
}]

Good to know: Next.js also allows the file to be named .postcssrc.json, or, to be read from the	key inpostcss
package.json.

It is also possible to configure PostCSS with a based on environment:

file, which is useful when you want to conditionally include plugins
postcss.config.js (js)module.exports = {
plugins:
process.env.NODE_ENV === 'production'
? ['postcss-flexbugs-fixes', ['postcss-preset-env',
{ autoprefixer: {
} flexbox: 'no-2009',
stage: 3,
,
features: {
}, ,
} 'custom-properties': false,
: [// No transformations in development
]],
}
],
postcss.config.js

Good to know: Next.js also allows the file to be named .postcssrc.js.
Do not use	to import the PostCSS Plugins. Plugins must be provided as strings.require()

Good to know: If your postcss.config.js needs to support other non-Next.js tools in the same project, you must use the interoperable object-based format instead:js module.exports = { plugins: { 'postcss-flexbugs-fixes': {}, 'postcss-preset-env': { autoprefixer: { flexbox: 'no-2009', }, stage: 3, features: { 'custom-properties': false, }, }, }, }

4.1.6.10 - Custom Server
Documentation path: /03-pages/01-building-your-application/06-configuring/10-custom-server
Description: Start a Next.js app programmatically using a custom server.
[image:] Examples
By default, Next.js includes its own server with next start. If you have an existing backend, you can still use it with Next.js (this is not a custom server). A custom Next.js server allows you to start a server 100% programmatically in order to use custom server patterns. Most of the time, you will not need this - but it’s available for complete customization.
Good to know:
[image:] Before deciding to use a custom server, please keep in mind that it should only be used when the integrated router of Next.js can’t meet your app requirements. A custom server will remove important performance optimizations, like serverless functions and Automatic Static Optimization.
[image:] A custom server cannot be deployed on Vercel.
Take a look at the following example of a custom server:

const { createServer } = require('http') const { parse } = require('url')
const next = require('next')
const dev = process.env.NODE_ENV !== 'production' const hostname = 'localhost'
const port = 3000
// when using middleware `hostname` and `port` must be provided below const app = next({ dev, hostname, port })
const handle = app.getRequestHandler()
app.prepare().then(() => { createServer(async (req, res) => {
try {
// Be sure to pass `true` as the second argument to `url.parse`.
// This tells it to parse the query portion of the URL. const parsedUrl = parse(req.url, true)
const { pathname, query } = parsedUrl
if (pathname === '/a') {
await app.render(req, res, '/a', query)
} else if (pathname === '/b') {
await app.render(req, res, '/b', query)
} else {
} await handle(req, res, parsedUrl)
} catch (err) {
console.error('Error occurred handling', req.url, err) res.statusCode = 500
} res.end('internal server error')
})
.once('error', (err) => { console.error(err) process.exit(1)
})
.listen(port, () => {
console.log(`> Ready on http://${hostname}:${port}`)

server.js (js)

}) })
doesn’t go through babel or webpack. Make sure the syntax and sources this file requires are compatible with theserver.js

current node version you are running.
To run the custom server you’ll need to update the

inscripts

like so:package.json

package.json (json){ "scripts": {
"dev": "node server.js",
"build": "next build",
"start": "NODE_ENV=production node server.js"

} }

The custom server uses the following import to connect the server with the Next.js application:
const next = require('next')
const app = next({})

The above	import is a function that receives an object with the following options:next

	Option
	Type
	Description

	conf
	Object
	The same object you would use in next.config.js. Defaults to {}

	customServer
	Boolean
	(Optional) Set to false when the server was created by Next.js

	dev
	Boolean
	(Optional) Whether or not to launch Next.js in dev mode. Defaults to false

	dir
	String
	(Optional) Location of the Next.js project. Defaults to '.'

	quiet
	Boolean
	(Optional) Hide error messages containing server information. Defaults to false

	hostname
	String
	(Optional) The hostname the server is running behind

	port
	Number
	(Optional) The port the server is running behind

	httpServer
	node:http#Server
	(Optional) The HTTP Server that Next.js is running behind

The returned	can then be used to let Next.js handle requests as required.app

Disabling file-system routing
[image:]By default, Next will serve each file in the pages folder under a pathname matching the filename. If your project uses a custom server, this behavior may result in the same content being served from multiple paths, which can present problems with SEO and UX.next.config.js

To disable this behavior and prevent routing based on files in pages, open config:useFileSystemPublicRoutes

and disable the

next.config.js (js)module.exports = {
} useFileSystemPublicRoutes: false,

Note that useFileSystemPublicRoutes disables filename routes from SSR; client-side routing may still access those paths. When using this option, you should guard against navigation to routes you do not want programmatically.
You may also wish to configure the client-side router to disallow client-side redirects to filename routes; for that refer torouter.beforePopState.

4.1.6.11 - Draft Mode
Documentation path: /03-pages/01-building-your-application/06-configuring/11-draft-mode
Description: Next.js has draft mode to toggle between static and dynamic pages. You can learn how it works with Pages Router.

In the Pages documentation and the Data Fetching documentation, we talked about how to pre-render a page at build time (Static Generation) usinggetStaticProps
and getStaticPaths.

Static Generation is useful when your pages fetch data from a headless CMS. However, it’s not ideal when you’re writing a draft on your headless CMS and want to view the draft immediately on your page. You’d want Next.js to render these pages at request time instead of build time and fetch the draft content instead of the published content. You’d want Next.js to bypass Static Generation only for this specific case.
Next.js has a feature called Draft Mode which solves this problem. Here are instructions on how to use it.
Step 1: Create and access the API route
Take a look at the API Routes documentation first if you’re not familiar with Next.js API Routes.
First, create the API route. It can have any name - e.g.In this API route, you need to call setDraftMode on the response object.
export default function handler(req, res) {
// ...
} // ...
res.setDraftMode({ enable: true })
pages/api/draft.ts

This will set a cookie to enable draft mode. Subsequent requests containing this cookie will trigger Draft Mode changing the behavior for statically generated pages (more on this later).
You can test this manually by creating an API route like below and accessing it from your browser manually:
pages/api/draft.ts (ts)// simple example for testing it manually from your browser.
export default function handler(req, res) {
} res.end('Draft mode is enabled')
res.setDraftMode({ enable: true })

If you open your browser’s developer tools and visit /api/draft, you’ll notice a	response header with a cookie namedSet-Cookie
 prerender_bypass.

Securely accessing it from your Headless CMS
In practice, you’d want to call this API route securely from your headless CMS. The specific steps will vary depending on which headless CMS you’re using, but here are some common steps you could take.
These steps assume that the headless CMS you’re using supports setting custom draft URLs. If it doesn’t, you can still use this method to secure your draft URLs, but you’ll need to construct and access the draft URL manually.
First, you should create a secret token string using a token generator of your choice. This secret will only be known by your Next.js app and your headless CMS. This secret prevents people who don’t have access to your CMS from accessing draft URLs.
Second, if your headless CMS supports setting custom draft URLs, specify the following as the draft URL. This assumes that your draft API route is located at pages/api/draft.ts.
Terminal (bash)https://<your-site>/api/draft?secret=<token>&slug=<path>

<your-site> should be your deployment domain.
<token> should be replaced with the secret token you generated.
<path> should be the path for the page that you want to view. If you want to view /posts/foo, then you should use
&slug=/posts/foo.<path>

Your headless CMS might allow you to include a variable in the draft URL so that data like so:&slug=/posts/{entry.fields.slug}

Finally, in the draft API route:

can be set dynamically based on the CMS’s

- Check that the secret matches and that the request should fail).slug

parameter exists (if not, the

Call res.setDraftMode.

[image:]Then redirect the browser to the path specified by slug. (The following example uses a 307 redirect).if (req.query.secret !== 'MY_SECRET_TOKEN' || !req.query.slug) {
} return res.status(401).json({ message: 'Invalid token' })
// Fetch the headless CMS to check if the provided `slug` exists
// getPostBySlug would implement the required fetching logic to the headless CMS
const post = await getPostBySlug(req.query.slug)
// If the slug doesn't exist prevent draft mode from being enabled
if (!post) {
} return res.status(401).json({ message: 'Invalid slug' })
// Enable Draft Mode by setting the cookie
res.setDraftMode({ enable: true })
// Redirect to the path from the fetched post
} res.redirect(post.slug)
// We don't redirect to req.query.slug as that might lead to open redirect vulnerabilities
// Check the secret and next parameters
export default async (req, res) => {
// This secret should only be known to this API route and the CMS

If it succeeds, then the browser will be redirected to the path you want to view with the draft mode cookie.
Step 2: UpdategetStaticProps

The next step is to update getStaticProps to support draft mode.
If you request a page which has getStaticProps with the cookie set (via res.setDraftMode), thengetStaticProps

request time (instead of at build time).Furthermore, it will be called with a context object where context.draftMode will be true.
export async function getStaticProps(context) {
if (context.draftMode) {
}
} // dynamic data

will be called at

[image:]We used res.setDraftMode in the draft API route, so context.draftMode will be true. If you’re also using getStaticPaths, then context.params will also be available.
Fetch draft data
You can update	to fetch different data based on context.draftMode.getStaticProps

For example, your headless CMS might have a different API endpoint for draft posts. If so, you can modify the API endpoint URL like below:export async function getStaticProps(context) {
const url = context.draftMode
? 'https://draft.example.com'
} // ...
c : 'https://production.example.com'
onst res = await fetch(url)

That’s it! If you access the draft API route (with	and slug) from your headless CMS or manually, you should now be able to see
[image:]the draft content. And if you update your draft without publishing, you should be able to view the draft.secret

Set this as the draft URL on your headless CMS or access manually, and you should be able to see the draft.
Terminal (bash)https://<your-site>/api/draft?secret=<token>&slug=<path>

More Details
Clear the Draft Mode cookie
By default, the Draft Mode session ends when the browser is closed.
To clear the Draft Mode cookie manually, create an API route that calls setDraftMode({ enable: false }):
pages/api/disable-draft.ts (ts)export default function handler(req, res) {
} res.setDraftMode({ enable: false })

Then, send a request to /api/disable-draft to invoke the API Route. If calling this route using next/link, you must pass to prevent accidentally deleting the cookie on prefetch.prefetch={false}

Works withgetServerSideProps

Draft Mode works with getServerSideProps, and is available as aCache-Control

key in thedraftMode

object.context

Good to know: You shouldn’t set the we recommend using ISR.
Works with API Routes

header when using Draft Mode because it cannot be bypassed. Instead,

API Routes will have access to draftMode on the request object. For example:
export default function myApiRoute(req, res) {
if (req.draftMode) {
}
} // get draft data

Unique pernext build

A new bypass cookie value will be generated each time you run next build. This ensures that the bypass cookie can’t be guessed.
Good to know: To test Draft Mode locally over HTTP, your browser will need to allow third-party cookies and local storage access.

4.1.6.12 - Error Handling
Documentation path: /03-pages/01-building-your-application/06-configuring/12-error-handling
Description: Handle errors in your Next.js app.

This documentation explains how you can handle development, server-side, and client-side errors.
Handling Errors in Development
When there is a runtime error during the development phase of your Next.js application, you will encounter an overlay. It is a modal that covers the webpage. It is only visible when the development server runs using next dev via pnpm dev, npm run dev, yarn dev,bun dev

or	and will not be shown in production. Fixing the error will automatically dismiss the overlay.
Here is an example of an overlay:
{/ TODO UPDATE SCREENSHOT /}
[image:]
Handling Server Errors
Next.js provides a static 500 page by default to handle server-side errors that occur in your application. You can also customize thispages/500.js

page by creating a	file.
Having a 500 page in your application does not show specific errors to the app user. You can also use 404 page to handle specific runtime error like file not found.
Handling Client Errors
React Error Boundaries is a graceful way to handle a JavaScript error on the client so that the other parts of the application continue working. In addition to preventing the page from crashing, it allows you to provide a custom fallback component and even log error information.ErrorBoundary
Component

To use Error Boundaries for your Next.js application, you must create a class component	and wrap thepages/_app.js

prop in the	file. This component will be responsible to:
[image:] Render a fallback UI after an error is thrown [image:] Provide a way to reset the Application’s state [image:] Log error information
You can create an ErrorBoundary class component by extending React.Component. For example:
class ErrorBoundary extends React.Component { constructor(props) {
super(props)
// Define a state variable to track whether is an error or not
} this.state = { hasError: false }
static getDerivedStateFromError(error) {
// Update state so the next render will show the fallback UI

} return { hasError: true } componentDidCatch(error, errorInfo) {
// You can use your own error logging service here
} console.log({ error, errorInfo })
render() {
// Check if the error is thrown if (this.state.hasError) {
// You can render any custom fallback UI return (
<div>
<h2>Oops, there is an error!</h2>
<button type="button"
· onClick={() => this.setState({ hasError: false })}
Try again?
</button>
) </div>
}
// Return children components in case of no error
} return this.props.children
}
export default ErrorBoundary
The ErrorBoundary component keeps track of an	state. The value of this state variable is a boolean. When the value ofhasError

hasError is true, then the ErrorBoundary component will render a fallback UI. Otherwise, it will render the children components.pages/_app.js
Component

After creating an ErrorBoundary component, import it in the application.

file to wrap the

prop in your Next.js

// Import the ErrorBoundary component
import ErrorBoundary from '../components/ErrorBoundary'
function MyApp({ Component, pageProps }) {
return (
// Wrap the Component prop with ErrorBoundary component
<ErrorBoundary>
< <Component {...pageProps} />
}
) /ErrorBoundary>
export default MyApp

You can learn more about Error Boundaries in React’s documentation.
Reporting Errors
To monitor client errors, use a service like Sentry, Bugsnag or Datadog.

4.1.6.13 - Debugging
Documentation path: /03-pages/01-building-your-application/06-configuring/13-debugging
Description: Learn how to debug your Next.js application with VS Code or Chrome DevTools.

This documentation explains how you can debug your Next.js frontend and backend code with full source maps support using either the VS Code debugger or Chrome DevTools.
Any debugger that can attach to Node.js can also be used to debug a Next.js application. You can find more details in the Node.js Debugging Guide.
Debugging with VS Code.vscode/launch.json

Create a file named

at the root of your project with the following content:

launch.json (json){ "version": "0.2.0",
"configurations": [
{ "name": "Next.js: debug server-side",
"type": "node-terminal",
} "command": "npm run dev"
"request": "launch",
{ "name": "Next.js: debug client-side",
,
"type": "chrome",
} "url": "http://localhost:3000"
"request": "launch",
{ "name": "Next.js: debug full stack",
,
"type": "node-terminal",
"request": "launch",
"command": "npm run dev",
"serverReadyAction": {
"pattern": "- Local:.+(https?://.+)",
} "action": "debugWithChrome"
"uriFormat": "%s",
}
}]

can be replaced with	if you’re using Yarn or pnpm dev if you’re using pnpm.npm run dev
yarn dev
http://localhost:3000

If you’re changing the port number your application starts on, replace the 3000 in instead.

with the port you’re using

If you’re running Next.js from a directory other than root (for example, if you’re using Turborepo) then you need to add server-side and full stack debugging tasks. For example, "cwd": "${workspaceFolder}/apps/web".

to the

Now go to the Debug panel (Ctrl+Shift+D on Windows/Linux, ⇧+⌘+D on macOS), select a launch configuration, then press	or select Debug: Start Debugging from the Command Palette to start your debugging session.cwd
F5

Using the Debugger in Jetbrains WebStorm
[image:]Click the drop down menu listing the runtime configuration, and click Edit Configurations.... Create a Javascript Debug debug configuration with http://localhost:3000 as the URL. Customize to your liking (e.g. Browser for debugging, store as project file), and click OK. Run this debug configuration, and the selected browser should automatically open. At this point, you should have 2 applications in debug mode: the NextJS node application, and the client/ browser application.
Debugging with Chrome DevTools
Client-side code
Start your development server as usual by running next dev, npm run dev, or yarn dev. Once the server starts, open (or your alternate URL) in Chrome. Next, open Chrome’s Developer Tools (Ctrl+Shift+J onhttp://localhost:3000

Windows/Linux,	on macOS), then go to the Sources tab.⌥+⌘+I

Now, any time your client-side code reaches a debugger statement, code execution will pause and that file will appear in the debug area. You can also press Ctrl+P on Windows/Linux or ⌘+P on macOS to search for a file and set breakpoints manually. Note that when searching here, your source files will have paths starting with webpack://_N_E/./.
Server-side code

To debug server-side Next.js code with Chrome DevTools, you need to pass the

flag to the underlying Node.js process:
Terminal (bash)NODE_OPTIONS='--inspect' next dev
--inspect

If you’re using

or

then you should update the

script on your package.json:

package.json (json){ "scripts": {
}
} "dev": "NODE_OPTIONS='--inspect' next dev"
npm run dev
yarn dev
dev

Launching the Next.js dev server with the

flag will look something like this:

Terminal (bash)Debugger listening on ws://127.0.0.1:9229/0cf90313-350d-4466-a748-cd60f4e47c95
For help, see: https://nodejs.org/en/docs/inspector
ready - started server on 0.0.0.0:3000, url: http://localhost:3000
--inspect

Be aware that running NODE_OPTIONS='--inspect' npm run dev or NODE_OPTIONS='--inspect' yarn dev won’t work. This would try to start multiple debuggers on the same port: one for the npm/yarn process and one for Next.js. You would thenStarting inspector on 127.0.0.1:9229 failed: address already in use

get an error like	in your console.
Once the server starts, open a new tab in Chrome and visit chrome://inspect, where you should see your Next.js application inside the Remote Target section. Click inspect under your application to open a separate DevTools window, then go to the Sources tab.
[image:]Debugging server-side code here works much like debugging client-side code with Chrome DevTools, except that when you search for files here with Ctrl+P or ⌘+P, your source files will have paths starting with webpack://{application-name}/./ (where
{application-name} will be replaced with the name of your application according to your package.json file).
Debugging on Windows
Windows users may run into an issue when using NODE_OPTIONS='--inspect' as that syntax is not supported on Windows platforms.cross-env
npm
dev

[image:][image:]To get around this, install the with the following.

package as a development dependency (-D with

and yarn) and replace the

script

package.json (json){ "scripts": {
}
} "dev": "cross-env NODE_OPTIONS='--inspect' next dev"

cross-env will set the NODE_OPTIONS environment variable regardless of which platform you are on (including Mac, Linux, and Windows) and allow you to debug consistently across devices and operating systems.
Good to know: Ensure Windows Defender is disabled on your machine. This external service will check every file read, which has been reported to greatly increase Fast Refresh time with next dev. This is a known issue, not related to Next.js, but it does affect Next.js development.
More information
To learn more about how to use a JavaScript debugger, take a look at the following documentation: [image:] Node.js debugging in VS Code: Breakpoints
[image:] Chrome DevTools: Debug JavaScript

4.1.6.14 - Preview Mode
Documentation path: /03-pages/01-building-your-application/06-configuring/14-preview-mode
Description: Next.js has the preview mode for statically generated pages. You can learn how it works here.

Note: This feature is superseded by Draft Mode.
[image:] Examples
In the Pages documentation and the Data Fetching documentation, we talked about how to pre-render a page at build time (Static Generation) usinggetStaticProps
and getStaticPaths.

Static Generation is useful when your pages fetch data from a headless CMS. However, it’s not ideal when you’re writing a draft on your headless CMS and want to preview the draft immediately on your page. You’d want Next.js to render these pages at request time instead of build time and fetch the draft content instead of the published content. You’d want Next.js to bypass Static Generation only for this specific case.
Next.js has a feature called Preview Mode which solves this problem. Here are instructions on how to use it.
Step 1: Create and access a preview API route
Take a look at the API Routes documentation first if you’re not familiar with Next.js API Routes.
First, create a preview API route. It can have any name - e.g.	(or .ts if using TypeScript).In this API route, you need to call setPreviewData on the response object. The argument for setPreviewData should be an object, and this can be used by getStaticProps (more on this later). For now, we’ll use {}.
export default function handler(req, res) {
// ...
} // ...
res.setPreviewData({})
pages/api/preview.js

res.setPreviewData sets some cookies on the browser which turns on the preview mode. Any requests to Next.js containing these cookies will be considered as the preview mode, and the behavior for statically generated pages will change (more on this later).
You can test this manually by creating an API route like below and accessing it from your browser manually:
pages/api/preview.js (js)// simple example for testing it manually from your browser.
export default function handler(req, res) {
} res.end('Preview mode enabled')
res.setPreviewData({})

If you open your browser’s developer tools and visit /api/preview, you’ll notice that the cookies will be set on this request. prerender_bypass
 next_preview_data

Securely accessing it from your Headless CMS

and

In practice, you’d want to call this API route securely from your headless CMS. The specific steps will vary depending on which headless CMS you’re using, but here are some common steps you could take.
These steps assume that the headless CMS you’re using supports setting custom preview URLs. If it doesn’t, you can still use this method to secure your preview URLs, but you’ll need to construct and access the preview URL manually.
First, you should create a secret token string using a token generator of your choice. This secret will only be known by your Next.js app and your headless CMS. This secret prevents people who don’t have access to your CMS from accessing preview URLs.
Second, if your headless CMS supports setting custom preview URLs, specify the following as the preview URL. This assumes that your preview API route is located at pages/api/preview.js.
Terminal (bash)https://<your-site>/api/preview?secret=<token>&slug=<path>

<your-site> should be your deployment domain.
<token> should be replaced with the secret token you generated.
<path> should be the path for the page that you want to preview. If you want to preview /posts/foo, then you should use
&slug=/posts/foo.

