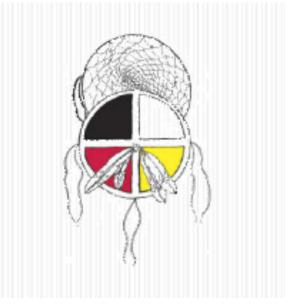


Ontario First Nations Technical Services Corporation

Natural Attenuation Landfill Training

Presented by Stephanie Allen, OFNTSC and David Bucholtz, Cambium Inc. NOFNEC, 2016



OFNTSC Environment

Welcome

Introductions

What do you hope to get out of this course?

Agenda

- Module 1: Natural Attenuation Landfills and Contamination (9:00 – 10:30AM)
- Module 2: Setting Goals & Diversion Opportunities (10:45AM 12:15PM)
- Module 3: O&M Part A: Design & Construction (1:15 – 2:45PM)
- Module 4: O&M Part B: Best Practices (3:00 – 4:30 PM)

Presentation Goal

To provide you with best practices for the operations and maintenance of a natural attenuation landfill. These best practices concern:

- Environmental protection
- Operational efficiency
- Worker/public health and safety

Course Objectives

You will be able to:

- Describe best practices for the operation and maintenance of natural attenuation landfill sites
- Apply best practices to programs in your community
- Lead you to preparing an operations and maintenance manual for your individual situation
- Share your experiences and compare your situation with others in the class

Module 1

Natural Attenuation Landfills and Contamination

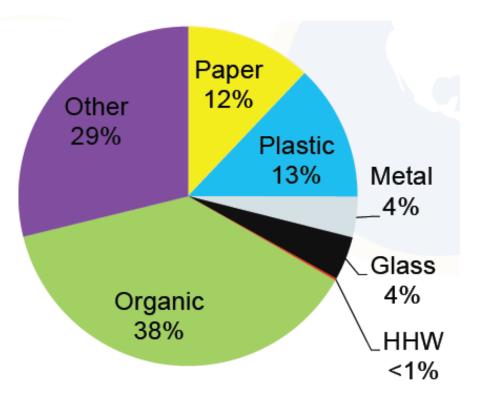
Module Goal

To introduce you to how a natural attenuation landfill works and to provide an overview of the components of a landfill that have the greatest potential for affecting a community's health, safety and environment.

Module Objectives

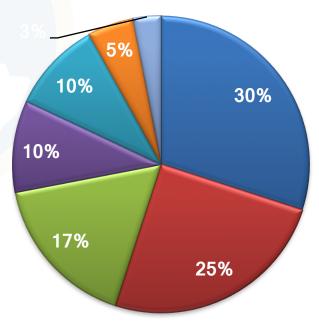
You will be able to:

- Describe how a natural attenuation landfill works
- Describe contamination sources, pathways and receptors
- Identify best practices and legislation related to landfills
- Explain how landfills can affect the environment and human health


Credit: Peter Cromarty-Chapman, OFNTSC Engineering Student Intern, 2015

What is Solid Waste?

 Typical composition – Georgina Island First Nation



Waste Management Costs

- Integral part of Community political and \$\$
- Small communities \$100,000 \$400,000
- 4% 10% of annual <u>municipal</u> budgets

Summary of Waste Management Costs						
	Total	Percent				
Wages	\$30,000	30%				
Equipment	\$25,000	25%				
Consulting/Monitoring	\$17,000	17%				
Material/Supplies	\$10,000	10%				
Hauling	\$10,000	10%				
Repairs/Maitenance	\$5,000	5%				
Tipping Fees	\$3,000	3%				
Total	\$100,000					

Legislation

- Federal
 - Canadian Environmental Assessment Act
 - Canadian Environmental Protection Act
 - Fisheries Act
 - Federal regulations are very limited e.g. Indian Reserve Waste Disposal Regulations, CRC, c 960
- Provincial
 - Environmental Protection Act (EPA)
 - Ontario Environmental Assessment Act (EAA)
 - Ontario Regulations don't apply on reserve lands but are referenced as best practice
 - New Waste Free Ontario Act

