
Type Theory as the Unifying  
Foundation for Modern Databases

Dr. Christoph Dorn 

Head of Research, Vaticle 
Previously: Theoretical Computer Scientist in Category Theory 
@ Oxford University

TypeDB Fundamentals Lecture Series  



• Mismatch of conceptual and logical model 
• Object-relational mismatch, reification, multi-valued attributes, etc. 

• Lack of support for polymorphic and highly connected data 

• No easy system extensibility and maintainability 
• Imperative, long, complex, and brittle queries  

• No composable and generic queries that are “write-once, use-forever”  

• Susceptible to loss of semantic data integrity 
• No meaningful data validation without context 

• Data redundancies need to be carefully addressed 

• Issues with data migration and interoperability 
• Lack of support for transactional migrations 

• Need for data-wise refactoring

The status quo

Many paradigms in use: relational, graph, 
document, triplestore and RDF, etc.

And many commonly known problems:

DO $$
DECLARE
    inserted_user_id INTEGER;
    inserted_resource_id INTEGER;
    inserted_action_id INTEGER;
    inserted_requestee_id INTEGER;
    inserted_permission_id INTEGER;
BEGIN
    INSERT INTO users (id, full_name)
    VALUES (DEFAULT, 'John Doe')
    RETURNING id INTO inserted_user_id;
    
    INSERT INTO user_emails (user_id, email, is_primary)
    VALUES
        (inserted_user_id, 'john.doe@vaticle.com', TRUE),
        (inserted_user_id, 'j.doe@vaticle.com', FALSE),
        (inserted_user_id, 'john@vaticle.com', FALSE);
    
    INSERT INTO employees (user_id, employee_id)
    VALUES (inserted_user_id, 183);
    
    INSERT INTO full_time_employees (user_id)
    VALUES (inserted_user_id);
    
    INSERT INTO resources (id)
    VALUES (DEFAULT)
    RETURNING id INTO inserted_resource_id;
    
    INSERT INTO files (inserted_resource_id, path)
    VALUES (inserted_resource_id, '/home/johndoe/repos/typedb/readme.md');
    
    INSERT INTO actions (id, name)
    VALUES (DEFAULT, 'edit file')
    RETURNING id INTO inserted_action_id;
    
    INSERT INTO users (id, full_name)
    VALUES (DEFAULT, NULL)
    RETURNING id INTO inserted_requestee_id;
    
    INSERT INTO user_emails (user_id, email, is_primary)
    VALUES (inserted_requestee_id, 'kevin@vaticle.com', FALSE);
    
    INSERT INTO permissions (id, subject, object, action)
    VALUES (DEFAULT, inserted_user_id, inserted_resource_id, inserted_action_id)
    RETURNING id INTO inserted_permission_id;
    
    INSERT INTO change_requests (id, target, requestee, requested_change)
    VALUES (DEFAULT, inserted_permission_id, inserted_requestee_id, 'revoke');
    
    COMMIT;
END $$;