Your headless CMS might allow you to include a variable in the preview URL so that data like so:&slug=/posts/{entry.fields.slug}

Finally, in the preview API route:
- Check that the secret matches and that the request should fail).slug

can be set dynamically based on the CMS’s

parameter exists (if not, the<path>

Call res.setPreviewData.

[image:][image:] Then redirect the browser to the path specified by slug. (The following example uses a 307 redirect).// This secret should only be known to this API route and the CMS
if (req.query.secret !== 'MY_SECRET_TOKEN' || !req.query.slug) {
} return res.status(401).json({ message: 'Invalid token' })
// Fetch the headless CMS to check if the provided `slug` exists
// getPostBySlug would implement the required fetching logic to the headless CMS
const post = await getPostBySlug(req.query.slug)
// If the slug doesn't exist prevent preview mode from being enabled
if (!post) {
} return res.status(401).json({ message: 'Invalid slug' })
// Enable Preview Mode by setting the cookies
res.setPreviewData({})
// Redirect to the path from the fetched post
} res.redirect(post.slug)
// We don't redirect to req.query.slug as that might lead to open redirect vulnerabilities
// Check the secret and next parameters
export default async (req, res) => {

If it succeeds, then the browser will be redirected to the path you want to preview with the preview mode cookies being set.
Step 2: UpdategetStaticProps

The next step is to update getStaticProps to support the preview mode.
If you request a page which has getStaticProps with the preview mode cookies set (via res.setPreviewData), then will be called at request time (instead of at build time).getStaticProps

Furthermore, it will be called with acontext

[image:][image:] context.preview will be true.

object where:

context.previewData will be the same as the argument used for setPreviewData.export async function getStaticProps(context) {
// If you request this page with the preview mode cookies set:
//
// - context.preview will be true
} //	the argument used for `setPreviewData`.
// - context.previewData will be the same as

We used

in the preview API route, so

will be {}. You can use this to pass session

information from the preview API route to getStaticProps if necessary.res.setPreviewData({})

If you’re also using getStaticPaths, then context.params will also be available.
Fetch preview datagetStaticProps
context.preview

[image:]You can updatecontext.previewData

to fetch different data based on

and/or context.previewData.

For example, your headless CMS might have a different API endpoint for draft posts. If so, you can use context.preview to modify the API endpoint URL like below:export async function getStaticProps(context) {
// If context.preview is true, append "/preview" to the API endpoint

// to request draft data instead of published data. This will vary
// based on which headless CMS you're using.
} // ...
const res = await fetch(`https://.../${context.preview ? 'preview' : ''}`)

[image:]That’s it! If you access the preview API route (with secret and slug) from your headless CMS or manually, you should now be able to see the preview content. And if you update your draft without publishing, you should be able to preview the draft.
Set this as the preview URL on your headless CMS or access manually, and you should be able to see the preview.
Terminal (bash)https://<your-site>/api/preview?secret=<token>&slug=<path>

More Details
Good to know: during renderingnext/router

Specify the Preview Mode duration

exposes an

flag, see the router object docs for more info.isPreview

takes an optional second parameter which should be an options object. It accepts the following keys:setPreviewData

maxAge: Specifies the number (in seconds) for the preview session to last for.setPreviewData(data, {
} path: '/about', // The preview mode cookies apply to paths with /about
maxAge: 60 * 60, // The preview mode cookies expire in 1 hour
)

path: Specifies the path the cookie should be applied under. Defaults to / enabling preview mode for all paths.

Clear the Preview Mode cookies
By default, no expiration date is set for Preview Mode cookies, so the preview session ends when the browser is closed. To clear the Preview Mode cookies manually, create an API route that calls clearPreviewData():
pages/api/clear-preview-mode-cookies.js (js)export default function handler(req, res) {
} res.clearPreviewData({})

Then, send a request to /api/clear-preview-mode-cookies to invoke the API Route. If calling this route using next/link, you must pass prefetch={false} to prevent calling clearPreviewData during link prefetching.
If a path was specified in the setPreviewData call, you must pass the same path to clearPreviewData:
pages/api/clear-preview-mode-cookies.js (js)export default function handler(req, res) {
const { path } = req.query
} res.clearPreviewData({ path })

size limitspreviewData

You can pass an object to setPreviewData and have it be available in getStaticProps. However, because the data will be stored in a cookie, there’s a size limitation. Currently, preview data is limited to 2KB.
Works withgetServerSideProps
getServerSideProps
context
preview

The preview mode works onpreviewData.

as well. It will also be available on the

object containing

and

Good to know: You shouldn’t set the Instead, we recommend using ISR.Cache-Control

Works with API Routespreview
previewData

header when using Preview Mode because it cannot be bypassed.

API Routes will have access to

and

under the request object. For example:

export default function myApiRoute(req, res) {
const isPreview = req.preview
} // ...
const previewData = req.previewData

Unique pernext build

Both the bypass cookie value and the private key for encrypting the ensures that the bypass cookie can’t be guessed.previewData

change when

is completed. Thisnext build

Good to know: To test Preview Mode locally over HTTP your browser will need to allow third-party cookies and local storage access.

4.1.6.15 - Content Security Policy
Documentation path: /03-pages/01-building-your-application/06-configuring/15-content-security-policy
Description: Learn how to set a Content Security Policy (CSP) for your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.7 - Testing
Documentation path: /03-pages/01-building-your-application/07-testing/index
Description: Learn how to set up Next.js with three commonly used testing tools — Cypress, Playwright, Vitest, and Jest.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.7.1 - Setting up Vitest with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/01-vitest
Description: Learn how to set up Next.js with Vitest and React Testing Library - two popular unit testing libraries.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.7.2 - Setting up Jest with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/02-jest
Description: Learn how to set up Next.js with Jest for Unit Testing.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.7.3 - Setting up Playwright with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/03-playwright
Description: Learn how to set up Next.js with Playwright for End-to-End (E2E) and Integration testing.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.7.4 - Setting up Cypress with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/04-cypress
Description: Learn how to set up Next.js with Cypress for End-to-End (E2E) and Component Testing.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.8 - Deploying
Documentation path: /03-pages/01-building-your-application/08-deploying/index
Description: Learn how to deploy your Next.js app to production, either managed or self-hosted.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.8.1 - Going to Production
Documentation path: /03-pages/01-building-your-application/08-deploying/01-production-checklist
Description: Before taking your Next.js application to production, here are some recommendations to ensure the best user experience.

Before taking your Next.js application to production, here are some recommendations to ensure the best user experience.
In General
[image:] Use caching wherever possible.
[image:] Ensure your database and backend are deployed in the same region. [image:] Aim to ship the least amount of JavaScript possible.
[image:] Defer loading heavy JavaScript bundles until needed. [image:] Ensure logging is set up.
[image:] Ensure error handling is set up.
[image:] Configure the 404 (Not Found) and 500 (Error) pages. [image:] Ensure you are measuring performance.
[image:] Run Lighthouse to check for performance, best practices, accessibility, and SEO. For best results, use a production build of Next.js and use incognito in your browser so results aren’t affected by extensions.
[image:] Review Supported Browsers and Features. [image:] Improve performance using:
[image:] next/image and Automatic Image Optimization
[image:] Automatic Font Optimization [image:] Script Optimization
[image:] Improve loading performance
[image:] Consider adding a Content Security Policy
Caching
[image:] Examples
- [ssr-caching](https://github.com/vercel/next.js/tree/canary/examples/ssr-caching)
Caching improves response times and reduces the number of requests to external services. Next.js automatically adds caching headersto immutable assets served from /_next/static including JavaScript, CSS, static images, and other media.
Cache-Control: public, max-age=31536000, immutable

Cache-Control headers set in next.config.js will be overwritten in production to ensure that static assets can be cached effectively. If you need to revalidate the cache of a page that has been statically generated, you can do so by setting revalidate in theminimumCacheTTL

page’s getStaticProps function. If you’re using next/image, you can configure the Optimization loader.

for the default Image

Good to know: When running your application locally with next dev, your headers are overwritten to prevent caching locally.while-revalidate.
// This value is considered fresh for ten seconds (s-maxage=10).
// If a request is repeated within the next 10 seconds, the previously
// cached value will still be fresh. If the request is repeated before 59 seconds,
// the cached value will be stale but still render (stale-while-revalidate=59).
//
// In the background, a revalidation request will be made to populate the cache
// with a fresh value. If you refresh the page, you will see the new value.
export async function getServerSideProps({ req, res }) {
res.setHeader(
) 'public, s-maxage=10, stale-while-revalidate=59'
'Cache-Control',
return {
} props: {},
getServerSideProps
stale-

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

You can also use caching headers inside	and API Routes for dynamic responses. For example, using

}

By default,	headers will be set differently depending on how your page fetches data.Cache-Control

[image:] If the page uses getServerSideProps or getInitialProps, it will use the default Cache-Control header set by next start in order to prevent accidental caching of responses that cannot be cached. If you want a different cache behavior while using getServerSideProps, use res.setHeader('Cache-Control', 'value_you_prefer') inside of the function as shown above.
[image:] If the page is using getStaticProps, it will have a Cache-Control header of s-maxage=REVALIDATE_SECONDS, stale-while- revalidate, or if revalidate is not used, s-maxage=31536000, stale-while-revalidate to cache for the maximum age possible.
Good to know: Your deployment provider must support caching for dynamic responses. If you are self-hosting, you will need to add this logic yourself using a key/value store like Redis. If you are using Vercel, Edge Caching works without configuration.
Reducing JavaScript Size
[image:] Examples
- [with-dynamic-import](https://github.com/vercel/next.js/tree/canary/examples/with-dynamic-import)
To reduce the amount of JavaScript sent to the browser, you can use the following tools to understand what is included inside each JavaScript bundle:
[image:] Import Cost – Display the size of the imported package inside VSCode.
[image:] Package Phobia – Find the cost of adding a new dev dependency to your project. [image:] Bundle Phobia - Analyze how much a dependency can increase bundle sizes.
[image:] Webpack Bundle Analyzer – Visualize the size of webpack output files with an interactive, zoomable treemap.
[image:] bundlejs - An online tool to quickly bundle & minify your projects, while viewing the compressed gzip/brotli bundle size, all running locally on your browser.
Each file inside your pages/ directory will automatically be code split into its own JavaScript bundle during next build. You can also use Dynamic Imports to lazy-load components and libraries. For example, you might want to defer loading your modal code until a user clicks the open button.
Logging
[image:] Examples
- [Pino and Logflare Example](https://github.com/Logflare/next-pino-logflare-logging-example)
Since Next.js runs on both the client and server, there are multiple forms of logging supported:
[image:] console.log in the browser
[image:] stdout on the server
If you want a structured logging package, we recommend Pino. If you’re using Vercel, there are pre-built logging integrations compatible with Next.js.
Error Handling
[image:] Examples
- [with-sentry](https://github.com/vercel/next.js/tree/canary/examples/with-sentry)
When an unhandled exception occurs, you can control the experience for your users with the 500 page. We recommend customizing this to your brand instead of the default Next.js theme.
You can also log and track exceptions with a tool like Sentry. This example shows how to catch & report errors on both the client and server-side, using the Sentry SDK for Next.js. There’s also a Sentry integration for Vercel.
Loading Performance
To improve loading performance, you first need to determine what to measure and how to measure it. Core Web Vitals is a good industry standard that is measured using your own web browser. If you are not familiar with the metrics of Core Web Vitals, review this blog post and determine which specific metric/s will be your drivers for loading performance. Ideally, you would want to measure the loading performance in the following environments:
[image:] In the lab, using your own computer or a simulator.
[image:] In the field, using real-world data from actual visitors. [image:] Local, using a test that runs on your device.
[image:] Remote, using a test that runs in the cloud.

Once you are able to measure the loading performance, use the following strategies to improve it iteratively so that you apply one strategy, measure the new performance and continue tweaking until you do not see much improvement. Then, you can move on to the next strategy.
[image:] Use caching regions that are close to the regions where your database or API is deployed.
[image:] As described in the caching section, use a stale-while-revalidate value that will not overload your backend.
[image:] Use Incremental Static Regeneration to reduce the number of requests to your backend.
[image:] Remove unused JavaScript. Review this blog post to understand what Core Web Vitals metrics bundle size affects and what strategies you can use to reduce it, such as:
[image:] Setting up your Code Editor to view import costs and sizes [image:] Finding alternative smaller packages
[image:] Dynamically loading components and dependencies

4.1.8.2 - Static Exports
Documentation path: /03-pages/01-building-your-application/08-deploying/02-static-exports
Description: Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features that require a server.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.8.3 - Multi Zones
Documentation path: /03-pages/01-building-your-application/08-deploying/03-multi-zones
Description: Learn how to use multi zones to deploy multiple Next.js apps as a single app.
[image:] Examples
- [With Zones](https://github.com/vercel/next.js/tree/canary/examples/with-zones)
A zone is a single deployment of a Next.js app. You can have multiple zones and merge them as a single app. For example, let’s say you have the following apps:
[image:] An app for serving /blog/**
[image:] Another app for serving all other pages
With multi zones support, you can merge both these apps into a single one allowing your customers to browse it using a single URL, but you can develop and deploy both apps independently.
How to define a zone
There are no zone related APIs. You only need to do the following:
[image:] Make sure to keep only the pages you need in your app, meaning that an app can’t have pages from another app, if app A has
/blog then app B shouldn’t have it too.
[image:] Make sure to configure a basePath to avoid conflicts with pages and static files.
How to merge zones
You can merge zones using	in one of the apps or any HTTP proxy.rewrites

For Next.js on Vercel applications, you can use a monorepo to deploy both apps with a single git push.

4.1.8.4 - Continuous Integration (CI) Build Caching
Documentation path: /03-pages/01-building-your-application/08-deploying/04-ci-build-caching
Description: Learn how to configure CI to cache Next.js builds

To improve build performance, Next.js saves a cache to	that is shared between builds..next/cache

To take advantage of this cache in Continuous Integration (CI) environments, your CI workflow will need to be configured to correctly persist the cache between builds.
If your CI is not configured to persist	between builds, you may see a No Cache Detected error..next/cache

Here are some example cache configurations for common CI providers:
Vercel
Next.js caching is automatically configured for you. There’s no action required on your part.
CircleCI
Edit your save_cache step in .circleci/config.yml to include .next/cache: steps:
- save_cache:
key: dependency-cache-{{ checksum "yarn.lock" }}
paths:
- ./node_modules
- ./.next/cache

If you do not have asave_cache

Travis CI

key, please follow CircleCI’s documentation on setting up build caching.

Add or merge the following into your .travis.yml: cache:
directories:
- $HOME/.cache/yarn
- node_modules
- .next/cache

GitLab CI
Add or merge the following into your .gitlab-ci.yml: cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- node_modules/
- .next/cache/

Netlify CI
Use Netlify Plugins with @netlify/plugin-nextjs.
AWS CodeBuild
Add (or merge in) the following to your buildspec.yml:
cache:
paths:
- 'node_modules/**/*' # Cache `node_modules` for faster `yarn` or `npm i`
- '.next/cache/**/*' # Cache Next.js for faster application rebuilds

GitHub Actions

Using GitHub’s actions/cache, add the following step in your workflow file:uses: actions/cache@v3
with:
See here for caching with `yarn` https://github.com/actions/cache/blob/main/examples.md#node---yarn o
path: |
${{ github.workspace }}/.next/cache es or source files change.
~/.npm
k Generate a new cache whenever packag les('**/package-lock.json') }}-${{ hashFiles('**/*.js', '**/*.js
If source files changed but packages didn't, rebuild from a prior cache.
ey: ${{ runner.os }}-nextjs-${{ hashFi
restore-keys: |
${{ runner.os }}-nextjs-${{ hashFiles('**/package-lock.json') }}-

Bitbucket Pipelines
Add or merge the following into your bitbucket-pipelines.yml at the top level (same level as pipelines):
definitions:
caches:
nextcache: .next/cache
Then reference it in the caches section of your pipeline’s step:
- step:
name: your_step_name
caches:
- node
- nextcache

Heroku
Using Heroku’s custom cache, add a cacheDirectories array in your top-level package.json:
"cacheDirectories": [".next/cache"]

Azure Pipelines
Using Azure Pipelines’ Cache task, add the following task to your pipeline yaml file somewhere prior to the task that executesbuild:
- task: Cache@2
displayName: 'Cache .next/cache'
inputs:
key: next | $(Agent.OS) | yarn.lock
path: '$(System.DefaultWorkingDirectory)/.next/cache'
next

Jenkins (Pipeline)
Using Jenkins’ Job Cacher plugin, add the following build step to yourinstall:
stage("Restore npm packages") {
steps {
// Writes lock-file to cache based on the GIT_COMMIT hash
writeFile file: "next-lock.cache", text: "$GIT_COMMIT"
cache(caches: [
arbitraryFileCache(
path: "node_modules",
includes: "**/*",
]) {
)	cacheValidityDecidingFile: "package-lock.json"
}
sh "npm install"
}
}
stage("Build") {
steps {
// Writes lock-file to cache based on the GIT_COMMIT hash

where you would normally run	orJenkinsfile
next build
npm

writeFile file: "next-lock.cache", text: "$GIT_COMMIT"
cache(caches: [
arbitraryFileCache(
path: ".next/cache",
includes: "**/*",
cacheValidityDecidingFile: "next-lock.cache"
]) {
)
// aka `next build`
}
sh "npm run build"
}	}

4.1.9 - Upgrading
Documentation path: /03-pages/01-building-your-application/09-upgrading/index
Description: Learn how to upgrade to the latest versions of Next.js.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.9.1 - Codemods
Documentation path: /03-pages/01-building-your-application/09-upgrading/01-codemods
Description: Use codemods to upgrade your Next.js codebase when new features are released.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.9.2 - From Pages to App
Documentation path: /03-pages/01-building-your-application/09-upgrading/02-app-router-migration
Description: Learn how to upgrade your existing Next.js application from the Pages Router to the App Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.9.3 - Version 14
Documentation path: /03-pages/01-building-your-application/09-upgrading/03-version-14
Description: Upgrade your Next.js Application from Version 13 to 14.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.1.9.4 - Version 13
Documentation path: /03-pages/01-building-your-application/09-upgrading/04-version-13
Description: Upgrade your Next.js Application from Version 12 to 13.

Upgrading from 12 to 13
To update to Next.js version 13, run the following command using your preferred package manager:
Terminal (bash)npm i next@13 react@latest react-dom@latest eslint-config-next@13

Terminal (bash)yarn add next@13 react@latest react-dom@latest eslint-config-next@13

Terminal (bash)pnpm i next@13 react@latest react-dom@latest eslint-config-next@13

Terminal (bash)bun add next@13 react@latest react-dom@latest eslint-config-next@13
@types/react-dom

Good to know: If you are using TypeScript, ensure you also upgrade versions.@types/react

v13 Summary

and

to their latest

The Supported Browsers have been changed to drop Internet Explorer and target modern browsers.
The minimum Node.js version has been bumped from 12.22.0 to 16.14.0, since 12.x and 14.x have reached end-of-life. The minimum React version has been bumped from 17.0.2 to 18.2.0.
The swcMinify configuration property was changed from false to true. See Next.js Compiler for more info.
The next/image import was renamed to next/legacy/image. The next/future/image import was renamed to next/image. A codemod is available to safely and automatically rename your imports.<a>

[image:]The next/link child can no longer be <a>. Add the legacyBehavior prop to use the legacy behavior or remove the	to
upgrade. A codemod is available to automatically upgrade your code.target

The	configuration property has been removed and superseded by Output File Tracing.
Migrating shared features
Next.js 13 introduces a new	directory with new features and conventions. However, upgrading to Next.js 13 does not require usingapp
app

the new	directory.
You can continue using pages with new features that work in both directories, such as the updated Image component, Link component, Script component, and Font optimization.
Component<Image/>

Next.js 12 introduced many improvements to the Image Component with a temporary import: next/future/image. These improvements included less client-side JavaScript, easier ways to extend and style images, better accessibility, and native browser lazy loading.
Starting in Next.js 13, this new behavior is now the default for next/image. There are two codemods to help you migrate to the new Image Component:
[image:] next-image-to-legacy-image: This codemod will safely and automatically rename next/image imports to next/legacy/image to maintain the same behavior as Next.js 12. We recommend running this codemod to quickly update to Next.js 13 automatically.
[image:] next-image-experimental: After running the previous codemod, you can optionally run this experimental codemod to upgrade next/legacy/image to the new next/image, which will remove unused props and add inline styles. Please note this codemod is experimental and only covers static usage (such as <Image src={img} layout="responsive" />) but not dynamic usage (suchas <Image {...props} />).