Waste Disposal Types

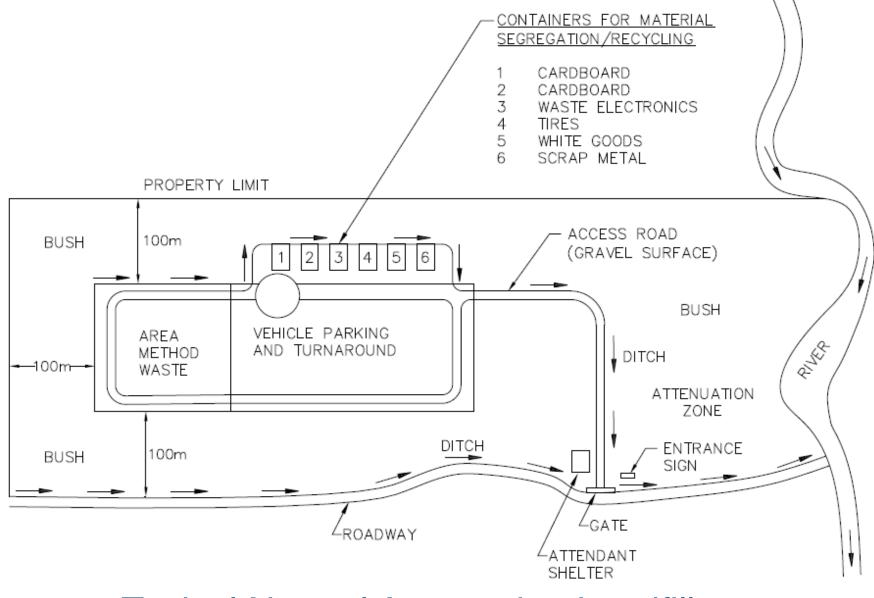
- Three types of facilities:
 - Dump
 - Engineered landfill
 - Natural attenuation landfill

DUMP

- Usually remote or isolated
- Small waste quantities and serviced population
- Large buffers manage impacts to groundwater, surface water and air quality including landfill gas.

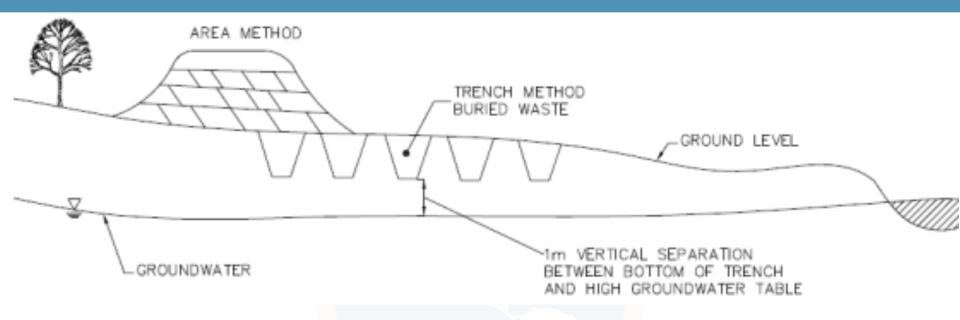
Engineered Landfill

Landfilling facility with design features typically includes: berms, drainage ditches, liners, covers, pumps, leachate control system, landfill gas control system



Natural Attenuation Landfill

- Natural attenuation is the most common form of landfill found on reserve in Ontario.
- Natural Attenuation: The process by which a compound (i.e., leachate) is reduced in concentration over time, through absorption, adsorption, degradation, dilution and/or transformation



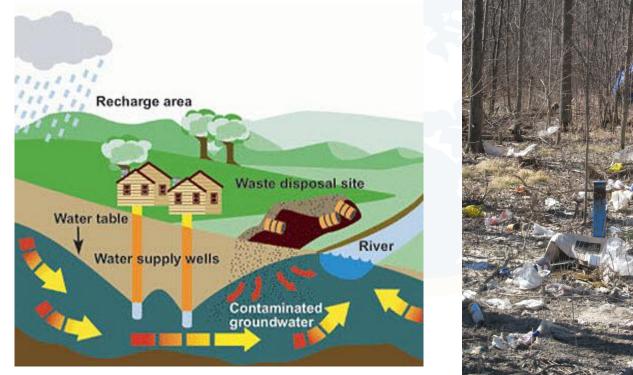
Typical Natural Attenuation Landfill Site Layout - Plan View

Site Layout - Section View

Waste can be placed in the following ways:

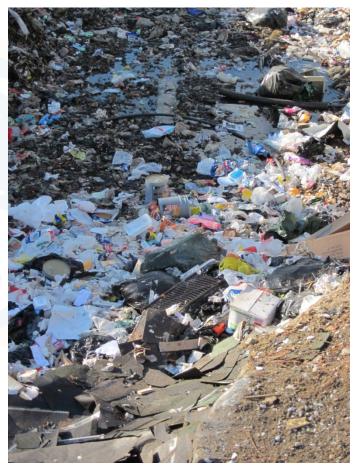
- Above existing ground (area method)
- Below ground in trenches (trench method)
- Combination of both (modified area method)