Distributing fields of  
a single object across 

multiple tables



db.groups.aggregate( [
    { "$addFields": { "ownership_type": "group_ownership" } },
    { "$unionWith": {
        "coll": "resources",
        "pipeline": [ { "$addFields": { "ownership_type": "resource_ownership" } } ]
    } },
    { "$lookup": {
        "from": "users",
        "localField": "owner",
        "foreignField": "_id",
        "as": "user_owners"
    } },
    { "$lookup": {
        "from": "groups",
        "localField": "owner",
        "foreignField": "_id",
        "as": "user_group_owners"
    } },
    { "$addFields": { "owners": { "$concatArrays": [ "$user_owners", "$user_group_owners" ] } } },
    { "$unwind": "$owners" },
    { "$addFields": {
        "owned_type": { "$switch": { "branches": [
            { "case": { "$eq": [ "$group_type", "user_group" ] }, "then": "user_group" },
            { "case": { "$eq": [ "$resource_type", "file" ] }, "then": "file" }
        ] } }
    } },
    { "$addFields": {
        "owned_id": { "$switch": { "branches": [
            { "case": { "$eq": [ "$group_type", "user_group" ] }, "then": "$name" },
            { "case": { "$eq": [ "$resource_type", "file" ] }, "then": "$path" }
        ] } }
    } },
    { "$addFields": {
        "owner_type": { "$switch": { "branches": [
            { "case": { "$eq": [ "$owners.user_type", "user" ] }, "then": "user" },
            { "case": { "$eq": [ "$owners.user_type", "admin" ] }, "then": "admin" },
            { "case": { "$eq": [ "$owners.group_type", "user_group" ] }, "then": "user_group" }
        ] } }
    } },
    { "$project": {
        "_id": false,
        "ownership_type": true,
        "owned_type": true,
        "owned_id": true,
        "owner_type": true,
        "owner_id": { "$switch": { "branches": [
            { "case": { "$eq": [ "$owners.user_type", "user" ] }, "then": "$owners.email" },
            { "case": { "$eq": [ "$owners.user_type", "admin" ] }, "then": "$owners.email" },
            { "case": { "$eq": [ "$owners.group_type", "user_group" ] }, "then": "$owners.name" }
        ] } }
    } }
] )

• Mismatch of conceptual and logical model 
• Object-relational mismatch, reification, multi-valued attributes, etc. 

• Lack of support for polymorphic and highly connected data 

• No easy system extensibility and maintainability 
• Imperative, long, complex, and brittle queries  

• No facility for composable, generic queries that are highly reusable  

• Susceptible to loss of semantic data integrity 
• No meaningful data validation without context 

• Data redundancies need to be carefully addressed 

• Issues with data migration and interoperability 
• Lack of support for transactional migrations 

• Need for data-wise refactoring

The status quo

Many paradigms in use: relational, graph, 
document, triplestore and RDF, etc.

And many commonly known problems:

Hard-coded values  
in switch cases



MATCH
    (john:User),
    (readme:File {path: "/home/johndoe/repos/typedb/readme.md"}),
    (edit:Action {name: "edit file"})
WHERE (
        john.primary_email = "john@vaticle.com"
        OR "john@vaticle.com" IN john.alias_emails
    ) AND NOT EXISTS {
        MATCH (john)<-[:SUBJECT]-(perm:Permission)-[:OBJECT]->(readme)
        WHERE EXISTS ( (perm)-[:ACTION]->(edit) )
    }
WITH john, readme, edit 
CREATE (john)<-[:SUBJECT]-(perm:Permission)-[:OBJECT]->(readme)
WITH edit, perm
CREATE (perm)-[:ACTION]->(edit);
MATCH
    (perm:Permission),
    (perm)-[:SUBJECT]->(john:User),
    (perm)-[:OBJECT]->(readme:File {id: "/home/vaticle/repos/typedb/readme.md"}),
    (perm)-[:ACTION]->(edit:Action {name: "edit file"}),
    (kevin:User)
WHERE (
        john.primary_email = "john@vaticle.com"
        OR "john@vaticle.com" IN john.alias_emails
    ) AND (
        kevin.primary_email = "kevin@vaticle.com"
        OR "kevin@vaticle.com" IN kevin.alias_emails
    )
CREATE
    (rqst:ChangeRequest {requested_change: "revoke"}),
    (rqst)<-[:TARGET]-(perm),
    (rsqt)<-[:REQUESTEE]-(kevin);

• Mismatch of conceptual and logical model 
• Object-relational mismatch, reification, multi-valued attributes, etc. 

• Lack of support for polymorphic and highly connected data 

• No easy system extensibility and maintainability 
• Imperative, long, complex, and brittle queries  

• No facility for composable, generic queries that are highly reusable 

• Semantic data integrity is easily violated 
• No meaningful data validation due to no sufficiently expressive schemas 

• Data redundancies need to be carefully synced 

• Issues with data migration and interoperability 
• Lack of support for transactional migrations 

• Need for data-wise refactoring

The status quo

Many paradigms in use: relational, graph, 
document, triplestore and RDF, etc.