Alternatively, you can manually update by following the migration guide and also see the legacy comparison.

Component<Link>

[image:]The <Link> Component no longer requires manually adding an <a> tag as a child. This behavior was added as an experimental option<Link>
<a>

in version 12.2 and is now the default. In Next.js 13, For example:

always renders

and allows you to forward props to the underlying tag.

import Link from 'next/link'
// Next.js 12: `<a>` has to be nested otherwise it's excluded
<Link href="/about">
< <a>About
/Link>
// Next.js 13: `<Link>` always renders `<a>` under the hood
<Link href="/about">
< About
/Link>

To upgrade your links to Next.js 13, you can use thenew-link

[image:][image:]Component<Script>
pages

codemod.

The behavior of guide.next/script

Font Optimization

has been updated to support both

and app. If incrementally adopting app, read the upgrade

Previously, Next.js helped you optimize fonts by inlining font CSS. Version 13 introduces the new next/font module which gives you the ability to customize your font loading experience while still ensuring great performance and privacy.
See Optimizing Fonts to learn how to use next/font.

4.1.9.5 - Version 12
Documentation path: /03-pages/01-building-your-application/09-upgrading/05-version-12
Description: Upgrade your Next.js Application from Version 11 to Version 12.

To upgrade to version 12, run the following command:
Terminal (bash)npm i next@12 react@17 react-dom@17 eslint-config-next@12

Terminal (bash)yarn add next@12 react@17 react-dom@17 eslint-config-next@12

Terminal (bash)pnpm up next@12 react@17 react-dom@17 eslint-config-next@12

Terminal (bash)bun add next@12 react@17 react-dom@17 eslint-config-next@12
@types/react-dom

Good to know: If you are using TypeScript, ensure you also upgrade corresponding versions.@types/react

Upgrading to 12.2

and

to their

[image:]Middleware - If you were using Middleware prior to 12.2, please see the upgrade guide for more information.
Upgrading to 12.012.0.0
12.22.0

Minimum Node.js Version - The minimum Node.js version has been bumped from Node.js with native ES Modules support.

to

which is the first version of

Minimum React Version - The minimum required React version is 17.0.2. To upgrade you can run the following command in the terminal:
Terminal (bash)npm install react@latest react-dom@latest yarn add react@latest react-dom@latest pnpm update react@latest react-dom@latest
bun add react@latest react-dom@latest

SWC replacing Babel
Next.js now uses the Rust-based compiler SWC to compile JavaScript/TypeScript. This new compiler is up to 17x faster than Babel when compiling individual files and up to 5x faster Fast Refresh.
Next.js provides full backward compatibility with applications that have custom Babel configuration. All transformations that Next.jsgetStaticProps
getStaticPaths
getServerSideProps

handles by default like styled-jsx and tree-shaking of to Rust.

/

/

have been ported

When an application has a custom Babel configuration, Next.js will automatically opt-out of using SWC for compiling JavaScript/Typescript and will fall back to using Babel in the same way that it was used in Next.js 11.
Many of the integrations with external libraries that currently require custom Babel transformations will be ported to Rust-based SWC transforms in the near future. These include but are not limited to:
[image:] Styled Components [image:] Emotion
[image:] Relay.babelrc

In order to prioritize transforms that will help you adopt SWC, please provide your
SWC replacing Terser for minification

on this feedback thread.

You can opt-in to replacing Terser with SWC for minifying JavaScript up to 7x faster using a flag in next.config.js:

next.config.js (js)

module.exports = {
} swcMinify: true,

Minification using SWC is an opt-in flag to ensure it can be tested against more real-world Next.js applications before it becomes the default in Next.js 12.1. If you have feedback about minification, please leave it on this feedback thread.
Improvements to styled-jsx CSS parsing
On top of the Rust-based compiler we’ve implemented a new CSS parser based on the one used for the styled-jsx Babel transform. This new parser has improved handling of CSS and now errors when invalid CSS is used that would previously slip through and cause unexpected behavior.
Because of this change invalid CSS will throw an error during development and next build. This change only affects styled-jsx usage.
changed wrapping elementnext/image

now renders thenext/image

inside a

instead of <div>.

If your application has specific CSS targeting span such as .container span, upgrading to Next.js 12 might incorrectly match the wrapping element inside the <Image> component. You can avoid this by restricting the selector to a specific class such as.container
span.item

and updating the relevant component with that className, such as .
If your application has specific CSS targeting the next/image <div> tag, for example .container div, it may not match anymore.<Image>

You can update the selector .container span, or preferably, add a new <div className="wrapper"> wrapping the component and target that instead such as .container .wrapper.className

The

prop is unchanged and will still be passed to the underlying

element.

See the documentation for more info.
HMR connection now uses a WebSocket
Previously, Next.js used a server-sent events connection to receive HMR events. Next.js 12 now uses a WebSocket connection.
In some cases when proxying requests to the Next.js dev server, you will need to ensure the upgrade request is handled correctly. Forexample, in nginx you would need to add the following configuration:
location /_next/webpack-hmr {
proxy_pass http://localhost:3000/_next/webpack-hmr;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
}
proxy_set_header Connection "upgrade";

If you are using Apache (2.x), you can add the following configuration to enable web sockets to the server. Review the port, host name and server names.<VirtualHost *:443>
ServerName yourwebsite.local
ServerName "${WEBSITE_SERVER_NAME}"
ProxyPass / http://localhost:3000/
ProxyPassReverse / http://localhost:3000/
Next.js 12 uses websocket
<Location /_next/webpack-hmr>
RewriteEngine On
RewriteCond %{QUERY_STRING} transport=websocket [NC]
RewriteCond %{HTTP:Upgrade} websocket [NC]
RewriteCond %{HTTP:Connection} upgrade [NC]
RewriteRule /(.*) ws://localhost:3000/_next/webpack-hmr/$1 [P,L]
</ Location> >
</ ProxyPassReverse ws://localhost:3000/_next/webpack-hmr
ProxyPass ws://localhost:3000/_next/webpack-hmr retry=0 timeout=30
VirtualHost
For custom servers, such as express, you may need to use app.all to ensure the request is passed correctly, for example:
app.all('/_next/webpack-hmr', (req, res) => {
} nextjsRequestHandler(req, res)
)

Webpack 4 support has been removed
If you are already using webpack 5 you can skip this section.

Next.js has adopted webpack 5 as the default for compilation in Next.js 11. As communicated in the webpack 5 upgrading documentation Next.js 12 removes support for webpack 4.
If your application is still using webpack 4 using the opt-out flag, you will now see an error linking to the webpack 5 upgrading documentation.
option deprecatedtarget
target
next.config.js

If you do not have

in

you can skip this section.

The target option has been deprecated in favor of built-in support for tracing what dependencies are needed to run a page.
During next build, Next.js will automatically trace each page and its dependencies to determine all of the files that are needed for deploying a production version of your application.target

If you are currently using the	option set to serverless, please read the documentation on how to leverage the new output.

4.1.9.6 - Version 11
Documentation path: /03-pages/01-building-your-application/09-upgrading/06-version-11
Description: Upgrade your Next.js Application from Version 10 to Version 11.

To upgrade to version 11, run the following command:
Terminal (bash)npm i next@11 react@17 react-dom@17

Terminal (bash)yarn add next@11 react@17 react-dom@17

Terminal (bash)pnpm up next@11 react@17 react-dom@17

Terminal (bash)bun add next@11 react@17 react-dom@17
@types/react-dom

Good to know: If you are using TypeScript, ensure you also upgrade corresponding versions.@types/react

Webpack 5

and

to their

Webpack 5 is now the default for all Next.js applications. If you did not have a custom webpack configuration, your application is already using webpack 5. If you do have a custom webpack configuration, you can refer to the Next.js webpack 5 documentation for upgrade guidance.
Cleaning the	is now a defaultdistDir

The build output directory (defaults to .next) is now cleared by default except for the Next.js caches. You can refer to the cleaning RFC for more information.distDir
cleanDistDir:

If your application was relying on this behavior previously you can disable the new default behavior by adding the flag in next.config.js.false

is now supported for	andPORT
next dev
next start

[image:]Next.js 11 supports the PORT environment variable to set the port the application runs on. Using	is still recommended but if-p/--port
-p
PORT

you were prohibited from using	in any way you can now use	as an alternative: Example:
PORT=4000 next start

customization to import imagesnext.config.js

Next.js 11 supports static image imports with next/image. This new feature relies on being able to process image imports. If you previously added the next-images or next-optimized-images packages you can either move to the new built-in support usingnext/image

or disable the feature:
next.config.js (js)module.exports = {
images: {
} ,
} disableStaticImages: true,

Removesuper.componentDidCatch()

The next/app component’s Next.js 11, it was removed.

from
was deprecated in Next.js 9 as it’s no longer needed and has since been a no-op. Inpages/_app.js
componentDidCatch
componentDidCatch
super.componentDidCatch

If your pages/_app.js has a custom needed.

method you can remove

as it is no longer

Remove	fromContainer
pages/_app.js

This export was deprecated in Next.js 9 as it’s no longer needed and has since been a no-op with a warning during development. In Next.js 11 it was removed.pages/_app.js
Container
next/app
Container

If your documentation.

imports

from

you can remove

as it was removed. Learn more in the

Remove	usage from page componentsprops.url

This property was deprecated in Next.js 4 and has since shown a warning during development. With the introduction ofgetStaticProps
getServerSideProps

completely.

/

these methods already disallowed the usage of props.url. In Next.js 11, it was removed

You can learn more in the documentation.

Remove
Theunsized

property on
property onunsized
next/image

next/image

was deprecated in Next.js 10.0.1. You can use

instead. In Next.js 11layout="fill"
unsized

was removed.
Removemodules

property onnext/dynamic

option for next/dynamic were deprecated in Next.js 9.5. This was done in order to make theThe modules and
next/dynamic A
render
modules
render

PI closer to React.lazy. In Next.js 11, the

and

options were removed.

This option hasn’t been mentioned in the documentation since Next.js 8 so it’s less likely that your application is using it.modules
render

If your application does use
RemoveHead.rewind

and

you can refer to the documentation.

has been a no-op since Next.js 9.5, in Next.js 11 it was removed. You can safely remove your usage of Head.rewind.Head.rewind

Moment.js locales excluded by default
Moment.js includes translations for a lot of locales by default. Next.js now automatically excludes these locales by default to optimize bundle size for applications using Moment.js.
To load a specific locale use this snippet:import moment from 'moment'
import 'moment/locale/ja'
moment.locale('ja')

You can opt-out of this new default by adding

to

if you do not want the

new behavior, do note it’s highly recommended to not disable this new optimization as it significantly reduces the size of Moment.js.excludeDefaultMomentLocales: false
next.config.js

Update usage ofrouter.events
router.events

In case you’re accessing router.events during rendering, in Next.js 11 Ensure you’re accessing router.events in useEffect:
useEffect(() => {
const handleRouteChange = (url, { shallow }) => { console.log(
`App is changing to ${url} ${
} shallow ? 'with' : 'without'

is no longer provided during pre-rendering.

)	shallow routing`
}
router.events.on('routeChangeStart', handleRouteChange)
// If the component is unmounted, unsubscribe
// from the event with the `off` method: return () => {
} router.events.off('routeChangeStart', handleRouteChange)
}, [router])

If your application uses router.router.events which was an internal property that was not public please make sure to use as well.router.events

React 16 to 17
React 17 introduced a new JSX Transform that brings a long-time Next.js feature to the wider React ecosystem: Not having to import React from 'react' when using JSX. When using React 17 Next.js will automatically use the new transform. This transform does not make the React variable global, which was an unintended side-effect of the previous Next.js implementation. A codemod is available toReact

automatically fix cases where you accidentally used	without importing it.
Most applications already use the latest version of React, with Next.js 11 the minimum React version has been updated to 17.0.2. To upgrade you can run the following command:npm install react@latest react-dom@latest
Or using yarn:
yarn add react@latest react-dom@latest

4.1.9.7 - Version 10
Documentation path: /03-pages/01-building-your-application/09-upgrading/07-version-10
Description: Upgrade your Next.js Application from Version 9 to Version 10.

There were no breaking changes between versions 9 and 10. To upgrade to version 10, run the following command:
Terminal (bash)npm i next@10

Terminal (bash)yarn add next@10

Terminal (bash)pnpm up next@10

Terminal (bash)bun add next@10
@types/react-dom

Good to know: If you are using TypeScript, ensure you also upgrade corresponding versions.@types/react

and

to their

4.1.9.8 - Upgrading to Version 9
Documentation path: /03-pages/01-building-your-application/09-upgrading/08-version-9
Description: Upgrade your Next.js Application from Version 8 to Version 9.

To upgrade to version 9, run the following command:
Terminal (bash)npm i next@9

Terminal (bash)yarn add next@9

Terminal (bash)pnpm up next@9

Terminal (bash)bun add next@9
@types/react-dom

Good to know: If you are using TypeScript, ensure you also upgrade corresponding versions.@types/react

Production Deployment on Vercelvercel.json

and

to their

If you previously configuredroutes

9’s new Dynamic Routing feature.

in your

file for dynamic routes, these rules can be removed when leveraging Next.js

Next.js 9’s dynamic routes are automatically configured on Vercel and do not require any You can read more about Dynamic Routing here.
Check your Custom App File (pages/_app.js)

customization.

vercel.json

If you previously copied the Custom <App> example, you may be able to remove your getInitialProps. Removing getInitialProps from pages/_app.js (when possible) is important to leverage new Next.js features! The following getInitialProps does nothing and may be removed:
class MyApp extends App {
// Remove me, I do nothing!
static async getInitialProps({ Component, ctx }) {
let pageProps = {}
} pageProps = await Component.getInitialProps(ctx)
} return { pageProps }
if (Component.getInitialProps) {
render() {
}
} // ... etc

Breaking Changes
is no longer necessary@zeit/next-typescript

Next.js will now ignore usage	and warn you to remove it. Please remove this plugin from your@zeit/next-typescript
next.config.js.

Remove references to @zeit/next-typescript/babel from your custom .babelrc (if present).
The usage of fork-ts-checker-webpack-plugin should also be removed from your next.config.js.
TypeScript Definitions are published with the next package, so you need to uninstall @types/next as they would conflict.

The following types are different:
This list was created by the community to help you upgrade, if you find other differences please send a pull-request to this list to help other users.
From:import { NextContext } from 'next'
import { NextAppContext, DefaultAppIProps } from 'next/app'
import { NextDocumentContext, DefaultDocumentIProps } from 'next/document'

to
import { NextPageContext } from 'next'
import { AppContext, AppInitialProps } from 'next/app'
import { DocumentContext, DocumentInitialProps } from 'next/document'

The	key is now an export on a pageconfig

You may no longer export a custom variable named	from a page (i.e.config
export { config }
/ export const config ...).

This exported variable is now used to specify page-level Next.js configuration like Opt-in AMP and API Route features.config

You must rename a non-Next.js-purposed	export to something different.
no longer renders “loading…” by default while loadingnext/dynamic

Dynamic components will not render anything by default while loading. You can still customize this behavior by setting the property:import dynamic from 'next/dynamic'
const DynamicComponentWithCustomLoading = dynamic(
{ loading: () => <p>Loading</p>,
) }
() => import('../components/hello2'),
loading

has been removed in favor of an exported configuration object
Next.js now has the concept of page-level configuration, so the	higher-order component has been removed for consistency.withAmp
withAmp

This change can be automatically migrated by running the following commands in the root of your Next.js project:
Terminal (bash)curl -L https://github.com/vercel/next-codemod/archive/master.tar.gz | tar -xz --strip=2 next-codemod-mas

To perform this migration by hand, or view what the codemod will produce, see below:
Beforeimport { withAmp } from 'next/amp'
function Home() {
} return <h1>My AMP Page</h1>
export default withAmp(Home)
// or
export default withAmp(Home, { hybrid: true })

After
export default function Home() {
} return <h1>My AMP Page</h1>
export const config = {
amp: true,
} amp: 'hybrid',
// or

no longer exports pages asnext export
index.html

Previously, exporting	would result in out/about/index.html. This behavior has been changed to result inpages/about.js
out/about.html.

You can revert to the previous behavior by creating a

with the following content:

next.config.js (js)module.exports = {
} trailingSlash: true,
next.config.js

Pages in

is treated differently
are now considered API Routes. Pages in this directory will no longer contain a client-side bundle.pages/api/
pages/api/

Deprecated Features
has deprecated loading multiple modules at oncenext/dynamic

The ability to load multiple modules at once has been deprecated in (React.lazy and Suspense).next/dynamic

to be closer to React’s implementation

Updating code that relies on this behavior is relatively straightforward! We’ve provided an example of a before/after to help you migrate your application:
Beforeimport dynamic from 'next/dynamic'
const HelloBundle = dynamic({
modules: () => {
const components = {
} Hello2: () => import('../components/hello2').then((m) => m.default),
Hello1: () => import('../components/hello1').then((m) => m.default),
} return components
render: (props, { Hello1, Hello2 }) => (
,
<div>
<h1>{props.title}</h1>
<Hello1 />
})
), /div>
< <Hello2 />
function DynamicBundle() {
} return <HelloBundle title="Dynamic Bundle" /> export default DynamicBundle

After
import dynamic from 'next/dynamic'
const Hello1 = dynamic(() => import('../components/hello1'))
const Hello2 = dynamic(() => import('../components/hello2'))
function HelloBundle({ title }) {
return (
<div>
<h1>{title}</h1>
< <Hello2 />
<Hello1 />
}
) /div>
function DynamicBundle() {
} return <HelloBundle title="Dynamic Bundle" /> export default DynamicBundle

4.2 - API Reference
Documentation path: /03-pages/02-api-reference/index
Description: Next.js API Reference for the Pages Router.

4.2.1 - Components
Documentation path: /03-pages/02-api-reference/01-components/index
Description: API Reference for Next.js built-in components in the Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.1.1 - Font Module
Documentation path: /03-pages/02-api-reference/01-components/font
Description: API Reference for the Font Module

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.1.2 - <Head>
Documentation path: /03-pages/02-api-reference/01-components/head
Description: Add custom elements to the `head` of your page with the built-in Head component. [image:] ExamplesWe expose a built-in component for appending elements to the head of the page:
import Head from 'next/head'
function IndexPage() {
return (
<div>
<Head>
< <p>Hello world!</p>
< <title>My page title</title>
/Head>
/div>
})
export default IndexPage

To avoid duplicate tags in your following example:head
key

you can use the

property, which will make sure the tag is only rendered once, as in the

import Head from 'next/head'
function IndexPage() {
return (
<div>
<Head>
< <meta property="og:title" content="My page title" key="title" />
<title>My page title</title>
<Head>
/Head>
< <meta property="og:title" content="My new title" key="title" />
/Head>
}
) /div>
< <p>Hello world!</p>
export default IndexPage

In this case only the second handled.<meta property="og:title" />

is rendered.

tags with duplicate

attributes are automatically

[image:][image:]The contents of head get cleared upon unmounting the component, so make sure each page completely defines what it needs in head, without making assumptions about what other pages added.meta
key

[image:][image:]title, meta or any other elements (e.g. script) need to be contained as direct children of the Head element, or wrapped into maximum one level of <React.Fragment> or arrays—otherwise the tags won’t be correctly picked up on client-side navigations.
We recommend using next/script in your component instead of manually creating a<script>
in next/head.

4.2.1.3 - <Image> (Legacy)
Documentation path: /03-pages/02-api-reference/01-components/image-legacy
Description: Backwards compatible Image Optimization with the Legacy Image component.
[image:] Examples
Starting with Next.js 13, the next/image component was rewritten to improve both the performance and developer experience. Innext/image

order to provide a backwards compatible upgrade solution, the old	was renamed to next/legacy/image.next/image

View the new
Comparison

API Reference

Compared to next/legacy/image, the new	component has the following changes:next/image

[image:] Removes wrapper around in favor of native computed aspect ratio [image:] Adds support for canonical style prop
[image:] Removes layout prop in favor of style or className
[image:] Removes objectFit prop in favor of style or className
[image:] Removes objectPosition prop in favor of style or className
[image:] Removes IntersectionObserver implementation in favor of native lazy loading [image:] Removes lazyBoundary prop since there is no native equivalent
[image:] Removes lazyRoot prop since there is no native equivalent [image:] Removes loader config in favor of loader prop
[image:] Changed alt prop from optional to required
[image:] Changed onLoadingComplete callback to receive reference to element
Required Props

The<Image />

src

component requires the following properties.