Methods of Waste Placement Trench Method Area Method

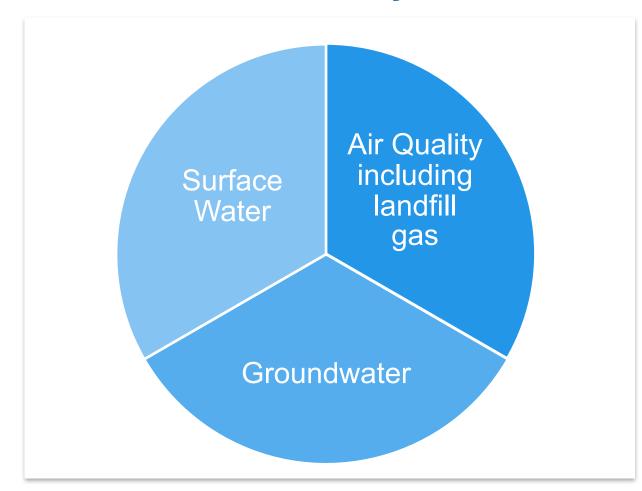


Which method do you use?

Natural Attenuation Landfill What are potential impacts from a landfill?



Potential Landfill Impacts

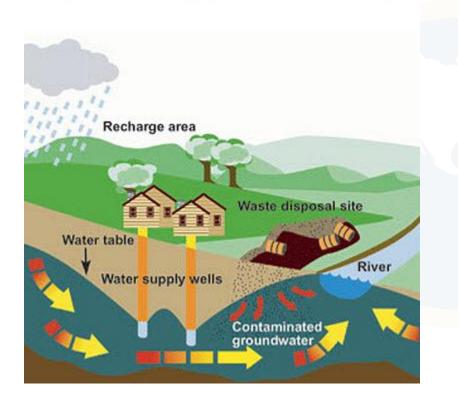

- Contamination of surface
 water
- Leachate creation and contamination of groundwater
- Landfill gas creation
- Litter, odours, noise
- Disease-causing pests
- Public & worker health & safety

Contamination Pathways

Surface Water

Runoff from landfills, if improperly diverted, can enter naturally occurring streams, lakes, or other waterways. This causes harm to local ecosystems and human health through the spread of bacteria, toxic chemicals, and heavy metals.

Landfill Gas



Decomposition of organic wastes in landfills causes the formation of landfill gas, which is mostly methane and carbon dioxide. Landfill gas migrates through waste and the surrounding soil, and if a buildup of gas occurs, can asphyxiate humans, animals and vegetation, and can even cause explosions.

Groundwater

Leachate from landfills can seep underground and contaminate the underlying groundwater. Depending on how the groundwater is being used, there could be serious long-term health hazards that affect the community. Any plants, animals, birds or fish that depend on that groundwater source can also be threatened by the contamination.

For Natural Attenuation Landfills, leachate is the most significant consideration

- Formed when water contacts waste
- May spread harmful bacteria
- Can contain toxic chemicals
- May carry heavy metals
- Depletes waterways of oxygen

Risk Assessment

Groundwater Sampling

Do you have monitoring wells at your landfill?

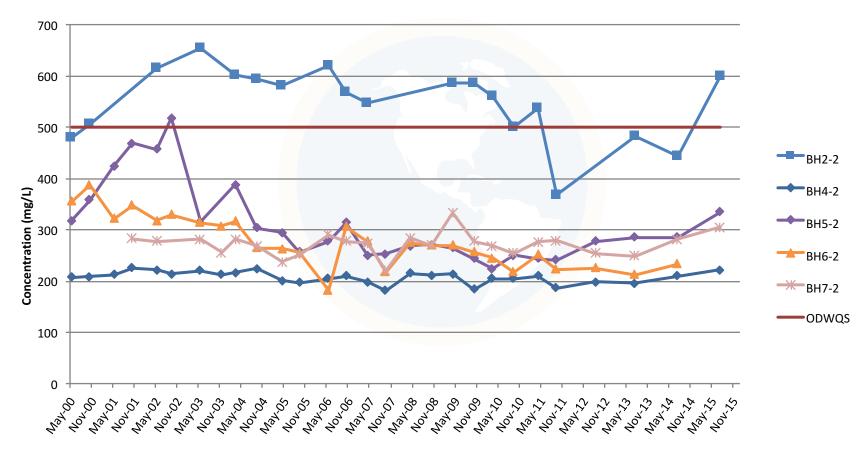
Do you regularly sample the groundwater?

