Frustrated Ceramics

Arielle Blonder

Racah Institute of Physics, The Hebrew University HUJI

Shrinkage-rate of clay during firing varies according to clay-type. Fusing two layers of porcelain and stoneware for joint firing generates geometrical incompatibilities, or material frustration. An elastic solution is found by the flat sheet material through bending, self-shaping into predictable 3D shapes.

Reference-curvature is dictated principally by sheet thickness and differential strain.

Grooves in stoneware-layer enhance curvature by local mechanical release.

Grooves in porcelain-layer introduce anisotropy, changing curvature orientation.

Grooved stoneware

While firing

Shrinkage 13%	'
Shrinkage 8%	

After the firing

Shira Shoval

Textile Design Department Shenkar College of Engineering, Design and Art Bezalel Academy of Art and Design

Ofri Dar

Industrial Design Department

Eran Sharon

Racah Institute of Physics, The Hebrew University HUJI

Grooved porcelain

 $K = \mathcal{E}/t$ K - curvature **E** – strain t – thickness

150 mm

Cutting pattern of clay sheet