Must be one of the following:
[image:] A statically imported image file
[image:] A path string. This can be either an absolute external URL, or an internal path depending on the loader prop or loader configuration.
When using an external URL, you must add it to remotePatterns in next.config.js.
widthlayout
sizes

The width property can represent either the rendered width or original width in pixels, depending on the properties.layout="fixed"
width

and

When using layout="intrinsic" or how large the image appears.

the

property represents the rendered width in pixels, so it will affect

When using layout="responsive", layout="fill", the the aspect ratio.width
width

property represents the original width in pixels, so it will only affect

The	property is required, except for statically imported images, or those with layout="fill".
heightlayout
sizes

The height property can represent either the rendered height or original height in pixels, depending on the properties.layout="fixed"
height

and

When using layout="intrinsic" or how large the image appears.

the

property represents the rendered height in pixels, so it will affect

When using layout="responsive", layout="fill", the the aspect ratio.height
height

property represents the original height in pixels, so it will only affect

The	property is required, except for statically imported images, or those with layout="fill".

Optional Props
The <Image /> component accepts a number of additional properties beyond those which are required. This section describes the most commonly-used properties of the Image component. Find details about more rarely-used properties in the Advanced Props section.
layout
The layout behavior of the image as the viewport changes size.

	layout
	Behavior
	srcSet
	sizes
	Has wrapper and sizer

	intrinsic
(default)
	Scale down to fit width of container, up to image size
	1x, 2x (based on imageSizes)
	N/A
	yes

	fixed
	Sized to width and height exactly
	1x, 2x (based on imageSizes)
	N/A
	yes

	responsive
	Scale to fit width of container
	640w, 750w, … 2048w, 3840w (based on imageSizes and deviceSizes)
	100vw
	yes

	fill
	Grow in both X and Y axes to fill container
	640w, 750w, … 2048w, 3840w (based on imageSizes and deviceSizes)
	100vw
	yes

[image:] Demo the intrinsic layout (default)
[image:] When intrinsic, the image will scale the dimensions down for smaller viewports, but maintain the original dimensions for larger viewports.
[image:] Demo the fixed layoutimg

When fixed, the image dimensions will not change as the viewport changes (no responsiveness) similar to the native Demo the responsive layout
When responsive, the image will scale the dimensions down for smaller viewports and scale up for larger viewports.display: block

element.

Ensure the parent element uses Demo the fill layout

in their stylesheet.

[image:] When fill, the image will stretch both width and height to the dimensions of the parent element, provided the parent element is relative.
[image:] This is usually paired with the objectFit property.
[image:] Ensure the parent element has position: relative in their stylesheet.
[image:] Demo background image
loader
A custom function used to resolve URLs. Setting the loader as a prop on the Image component overrides the default loader defined in the images section of next.config.js.
A loader is a function returning a URL string for the image, given the following parameters:import Image from 'next/legacy/image'
const myLoader = ({ src, width, quality }) => {
} return `https://example.com/${src}?w=${width}&q=${quality || 75}`
const MyImage = (props) => {
return (
<Image
loader={myLoader}
src="me.png"
alt="Picture of the author"
width={500}
) >
/ height={500}

src width quality

Here is an example of using a custom loader:

}

sizes
A string that provides information about how wide the image will be at different breakpoints. The value of sizes will greatly affectlayout="responsive"

performance for images using or layout="fixed".

or layout="fill". It will be ignored for images using layout="intrinsic"

The sizes property serves two important purposes related to image performance:
First, the value of sizes is used by the browser to determine which size of the image to download, from next/legacy/image’s automatically-generated source set. When the browser chooses, it does not yet know the size of the image on the page, so it selects an image that is the same size or larger than the viewport. The sizes property allows you to tell the browser that the image will actuallysizes
100vw

be smaller than full screen. If you don’t specify a	value, a default value of	(full screen width) is used.
Second, the sizes value is parsed and used to trim the values in the automatically-created source set. If the sizes property includes sizes such as 50vw, which represent a percentage of the viewport width, then the source set is trimmed to not include any values which are too small to ever be necessary.
For example, if you know your styling will cause an image to be full-width on mobile devices, in a 2-column layout on tablets, and a 3- column layout on desktop displays, you should include a sizes property such as the following:import Image from 'next/legacy/image'
const Example = () => (
<div className="grid-element">
<Image
src="/example.png"
layout="fill"
sizes="(max-width: 768px) 100vw,
(max-width: 1200px) 50vw,
33vw"
) </div>
/>

This example sizes could have a dramatic effect on performance metrics. Without the 33vw sizes, the image selected from the server

[image:]would be 3 times as wide as it needs to be. Because file size is proportional to the square of the width, without download an image that’s 9 times larger than necessary.sizes
srcset

the user would

Learn more about
[image:] web.dev [image:] mdn
quality

and sizes:

[image:]The quality of the optimized image, an integer between 1 and	where	is the best quality. Defaults to 75.100
100

priority
When true, the image will be considered high priority and preload. Lazy loading is automatically disabled for images using priority. You should use the priority property on any image detected as the Largest Contentful Paint (LCP) element. It may be appropriate to have multiple priority images, as different images may be the LCP element for different viewport sizes.
Should only be used when the image is visible above the fold. Defaults to false.
placeholder
A placeholder to use while the image is loading. Possible values are	or empty. Defaults to empty.blur

When blur, the blurDataURL property will be used as the placeholder. If src is an object from a static import and the imported image is .jpg, .png, .webp, or .avif, then blurDataURL will be automatically populated.base64

For dynamic images, you must provide the blurDataURL property. Solutions such as Plaiceholder can help with When empty, there will be no placeholder while the image is loading, only empty space.
Try it out:
[image:] Demo the blur placeholderDemo the shimmer effect with blurDataURL prop Demo the color effect with blurDataURL prop

generation.

Advanced Props
In some cases, you may need more advanced usage. The<Image />

style
Allows passing CSS styles to the underlying image element.layout
style

component optionally accepts the following advanced properties.

Note that all prop.

modes apply their own styles to the image element, and these automatic styles take precedence over the

Also keep in mind that the required width and height props can interact with your styling. If you use styling to modify an image’s
width, you must set the height="auto" style as well, or your image will be distorted.
objectFit
Defines how the image will fit into its parent container when using layout="fill".src

This value is passed to the object-fit CSS property for the	image.
objectPosition
Defines how the image is positioned within its parent element when using layout="fill". This value is passed to the object-position CSS property applied to the image.
onLoadingComplete
A callback function that is invoked once the image is completely loaded and the placeholder has been removed.onLoadingComplete

The	function accepts one parameter, an object with the following properties:naturalWidth naturalHeight

loading
Attention: This property is only meant for advanced usage. Switching an image to load with
performance.eager
priority

will normally hurt

We recommend using the	property instead, which properly loads the image eagerly for nearly all use cases.
[image:]The loading behavior of the image. Defaults to lazy.
When lazy, defer loading the image until it reaches a calculated distance from the viewport. When eager, load the image immediately.
Learn more
blurDataURL
A Data URL to be used as a placeholder image before the	image successfully loads. Only takes effect when combined withsrc
placeholder="blur".

Must be a base64-encoded image. It will be enlarged and blurred, so a very small image (10px or less) is recommended. Including larger images as placeholders may harm your application performance.
Try it out:
[image:] Demo the default blurDataURL prop
[image:] Demo the shimmer effect with blurDataURL prop [image:] Demo the color effect with blurDataURL prop
You can also generate a solid color Data URL to match the image.
lazyBoundary
A string (with similar syntax to the margin property) that acts as the bounding box used to detect the intersection of the viewport with the image and trigger lazy loading. Defaults to "200px".
If the image is nested in a scrollable parent element other than the root document, you will also need to assign the lazyRoot prop. Learn more

lazyRoot
A React Ref pointing to the scrollable parent element. Defaults to

(the document viewport).null

The Ref must point to a DOM element or a React component that forwards the Ref to the underlying DOM element.
Example pointing to a DOM elementimport Image from 'next/legacy/image'
import React from 'react'
const Example = () => {
const lazyRoot = React.useRef(null)
return (
<div ref={lazyRoot} style={{ overflowX: 'scroll', width: '500px' }}>
< <Image lazyRoot={lazyRoot} src="/two.jpg" width="500" height="500" />
<Image lazyRoot={lazyRoot} src="/one.jpg" width="500" height="500" />
}
) /div>

Example pointing to a React component
import Image from 'next/legacy/image'
import React from 'react'
const Container = React.forwardRef((props, ref) => {
return (
<div ref={ref} style={{ overflowX: 'scroll', width: '500px' }}>

})
) /div>
< {props.children}
const Example = () => {
const lazyRoot = React.useRef(null)
return (
<Container ref={lazyRoot}>
< <Image lazyRoot={lazyRoot} src="/two.jpg" width="500" height="500" />
<Image lazyRoot={lazyRoot} src="/one.jpg" width="500" height="500" />
}
) /Container>

Learn more
unoptimized
When true, the source image will be served as-is instead of changing quality, size, or format. Defaults to false. import Image from 'next/image'
const UnoptimizedImage = (props) => {
} return <Image {...props} unoptimized />

Since Next.js 12.3.0, this prop can be assigned to all images by updating

with the following configuration:
next.config.js (js)module.exports = {
images: {
} ,
} unoptimized: true,
next.config.js

Other Props
Other properties on the

component will be passed to the underlying<Image />

element with the exception of the following:img

srcSet. Use Device Sizes instead.
ref. Use onLoadingComplete instead.
decoding. It is always "async".

Configuration Options
Remote Patterns
To protect your application from malicious users, configuration is required in order to use external images. This ensures that only external images from your account can be served from the Next.js Image Optimization API. These external images can be configuredremotePatterns
next.config.js

with the

property in your

file, as shown below:

next.config.js (js)module.exports = {
images: {
remotePatterns: [
{ protocol: 'https',
hostname: 'example.com',
port: '',
], ,
} },
} pathname: '/account123/**',

[image:]Good to know: The example above will ensure the src property of next/legacy/image must start with https://example.com/account123/. Any other protocol, hostname, port, or unmatched path will respond with 400 Bad Request.remotePatterns
next.config.js

Below is another example of the

property in the

file:

next.config.js (js)module.exports = {
images: {
remotePatterns: [
{ protocol: 'https',
], ,
} },
} hostname: '**.example.com',

Good to know: The example above will ensure the src property of next/legacy/image must start with https://img1.example.com or https://me.avatar.example.com or any number of subdomains. Any other protocol or unmatched hostname will respond with 400 Bad Request.hostname

Wildcard patterns can be used for bothpathname

* match a single path segment or subdomain

and

and have the following syntax:

[image:] ** match any number of path segments at the end or subdomains at the beginning The	syntax does not work in the middle of the pattern.**

Domains
Warning: Deprecated since Next.js 14 in favor of strict remotePatterns in order to protect your application from maliciousdomains

users. Only use	if you own all the content served from the domain.
Similar to remotePatterns, the	configuration can be used to provide a list of allowed hostnames for external images.domains

However, the domains configuration does not support wildcard pattern matching and it cannot restrict protocol, port, or pathname.next.config.js

Below is an example of the domains property in the

file:

next.config.js (js)module.exports = {
images: {
} ,
} domains: ['assets.acme.com'],

Loader Configuration
If you want to use a cloud provider to optimize images instead of using the Next.js built-in Image Optimization API, you can configure

[image:]the loader and path prefix in your next.config.js file. This allows you to use relative URLs for the Image generate the correct absolute URL for your provider.

and automatically
next.config.js (js)module.exports = {
images: {
loader: 'imgix',
} ,
} path: 'https://example.com/myaccount/',
src

Built-in Loaders
The following Image Optimization cloud providers are included:
[image:] Default: Works automatically with next dev, next start, or a custom server
[image:] Vercel: Works automatically when you deploy on Vercel, no configuration necessary. Learn more [image:] Imgix: loader: 'imgix'
[image:] Cloudinary: loader: 'cloudinary'
[image:] Akamai: loader: 'akamai'loader
next/legacy/image

Custom: loader: 'custom' use a custom cloud provider by implementing the component

prop on the

If you need a different provider, you can use the	prop with next/legacy/image.loader

Images can not be optimized at build time using output: 'export', only on-demand. To use next/legacy/image with
output: 'export', you will need to use a different loader than the default. Read more in the discussion.
The next/legacy/image component’s default loader uses squoosh because it is quick to install and suitable for a development environment. When using next start in your production environment, it is strongly recommended that yousharp

install sharp by running npm i sharp in your project directory. This is not necessary for Vercel deployments, as	is installed automatically.
Advanced
The following configuration is for advanced use cases and is usually not necessary. If you choose to configure the properties below, you will override any changes to the Next.js defaults in future updates.
Device Sizes
If you know the expected device widths of your users, you can specify a list of device width breakpoints using the deviceSizes property in next.config.js. These widths are used when the next/legacy/image component uses layout="responsive" or layout="fill" to ensure the correct image is served for user’s device.
If no configuration is provided, the default below is used.
next.config.js (js)module.exports = {
images: {
} ,
} deviceSizes: [640, 750, 828, 1080, 1200, 1920, 2048, 3840],

Image Sizes
You can specify a list of image widths using the images.imageSizes property in your next.config.js file. These widths are concatenated with the array of device sizes to form the full array of sizes used to generate image srcsets.sizes

The reason there are two separate lists is that imageSizes is only used for images which provide a	prop, which indicates that the
image is less than the full width of the screen. Therefore, the sizes in imageSizes should all be smaller than the smallest size in deviceSizes.
If no configuration is provided, the default below is used.
next.config.js (js)module.exports = {
images: {
} ,
} imageSizes: [16, 32, 48, 64, 96, 128, 256, 384],

Acceptable Formats
The default Image Optimization API will automatically detect the browser’s supported image formats via the request’s

header.Accept

If the Accept head matches more than one of the configured formats, the first match in the array is used. Therefore, the array order matters. If there is no match (or the source image is animated), the Image Optimization API will fallback to the original image’s format. If no configuration is provided, the default below is used.
next.config.js (js)module.exports = {
images: {
} ,
} formats: ['image/webp'],

You can enable AVIF support with the following configuration.

next.config.js (js)module.exports = {
images: {
} ,
} formats: ['image/avif', 'image/webp'],

Good to know: AVIF generally takes 20% longer to encode but it compresses 20% smaller compared to WebP. This means that the first time an image is requested, it will typically be slower and then subsequent requests that are cached will be faster.
Caching Behavior
The following describes the caching algorithm for the default loader. For all other loaders, please refer to your cloud provider’s documentation.
Images are optimized dynamically upon request and stored in the <distDir>/cache/images directory. The optimized image file will be served for subsequent requests until the expiration is reached. When a request is made that matches a cached but expired file, the expired image is served stale immediately. Then the image is optimized again in the background (also called revalidation) and saved to the cache with the new expiration date.x-nextjs-cache

The cache status of an image can be determined by reading the value of the Vercel) response header. The possible values are the following:
[image:] MISS - the path is not in the cache (occurs at most once, on the first visit)

(x-vercel-cache when deployed on

[image:] STALE - the path is in the cache but exceeded the revalidate time so it will be updated in the background
[image:] HIT - the path is in the cache and has not exceeded the revalidate time
The expiration (or rather Max Age) is defined by either the minimumCacheTTL configuration or the upstream image Cache-Control
header, whichever is larger. Specifically, the max-age value of the Cache-Control header is used. If both s-maxage and max-age ares-maxage

found, then	is preferred. The max-age is also passed-through to any downstream clients including CDNs and browsers.
[image:] You can configure minimumCacheTTL to increase the cache duration when the upstream image does not include header or the value is very low.Cache-Control

[image:] You can configure deviceSizes and imageSizes to reduce the total number of possible generated images.
[image:] You can configure formats to disable multiple formats in favor of a single image format.
Minimum Cache TTL
You can configure the Time to Live (TTL) in seconds for cached optimized images. In many cases, it’s better to use a Static Image ImportCache-Control

which will automatically hash the file contents and cache the image forever with a

header of immutable.
next.config.js (js)module.exports = {
images: {
} ,
} minimumCacheTTL: 60,

The expiration (or rather Max Age) of the optimized image is defined by either the header, whichever is larger.Control
headers

If you need to change the caching behavior per image, you can configure/_next/image

to set the

or the upstream image

header on the upstreamminimumCacheTTL
Cache-
Cache-Control

image (e.g. /some-asset.jpg, not	itself).

There is no mechanism to invalidate the cache at this time, so its best to keep	low. Otherwise you may need tominimumCacheTTL
src

manually change the	prop or delete <distDir>/cache/images.

Disable Static Imports
The default behavior allows you to import static files such as property.import icon from './icon.png'
src

and then pass that to the

In some cases, you may wish to disable this feature if it conflicts with other plugins that expect the import to behave differently. You can disable static image imports inside your next.config.js:
next.config.js (js)module.exports = {
images: {
} ,
} disableStaticImages: true,

Dangerously Allow SVG
The default loader does not optimize SVG images for a few reasons. First, SVG is a vector format meaning it can be resized losslessly. Second, SVG has many of the same features as HTML/CSS, which can lead to vulnerabilities without proper Content Security Policy (CSP) headers.dangerouslyAllowSVG

If you need to serve SVG images with the default Image Optimization API, you can set	inside yournext.config.js:

next.config.js (js)module.exports = {
images: {
dangerouslyAllowSVG: true,
contentDispositionType: 'attachment',
} ,
} contentSecurityPolicy: "default-src 'self'; script-src 'none'; sandbox;",

In addition, it is strongly recommended to also set contentDispositionType to force the browser to download the image, as well as to prevent scripts embedded in the image from executing.contentSecurityPolicy

Animated Images
The default loader will automatically bypass Image Optimization for animated images and serve the image as-is.
Auto-detection for animated files is best-effort and supports GIF, APNG, and WebP. If you want to explicitly bypass Image Optimization for a given animated image, use the unoptimized prop.
Version History

	Version
	Changes

	v13.0.0
	next/image renamed to next/legacy/image

4.2.1.4 - <Image>
Documentation path: /03-pages/02-api-reference/01-components/image
Description: Optimize Images in your Next.js Application using the built-in `next/image` Component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.1.5 - <Link>
Documentation path: /03-pages/02-api-reference/01-components/link
Description: API reference for the <Link> component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.1.6 - <Script>
Documentation path: /03-pages/02-api-reference/01-components/script
Description: Optimize third-party scripts in your Next.js application using the built-in `next/script` Component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.2 - Functions
Documentation path: /03-pages/02-api-reference/02-functions/index
Description: API Reference for Functions and Hooks in Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.2.1 - getInitialProps
Documentation path: /03-pages/02-api-reference/02-functions/get-initial-props
Description: Fetch dynamic data on the server for your React component with getInitialProps.

Good to know:getInitialProps

is a legacy API. We recommend using

or

instead.

getInitialProps is an async function that can be added to the default exported React component for the page. It will run on both the server-side and again on the client-side during page transitions. The result of the function will be forwarded to the React component as props.getStaticProps
getServerSideProps

pages/index.tsx (tsx)import { NextPageContext } from 'next'
Page.getInitialProps = async (ctx: NextPageContext) => {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { stars: json.stargazers_count }
const json = await res.json()
export default function Page({ stars }: { stars: number }) {
} return stars

pages/index.js (jsx)Page.getInitialProps = async (ctx) => {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { stars: json.stargazers_count }
const json = await res.json()
export default function Page({ stars }) {
} return stars

Good to know:
[image:] Data returned from getInitialProps is serialized when server rendering. Ensure the returned object from
[image:][image:][image:]getInitialProps is a plain Object, and not using Date, Map or Set.
[image:] For the initial page load, getInitialProps will run on the server only. getInitialProps will then also run on the client when navigating to a different route with the next/link component or by using next/router.
[image:] If getInitialProps is used in a custom _app.js, and the page being navigated to is using getServerSideProps, then
getInitialProps will also run on the server.
Context Object
receives a single argument called context, which is an object with the following properties:getInitialProps

	Name
	Description

	pathname
	Current route, the path of the page in /pages

	query
	Query string of the URL, parsed as an object

	asPath
	String of the actual path (including the query) shown in the browser

	req
	HTTP request object (server only)

	res
	HTTP response object (server only)

	err
	Error object if any error is encountered during the rendering

Caveats
[image:] getInitialProps can only be used in pages/ top level files, and not in nested components. To have nested data fetching at the component level, consider exploring the App Router.

Regardless of whether your route is static or dynamic, any data returned from getInitialProps as props will be able to be examined on the client-side in the initial HTML. This is to allow the page to be hydrated correctly. Make sure that you don’t pass any sensitive information that shouldn’t be available on the client in props.

4.2.2.2 - getServerSideProps
Documentation path: /03-pages/02-api-reference/02-functions/get-server-side-props
Description: API reference for `getServerSideProps`. Learn how to fetch data on each request with Next.js.