Leachate

Typical water quality indicators for leachate:

- pH (5.3 8.5, typical 6)
- Electrical conductance (e.g. chloride 100 3,000)
- BOD (5-day BOD 2,000 30,000)
- COD (3,000 45,000)
- TSS (200 1,000)
- Ammonia (10 800)

**many parameters vary by age of landfill


Which boreholes show evidence of leachate impact ?

_	Chain of Custody Number:			838833				Matrix:
Parameters			LAB ID: Sample Date: Sample ID:		838834	838835	838836	838837
					2010-10-20 BH96-2/2	2010-10-20 BH96-3	2010-10-20 BH96-4	2010-10-2 BH07-1D
		9	ampie io.	BH96-1	0100-010	0100-0	0110014	
	PARAMETER	UNITS	MRL					
	Alkalinity as CaCO3	mg/L	5	446	279	309	81	238
Le linit.	Chloride	mg/L	1	97	4	<1	2	<1
kalinity	Conductivity	uS/cm	5	1180	524	775	184	442
	Fluoride	mg/L	0.1	<0.10	0.10	0.14	0.16	0.14
Chloride	Hydrogen Sulphide	mg/L	0.01	1.40	<1	<1	1.70	<10
	N-NH3 (Ammonia)	mg/L	0.02	2.17	4.99	< 0.02	0.04	0.39
Ammonia	N-NO2 (Nitrite)	mg/L	0.1	<0.10	<0.10	<0.10	<0.10	<0.10
	N-NO3 (Nitrate)	mg/L	0.1	<0.10	<0.10	0.29	<0.10	<0.1
atal Kialdahl Nitragan	Sulphate ,	mg/L	1	46	<1	104	13	6
otal Kjeldahl Nitrogen	Total Dissolved Solids (COND - CALC)	mg/L	5	767	341	504	120 <0.10	287
(TKN)	Total Kjeldahl Nitrogen	mg/L	0.1	3.27	5.74	<0.10 86.0	<0.10	>10
	Turbidity	NTU	0.1	100 515	>100 265	306	94	231
	Hardness as CaCO3	mg/L		165	83	65	26	58
	Calcium	mg/L mg/L		25	14	35	7	21
	Magnesium	mg/L		6	6	6	<1	3
	Potassium Sodium	mg/L	2	59	8	65	<2	8
	Aluminum	mg/L	0.01	0.01	0.07	0.05	0.17	0.0
	Antimony	mg/L	0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.00
	Arsenic	ma/L	0.001	< 0.01	< 0.001	< 0.001	< 0.001	<0.0
	Barium	ma/L	0.01	0.06	0.19	0.03	0.01	0.02
	Beryllium	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.00
	Boron	mg/L	0.01	0.23	0.07	0.04	< 0.01	0.03
Boron	Cadmium	mg/L	0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.00
	Chromium	mg/L	0.001	0.005	0.005	0.002	0.003	0.00
	Cobalt	mg/L	0.0002	0.0049	0.0043	0.0088	0.0110	0.001
	Copper	mg/L	0.001	< 0.001	< 0.001	0.001	0.001	<0.00
	Hexavalent Chromium (Cr(VI))	mg/L	0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.0
	Iron	mg/L	0.03	10.8	66.3	0.05	0.14	0.34
	Lead	mg/L	0.001	<0.001	<0.001	< 0.001	< 0.001	<0.00

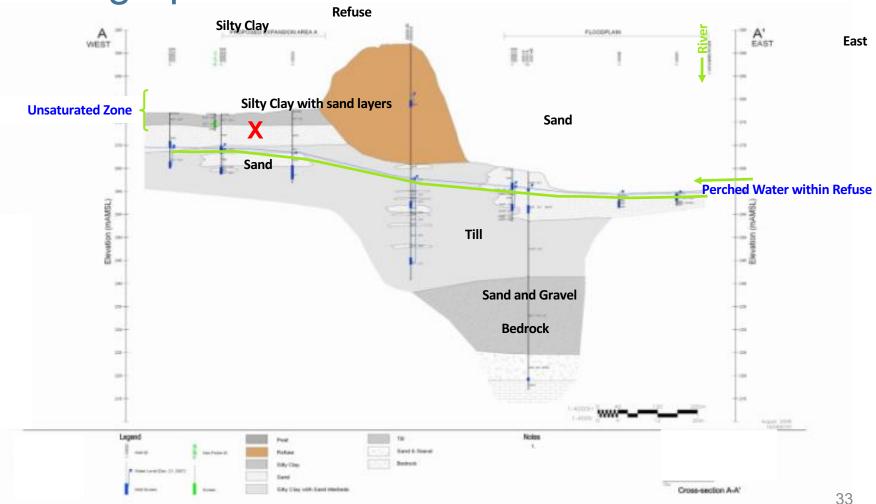
Alkalinity as a Leachate Indicator

Groundwater

Groundwater should be monitored on a regular basis.

