Sensor data

# CALCULATIONS ©



## TABLE OF CONTENTS



**ACTIVITY** 



**DEPTH** 



**INCLINATION** 



**MORTALITY** 



**TEMPERATURE** 



**CONDUCTIVITY** 



**SALINITY** 

## **ACTIVITY**

### **Equation:**

**Activity = slope x transmit data + Intercept [unit]** 

#### Example parameters:

**Slope** = 0.013588

Intercept = 0

Unit =  $m/s^2$ 

**Activity minimum** =  $0 \text{ m/s}^2$  (transmit data min = 0)

**Activity maximum** =  $3.465 \text{ m/s}^2$  (transmit data max = 255)

Measurement = RMS

The above parameters can be found in your delivery note/specifications sheet

Following values are used for **standard activity sensor transmitters**:

**Slope** = 0.013588

Intercept = 0

## Example calculation, standard activity sensor:

| Date and time (UTC)      | ID | Data | Protocol   |
|--------------------------|----|------|------------|
| 2020-11-04T00:00:06.894Z | 71 | 2    | S256-69kHz |
| 2020-11-04T00:03:17.894Z | 71 | 2    | S256-69kHz |
| 2020-11-04T00:11:44.894Z | 71 | 1    | S256-69kHz |
| 2020-11-04T00:15:40.894Z | 71 | 10   | S256-69kHz |

Calculation of **highlighted line** in standard example dataset above:

Slope: 0.013588 m/s<sup>2</sup>

Applied in equation:

Intercept: 0

Activity =  $(0.013588 \times 2 + 0) \text{ m/s}^2$ 

Data: 2

Activity =  $0.027176 \text{ m/s}^2$ 



### **Equation:**

Depth = slope x transmit data + Intercept [unit]

#### **Example parameters:**

**Slope** = 0.5098

Intercept = 0

Unit = m

**Depth minimum** = 0 m (transmit data min = 0)

**Depth maximum** = 130 m (transmit data max = 255)

The highlighted parameters above can be found in your delivery note/specifications sheet

Following values are used for **standard depth sensor transmitters**:

**Slope** = See standard depth range table below

Intercept = 0

## Example calculation, standard depth sensor:

| Date and time (UTC)      | ID | Data | Protocol   |
|--------------------------|----|------|------------|
| 2016-11-04T00:00:06.894Z | 45 | 117  | S256-69kHz |
| 2016-11-04T00:03:17.894Z | 45 | 117  | S256-69kHz |
| 2016-11-04T00:11:44.894Z | 45 | 125  | S256-69kHz |
| 2016-11-04T00:15:40.894Z | 45 | 123  | S256-69kHz |

Calculation of **highlighted line** in standard example dataset above:

Slope: 0.5098

Applied in equation:

Intercept: 0

Depth =  $(0.5098 \times 117 + 0)$  m

Data: 117

Depth = 60 m

| Max Depth [m] | Resolution [m] |
|---------------|----------------|
| 25.5          | 0.1000         |
| 51            | 0.2000         |
| 63.75         | 0.2500         |
| 86.7          | 0.3400         |
| 100           | 0.3922         |
| 130           | 0.5098         |
| 290           | 1.1373         |
| 290           | 1.137          |

**Table 1. Standard** depth range alternatives

## NCLINATION

### **Equation:**

Tilt = slope x transmit data + Intercept [unit]

#### **Example parameters:**

Slope = 1

Intercept = 0

Unit = °

**Tilt minimum** =  $0^{\circ}$  (transmit data min = 0)

**Tilt maximum** = 180 ° (transmit data max = 180)

The above parameters can be found in your delivery note/specifications sheet

Following values are used for **standard inclination sensor transmitters**:

Slope = 1

Intercept = 0

## Example calculation, **standard tilt sensor**:

| Date and time (UTC)      | ID | Data | Protocol   |
|--------------------------|----|------|------------|
| 2018-11-04T00:02:09.894Z | 65 | 45   | S256-69kHz |
| 2018-11-04T00:08:20.894Z | 65 | 46   | S256-69kHz |
| 2018-11-04T00:13:54.894Z | 65 | 46   | S256-69kHz |
| 2018-11-04T00:17:38.894Z | 65 | 47   | S256-69kHz |

Calculation of **highlighted line** in standard example dataset above:

Slope: 1 Applied in equation Intercept: 0 Tilt =  $(1 \times 46 + 0)^{\circ}$ 

Data: 46 Tilt = 46  $^{\circ}$ 

**NOTE**: The tilt output from the inclination sensor is measured relative to a fixed zero/baseline. The 0° tilt or baseline can be set by the user or from the factory using a magnet command sequence.