When exporting a function called getServerSideProps (Server-Side Rendering) from a page, Next.js will pre-render this page on each request using the data returned by getServerSideProps. This is useful if you want to fetch data that changes often, and have the page update to show the most current data.
pages/index.tsx (tsx)import type { InferGetServerSidePropsType, GetServerSideProps } from 'next'
type Repo = {
} stargazers_count: number
name: string
export const getServerSideProps = (async () => {
// Fetch data from external API
const res = await fetch('https://api.github.com/repos/vercel/next.js')
const repo: Repo = await res.json()
} return { props: { repo } } ps<{ repo: Repo }>
// Pass data to the page via props
) satisfies GetServerSidePro
export default function Page({
} repo, GetServerSidePropsType<typeof getServerSideProps>) {
: Infer
return (
<main>
< <p>{repo.stargazers_count}</p>
}
) /main>

pages/index.js (jsx)export async function getServerSideProps() {
// Fetch data from external API
const res = await fetch('https://api.github.com/repos/vercel/next.js')
const repo = await res.json()
} return { props: { repo } }
// Pass data to the page via props
export default function Page({ repo }) {
return (
<main>
< <p>{repo.stargazers_count}</p>
}
) /main>

You can import modules in top-level scope for use in getServerSideProps. Imports used will not be bundled for the client-side. This means you can write server-side code directly in getServerSideProps, including fetching data from your database.
Context parameter
The	parameter is an object containing the following keys:context

	Name
	Description

	params
	If this page uses a dynamic route, params contains the route parameters. If the page name is [id].js, then
params will look like { id: ... }.

	req
	The HTTP IncomingMessage object, with an additional cookies prop, which is an object with string keys mapping to string values of cookies.

	res
	The HTTP response object.

[image:][image:]redirect. In these cases, you can use the statusCode property instead of the permanent property, but not both.
export async function getServerSideProps(context) {
const res = await fetch(`https://.../data`)
const data = await res.json()
if (!data) {
return {
redirect: {
} permanent: false,
destination: '/',
,

	Name
	Description

	query
	An object representing the query string, including dynamic route parameters.

	preview
	(Deprecated for draftMode) preview is true if the page is in the Preview Mode and false otherwise.

	previewData
	(Deprecated for draftMode) The preview data set by setPreviewData.

	draftMode
	draftMode is true if the page is in the Draft Mode and false otherwise.

	resolvedUrl
	A normalized version of the request URL that strips the _next/data prefix for client transitions and includes original query values.

	locale
	Contains the active locale (if enabled).

	locales
	Contains all supported locales (if enabled).

	defaultLocale
	Contains the configured default locale (if enabled).

getServerSideProps return values
The	function should return an object with any one of the following properties:props passed, could be serialized with JSON.stringify.
export async function getServerSideProps(context) {
return {
}
} props: { message: `Next.js is awesome` }, // will be passed to the page component as props
getServerSideProps

props

The props object is a key-value pair, where each value is received by the page component. It should be a serializable object so that any

notFound

The notFound boolean allows the page to return a 404 status and 404 Page. With notFound: true, the page will return a 404 even if there was a successfully generated page before. This is meant to support use cases like user-generated content getting removed by its author.
export async function getServerSideProps(context) {
const res = await fetch(`https://.../data`)
const data = await res.json()
if (!data) {
return {
}
} notFound: true,

return {
}
} props: { data }, // will be passed to the page component as props

redirect

The redirect object allows redirecting to internal and external resources. It should match the shape of { destination: string, permanent: boolean }. In some rare cases, you might need to assign a custom status code for older HTTP clients to properly

} }
return {
}
} props: {}, // will be passed to the page component as props

Version History

	Version
	Changes

	v13.4.0
	App Router is now stable with simplifed data fetching

	v10.0.0
	locale, locales, defaultLocale, and notFound options added.

	v9.3.0
	getServerSideProps introduced.

4.2.2.3 - getStaticPaths
Documentation path: /03-pages/02-api-reference/02-functions/get-static-paths
Description: API reference for `getStaticPaths`. Learn how to fetch data and generate static pages with `getStaticPaths`.

When exporting a paths specified byfunction called getStaticPaths getStaticPaths.

import type { InferGetStaticPropsType, GetStaticProps, GetStaticPaths,
} from 'next'
type Repo = { name: string
} stargazers_count: number

from a page that uses Dynamic Routes, Next.js will statically pre-render all the

pages/repo/[name].tsx (tsx)

export const getStaticPaths = (async () => { return {
paths: [
{ params: {
name: 'next.js',
},
}, // See the "paths" section below
],
} fallback: true, // false or "blocking"
}) satisfies GetStaticPaths
export const getStaticProps = (async (context) => {
const res = await fetch('https://api.github.com/repos/vercel/next.js') const repo = await res.json()
return { props: { repo } }
}) satisfies GetStaticProps<{ repo: Repo
}>
export default function Page({ repo,
}: InferGetStaticPropsType<typeof getStaticProps>) {
} return repo.stargazers_count

pages/repo/[name].js (jsx)export async function getStaticPaths() {
return {
paths: [
{ params: {
],
}, , See the "paths" section below
} name: 'next.js',
//
fallback: true, // false or "blocking"
} }
export async function getStaticProps() {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { props: { repo } }
const repo = await res.json()
export default function Page({ repo }) {
} return repo.stargazers_count

getStaticPaths return values

The	function should return an object with the following required properties:getStaticPaths

paths
The paths key determines which paths will be pre-rendered. For example, suppose that you have a page that uses Dynamic Routes named pages/posts/[id].js. If you export getStaticPaths from this page and return the following for paths:
return {
paths: [
{ params: { id: '1' }},
{ params: { id: '2' },
} locale: "en",
// with i18n configured the locale for the path can be returned as well
} fallback: ...
], ,

Then, Next.js will statically generate/posts/1

pages/posts/[id].js.

and

during

using the page component in

The value for each params object must match the parameters used in the page name:/posts/2
next build

[image:] If the page name is pages/posts/[postId]/[commentId], then params should contain postId and commentId.
[image:] If the page name uses catch-all routes like pages/[...slug], then params should contain slug (which is an array). If this array is
['hello', 'world'], then Next.js will statically generate the page at /hello/world.
[image:] If the page uses an optional catch-all route, use null, [], undefined or false to render the root-most route. For example, if you supply slug: false for pages/[[...slug]], Next.js will statically generate the page /.
The params strings are case-sensitive and ideally should be normalized to ensure the paths are generated correctly. For example, ifWoRLD
world
or World.

WoRLD is returned for a param it will only match if	is the actual path visited, notparams
locale

Separate of the generated.

object a

field can be returned when i18n is configured, which configures the locale for the path being

fallback: false

If fallback is false, then any paths not returned by getStaticPaths will result in a 404 page.
When next build is run, Next.js will check if getStaticPaths returned fallback: false, it will then build only the paths returned by getStaticPaths. This option is useful if you have a small number of paths to create, or new page data is not added often. If younext build

find that you need to add more paths, and you have fallback: false, you will need to run can be generated.

again so that the new paths

The following example pre-renders one blog post per page called pages/posts/[id].js. The list of blog posts will be fetched from a CMS and returned by getStaticPaths. Then, for each page, it fetches the post data from a CMS using getStaticProps.
pages/posts/[id].js (jsx)function Post({ post }) {
} // Render post...
// This function gets called at build time
export async function getStaticPaths() {
// Call an external API endpoint to get posts
const res = await fetch('https://.../posts')
const posts = await res.json()
// Get the paths we want to pre-render based on posts
const paths = posts.map((post) => ({
} params: { id: post.id },
))
// We'll pre-render only these paths at build time.
} return { paths, fallback: false }
// { fallback: false } means other routes should 404.
// This also gets called at build time
export async function getStaticProps({ params }) {
// params contains the post `id`.

// If the route is like /posts/1, then params.id is 1
const res = await fetch(`https://.../posts/${params.id}`)
const post = await res.json()
} return { props: { post } } export default Post
// Pass post data to the page via props

fallback: true

If

Examples
fallback

[image:]is true, then the behavior of

changes in the following ways:getStaticProps

[image:]The paths returned from getStaticPaths will be rendered to HTML at build time by getStaticProps.
The paths that have not been generated at build time will not result in a 404 page. Instead, Next.js will serve a “fallback” version of the page on the first request to such a path. Web crawlers, such as Google, won’t be served a fallback and instead the path will behave as in fallback: 'blocking'.

When a page with fallback: true is navigated to through next/link or fallback and instead the page will behave as fallback: 'blocking'.next/router

(client-side) Next.js will not serve a

[image:]In the background, Next.js will statically generate the requested path HTML and JSON. This includes running getStaticProps. When complete, the browser receives the JSON for the generated path. This will be used to automatically render the page with the required props. From the user’s perspective, the page will be swapped from the fallback page to the full page.
At the same time, Next.js adds this path to the list of pre-rendered pages. Subsequent requests to the same path will serve the generated page, like other pages pre-rendered at build time.fallback: true

Good to know: When isfallback: true

useful?

is not supported when using output: 'export'.

fallback: true is useful if your app has a very large number of static pages that depend on data (such as a very large e-commerce site). If you want to pre-render all product pages, the builds would take a very long time.
Instead, you may statically generate a small subset of pages and use fallback: true for the rest. When someone requests a page that is not generated yet, the user will see the page with a loading indicator or skeleton component.
Shortly after, getStaticProps finishes and the page will be rendered with the requested data. From now on, everyone who requests the same page will get the statically pre-rendered page.
This ensures that users always have a fast experience while preserving fast builds and the benefits of Static Generation. will not update generated pages, for that take a look at Incremental Static Regeneration.fallback: true

fallback: 'blocking'

If fallback is 'blocking', new paths not returned by getStaticPaths will wait for the HTML to be generated, identical to SSR (hence why blocking), and then be cached for future requests so it only happens once per path.
[image:]will behave as follows:getStaticProps

[image:][image:] The paths returned from getStaticPaths will be rendered to HTML at build time by getStaticProps.
[image:][image:] The paths that have not been generated at build time will not result in a 404 page. Instead, Next.js will SSR on the first request and return the generated HTML.
[image:][image:] When complete, the browser receives the HTML for the generated path. From the user’s perspective, it will transition from “the browser is requesting the page” to “the full page is loaded”. There is no flash of loading/fallback state.
[image:] At the same time, Next.js adds this path to the list of pre-rendered pages. Subsequent requests to the same path will serve the generated page, like other pages pre-rendered at build time.
fallback: 'blocking' will not update generated pages by default. To update generated pages, use Incremental Static Regeneration in conjunction with fallback: 'blocking'.

Good to know:fallback: 'blocking'

Fallback pages
In the “fallback” version of a page: [image:] The page’s props will be empty.

is not supported when using output: 'export'.

[image:] Using the router, you can detect if the fallback is being rendered, The following example showcases using isFallback:router.isFallback

import { useRouter } from 'next/router' function Post({ post }) {
const router = useRouter()
// If the page is not yet generated, this will be displayed
// initially until getStaticProps() finishes running if (router.isFallback) {
} return <div>Loading...</div>
} // Render post...
// This function gets called at build time export async function getStaticPaths() {
return {
// Only `/posts/1` and `/posts/2` are generated at build time paths: [{ params: { id: '1' } }, { params: { id: '2' } }],
// Enable statically generating additional pages
// For example: `/posts/3`
} fallback: true,

will be true.

[image:]pages/posts/[id].js (jsx)

}
// This also gets called at build time
export async function getStaticProps({ params }) {
// params contains the post `id`.
// If the route is like /posts/1, then params.id is 1 const res = await fetch(`https://.../posts/${params.id}`) const post = await res.json()
// Pass post data to the page via props return {
props: { post },
// Re-generate the post at most once per second
// if a request comes in
} revalidate: 1,
}
export default Post
Version History

	Version
	Changes

	v13.4.0
	App Router is now stable with simplifed data fetching, including generateStaticParams()

	v12.2.0
	On-Demand Incremental Static Regeneration is stable.

	v12.1.0
	On-Demand Incremental Static Regeneration added (beta).

	v9.5.0
	Stable Incremental Static Regeneration

	v9.3.0
	getStaticPaths introduced.

4.2.2.4 - getStaticProps
Documentation path: /03-pages/02-api-reference/02-functions/get-static-props
Description: API reference for `getStaticProps`. Learn how to use `getStaticProps` to generate static pages with Next.js.

Exporting a function called

will pre-render a page at build time using the props returned from the function:
pages/index.tsx (tsx)import type { InferGetStaticPropsType, GetStaticProps } from 'next'
type Repo = {
} stargazers_count: number
name: string
export const getStaticProps = (async (context) => {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { props: { repo } }
const repo = await res.json()
} repo: Repo
) satisfies GetStaticProps<{
>
export default function Page({
} repo, GetStaticPropsType<typeof getStaticProps>) {
} return repo.stargazers_count
: Infer
getStaticProps

pages/index.js (jsx)export async function getStaticPaths() {
const res = await fetch('https://api.github.com/repos/vercel/next.js')
} return { props: { repo } }
const repo = await res.json()
export default function Page({ repo }) {
} return repo.stargazers_count

You can import modules in top-level scope for use in getStaticProps. Imports used will not be bundled for the client-side. This means you can write server-side code directly in getStaticProps, including fetching data from your database.
Context parameter
The	parameter is an object containing the following keys:context

	Name
	Description

	params
	Contains the route parameters for pages using dynamic routes. For example, if the page name is [id].js, then
params will look like { id: ... }. You should use this together with getStaticPaths, which we’ll explain later.

	preview
	(Deprecated for draftMode) preview is true if the page is in the Preview Mode and false otherwise.

	previewData
	(Deprecated for draftMode) The preview data set by setPreviewData.

	draftMode
	draftMode is true if the page is in the Draft Mode and false otherwise.

	locale
	Contains the active locale (if enabled).

	locales
	Contains all supported locales (if enabled).

	defaultLocale
	Contains the configured default locale (if enabled).

getStaticProps return values
function should return an object containing either props, redirect, orThe getStaticProps revalidate property.

followed by an optionalnotFound

props

The	object is a key-value pair, where each value is received by the page component. It should be a serializable object so that anyprops passed, could be serialized with JSON.stringify.
export async function getStaticProps(context) {
return {
}
} props: { message: `Next.js is awesome` }, // will be passed to the page component as props
props

revalidate
The revalidate property is the amount in seconds after which a page re-generation can occur (defaults to false or no revalidation).
// This function gets called at build time on server-side.
// It may be called again, on a serverless function, if
// revalidation is enabled and a new request comes in
export async function getStaticProps() {
const res = await fetch('https://.../posts')
const posts = await res.json()
return {
props: {
} posts,
// Next.js will attempt to re-generate the page:
,
// - When a request comes in
// - At most once every 10 seconds
}
} revalidate: 10, // In seconds

Learn more about Incremental Static Regeneration.
The cache status of a page leveraging ISR can be determined by reading the value of the possible values are the following:
[image:] MISS - the path is not in the cache (occurs at most once, on the first visit)x-nextjs-cache

response header. The

STALE - the path is in the cache but exceeded the revalidate time so it will be updated in the background
HIT - the path is in the cache and has not exceeded the revalidate time
notFound

The

boolean allows the page to return a

status and 404 Page. With notFound: true, the page will return a

even if

there was a successfully generated page before. This is meant to support use cases like user-generated content getting removed by itsauthor. Note, notFound follows the same revalidate behavior described here.
export async function getStaticProps(context) {
const res = await fetch(`https://.../data`)
const data = await res.json()
if (!data) {
return {
}
} notFound: true,

return {
}
} props: { data }, // will be passed to the page component as props
notFound
404
404

Good to know: pre-rendered.notFound

is not needed for

mode as only paths returned from

will be

redirect

The redirect object allows redirecting to internal or external resources. It should match the shape offallback: false
getStaticPaths
{ destination: string,

permanent: boolean }.

In some rare cases, you might need to assign a custom status code for older	clients to properly redirect. In these cases, you canexport async function getStaticProps(context) {
const res = await fetch(`https://...`)
const data = await res.json()
if (!data) {
return {
redirect: {
destination: '/',
} // statusCode: 301
permanent: false,
}
} ,

return {
}
} props: { data }, // will be passed to the page component as props
use the statusCode property instead of the redirects in next.config.js.
HTTP
property, but not both. You can also set
permanent
similar to
basePath: false

If the redirects are known at build-time, they should be added innext.config.js

Reading files: Useprocess.cwd()

Files can be read directly from the filesystem in getStaticProps. In order to do so you have to get the full path to a file.
Since Next.js compiles your code into a separate directory you can’t use Pages Router.

instead.

as the path it returns will be different from the dirname

Instead you can use process.cwd() which gives you the directory where Next.js is being executed.
import { promises as fs } from 'fs' import path from 'path'
// posts will be populated at build time by getStaticProps() function Blog({ posts }) {
return (

{posts.map((post) => (

<h3>{post.filename}</h3>
<p>{post.content}</p>

))}
)
}
// This function gets called at build time on server-side.
// It won't be called on client-side, so you can even do
// direct database queries.
export async function getStaticProps() {
const postsDirectory = path.join(process.cwd(), 'posts') const filenames = await fs.readdir(postsDirectory)
const posts = filenames.map(async (filename) => { const filePath = path.join(postsDirectory, filename)
const fileContents = await fs.readFile(filePath, 'utf8')
// Generally you would parse/transform the contents
// For example you can transform markdown to HTML here
return { filename,
} content: fileContents,
})
// By returning { props: { posts } }, the Blog component
// will receive `posts` as a prop at build time return {

props: {
} posts: await Promise.all(posts),
}
} ,
export default Blog

Version History

	Version
	Changes

	v13.4.0
	App Router is now stable with simplifed data fetching

	v12.2.0
	On-Demand Incremental Static Regeneration is stable.

	v12.1.0
	On-Demand Incremental Static Regeneration added (beta).

	v10.0.0
	locale, locales, defaultLocale, and notFound options added.

	v10.0.0
	fallback: 'blocking' return option added.

	v9.5.0
	Stable Incremental Static Regeneration

	v9.3.0
	getStaticProps introduced.

4.2.2.5 - NextRequest
Documentation path: /03-pages/02-api-reference/02-functions/next-request
Description: API Reference for NextRequest.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.2.6 - NextResponse
Documentation path: /03-pages/02-api-reference/02-functions/next-response
Description: API Reference for NextResponse.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.2.7 - useAmp
Documentation path: /03-pages/02-api-reference/02-functions/use-amp
Description: Enable AMP in a page, and control the way Next.js adds AMP to the page with the AMP config.
[image:] Examples
AMP support is one of our advanced features, you can read more about AMP here.
To enable AMP, add the following config to your page:
pages/index.js (jsx)export const config = { amp: true }

[image:]The amp config accepts the following values:
[image:] true - The page will be AMP-only
[image:] 'hybrid' - The page will have two versions, one with AMP and another one with HTML
To learn more about the	config, read the sections below.amp

AMP First Page

Take a look at the following example:

pages/about.js (jsx)export const config = { amp: true }
function About(props) {
} return <h3>My AMP About Page!</h3> export default About

The page above is an AMP-only page, which means:
[image:] The page has no Next.js or React client-side runtime
[image:] The page is automatically optimized with AMP Optimizer, an optimizer that applies the same transformations as AMP caches (improves performance by up to 42%)
[image:] The page has a user-accessible (optimized) version of the page and a search-engine indexable (unoptimized) version of the page
Hybrid AMP Page
Take a look at the following example:
pages/about.js (jsx)import { useAmp } from 'next/amp'
export const config = { amp: 'hybrid' }
function About(props) {
const isAmp = useAmp()
return (
<div>
<h3>My AMP About Page!</h3>
{isAmp ? (
<amp-img
width="300"
height="300"
src="/my-img.jpg"
alt="a cool image"
) >
/ layout="responsive"
: (
</ } >
)
div
})

export default About

The page above is a hybrid AMP page, which means:
[image:] The page is rendered as traditional HTML (default) and AMP HTML (by adding ?amp=1 to the URL)
[image:] The AMP version of the page only has valid optimizations applied with AMP Optimizer so that it is indexable by search-enginesuseAmp
true
false

The page uses otherwise.

to differentiate between modes, it’s a React Hook that returns

if the page is using AMP, and

4.2.2.8 - useReportWebVitals
Documentation path: /03-pages/02-api-reference/02-functions/use-report-web-vitals
Description: useReportWebVitals

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.2.9 - useRouter
Documentation path: /03-pages/02-api-reference/02-functions/use-router
Description: Learn more about the API of the Next.js Router, and access the router instance in your page with the useRouter hook.useRouter

If you want to access the the following example:router

object inside any function component in your app, you can use the

hook, take a look at

import { useRouter } from 'next/router'
function ActiveLink({ children, href }) {
const router = useRouter()
const style = {
} color: router.asPath === href ? 'red' : 'black',
marginRight: 10,
const handleClick = (e) => {
} router.push(href)
e.preventDefault()
return (

}
) /a>
< {children}
export default ActiveLink

useRouter is a React Hook, meaning it cannot be used with classes. You can either use withRouter or wrap your class in a function component.
objectrouter

The following is the definition of the	object returned by bothrouter
useRouter
and withRouter:
locale

pathname: String - The path for current route file that comes after /pages. Therefore, basePath, (trailingSlash: true) are not included.