Equipment Used in Sampling Water at Landfill

Which field parameters are typically measured?

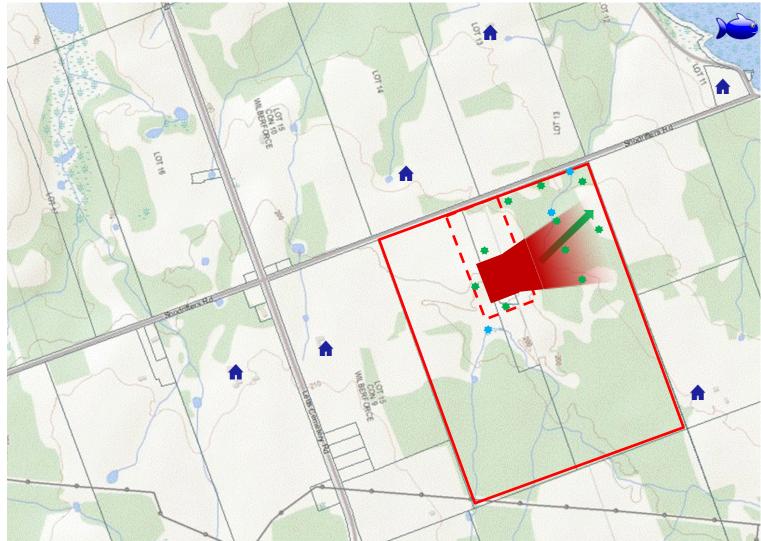

Hydrogeological Assessment

Required to confirm groundwater flow direction and velocity, depth to ground-water table and groundwater quality.

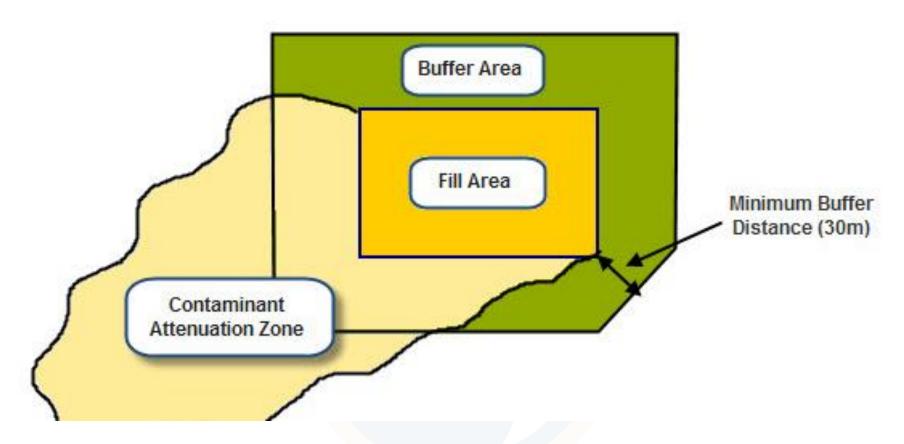
Stratigraphic Units – Section

Soil beneath waste

Soils with moderate hydraulic conductivity such as clays or silts are preferred.



Maintain separation from dwellings, surface water courses and roadway.



Managing the Fill Area

Landfill Buffer Zone

Buffer zone has to be 100m wide at every point unless special permission is granted to reduce to 30m.

Typical Factors to Consider

- Keep receptors such as residences or other buildings away from waste
- Maintain separation distance to water wells, streams, lakes and highways
- Keep waste above groundwater table
- Waste slopes to prevent failure
- Deposit waste on gently sloping ground
- Waste to be screened from roadway
- Waste on soils with moderate hydraulic conductivity
- Site to accommodate large buffer zone

The active face should have a slope draining away from the waste so water doesn't infiltrate

Screened from public view by berms, trees or other shrubbery

Apply sufficient daily cover to minimize infiltration, reduce wind-blown debris and minimize exposure to wildlife and humans

Module Discussion

- ✓ Waste Disposal Types
- Methods of Waste Placement
- ✓ Risk Assessment
- Contamination Pathways
- Hydrogeological Assessment
- ✓ Typical Factors to Consider in Siting