And many commonly known problems:

Missing checks on the semantic  
validity of created relations



Watch our next lecture!

For details on these common database pain points:

…today we embark on a more theory-driven journey!



Re-thinking foundations

Existing database 
paradigms

Theory of relations, graphs, trees, etc. …

“Domain-specific” 
mathematics

Inspiration

type-theoretic 
mathematics

General theory of composable structures

Modernization

• OK for domain-specific applications 
• Cannot express polymorphism 
• Not built for composable and  

extensible modern systems 
• No native interoperability

Inspiration

how would we re-think the foundations of  
modern databases from first principles?



The TypeDB approach

Databases

Type theory
Machine 

reasoning

The TypeDB ecosystem 

• Type-theoretic query language 
• Conceptual data model 

enhanced with polymorphism 
• Type inference engine and  

extensible type schemas 
• Machine reasoning engine

not relational 
not graph 
not document 
…but a unification thereof!

In this lecture we learn how type theory  
underlies all of the the above!



Part I: 
The Modernization of Mathematics

What are foundations of general mathematical structures?

or



The original inspiration for relational algebra

Classical foundations based on two ingredients

Sets

x ∈ X

Relations

ϕ(x1, x2, . . . , xn)
a.k.a. predicates +   predicate logic



The original inspiration for relational algebra

Sets Relations

Classical foundations based on two ingredients

p ∈ Person Marriage(p1, p2)
a.k.a. predicates +   predicate logic

• Provided inspiration for relational data model, Prolog, etc. 
• Modeling everything in sets and relations is non-practical

… you need not be a mathematician to know modeling with relations can be restrictive!



Mathematics moved on to composable systems

Types also Types

Modern foundations based on one ingredient

p : Person m : Marriage(p1, p2)
a.k.a. dependent type

… Can we build database foundations on this, too? Well, types are just “declarative data descriptions”!

• Unifies all structures as types, with powerful repercussions: 
• “Facts” become themselves data in types, that can be explicitly referenced 
• Dependencies on data can be composed 
• De-facto the practical foundation of modern mathematics (see [Taylor, ’99])

d : Date-of(m)



Part II: 
The type-theoretic query language



Crash course in type theory

So what precisely is a type?

A type is a description of a domain that a variable can range over.

• x : integer   (x in { …,1,2,3,… }) 
• y : string   (y in {“a”, “b”, “aa”, … }) 
• z : factor of x → dependent type 

(when x = 26, z in {1,2,13,26})

• p : Person 
• n : Name of person p 
• m : Marriage between persons p1 and p2

NL examples:Math/PL examples:



Crash course in type theory

So what precisely is a type?

A type is a description of a domain that a variable can range over.

Math/PL Examples NL Examples

Dependent type Description with variable

Pair type operator Combined descriptions

Sum type operator Alternative descriptions

… …

‘X is a person, and, Y is a name of X ’

‘X is a person, and, Y is a city’

“and”

‘X is a person, or, X is a city ’

“or” “dependent pair type”



Type theory makes math composable

• p1, p2 : Person 
• m: Marriage of p1 and p2 
• d : Date of m

dependencies compose

d : Date of Marriage m of Persons p1 and p2

$p1 isa person;
$p2 isa person;
$m ($p1, $p2) isa marriage;
$m has date $d;

TypeQL patternDependently Typed Programming

Σ[ p₁ ∈ Person ] (
Σ[ p₂ ∈ Person ] (
Σ[ m ∈ Marriage p₁ p₂ ] ( 
Σ[ d ∈ Date m ] ⊤ )))

vs



Type-theoretic querying

Databases

Type theory
Machine 

reasoning

Composite dependent 
types are queries

Σ[ c₁ ∈ City ] 
Σ[ c₂ ∈ City ] 
Σ[ f ∈ Flight c₁ c₂ ] 
Σ[ d ∈ Duration f ] 
Σ[ proof ∈ d ≤ 120 ] ⊤

$c1 isa city;
$c2 isa city;
$f (from: $c1, to: $c2) isa flight;
$f has duration $d;
$d <= 600; # 10 hours

…but TypeQL can do much more than 
plain type theoretic languages!