and trailing slash

[image:]query: Object - The query string parsed to an object, including dynamic route parameters. It will be an empty object during prerendering if the page doesn’t use Server-side Rendering. Defaults to {}trailingSlash

asPath: String - The path as shown in the browser including the search params and respecting the configuration. basePath and locale are not included.
isFallback: boolean - Whether the current page is in fallback mode.
basePath: String - The active basePath (if enabled). locale: String - The active locale (if enabled). locales: String[] - All supported locales (if enabled).
defaultLocale: String - The current default locale (if enabled).
domainLocales: Array<{domain, defaultLocale, locales}> - Any configured domain locales.
isReady: boolean - Whether the router fields are updated client-side and ready for use. Should only be used inside of useEffect
methods and not for conditionally rendering on the server. See related docs for use case with automatically statically optimized pagesisPreview:
boolean

- Whether the application is currently in preview mode.
Using the asPath field may lead to a mismatch between client and server if the page is rendered using server-side rendering orisReady

[image:]automatic static optimization. Avoid using asPath until the The following methods are included inside router: router.pushHandles client-side transitions, this method is useful for cases where next/link is not enough.
router.push(url, as, options)

field is true.

url: UrlObject | String - The URL to navigate to (see Node.JS URL module documentation for UrlObject properties).
as: UrlObject | String - Optional decorator for the path that will be shown in the browser URL bar. Before Next.js 9.5.3 this was used for dynamic routes.
options - Optional object with the following configuration options:
scroll - Optional boolean, controls scrolling to the top of the page after navigation. Defaults to true
shallow: Update the path of the current page without rerunning getStaticProps, getServerSideProps or getInitialProps. Defaults to falselocale

- Optional string, indicates locale of the new page
You don’t need to use	for external URLs. window.location is better suited for those cases.router.push

Navigating to pages/about.js, which is a predefined route:
import { useRouter } from 'next/router'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.push('/about')}>
< Click me
}
) /button>
Navigating pages/post/[pid].js, which is a dynamic route:
import { useRouter } from 'next/router'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.push('/post/abc')}>
< Click me
}
) /button>
Redirecting the user to pages/login.js, useful for pages behind authentication:
import { useEffect } from 'react'
import { useRouter } from 'next/router'
// Here you would fetch and return the user
const useUser = () => ({ user: null, loading: false })
export default function Page() {
const { user, loading } = useUser()
const router = useRouter()
useEffect(() => {
if (!(user || loading)) {
}, [user, loading])
} router.push('/login')
} return <p>Redirecting...</p>

Resetting state after navigation
When navigating to the same page in Next.js, the page’s state will not be reset by default as React does not unmount unless the parent component has changed.
pages/[slug].js (jsx)import Link from 'next/link'
import { useState } from 'react'
import { useRouter } from 'next/router'
export default function Page(props) {
const router = useRouter()
const [count, setCount] = useState(0)

return (
<div>
<h1>Page: {router.query.slug}</h1>
<p>Count: {count}</p>
< <Link href="/one">one</Link> <Link href="/two">two</Link>
<button onClick={() => setCount(count + 1)}>Increase count</button>
}
) /div>

In the above example, navigating between /one and

will not reset the count . The

is maintained between renders

because the top-level React component, Page, is the same./two

If you do not want this behavior, you have a couple of options:
[image:] Manually ensure each state is updated using useEffect. In the above example, that could look like:
jsx useEffect(() => { setCount(0) }, [router.query.slug])

Use a React	to tell React to remount the component. To do this for all pages, you can use a custom app:
pages/_app.js (jsx)import { useRouter } from 'next/router'
export default function MyApp({ Component, pageProps }) {
} return <Component key={router.asPath} {...pageProps} />
const router = useRouter()
useState
key

With URL object
You can use a URL object in the same way you can use it for next/link. Works for both the url and as parameters:
import { useRouter } from 'next/router'
export default function ReadMore({ post }) {
const router = useRouter()
return (
<button
type="button"
onClick={() => {
router.push({
pathname: '/post/[pid]',
}})
} query: { pid: post.id },
}
· Click here to read more
) </button>

router.replace

The API for	is exactly the same as the API for router.push.Similar to the replace prop in next/link, router.replace will prevent adding a new URL entry into the history stack.
router.replace(url, as, options)
router.replace

Take a look at the following example:import { useRouter } from 'next/router'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.replace('/home')}>
< Click me
}
) /button>

router.prefetch
Prefetch pages for faster client-side transitions. This method is only useful for navigations without next/link, as care of prefetching pages automatically.next/link

This is a production only feature. Next.js doesn’t prefetch pages in development.

takes

router.prefetch(url, as, options)

[image:]url - The URL to prefetch, including explicit routes (e.g. /dashboard) and dynamic routes (e.g. /product/[id]) as - Optional decorator for url. Before Next.js 9.5.3 this was used to prefetch dynamic routes.
options - Optional object with the following allowed fields:url

locale - allows providing a different locale from the active one. If false, used.

has to include the locale as the active locale won’t be

Let’s say you have a login page, and after a login, you redirect the user to the dashboard. For that case, we can prefetch the dashboard to make a faster transition, like in the following example:
import { useCallback, useEffect } from 'react' import { useRouter } from 'next/router'
export default function Login() { const router = useRouter()
const handleSubmit = useCallback((e) => { e.preventDefault()
fetch('/api/login', { method: 'POST',
headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({
/* Form data */
}),
}).then((res) => {
// Do a fast client-side transition to the already prefetched dashboard page if (res.ok) router.push('/dashboard')
})
}, [])
useEffect(() => {
// Prefetch the dashboard page router.prefetch('/dashboard')
}, [router])
return (
<form onSubmit={handleSubmit}>
{/* Form fields */}
<button type="submit">Login</button>
) </form>
}
router.beforePopState
In some cases (for example, if using a Custom Server), you may wish to listen to popstate and do something before the router acts on it.router.beforePopState(cb)
cb - Th props:

e function to run on incoming	events. The function receives the state of the event as an object with the following
[image:] url: String - the route for the new state. This is usually the name of apopstate
page

[image:] as: String - the url that will be shown in the browser
[image:] options: Object - Additional options sent by router.push
[image:]If cb returns false, the Next.js router will not handle popstate, and you’ll be responsible for handling it in that case. See Disabling file-system routing.
You could use beforePopState to manipulate the request, or force a SSR refresh, as in the following example:
import { useEffect } from 'react'
import { useRouter } from 'next/router'
export default function Page() {

const router = useRouter()
useEffect(() => {
router.beforePopState(({ url, as, options }) => {
// I only want to allow these two routes!
if (as !== '/' && as !== '/other') {
// Have SSR render bad routes as a 404.
} return false
window.location.href = as
},) outer])
} return true
[r
} return <p>Welcome to the page</p>

router.back
Navigate back in history. Equivalent to clicking the browser’s back button. It executes window.history.back(). import { useRouter } from 'next/router'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.back()}>
< Click here to go back
}
) /button>

router.reload
Reload the current URL. Equivalent to clicking the browser’s refresh button. It executes window.location.reload(). import { useRouter } from 'next/router'
export default function Page() {
const router = useRouter()
return (
<button type="button" onClick={() => router.reload()}>
< Click here to reload
}
) /button>

router.events
You can listen to different events happening inside the Next.js Router. Here’s a list of supported events:
[image:] routeChangeStart(url, { shallow }) - Fires when a route starts to change
[image:] routeChangeComplete(url, { shallow }) - Fires when a route changed completely
[image:] routeChangeError(err, url, { shallow }) - Fires when there’s an error when changing routes, or a route load is cancelled
[image:] err.cancelled - Indicates if the navigation was cancelled
[image:] beforeHistoryChange(url, { shallow }) - Fires before changing the browser’s history
[image:] hashChangeStart(url, { shallow }) - Fires when the hash will change but not the page
[image:] hashChangeComplete(url, { shallow }) - Fires when the hash has changed but not the page
Good to know: Here	is the URL shown in the browser, including the basePath.url

For example, to listen to the router event routeChangeStart, open or create pages/_app.js and subscribe to the event, like so:
import { useEffect } from 'react' import { useRouter } from 'next/router'
export default function MyApp({ Component, pageProps }) { const router = useRouter()

useEffect(() => {
const handleRouteChange = (url, { shallow }) => {
console.log(
`App is changing to ${url} ${
})
} shallow ? 'with' : 'without'
shallow routing`
router.events.on('routeChangeStart', handleRouteChange)
// If the component is unmounted, unsubscribe
// from the event with the `off` method:
return () => {
}, [router])
} router.events.off('routeChangeStart', handleRouteChange)
} return <Component {...pageProps} />

We use a Custom App (pages/_app.js) for this example to subscribe to the event because it’s not unmounted on page navigations, but you can subscribe to router events on any component in your application.
Router events should be registered when a component mounts (useEffect or componentDidMount / componentWillUnmount) or imperatively when an event happens.routeChangeError
err

If a route load is cancelled (for example, by clicking two links rapidly in succession), will contain a cancelled property set to true, as in the following example:
import { useEffect } from 'react' import { useRouter } from 'next/router'
export default function MyApp({ Component, pageProps }) { const router = useRouter()
useEffect(() => {
const handleRouteChangeError = (err, url) => { if (err.cancelled) {
} console.log(`Route to ${url} was cancelled!`)

will fire. And the passed

}
router.events.on('routeChangeError', handleRouteChangeError)
// If the component is unmounted, unsubscribe
// from the event with the `off` method:
return () => {
} router.events.off('routeChangeError', handleRouteChangeError)
}, [router])
} return <Component {...pageProps} />
Potential ESLint errors
Certain methods accessible on the	object return a Promise. If you have the ESLint rule, no-floating-promises enabled, considerrouter

disabling it either globally, or for the affected line.void
await

If your application needs this rule, you should either	the promise – or use an async function,	the Promise, then void the
function call. This is not applicable when the method is called from inside an onClick handler. The affected methods are:router.push router.replace router.prefetch
import { useEffect } from 'react'
import { useRouter } from 'next/router'

Potential solutions

// Here you would fetch and return the user
const useUser = () => ({ user: null, loading: false })
export default function Page() {
const { user, loading } = useUser()
const router = useRouter()
useEffect(() => {
// disable the linting on the next line - This is the cleanest solution
// eslint-disable-next-line no-floating-promises
router.push('/login')
// void the Promise returned by router.push
if (!(user || loading)) {
} void router.push('/login')
// or use an async function, await the Promise, then void the function call
async function handleRouteChange() {
if (!(user || loading)) {
} void handleRouteChange()
}
} await router.push('/login')
, [user, loading])
} return <p>Redirecting...</p>

withRouterwithRouter
router

IfuseRouter

Usage

is not the best fit for you,

can also add the same

object to any component.

import { withRouter } from 'next/router'
function Page({ router }) {
} return <p>{router.pathname}</p> export default withRouter(Page)

TypeScript
To use class components with withRouter, the component needs to accept a router prop:
import { withRouter, NextRouter } from 'next/router'
import React from 'react'
interface WithRouterProps {
} router: NextRouter
interface MyComponentProps extends WithRouterProps {}
class MyComponent extends React.Component<MyComponentProps> {
render() {
}
} return <p>{this.props.router.pathname}</p>
export default withRouter(MyComponent)

4.2.2.10 - userAgent
Documentation path: /03-pages/02-api-reference/02-functions/userAgent
Description: The userAgent helper extends the Web Request API with additional properties and methods to interact with the user agent object from the request.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3 - next.config.js Options
Documentation path: /03-pages/02-api-reference/03-next-config-js/index
Description: Learn about the options available in next.config.js for the Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.1 - assetPrefix
Documentation path: /03-pages/02-api-reference/03-next-config-js/assetPrefix
Description: Learn how to use the assetPrefix config option to configure your CDN.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.2 - basePath
Documentation path: /03-pages/02-api-reference/03-next-config-js/basePath
Description: Use `basePath` to deploy a Next.js application under a sub-path of a domain.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.3 - compress
Documentation path: /03-pages/02-api-reference/03-next-config-js/compress
Description: Next.js provides gzip compression to compress rendered content and static files, it only works with the server target. Learn more about it here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.4 - devIndicators
Documentation path: /03-pages/02-api-reference/03-next-config-js/devIndicators
Description: Optimized pages include an indicator to let you know if it's being statically optimized. You can opt-out of it here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.5 - distDir
Documentation path: /03-pages/02-api-reference/03-next-config-js/distDir
Description: Set a custom build directory to use instead of the default .next directory.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.6 - env
Documentation path: /03-pages/02-api-reference/03-next-config-js/env
Description: Learn to add and access environment variables in your Next.js application at build time.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.7 - eslint
Documentation path: /03-pages/02-api-reference/03-next-config-js/eslint
Description: Next.js reports ESLint errors and warnings during builds by default. Learn how to opt-out of this behavior here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.8 - exportPathMap
Documentation path: /03-pages/02-api-reference/03-next-config-js/exportPathMap
Description: Customize the pages that will be exported as HTML files when using `next export`.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.9 - generateBuildId
Documentation path: /03-pages/02-api-reference/03-next-config-js/generateBuildId
Description: Configure the build id, which is used to identify the current build in which your application is being served.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.10 - generateEtags
Documentation path: /03-pages/02-api-reference/03-next-config-js/generateEtags
Description: Next.js will generate etags for every page by default. Learn more about how to disable etag generation here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.11 - headers
Documentation path: /03-pages/02-api-reference/03-next-config-js/headers
Description: Add custom HTTP headers to your Next.js app.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.12 - httpAgentOptions
Documentation path: /03-pages/02-api-reference/03-next-config-js/httpAgentOptions
Description: Next.js will automatically use HTTP Keep-Alive by default. Learn more about how to disable HTTP Keep-Alive here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.13 - images
Documentation path: /03-pages/02-api-reference/03-next-config-js/images
Description: Custom configuration for the next/image loader

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.14 - onDemandEntries
Documentation path: /03-pages/02-api-reference/03-next-config-js/onDemandEntries
Description: Configure how Next.js will dispose and keep in memory pages created in development.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.15 - output
Documentation path: /03-pages/02-api-reference/03-next-config-js/output
Description: Next.js automatically traces which files are needed by each page to allow for easy deployment of your application. Learn how it works here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.16 - pageExtensions
Documentation path: /03-pages/02-api-reference/03-next-config-js/pageExtensions
Description: Extend the default page extensions used by Next.js when resolving pages in the Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.17 - poweredByHeader
Documentation path: /03-pages/02-api-reference/03-next-config-js/poweredByHeader
Description: Next.js will add the `x-powered-by` header by default. Learn to opt-out of it here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.18 - productionBrowserSourceMaps
Documentation path: /03-pages/02-api-reference/03-next-config-js/productionBrowserSourceMaps
Description: Enables browser source map generation during the production build.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.19 - reactStrictMode
Documentation path: /03-pages/02-api-reference/03-next-config-js/reactStrictMode
Description: The complete Next.js runtime is now Strict Mode-compliant, learn how to opt-in

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.20 - redirects
Documentation path: /03-pages/02-api-reference/03-next-config-js/redirects
Description: Add redirects to your Next.js app.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.21 - rewrites
Documentation path: /03-pages/02-api-reference/03-next-config-js/rewrites
Description: Add rewrites to your Next.js app.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.22 - Runtime Config
Documentation path: /03-pages/02-api-reference/03-next-config-js/runtime-configuration
Description: Add client and server runtime configuration to your Next.js app.

Warning:
[image:] This feature is deprecated. We recommend using environment variables instead, which also can support reading runtime values.register

You can run code on server startup using the	function.
This feature does not work with Automatic Static Optimization, Output File Tracing, or React Server Components.next.config.js
publicRuntimeConfig
serverRuntimeConfig

To add runtime configuration to your app, open configs:

and add the

and

next.config.js (js)module.exports = {
serverRuntimeConfig: {
// Will only be available on the server side
} secondSecret: process.env.SECOND_SECRET, // Pass through env variables
mySecret: 'secret',
publicRuntimeConfig: {
,
// Will be available on both server and client
} ,
} staticFolder: '/static',

Place any server-only runtime config under serverRuntimeConfig.
Anything accessible to both client and server-side code should be under publicRuntimeConfig.

A page that relies on publicRuntimeConfig must use

or

or your application must

have a Custom App with getInitialProps to opt-out of Automatic Static Optimization. Runtime configuration won’t be available to any page (or component in a page) without being server-side rendered.getInitialProps
getServerSideProps

To get access to the runtime configs in your app use next/config, like so:
import getConfig from 'next/config' import Image from 'next/image'
// Only holds serverRuntimeConfig and publicRuntimeConfig
const { serverRuntimeConfig, publicRuntimeConfig } = getConfig()
// Will only be available on the server-side console.log(serverRuntimeConfig.mySecret)
// Will be available on both server-side and client-side console.log(publicRuntimeConfig.staticFolder)
function MyImage() { return (
<div>
<Image
src={`${publicRuntimeConfig.staticFolder}/logo.png`} alt="logo"
layout="fill"
/>
) </div>
}
export default MyImage

4.2.3.23 - trailingSlash
Documentation path: /03-pages/02-api-reference/03-next-config-js/trailingSlash
Description: Configure Next.js pages to resolve with or without a trailing slash.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.24 - transpilePackages
Documentation path: /03-pages/02-api-reference/03-next-config-js/transpilePackages
Description: Automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependencies (`node_modules`).

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.25 - turbo (experimental)
Documentation path: /03-pages/02-api-reference/03-next-config-js/turbo
Description: Configure Next.js with Turbopack-specific options

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.26 - typescript
Documentation path: /03-pages/02-api-reference/03-next-config-js/typescript
Description: Next.js reports TypeScript errors by default. Learn to opt-out of this behavior here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.27 - urlImports
Documentation path: /03-pages/02-api-reference/03-next-config-js/urlImports
Description: Configure Next.js to allow importing modules from external URLs (experimental).

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.28 - webVitalsAttribution
Documentation path: /03-pages/02-api-reference/03-next-config-js/webVitalsAttribution
Description: Learn how to use the webVitalsAttribution option to pinpoint the source of Web Vitals issues.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.3.29 - Custom Webpack Config
Documentation path: /03-pages/02-api-reference/03-next-config-js/webpack
Description: Learn how to customize the webpack config used by Next.js

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.4 - create-next-app
Documentation path: /03-pages/02-api-reference/04-create-next-app
Description: create-next-app

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.5 - Next.js CLI
Documentation path: /03-pages/02-api-reference/05-next-cli
Description: Next.js CLI

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

4.2.6 - Edge Runtime
Documentation path: /03-pages/02-api-reference/06-edge
Description: API Reference for the Edge Runtime.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}

5 - Architecture
Documentation path: /04-architecture/index
Description: How Next.js Works

Learn about the Next.js architecture and how it works under the hood.

5.1 - Accessibility
Documentation path: /04-architecture/accessibility
Description: The built-in accessibility features of Next.js.

The Next.js team is committed to making Next.js accessible to all developers (and their end-users). By adding accessibility features to Next.js by default, we aim to make the Web more inclusive for everyone.
Route Announcements
When transitioning between pages rendered on the server (e.g. using the <a href> tag) screen readers and other assistive technology announce the page title when the page loads so that users understand that the page has changed.
In addition to traditional page navigations, Next.js also supports client-side transitions for improved performance (using next/link). To ensure that client-side transitions are also announced to assistive technology, Next.js includes a route announcer by default.
[image:]The Next.js route announcer looks for the page name to announce by first inspecting document.title, then the <h1> element, and finally the URL pathname. For the most accessible user experience, ensure that each page in your application has a unique and descriptive title.
Linting
Next.js provides an integrated ESLint experience out of the box, including custom rules for Next.js. By default, Next.js includes to help catch accessibility issues early, including warning on:eslint-plugin-jsx-a11y

[image:] aria-props
[image:] aria-proptypes
[image:] aria-unsupported-elements [image:] role-has-required-aria-props [image:] role-supports-aria-props
For example, this plugin helps ensure you add alt text to more.img

Accessibility Resources
[image:] WebAIM WCAG checklist [image:] WCAG 2.2 Guidelines
[image:] The A11y Project

tags, use correct

attributes, use correctaria-*

attributes, androle

Check color contrast ratios between foreground and background elementsprefers-reduced-motion

Use	when working with animations

5.2 - Fast Refresh
Documentation path: /04-architecture/fast-refresh
Description: Fast Refresh is a hot module reloading experience that gives you instantaneous feedback on edits made to your React components.