## ORTALITY

### **Equation:**

CurrentTiltAngle = slope x transmit data + Intercept [unit]

#### **Example parameters:**

Slope = 1

Intercept = 0

Unit = °

**CurrentTiltAngle minimum** = 0 ° (transmit data min = 0)

**CurrentTiltAngle maximum** = 180 ° (transmit data max = 180)

The above parameters can be found in your delivery note/specifications sheet

Following values are used for **standard mortality sensor transmitters**:

Slope = 1

Intercept = 0

## Example calculation, standard mortality sensor:

| Date and time (UTC)      | ID | Data | Protocol   |
|--------------------------|----|------|------------|
| 2018-11-04T00:02:09.894Z | 53 | 3    | S256-69kHz |
| 2018-11-04T00:08:20.894Z | 53 | 122  | S256-69kHz |
| 2018-11-04T00:09:27.894Z | 54 | 120  | S256-69kHz |
| 2018-11-04T00:09:30.894Z | 54 | 119  | S256-69kHz |

Calculation of **highlighted line** in standard example dataset above:

Slope: 1 Applied in equation

Intercept: 0 CurrentTiltAngle =  $(1 \times 122 + 0)^{\circ}$ 

Data: 122 **CurrentTiltAngle** = 122 °

**NOTE**: The orientation output from the mortality sensor is measured relative to a dynamic zero/baseline. The 0° orientation or baseline is slowly updated over time so that the transmitter can move inside the animal.

## **I** EMPERATURE

### **Equation:**

**Temperature = slope x transmit data + Intercept [unit]** 

#### **Example parameters:**

Slope = 0.1

Intercept = 0

Unit = °C

**Temperature minimum** = 0 °C (transmit data min = 0)

**Temperature maximum** = 25.5 °C (transmit data max = 255)

The above parameters can be found in your delivery note/specifications sheet

Following values are used for **standard temperature sensor transmitters**:

Slope = 0.1

Intercept = 0

## Example calculation, standard temperature sensor:

| Date and time (UTC)      | ID  | Data | Protocol   |
|--------------------------|-----|------|------------|
| 2018-11-04T00:02:09.894Z | 148 | 56   | S256-69kHz |
| 2018-11-04T00:08:20.894Z | 148 | 57   | S256-69kHz |
| 2018-11-04T00:13:54.894Z | 148 | 58   | S256-69kHz |
| 2018-11-04T00:17:38.894Z | 148 | 61   | S256-69kHz |

Calculation of **highlighted line** in standard example dataset above:

Slope: 0.1 Applied in equation

Intercept: 0 Temperature =  $(0.1 \times 57 + 0)$  °C

Data: 57 Temperature = 5.7 °C

## CONDUCTIVITY

## **Equation:**

**Conductivity = slope x transmit data + Intercept [unit]** 

#### **Example parameters:**

**Slope** = 10

Intercept = 0

**Unit** =  $\mu$ S/cm

**Conductivity minimum** =  $0 \mu S/cm$  (transmit data min = 0)

**Conductivity maximum** =  $2500 \mu S/cm$  (transmit data max = 250)

The above parameters can be found in your delivery note/specifications sheet

Following values are used for **standard conductivity sensor transmitters**:

**Slope** = 10

Intercept = 0

## Example calculation, standard conductivity sensor:

| Date and time (UTC)      | ID | Data | Protocol   |
|--------------------------|----|------|------------|
| 2018-11-04T00:02:09.894Z | 2  | 143  | S256-69kHz |
| 2018-11-04T00:08:20.894Z | 2  | 146  | S256-69kHz |
| 2018-11-04T00:13:54.894Z | 2  | 158  | S256-69kHz |
| 2018-11-04T00:17:38.894Z | 2  | 167  | S256-69kHz |

Calculation of **highlighted line** in standard example dataset above:

Slope: 10 Applied in equation

Intercept: 0 Conductivity =  $(10 \times 146 + 0) \mu S/cm$ 

Data: 146 Conductivity =  $1460 \mu S/cm$ 

## SALINITY

### **Equation:**

Salinity = slope x transmit data + Intercept [unit]

#### Example parameters:

Slope = 1

Intercept = 0

**Unit** = ppt

**Salinity minimum** = 0 ppt (transmit data min = 0)

**Salinity maximum** = 42 ppt (transmit data max = 42)

The above parameters can be found in your delivery note/specifications sheet

Following values are used for **standard conductivity sensor transmitters**:

Slope = 1

Intercept = 0

## Example calculation, standard salinity sensor:

| Date and time (UTC)      | ID | Data | Protocol   |
|--------------------------|----|------|------------|
| 2018-11-04T00:04:10.894Z | 21 | 20   | S256-69kHz |
| 2018-11-04T00:10:43.894Z | 21 | 22   | S256-69kHz |
| 2018-11-04T00:14:32.894Z | 21 | 30   | S256-69kHz |
| 2018-11-04T00:18:45.894Z | 21 | 25   | S256-69kHz |

Calculation of **highlighted line** in standard example dataset above:

Slope: 1 Applied in equation

Intercept: 0 Salinity =  $(1 \times 22 + 0)$  ppt

Data: 22 Salinity = 22 ppt