Part III: 
The type-theoretic conceptual data model 

enhanced with polymorphism



Type-theoretic querying

Databases

intuitive query   
semantics 

$nyc isa city, has name "New York";
$dest isa city;
$f (from: $nyc, to: $dest) isa flight;
$f has duration <= 600;



Type-theoretic querying

Databases

intuitive query   
semantics 

$nyc isa city, has name "New York";
#$dest isa city;
$f (from: $nyc, to: $dest); #isa flight;
$f has duration <= 600;

… how to interpret this?

Need: database schema giving context 
for type inference and type validation

Idea: work with an intuitive 
conceptual data model!



From conceptual schemas to type theory

Natural Language Conceptual Modeling Type Theory

Nouns 
a person

Entities 
person

types without dependencies 
containing objects

Verbs connecting nouns 
a person marries a person

Relations 
marriage of p1 and p2

types with dependencies  
containing objects

Adjective or Adverbs 
a person marries a person today

Attributes 
date of a marriage m

types with dependencies  
containing values

TypeDB is based on a type-theoretic conceptual data model

The intuitive categorization of natural language:



Reverse engineering our ERA schema

$nyc isa city, has name "New York";
$f ( from: $nyc, to: $dest); 
$f has duration  <= 600;

city sub entity;
name sub attribute,
    value string;
city owns name;
transport sub relation,
    relates from,
    relates to;
city plays transport:from,
    plays transport:to;
duration sub attribute,
   value long;
transport owns duration;

Type-theoretic query language Type-theoretic conceptual schema

named abstractions of  
type dependencies



Enhancing our model with type polymorphism

name sub attribute,
    value string;
city sub entity, owns name;
transport sub relation,
    relates from,
    relates to;
city plays transport:from,
    plays transport:to;

1. Inheritance polymorphism lets types inherit 
the full specification of a parent type, enabling 
the hierarchical organization of types.

flight sub transport, 
    owns flight_no;
flight_no sub attribute,
    value string;
#flight inherits specification!



The three kinds of type polymorphism

name sub attribute,
    value string;
city sub entity, owns name;

1. Inheritance polymorphism lets types inherit 
the full specification of a parent type, enabling 
the hierarchical organization of types. 

2. Interface polymorphism abstracts input types 
in dependencies: input types need specific 
capabilities instead of full type specifications.

city plays transport:from,
    plays transport:to;
airport sub entity;
airport plays transport:from,
    plays transport:to;

person sub entity, owns name;
# … having a name is 
# a capability!



The three kinds of type polymorphism

1. Inheritance polymorphism lets types inherit 
the full specification of a parent type, enabling 
the hierarchical organization of types. 

2. Interface polymorphism abstracts input types 
in dependencies: input types need specific 
capabilities instead of full type specifications. 

3. Parametric polymorphism  defines generic 
functionality for (variabilized) types, enabling 
semantically generic queries

match
  $something owns name;
  $object isa $something;
  $object has name $name;
delete
  $object isa $something;
# 'semantically generic' 
# w.r.t to name ownerships 
# defined in the schema



Part IV: 
One reasoning engine to rule them all



Type-theoretic reasoning

Databases

Type theory
Machine 

reasoning

$c1 isa city;
$c2 isa city;
$f (from: $c1, to: $c2) isa flight;
$f has duration $d;
$d <= 120; 

Σ[ c₁ ∈ City ] 
Σ[ c₂ ∈ City ] 
Σ[ f ∈ Flight c₁ c₂ ] 
Σ[ d ∈ Duration f ] 
Σ[ t ∈ d ≤ 120 ] ⊤