Fast Refresh is a Next.js feature that gives you instantaneous feedback on edits made to your React components. Fast Refresh is enabled by default in all Next.js applications on 9.4 or newer. With Next.js Fast Refresh enabled, most edits should be visible within a second, without losing component state.
How It Works
[image:] If you edit a file that only exports React component(s), Fast Refresh will update the code only for that file, and re-render your component. You can edit anything in that file, including styles, rendering logic, event handlers, or effects.
[image:] If you edit a file with exports that aren’t React components, Fast Refresh will re-run both that file, and the other files importing it. Sotheme.js

if both Button.js and Modal.js import theme.js, editing	will update both components.
[image:] Finally, if you edit a file that’s imported by files outside of the React tree, Fast Refresh will fall back to doing a full reload. You might have a file which renders a React component but also exports a value that is imported by a non-React component. For example, maybe your component also exports a constant, and a non-React utility file imports it. In that case, consider migrating the constant to a separate file and importing it into both files. This will re-enable Fast Refresh to work. Other cases can usually be solved in a similar way.
Error Resilience
Syntax Errors
If you make a syntax error during development, you can fix it and save the file again. The error will disappear automatically, so you won’t need to reload the app. You will not lose component state.
Runtime Errors
If you make a mistake that leads to a runtime error inside your component, you’ll be greeted with a contextual overlay. Fixing the error will automatically dismiss the overlay, without reloading the app.
Component state will be retained if the error did not occur during rendering. If the error did occur during rendering, React will remount your application using the updated code.
If you have error boundaries in your app (which is a good idea for graceful failures in production), they will retry rendering on the next edit after a rendering error. This means having an error boundary can prevent you from always getting reset to the root app state.
However, keep in mind that error boundaries shouldn’t be too granular. They are used by React in production, and should always be designed intentionally.
Limitations
Fast Refresh tries to preserve local React state in the component you’re editing, but only if it’s safe to do so. Here’s a few reasons why you might see local state being reset on every edit to a file:
[image:] Local state is not preserved for class components (only function components and Hooks preserve state). [image:] The file you’re editing might have other exports in addition to a React component.
[image:] Sometimes, a file would export the result of calling a higher-order component like HOC(WrappedComponent). If the returned
component is a class, its state will be reset.
[image:] Anonymous arrow functions like export default () => <div />; cause Fast Refresh to not preserve local component state. For large codebases you can use our name-default-component codemod.
As more of your codebase moves to function components and Hooks, you can expect state to be preserved in more cases.
Tips
[image:] Fast Refresh preserves React local state in function components (and Hooks) by default.
[image:] Sometimes you might want to force the state to be reset, and a component to be remounted. For example, this can be handy if you’re tweaking an animation that only happens on mount. To do this, you can add // @refresh reset anywhere in the file you’re editing. This directive is local to the file, and instructs Fast Refresh to remount components defined in that file on every edit.
[image:] You can put console.log or debugger; into the components you edit during development.
[image:] Remember that imports are case sensitive. Both fast and full refresh can fail, when your import doesn’t match the actual filename.

For example,'./header'
vs './Header'.

Fast Refresh and Hooks
When possible, Fast Refresh attempts to preserve the state of your component between edits. In particular, preserve their previous values as long as you don’t change their arguments or the order of the Hook calls.useState
useRef

and

Hooks with dependencies—such as useEffect, useMemo, and useCallback—will always update during Fast Refresh. Their list of dependencies will be ignored while Fast Refresh is happening.
For example, when you edit useMemo(() => x * 2, [x]) to useMemo(() => x * 10, [x]), it will re-run even though x (the dependency) has not changed. If React didn’t do that, your edit wouldn’t reflect on the screen!useEffect

Sometimes, this can lead to unexpected results. For example, even a run once during Fast Refresh.

with an empty array of dependencies would still re-

However, writing code resilient to occasional re-running of useEffect is a good practice even without Fast Refresh. It will make it easier for you to introduce new dependencies to it later on and it’s enforced by React Strict Mode, which we highly recommend enabling.

5.3 - Next.js Compiler
Documentation path: /04-architecture/nextjs-compiler
Description: Next.js Compiler, written in Rust, which transforms and minifies your Next.js application.

The Next.js Compiler, written in Rust using SWC, allows Next.js to transform and minify your JavaScript code for production. This replaces Babel for individual files and Terser for minifying output bundles.
Compilation using the Next.js Compiler is 17x faster than Babel and enabled by default since Next.js version 12. If you have an existing Babel configuration or are using unsupported features, your application will opt-out of the Next.js Compiler and continue using Babel.
Why SWC?
SWC is an extensible Rust-based platform for the next generation of fast developer tools.
SWC can be used for compilation, minification, bundling, and more – and is designed to be extended. It’s something you can call to perform code transformations (either built-in or custom). Running those transformations happens through higher-level tools like Next.js.
We chose to build on SWC for a few reasons:
[image:] Extensibility: SWC can be used as a Crate inside Next.js, without having to fork the library or workaround design constraints.
[image:] Performance: We were able to achieve ~3x faster Fast Refresh and ~5x faster builds in Next.js by switching to SWC, with more room for optimization still in progress.
[image:] WebAssembly: Rust’s support for WASM is essential for supporting all possible platforms and taking Next.js development everywhere.
[image:] Community: The Rust community and ecosystem are amazing and still growing.
Supported Features
Styled Components
We’re working to port babel-plugin-styled-components to the Next.js Compiler.next.config.js

First, update to the latest version of Next.js: npm install next@latest. Then, update your

file:

next.config.js (js)module.exports = {
compiler: {
styledComponents: true,
} ,
} },

For advanced use cases, you can configure individual properties for styled-components compilation.
[image:]Note: minify, transpileTemplateLiterals and pure are not yet implemented. You can follow the progress here.styled-components

andssr

displayName transforms are the main requirement for using

in Next.js.

next.config.js (js)module.exports = {
compiler: {
// see https://styled-components.com/docs/tooling#babel-plugin for more info on the options.
styledComponents: {
// Enabled by default in development, disabled in production to reduce file size,
// setting this will override the default for all environments.
displayName?: boolean,
// Enabled by default.
ssr?: boolean,
// Enabled by default.
fileName?: boolean,
// Empty by default.
topLevelImportPaths?: string[],
// Defaults to ["index"].
meaninglessFileNames?: string[],
// Enabled by default.
cssProp?: boolean,
// Empty by default.
namespace?: string,
// Not supported yet.

minify?: boolean,
// Not supported yet.
transpileTemplateLiterals?: boolean,
} pure?: boolean,
// Not supported yet.
}
}, ,

Jest
The Next.js Compiler transpiles your tests and simplifies configuring Jest together with Next.js including:

Auto mocking of .css, .module.css (and their Automatically sets up transform using SWC Loading .env (and all variants) into process.env.scss

variants), and image imports

[image:] Ignores node_modules from test resolving and transforms [image:] Ignoring .next from test resolving
[image:] Loads next.config.js for flags that enable experimental SWC transforms
First, update to the latest version of Next.js: npm install next@latest. Then, update your

file:jest.config.js

jest.config.js (js)const nextJest = require('next/jest')
// Providing the path to your Next.js app which will enable loading next.config.js and .env files
const createJestConfig = nextJest({ dir: './' })
// Any custom config you want to pass to Jest
const customJestConfig = {
} setupFilesAfterEnv: ['<rootDir>/jest.setup.js'],
// createJestConfig is exported in this way to ensure that next/jest can load the Next.js configuration,
module.exports = createJestConfig(customJestConfig)

Relay
To enable Relay support:

next.config.js (js)module.exports = {
compiler: {
relay: {
// This should match relay.config.js
src: './',
artifactDirectory: './ generated ',
} eagerEsModules: false,
language: 'typescript',
}
}, ,

Good to know: In Next.js, all JavaScript files in pages directory are considered routes. So, for relay-compiler you’ll need to specify artifactDirectory configuration settings outside of the pages, otherwise relay-compiler will generate files next to the source file in the generated directory, and this file will be considered a route, which will break production builds.
Remove React Properties
Allows to remove JSX properties. This is often used for testing. Similar to babel-plugin-react-remove-properties. To remove properties matching the default regex ^data-test:
next.config.js (js)module.exports = {
compiler: {
} ,
} reactRemoveProperties: true,

To remove custom properties:

next.config.js (js)

module.exports = {
compiler: {
// The regexes defined here are processed in Rust so the syntax is different from
// JavaScript `RegExp`s. See https://docs.rs/regex.
} ,
} reactRemoveProperties: { properties: ['^data-custom$'] },

Remove Console
This transform allows for removing allconsole.*
transform-remove-console. Remove all console.* calls:

calls in application code (not node_modules). Similar to

next.config.js (js)module.exports = {
compiler: {
} ,
} removeConsole: true,
babel-plugin-

Remove

output except console.error:

next.config.js (js)module.exports = {
compiler: {
removeConsole: {
} exclude: ['error'],
}
}, ,
console.*

Legacy Decorators
Next.js will automatically detect experimentalDecorators in used with older versions of libraries like mobx.jsconfig.json

or tsconfig.json. Legacy decorators are commonly

This flag is only supported for compatibility with existing applications. We do not recommend using legacy decorators in new applications.
First, update to the latest version of Next.js: npm install next@latest. Then, update your jsconfig.json or tsconfig.json file:
{ "compilerOptions": {
}
} "experimentalDecorators": true

importSource
Next.js will automatically detect libraries like Theme UI.jsxImportSource

in

orjsconfig.json

and apply that. This is commonly used withtsconfig.json

First, update to the latest version of Next.js: npm install next@latest. Then, update your jsconfig.json or tsconfig.json file:
{ "compilerOptions": {
}
} "jsxImportSource": "theme-ui"

Emotion
We’re working to port @emotion/babel-plugin to the Next.js Compiler.
First, update to the latest version of Next.js: npm install next@latest. Then, update your

file:next.config.js

next.config.js (js)module.exports = {
compiler: {
emotion: boolean | {
// default is true. It will be disabled when build type is production.
sourceMap?: boolean,

// default is 'dev-only'.
autoLabel?: 'never' | 'dev-only' | 'always',
// default is '[local]'.
// Allowed values: `[local]` `[filename]` and `[dirname]`
// This option only works when autoLabel is set to 'dev-only' or 'always'.
// It allows you to define the format of the resulting label.
// The format is defined via string where variable parts are enclosed in square brackets [].
// For example labelFormat: "my-classname--[local]", where [local] will be replaced with the name o
labelFormat?: string,
// default is undefined.
// This option allows you to tell the compiler what imports it should
// look at to determine what it should transform so if you re-export
// Emotion's exports, you can still use transforms.
importMap?: {
[packageName: string]: {
[exportName: string]: {
} styledBaseImport?: [string, string],
canonicalImport?: [string, string],
}, ,
} },
} }

Minification
Next.js’ swc compiler is used for minification by default since v13. This is 7x faster than Terser. If Terser is still needed for any reason this can be configured.
next.config.js (js)module.exports = {
} swcMinify: false,

Module Transpilation
Next.js can automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependenciesnext-transpile-modules

(node_modules). This replaces the

package.

next.config.js (js)module.exports = {
} transpilePackages: ['@acme/ui', 'lodash-es'],

Modularize Imports
This option has been superseded byoptimizePackageImports

does not require manual configuration of import paths.
Experimental Features
SWC Trace profiling

in Next.js 13.5. We recommend upgrading to use the new option that

You can generate SWC’s internal transform traces as chromium’s trace event format.

next.config.js (js)module.exports = {
experimental: {
} ,
} swcTraceProfiling: true,

Once enabled, swc will generate trace named as	under .next/. Chromium’s trace viewerswc-trace-profile-${timestamp}.json

(chrome://tracing/, https://ui.perfetto.dev/), or compatible flamegraph viewer (https://www.speedscope.app/) can load & visualize generated traces.
SWC Plugins (Experimental)
You can configure swc’s transform to use SWC’s experimental plugin support written in wasm to customize transformation behavior.
next.config.js (js)

module.exports = {
experimental: {
swcPlugins: [
['plugin',
{ ...pluginOptions,
], ,
} },
] },

swcPlugins accepts an array of tuples for configuring plugins. A tuple for the plugin contains the path to the plugin and an object for.wasm

plugin configuration. The path to the plugin can be an npm module package name or an absolute path to the	binary itself.
Unsupported Features
When your application has a .babelrc file, Next.js will automatically fall back to using Babel for transforming individual files. This ensures backwards compatibility with existing applications that leverage custom Babel plugins.
If you’re using a custom Babel setup, please share your configuration. We’re working to port as many commonly used Babel transformations as possible, as well as supporting plugins in the future.
Version History

	Version
	Changes

	v13.1.0
	Module Transpilation and Modularize Imports stable.

	v13.0.0
	SWC Minifier enabled by default.

	v12.3.0
	SWC Minifier stable.

	v12.2.0
	SWC Plugins experimental support added.

	v12.1.0
	Added support for Styled Components, Jest, Relay, Remove React Properties, Legacy Decorators, Remove Console, and jsxImportSource.

	v12.0.0
	Next.js Compiler introduced.

5.4 - Supported Browsers
Documentation path: /04-architecture/supported-browsers
Description: Browser support and which JavaScript features are supported by Next.js.
Next.js supports modern browsers with zero configuration. [image:] Chrome 64+
[image:] Edge 79+
[image:] Firefox 67+
[image:] Opera 51+
[image:] Safari 12+
Browserslist
If you would like to target specific browsers or features, Next.js supports Browserslist configuration in your uses the following Browserslist configuration by default:

file. Next.js
package.json (json){ "browserslist": [
"chrome 64",
"edge 79",
"firefox 67",
"opera 51",
}
] "safari 12"
package.json

Polyfills
We inject widely used polyfills, including:
[image:] fetch() — Replacing: whatwg-fetch and unfetch.
[image:] URL — Replacing: the url package (Node.js API).
[image:] Object.assign() — Replacing: object-assign, object.assign, and core-js/object/assign.
If any of your dependencies include these polyfills, they’ll be eliminated automatically from the production build to avoid duplication.
In addition, to reduce bundle size, Next.js will only load these polyfills for browsers that require them. The majority of the web traffic globally will not download these polyfills.
Custom Polyfills
If your own code or any external npm dependencies require features not supported by your target browsers (such as IE 11), you need to add polyfills yourself.Custom <App>

In this case, you should add a top-level import for the specific polyfill you need in your
JavaScript Language Features

or the individual component.

Next.js allows you to use the latest JavaScript features out of the box. In addition to ES6 features, Next.js also supports: [image:] Async/await (ES2017)
[image:] Object Rest/Spread Properties (ES2018) [image:] Dynamic import() (ES2020)
[image:] Optional Chaining (ES2020) [image:] Nullish Coalescing (ES2020)
[image:] Class Fields and Static Properties (part of stage 3 proposal) [image:] and more!
TypeScript Features
Next.js has built-in TypeScript support. Learn more here.
Customizing Babel Config (Advanced)

You can customize babel configuration. Learn more here.

5.5 - Turbopack
Documentation path: /04-architecture/turbopack
Description: Turbopack is an incremental bundler optimized for JavaScript and TypeScript, written in Rust, and built into Next.js. Turbopack (beta) is an incremental bundler optimized for JavaScript and TypeScript, written in Rust, and built into Next.js.
Usage--

Turbopack can be used in Next.js in both thepages
turbo flag when running the Next.js development server.
json filename="package.json" highlight={3} { "scripts": { "dev": "next dev --turbo", "build": "next build", "start": "next start", "lint": "next lint" } }
app

and

directories for faster local development. To enable Turbopack, use the

Supported Features
To learn more about the currently supported features for Turbopack, view the documentation.
Unsupported Featuresnext dev

Turbopack currently only supports move closer towards stability.

and does not support next build. We are currently working on support for builds as we

6 - Next.js Community
Documentation path: /05-community/index
Description: Get involved in the Next.js community.

With over 4 million weekly downloads, Next.js has a large and active community of developers across the world. Here’s how you can get involved in our community:
Contributing
There are a couple of ways you can contribute to the development of Next.js:
[image:] Documentation: Suggest improvements or even write new sections to help our users understand how to use Next.js.
[image:] Examples: Help developers integrate Next.js with other tools and services by creating a new example or improving an existing one. [image:] Codebase: Learn more about the underlying architecture, contribute to bug fixes, errors, and suggest new features.
Discussions
If you have a question about Next.js, or want to help others, you’re always welcome to join the conversation: [image:] GitHub Discussions
[image:] Discord [image:] Reddit
Social Media
Follow Next.js on Twitter for the latest updates, and subscribe to the Vercel YouTube channel for Next.js videos.
Code of Conduct
We believe in creating an inclusive, welcoming community. As such, we ask all members to adhere to our Code of Conduct. This document outlines our expectations for participant behavior. We invite you to read it and help us maintain a safe and respectful environment.

6.1 - Docs Contribution Guide
Documentation path: /05-community/01-contribution-guide
Description: Learn how to contribute to Next.js Documentation

Welcome to the Next.js Docs Contribution Guide! We’re excited to have you here.
This page provides instructions on how to edit the Next.js documentation. Our goal is to ensure that everyone in the community feels empowered to contribute and improve our docs.
Why Contribute?
Open-source work is never done, and neither is documentation. Contributing to docs is a good way for beginners to get involved in open-source and for experienced developers to clarify more complex topics while sharing their knowledge with the community.
By contributing to the Next.js docs, you’re helping us build a more robust learning resource for all developers. Whether you’ve found a typo, a confusing section, or you’ve realized that a particular topic is missing, your contributions are welcomed and appreciated.
How to Contribute
The docs content can be found on the Next.js repo. To contribute, you can edit the files directly on GitHub or clone the repo and edit the files locally.
GitHub Workflow
If you’re new to GitHub, we recommend reading the GitHub Open Source Guide to learn how to fork a repository, create a branch, and submit a pull request.
Good to know: The underlying docs code lives in a private codebase that is synced to the Next.js public repo. This means that you can’t preview the docs locally. However, you’ll see your changes on nextjs.org after merging a pull request.
Writing MDX
The docs are written in MDX, a markdown format that supports JSX syntax. This allows us to embed React components in the docs. See the GitHub Markdown Guide for a quick overview of markdown syntax.
VSCode
Previewing Changes Locally
VSCode has a built-in markdown previewer that you can use to see your edits locally. To enable the previewer for MDX files, you’ll need to add a configuration option to your user settings.Ctrl + Shift + P
Preferences: Open User

Open the command palette (⌘ + ⇧ + P on Mac or Then, add the following line to yourSettings (JSON).
settings.json

file:

on Windows) and search from

settings.json (json){ "files.associations": {
}
} "*.mdx": "markdown"

Next, open the command palette again, and search for Markdown: Preview File or Markdown: Open Preview to the Side. This will open a preview window where you can see your formatted changes.
Extensions
We also recommend the following extensions for VSCode users:
[image:] MDX: Intellisense and syntax highlighting for MDX. [image:] Grammarly: Grammar and spell checker.
[image:] Prettier: Format MDX files on save.
Review Process
Once you’ve submitted your contribution, the Next.js or Developer Experience teams will review your changes, provide feedback, and

merge the pull request when it’s ready.
Please let us know if you have any questions or need further assistance in your PR’s comments. Thank you for contributing to the Next.js docs and being a part of our community!

Tip: Runpnpm prettier-fix

File Structure

to run Prettier before submitting your PR.

The docs use file-system routing. Each folder and files inside the URL paths, navigation, and breadcrumbs./docs

represent a route segment. These segments are used to generate

[image:]The file structure reflects the navigation that you see on the site, and by default, navigation items are sorted alphabetically. However, we can change the order of the items by prepending a two-digit number (00-) to the folder or file name.
For example, in the functions API Reference, the pages are sorted alphabetically because it makes it easier for developers to find a specific function:03-functions
├── cookies.mdx
├── draft-mode.mdx
├── fetch.mdx
└── ...

But, in the routing section, the files are prefixed with a two-digit number, sorted in the order developers should learn these concepts:
02-routing
├── 01-defining-routes.mdx
├── 02-pages-and-layouts.mdx
├── 03-linking-and-navigating.mdx
└── ...

To quickly find a page, you can use ⌘ + P (Mac) or page you’re looking for. E.g. defining-routesCtrl + P

Why not use a manifest?

(Windows) to open the search bar on VSCode. Then, type the slug of the

We considered using a manifest file (another popular way to generate the docs navigation), but we found that a manifest would quickly get out of sync with the files. File-system routing forces us to think about the structure of the docs and feels more native to Next.js.
Metadata
Each page has a metadata block at the top of the file separated by three dashes.
Required Fields
The following fields are required:

	Field
	Description

	title
	The page’s <h1> title, used for SEO and OG Images.

	description
	The page’s description, used in the <meta name="description"> tag for SEO.

required-fields.mdx (yaml)---
title: Page Title
description: Page Description

It’s good practice to limit the page title to 2-3 words (e.g. Optimizing Images) and the description to 1-2 sentences (e.g. Learn how to optimize images in Next.js).
Optional Fields
The following fields are optional:

	Field
	Description

	Field
	Description

	nav_title
	Overrides the page’s title in the navigation. This is useful when the page’s title is too long to fit. If not provided, the
title field is used.

	source
	Pulls content into a shared page. See Shared Pages.

	related
	A list of related pages at the bottom of the document. These will automatically be turned into cards. See Related Links.

optional-fields.mdx (yaml)---
nav_title: Nav Item Title
source: app/building-your-application/optimizing/images
related:
description: See the image component API reference.
--- - app/api-reference/components/image
links:

and	DocsApp
Pages

Since most of the features in the App Router and Pages Router are completely different, their docs for each are kept in separate sections (02-app and 03-pages). However, there are a few features that are shared between them.
Shared Pages
To avoid content duplication and risk the content becoming out of sync, we use the source field to pull content from one page into another. For example, the <Link> component behaves mostly the same in App and Pages. Instead of duplicating the content, we can pull the content from app/.../link.mdx into pages/.../link.mdx:
app/.../link.mdx (mdx)---
title: <Link>
description: API reference for the <Link> component.