Functions as 
inferred data

rule possible-two-leg-flight: when {
  $f1 (from: $c1, to: $c2) isa flight;
  $f2 (from: $c2, to: $c3) isa flight;
} then {
  (leg1: $f1, leg2: $f2) isa two-leg-connection;
}

Π[ Σ[ … ]
   Σ[ f1 ∈ Flight c1 c2 ]
   Σ[ f2 ∈ Flight c2 c3 ] ⊤
 ] (Two-leg-connection f1 f2)



Type-theoretic reasoning

Machine 
reasoning

rule possible-two-leg-flight: when {
  $flight1 (from: $city1, to: $city2) isa flight, 
    has arrival $time1;
  $flight2 (from: $city2, to: $city3) isa flight, 
    has departure $time2;
  $time2 > $time1 + 30; # allow for 30 min
} then {
  (leg1: $flight1, leg2: $flight2) 
    isa two-leg-connection;
}

Need: Reasoning engine that 
evaluates rules at query time 
Gain: Fine-grained control of 
source data and application logic

intuitive rule   
semantics 

Source Logic
Tables Views

Nodes + Edges Paths

Collections Aggregates

… …



Part V. 
The result: a unifying foundation for modern databases



• Migrating from relational 
• Tables ⇢ Entities  

(associative Entities ⇢ Relations) 

• Foreign keys ⇢ Relations 

• Columns ⇢ Attributes

The unification of existing paradigms

# Table 'student'
student sub entity,
    owns subject-of-study,
    owns start-date,
    plays supervision:supervisee;

# Table 'professor'
professor sub entity,
    owns name,
    owns number-of-students,
    owns taking-new-PhDs,
    plays supervision:supervisor;

# Foreign key for 'student' in ‘prof.'
supervision sub relation,
    relates supervisee,
    relates supervisor;

Relational flattens 
dependencies!



• Migrating from property graph 
• Node Types ⇢ Entities 

• Edge Types ⇢ Relations 

• Properties ⇢ Attributes 

• Path composition ⇢ Logic

Type theory generalizes existing paradigms

• Migrating from relational 
• Tables ⇢ Entities  

(associative Entities ⇢ Relations) 

• Foreign keys ⇢ Relations 

• Columns ⇢ Attributes

# 'City' node with properties
city sub entity,
    owns name;

# 'Flight' edges with properties
flight sub relation,
    relates departure-city,
    relates arrival-city,
    owns departure-time,
    owns arrival-time;

# Path data types
two-leg-flight sub relation,
    relates first-leg;
    relates second-leg;
flight plays two-leg-flight:first-leg,
    plays two-leg-flight:second-leg;

Relational flattens 
dependencies!

• Document, RDF (with reification), and more …

Graph has little 
control of logic!



• Mismatch of conceptual and logical model 
• Object-relational mismatch, reification, multi-valued attributes, etc. 

• Lack of support for polymorphic and highly connected data 

• No easy system extensibility and maintainability 
• Imperative, long, complex, and brittle queries  

• No facility for composable, generic queries that are highly reusable 

• Semantic data integrity is easily violated 
• No meaningful data validation due to no sufficiently expressive schemas 

• Data redundancies need to be carefully synced

The new status
Solved by conceptual data 
model with type polymorphism

Solved by type-theoretic 
declarative query language

Solved by type inference and 
machine reasoning engine



In summary

• TypeDB implements the unifying type-theoretic, polymorphic paradigm 
• This makes TypeDB an extensible, adaptable, safe and robust DBMS 
• It’s a fast evolving software ecosystem!



What’s next

There is much more to talk about, see upcoming lectures:

Register at TypeDB.com/lectures

Thursday, Nov 30th Thursday, Dec 7th Wednesday, Dec 13th



More TypeDB Resources

TypeDB Learning Center - typedb.com/learn

TypeDB Cloud Waitlist - cloud.typedb.com —> Join Waitlist 

Download TypeDB - typedb.com/deploy

http://typedb.com/learn
http://cloud.typedb.com
http://typedb.com/deploy


Thank you! 
Join us at typedb.com/discord