This API reference will help you understand how to use the props
and configuration options available for the Link Component.

pages/.../link.mdx (mdx)---
title: <Link>
description: API reference for the <Link> component.
source: app/api-reference/components/link

{/* The content of this page is pulled from the source above. */}
{/* DO NOT EDIT THIS PAGE. */}

We can therefore edit the content in one place and have it reflected in both sections.
Shared Content
In shared pages, sometimes there might be content that is App Router or Pages Router specific. For example, theshallow

component<Link>

has a	prop that is only available in Pages but not in App.

To make sure the content only shows in the correct router, we can wrap content blocks in an components:

or
app/.../link.mdx (mdx)This content is shared between App and Pages.
<PagesOnly>
This content will only be shown on the Pages docs.
</PagesOnly>
This content is shared between App and Pages.
<AppOnly>
<PagesOnly>

You’ll likely use these components for examples and code blocks.
Code Blocks
Code blocks should contain a minimum working example that can be copied and pasted. This means that the code should be able to run without any additional configuration.<Link>
import
<Link>

For example, if you’re showing how to use the component itself.

component, you should include the

statement and the

app/page.tsx (tsx)import Link from 'next/link'
export default function Page() {
} return <Link href="/about">About</Link>

Always run examples locally before committing them. This will ensure that the code is up-to-date and working.
Language and Filename

Code blocks should have a header that includes the language and the filename. Add a icon that helps orientate users where to input the command. For example:
`

prop to render a special Terminal

code-example.mdx (mdx)filename


```bash filename="Terminal"
npx create-next-app

Most examples in the docs are written in `tsx` and `jsx`, and a few in `bash`. However, you can use any s When writing JavaScript code blocks, we use the following language and extension combinations.
|	| Language | Extension |
|	|	|	|
| JavaScript files with JSX code | ```jsx	| .js	|
| JavaScript files without JSX	| ```js	| .js	|
| TypeScript files with JSX	| ```tsx	| .tsx	|
| TypeScript files without JSX	| ```ts	| .ts	|
### TS and JS Switcher
Add a language switcher to toggle between TypeScript and JavaScript. Code blocks should be TypeScript fir Currently, we write TS and JS examples one after the other, and link them with `switcher` prop:
`<div class="code-header"><i>code-example.mdx (mdx)</i></div>
```mdx
```tsx filename="app/page.tsx" switcher
```
<div class="code-header"><i>app/page.js (jsx)</i></div>
```jsx
```
Good to know: We plan to automatically compile TypeScript snippets to JavaScript in the future. In the meantime, you can use transform.tools.
Line Highlighting
Code lines can be highlighted. This is useful when you want to draw attention to a specific part of the code. You can highlight lines by passing a number to the highlight prop.
Single Line: highlight={1}
```tsx filename=”app/page.tsx” {1} import Link from ‘next/link’ export default function Page() { return About }**Multiple Lines:** `highlight={1,3}`


```tsx filename="app/page.tsx" highlight={1,3}
import Link from 'next/link'
export default function Page() {
} return <Link href="/about">About</Link>

Range of Lines:highlight={1-5}

```tsx filename=”app/page.tsx” highlight={1-5} import Link from ‘next/link’ export default function Page() { return About }## Icons
The following icons are available for use in the docs:
<div class="code-header"><i>mdx-icon.mdx (mdx)</i></div>
```mdx
<Check size={18} />
<Cross size={18} />

Output:
We do not use emojis in the docs.
Notes
For information that is important but not critical, use notes. Notes are a good way to add information without distracting the user from the main content.
notes.mdx (mdx)· **Good to know**: This is a single line note.
· **Good to know**:
·
· - We also use this format for multi-line notes.
· - There are sometimes multiple items worth knowing or keeping in mind.

Output:
Good to know: This is a single line note.
Good to know:
[image:] We also use this format for multi-line notes.
[image:] There are sometimes multiple item worths knowing or keeping in mind.
Related Links
Related Links guide the user’s learning journey by adding links to logical next steps. [image:] Links will be displayed in cards under the main content of the page.
[image:] Links will be automatically generated for pages that have child pages. For example, the Optimizing section has links to all of its child pages.related

Create related links using the

field in the page’s metadata.

example.mdx (yaml)---
related:
description: Learn how to quickly get started with your first application.
links:
- app/building-your-application/routing/defining-routes
--- - app/api-reference/file-conventions/page
- app/building-your-application/data-fetching

Nested Fields

	Field
	Required?
	Description

	title
	Optional
	The title of the card list. Defaults to Next Steps.

	Field
	Required?
	Description

	description
	Optional
	The description of the card list.

	links
	Required
	A list of links to other doc pages. Each list item should be a relative URL path (without a leading slash) e.g.
app/api-reference/file-conventions/page

Diagrams
Diagrams are a great way to explain complex concepts. We use Figma to create diagrams, following Vercel’s design guide./public

The diagrams currently live in a GitHub issue with your ideas.

folder in our private Next.js site. If you’d like to update or add a diagram, please open a

Custom Components and HTML
These are the React Components available for the docs: <Image /> (next/image), <PagesOnly />, <AppOnly />, <Cross />, and
<Check />. We do not allow raw HTML in the docs besides the <details> tag.
If you have ideas for new components, please open a GitHub issue.
Style Guide
This section contains guidelines for writing docs for those who are new to technical writing.
Page Templates
While we don’t have a strict template for pages, there are page sections you’ll see repeated across the docs:
[image:] Overview: The first paragraph of a page should tell the user what the feature is and what it’s used for. Followed by a minimum working example or its API reference.
[image:] Convention: If the feature has a convention, it should be explained here.
[image:] Examples: Show how the feature can be used with different use cases.
[image:] API Tables: API Pages should have an overview table at the of the page with jump-to-section links (when possible).
[image:] Next Steps (Related Links): Add links to related pages to guide the user’s learning journey.
Feel free to add these sections as needed.
Page Types
Docs pages are also split into two categories: Conceptual and Reference.
[image:] Conceptual pages are used to explain a concept or feature. They are usually longer and contain more information than reference pages. In the Next.js docs, conceptual pages are found in the Building Your Application section.
[image:] Reference pages are used to explain a specific API. They are usually shorter and more focused. In the Next.js docs, reference pages are found in the API Reference section.
Good to know: Depending on the page you’re contributing to, you may need to follow a different voice and style. For example, conceptual pages are more instructional and use the word you to address the user. Reference pages are more technical, they use more imperative words like “create, update, accept” and tend to omit the word you.
Voice
Here are some guidelines to maintain a consistent style and voice across the docs:
[image:] Write clear, concise sentences. Avoid tangents.
[image:] If you find yourself using a lot of commas, consider breaking the sentence into multiple sentences or use a list. [image:] Swap out complex words for simpler ones. For example, use instead of utilize.
[image:] Be mindful with the word this. It can be ambiguous and confusing, don’t be afraid to repeat the subject of the sentence if unclear. [image:] For example, Next.js uses React instead of Next.js uses this.
[image:] Use an active voice instead of passive. An active sentence is easier to read.
[image:] For example, Next.js uses React instead of React is used by Next.js. If you find yourself using words like was and by you may be using a passive voice.
[image:] Avoid using words like easy, quick, simple, just, etc. This is subjective and can be discouraging to users. [image:] Avoid negative words like don’t, can’t, won’t, etc. This can be discouraging to readers.

For example, “You can use the pages”.Link
<a>

component to create links between pages” instead of “Don’t use the

tag to create links between

[image:] Write in second person (you/your). This is more personal and engaging.
[image:] Use gender-neutral language. Use developers, users, or readers, when referring to the audience. [image:] If adding code examples, ensure they are properly formatted and working.
While these guidelines are not exhaustive, they should help you get started. If you’d like to dive deeper into technical writing, check out the Google Technical Writing Course.

Thank you for contributing to the docs and being part of the Next.js community!
{/ To do: Latest Contributors Component /}
image113.png

image114.jpeg
Failed to compile

./pages/index.js:5:0
: Can't resolve '../components/header’'
import styles from '../styles/Home.module.css';

import r from '../components/header';

export default function Home() {
return (

https://nextjs.org/docs/messages/module-not-found

image115.png

image116.png

image117.png

image6.jpeg
[app

) blog [dashboard Rroot

|
O [slug] - ::

[analytics) settings

Leaf l

) password) profile

image7.jpeg
ik
o scme.com ez

¢) L L ¢ L
Domain Segment Segment

ey
Path

image118.png

image8.jpeg
[app

[pages

image9.jpeg
[app Root Segment

[dashboard Segment

[settings Leaf Segment

(
@ acme.com

URL Path

image10.jpeg
i layout.js

] template.js

© errorjs

loading.js
© not-found.js

O page.js

& Component Hierarchy

<Layout>
<Template>
<ErrorBoundary fallback={<Error />}>
<Suspense fallback={<Loading />}>
<ErrorBoundary fallback={<NotFound />}>
<Page />
</ErrorBoundary>
</Suspense>
</ErrorBoundary>
</Template>
</Layout>

image11.jpeg
®
5 dashboard

@ layout.js

@ error.js

loading.js
(&)
[layout.js
© errorjs

2t loading.js

[pagejs

Component Hierarchy

ayout>
<ErrorBoundary fallback={<Error />}>

<Suspense fallback={<Loading />}>
®

<Layout>
<ErrorBoundary fallback={<Error />}>
<Suspense fallback={<Loading />}>
<Page />
</Suspense>
</ErrorBoundary>
</Layout>

</Suspense>
</ErrorBoundary>
</Layout>

image12.jpeg
o

app

components

[button.js

lib

[constants.js

dashboard

™ page.js

O navjs

api

i route.js

O dbjs

gl

lesce)

/components/button

/lib/constants

@ |dashboard

/dashboard/nav

@ Japi

/api/db

table

table

! B R R
“|NESEEE i SRS

Not Routable

image13.jpeg
[app — | ®/

[page.js
[dashboard — 7‘&‘: [/dashboard
[page.js
[settings > ;w /dashboard/settings
[page.js

[analytics — n/a

image14.jpeg
[app — @/

[page.js L)

1 dashboard =—> @ /dashboard

[page.js

image15.jpeg
O app
[dashboard
© layout.js
[page.js
[settings

[page.js

image16.jpeg
O app

=]

D

layout.js
page.js
dashboard
i layout.js

[page.js

image17.jpeg

image18.jpeg
[app
T layout.js
template.js

[page.js

image19.png

image20.png

image21.png

image22.png

image23.jpeg
Preserved on navigation Rendered on navigation

0 app
@ layout.js
[dashboard

@ layout.js

[settings

[analytics

image24.jpeg
[app

i layout.js

[(marketing) L]

[about
[page.js
[blog _
[page.js
[(shop) L]
(2 account —>

[page.js

/about

@ [blog

@ [account

image25.jpeg
=

O app
i layout.js
[(marketing)

i layout.js

[(shop)

i layout.js

image26.jpeg
app
i layout.js
1 (shop) []
0 layout.js o
[account =) @ [account
[page.js
O cart = @ [cart

[page.js

7 checkout L] > @ [checkout

[page.js

image27.jpeg
[app

[(marketing)

[: T layout.js

[(shop)

E i layout.js

image28.png

image29.jpeg
Partial content with loading state Loaded content

image30.jpeg
[app
T layout.js
[dashboard
i layout.js
loading.js

O page.js

image31.jpeg
export default function Loading() {

return “Loading...”
1

Component Hierarchy

<Layout>
<Header />
<SideNav />

<Suspense fallback={

<Loading />

<Page />
</Suspense>
</Layout>

3>

il

Loading...

image32.jpeg
Time

TTFB

FCP ™

)&

(c

I

(@) Fetching data on server

Rendering HTML on server

C) Loading code on the client

() Herating

TTFB Time To First Byte

FCP
™

First Contentful Paint

Time To Interactive

image33.jpeg
oee

No content in the browser while content is Server-rendered page sent to the
being rendered on the server client once all components are ready

image1.png

image34.jpeg
Partial content with loading state Suspended content streaming in

image35.jpeg
Time

TTFB FCP |TTI
E_DEDED
@& 5[
(A (8

() Fetching data on server

B) Rendering HTML on server

(©) Loading code on the ciient

Hydrating

TTFB Time To First Byte

FCP.
™

First Contentful Paint

Time To Interactive

image36.jpeg
[app
T layout.js
[dashboard
i layout.js
© error.js

O page.js

image37.jpeg
error.js.

export default function Error({ error, reset }) {
return (
<
An error occurred: {error.message}
<button onClick={() => reset()}>Retry</button>
<>
s
iy

“# Component Hierarchy

<Layout>
<Header />

<SideNav />
<ErrorBoundary fallback }> —]

<Page />
</ErrorBoundary>
</Layout>

image38.jpeg
| [app @ acme.com

D layout.js
i : (@ Component Hierarchy
© error.js <Layout>
<ErrorBoundary fallback={<Error />}>
) dashboard <Layout>
) 3 <ErrorBoundary fallback={<Error />}>
i layout.js <Page />
</ErrorBoundary>
@ errorjs </Layout>
</ErrorBoundary>

O page.js </Layout>

image39.jpeg
o app
[@team
e

[@analytics

 layoutjs
O page.js export default function Layout(props) {

return (
i layout.js hid

ops.children}

[page.js

rops.analytics}
<>
)3

image40.jpeg
T —

O @team

[page.js

—(cnd
—{eng

‘ © errorjs

Loading...
< loading.js =

[@analytics i,

[page.js l

= —

i layout.js

o =
[\ pm—

L]
P

image41.jpeg
& layoutjs

import { getUser } from '@/lib/auth';

export default function Layout({ dashboard, login }) {
const isloggedIn = getUser();

return isloggedin ?(dashboard) :

}

(@dashboard/page.js @login/page js
—
. |
|
— |
; CEE——
|
.]

| culiRE s R

image42.jpeg
[app
[@analytics
[page.js
) @team
[page.js
1 layout.js

[page.js

image43.jpeg
o app
O @team
[settings
[page.js
[@analytics
[default.js
[page.js
[default.js
T layout.js

O page.js

image44.jpeg
o app

ooe

) @auth []
[login
[signup
B
@ layout.js —

[page.js

image45.jpeg
O app
[@authModal
[[...catchAll]
™ page.js
1 login
[pagejs

[page.js

image46.jpeg
ese & acme.com/feed

—
L]
EEm———

ece (£ acme.com/photo/123

image47.jpeg
ooe

o0 acme.com/photo/123 s . I

image48.jpeg
O feed

it layout.js

[(..)photo

0 [id]

[page.js

[photo

O [id]

[page.js

i layout.js

O page.js

image49.jpeg
O feed i
| @ feed/@modal/(..)photo/[id]/page.js
) @modal
export default function PhotoModal({ params }) {
const photo = photos.find((p) => p.id params.id);
— 7 (..)photo L] PR
<Modal>
o [id] <Photo photo={photo} />
</Modal>
M page.js)5
3
. [J photo ®
o [id]
@ photo/[id)/page.js
[page.js
export default function PhotoPage({ params }) {
const photo = photos.find((p) => p.id params.id);

return <Photo photo={photo} />;

image50.jpeg
[app

O page.js = ® /

O api

route.js L] o @ [api

image51.png

image52.png

image53.jpeg
app

) dashboard = /dashboard
[settings —> /dashboard/settings

o api — Japi

image54.jpeg
app

[dashboard
[page.js
[settings
[page.js
O api

route.js

—

—

—

@ [dashboard

@ /dashboard/settings

@® /api

image55.jpeg
[dashboard
[_components

[button.js

D _ib
[format-date.js

[page.js S /dashboard/_lib

[page.js ~—> @ [dashboard

image56.jpeg
(b

app

C

(admin)
=) dashboard
O page.js
(marketing)
[about
[page.js
[blog

[page.js

/dashboard

/about

/blog

image57.png

image58.jpeg
[your-project

O src L]

0 app

layout.js

[page.js
[package.json

[next.config.js

image2.png

image59.png

image60.png

image61.jpeg
[your-project

[components

o lib

[app
) dashboard
1 page.js

[page.js

image62.png

image63.jpeg
[your-project

O app

[components [)

£ lib L]

) dashboard

1 page.js

[page.js

image64.jpeg
[your-project

O app

) components

1 lib

) dashboard

) components

0 lib

1 page.js

[page.js

image65.png

image66.png

image67.png

image3.png

image68.jpeg
Sequential Parallel

f©l RootLayout |) @ ‘ === Law]

il DashboardLayout [am]@)] @
[SettingsPage E O = @ i

Time Time

image4.png

image69.jpeg
Client

.A%i..

Server

image70.jpeg
layout js
> | inport { MobileNav } from *./mobile-nav'
export default function Layout() {}
mobile-nav.js
e IS
| import { Toggle } from *./toggle’

_ | export function MobileNav() {}

LOCAL DEVELOPMENT ERROR!
“onClick’ event handler in a Server Component
“useState’ import in a Server Component

togglejs

/> | dmport { FancyButton } from './fancy-button'

> | import { useToggle } from './use-toggle"

export function Toggle({ children }) {}

use-toggle.js

dimport { useState } from 'react’

| export function useToggle(initialstate) {}

fancy-button.js

__ | export function FancyButton(props) {}

atter

layout.js

> | import { MobileNav } from './mobile-nav'

export default function Layout() {}

mobile-nav.js

(

import { Toggle } from './toggle’

L export function MobileNav() {}

toggle.js
> | dmport { FancyButton } from './fancy-button'

> | import { useToggle } from './use-toggle’
export function Toggle({ children 1) ()
use-togglejs
il SURESY
| import { usestate } from 'react’
_ | export function useToggle(initialstate) {}
fancy-buttor

i fondiie SRS MRS
__ | export function Fancysutton(props) {}

image71.jpeg
SERVER

CLIENT

J

TNLH o1 1opusy

IWIL 41ING

3WIL 1S3INDIY

image5.jpeg
o)

app

i layout.tsx

[page.tsx

image72.jpeg
—
RootLayout B E Request A
Request B
_ generateStaticParams (8] | BsquestEy]
generateMetadata rB_ Request B .
Layout @ Request B Request A
— Request C = Request B
__ComponentA | B Gl Request C
It
__ComponentB | C Request C
|) Memoized
Page |A[|BJ(C Request A
g m [—] — Requests
Request B
Muitiple Requests in a
Request C

Component Tree

All Requests

image73.jpeg
SERVER

Rendering

SINGLE RENDER PASS

—(Fetch(".../iten/1")

Data Cache
OR
Data Source

fetch('.../item/1')

fetch('.../item/1')

image74.png

image75.png

image76.jpeg
—

Rendering

SERVER

(55} ()

C-'BFEEZV—‘

P }J—> (HIT

image77.jpeg
SERVER

—

Rendering

Data Cache

—{(fetch(*...", { next: { revalidate: 60 } })}——> [uxss)—) (hr7)

UNCACHED REQUEST

L e s o

&
§ —(fetch('...", { next: { revalidate: 60 } })}———>

@ —(fetch('...", { next: { revalidate: 60 } })}—> (STALE i

STALE REQUEST

image78.jpeg
—_—

SERVER
— (Feren)
Rendering patacases
=
% —(fetch("...", {next: { tags: ['a'l N}——>
S
E

—(fetch('...", { next: { tags:

a1 H)}——> (MIss

&=

image79.jpeg
SERVER

Rendering

a8
L
¢z
LI

peojfeq oy ispusy |

IWLH oL Jsepuay

@

NOLLVAITVA3Y / 3WIL G1ING

image80.jpeg
SERVER

£
L]
H

OR
Data Source

Rendering

ﬁ

yred

L

1opuay

/a}—> (mM1ss

D]

B
[]

23noy dL3els 23n0y Lweukq

(P3neu >r3e3s : (e3ney >ruweusq

AISIA WWILINI

_ NOILYOTAVN ININDASENS

image81.jpeg
(1

CLIENT SERVER

Full Page Cache

Router Cache

[Rsc_paytoad]

(7=) (wzss }
E

E - SET
/' (layout)

OR
Dynamic Render

image82.png

image83.png

image84.png

image85.png

image86.jpeg

image87.jpeg

image88.jpeg

image89.png

image90.jpeg
>TypeScripf

TypeScript: Select TypeScript Version...

TypeScript: Restart TS server

Move Typescript

TypeScript: Find File References
TypeScript: Go to Project Configuration
TypeScript: Go to Source Definition
TypeScript: Open TS Server log
TypeScript: Reload Project

recently used %%

image91.png

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.jpeg
1 app
1 dashboard
& layout.tsx
[settings
[page.tsx
[analytics

[page.tsx

image103.png

image104.png

image105.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image112.png

