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Prologue: 
The bigger picture

A brief overview of our Fundamentals Lecture Series



• Databases lack behind in providing high-level “zero-
cost” abstractions as now found in many modern 
programming languages 

• Type systems force developers to “think before they 
write”, making applications not only more robust, but 
also more composable and maintainable 

• With type theory succeeding predicate logic, “types as 
queries” is an ideal modern querying paradigm 

• ... and it provides a framework for polymorphism

Lecture #1: The theoretical motivation

 Watch at TypeDB.com/lectures

https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean
https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean
https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean
https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean


• Regular mismatches between aged (or domain-specific) 
data modeling paradigms and modern programming 
language paradigms 

• Object-relational mismatch 

• Object-graph mismatch 

• Object-document mismatch 

• Data Integrity, lack of Polymorphic Querying... 

• Wrappers, like ORMs, often yield costly abstractions 
(non-optimal queries, additional object representations)

Lecture #2: The pragmatic pain points

 Watch at TypeDB.com/lectures



• TypeDB builds directly on a novel polymorphic data 
model, equipped with type system that enables: 

• an expressive query language that can leverage 
inheritance and interface polymorphism  

• principled database engineering, which is 
maintainable and robust by design 

• complex applications that are modular and 
composable, continuously modifiable

Lecture #3: The polymorphic database

 Watch at TypeDB.com/lectures

Today's lecture: a deep dive into TypeDB's data model!



• Key modeling terminology: concepts, instances, dependencies 

• Polymorphic entity-relation-attribute (PERA) model via TypeQL 

• Comparison of PERA to other data model 

• Pattern-based querying and reasoning

Lecture #4 overview



Part I: 
Concepts and instances

Illustrated guide to key terminology in conceptual modeling
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“qwerty”
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mathematical framework
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name birthday
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1 1
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NOT NULL FKscreating new team_membership requires an employee and a team

Definition. A concept depends on another concept 
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• Concept formation sorts our data into meaningful types

• Some types can be freely instantiated (objects  types), 
Others collect pre-defined values (attribute types)

• Dependencies indicate instantiation of types must 
reference instances of other types

• Conceptualization turns a dependency into a concept itself
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• The polymorphic entity-relation-attribute (PERA) builds directly on our previous definitions of 
types, instances, dependencies in conceptual modeling, with key kinds of types:

Introducing the PERA model and its types

independent type dependent type

object 
types entity types relation types

attribute 
types global constants attribute types

• Incidentally, the above 2 x 2 classification closely matches classical ERA modeling, 
however, for us, it fundamentally derives from simple type-theoretic principles.

employee team_membership

name
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• Type system defines types and type operations to pass between types 

• A fundamental operation is subtyping, allowing to cast type instances:

PERA type system: subtyping

employee person

is a instance of is a instance of

object object as person

subtype of

upcast to

subsumptive subtyping!

• A name “Ana” in type               can be cast into the bare string “Ana” in type stringname



• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person



• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

contractor FT_employee



• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

child

contractor FT_employee



• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

child

contractor FT_employee

tax_payer



• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

child

contractor FT_employee

tax_payer

Condition: the PERA model enforces 
single inheritance, meaning types may 
have at most one parent type. 

avoids the “diamond problem”
enforces more performant model design
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• The PERA model abstracts type dependencies as type capabilities implementable by other types

PERA type system: interface polymorphism

name

person city

name_owner

can cast into

“cities, like persons, have the capability to be name owners”

team_membership

teamemployee

“contributors, like employees, have the capability to be team members”

contributor work_group

member team

Condition: the PERA model enforces that  
only object types can be given capabilities. 
Object types may implement many interfaces!

avoids ambiguity due to idempotent value creation

c.f. “single-inheritance”
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• Define new                      relation type…            marriage

define 
marriage sub relation,
    relates spouse;

# case 1: role overwriting
define
hetero_marriage sub marriage,
    relates husband as spouse,
    relates wife as spouse;

and several subtypes:
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insert
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• The PERA type system as three kinds of types: 

• Type kinds are organized by inheritance hierarchies

• All dependencies are abstracted by interface types

• Object types can implement these interfaces

• Single-inheritance but multi-capability via interfaces

• Objects in object types can be freely created 

• Values can be (idempotently) added to attribute types

Summary: the PERA model in a nutshell
independent type dependent type

object 
types

entity types relation types

attribute 
types

(global constants) attribute types

name_owner name

employee person

$p = new person() person
isa

name_owner
person

city

…

name
isa

has

name( ,"Bob")



Part III: 
Comparison to other data models
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Remark. 
Constraints can 
modify dependencies!

e.g. NOT NULL FK:

FK column Value column
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of
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Remark. 
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team

name

team_name
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• In comparison to other data models, the PERA model is

• Principled: types have explicit and unambiguous function

• Modular: safely modify implementations of 
dependencies

• Polymorphic: directly express type capabilities and type 
inheritance

• ... and more: variadicity, globality, ...

Summary and further remarks

type1

role type0

type2 type3

relates

plays

plays

plays

...

subtype1

sub

role2 role3

relates relates

...

no surprise fields!
second_favorite_music_instrument: "Guitar"

• The PERA model follows a type-first approach  

• In schema-less approaches types are an after-thought 

• Requires us to think about types ahead of time, but 
modularity makes continuous development painless 
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• Type-theoretic querying 
• Queries via patterns ... patterns via types 
• Elegant and intuitive querying paradigm

Polymorphic querying and reasoning

“data type of solutions” 
→ fully declarative QL

Both are key functions of the PERA model ...let's give a brief preview!

• Type-theoretic reasoning 
• Type system is a collection of rules (e.g.: subtyping) 
• User-defined rules can extend this to derive new data
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Pattern
statements with variables that can be 
“solved for” by substituting objects and 
attributes for variables

Pattern-based querying with interface polymorphism

match
    $eng_team isa team, has team_name "Engineering";
    (team: $eng_team, member: $m) isa team_membership;
fetch 
    $m as engineer: name;

• match clause, line 1 
• $eng_team is some existing team object 
• that object must be the owner of the team_name "Engineering"

• match clause, line 2 
• there exists a team_membership object, left unassigned, but required to 

have a team roleplayer $eng_team and a member roleplayer $m
• fetch clause, line 1 

• for each “engineer” object $m return the name attribute(s) of $m

What concept (i.e. type)  
does $m belong to?

The answer is “polymorphic”: $m can 
belong to any type that implements 
the member role.



Pattern-based querying with inheritance polymorphism

match
    $e isa employee;
    (team: $t, leader: $e) isa team_leadership;
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Pattern-based querying with inheritance polymorphism

match
    $e isa employee;
    (team: $t, leader: $e) isa team_leadership;
fetch
    $e as leader: name;
    $t as team: team_name;

team_membership

team_leadership

employee

leader

member

director

relates

relatesplays

plays

sub sub

• match clause, line 1 
• States $e is a employee object 
• In particular, $e could be a 
director object!

• match clause, line 2 
• States a team_leadership 

exists with leader $e
• Can infer $e is a director

• fetch clause:
• The time we return tuples of 

employees $e (with names) and 
teams $t (with team_names)

sub

...
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define rule director-team-members-are-leader: when {
    $d isa director;
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} then { 
    (team: $t, leader: $d) isa team_leadership; 
};
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Reasoning in complex domains

When clause
contains a pattern stating 
the rule's assumptions

Then clause
statement of data to be derived

define rule director-team-members-are-leader: when {
    $d isa director;
    (team: $t, member: $d) isa team_membership;
} then { 
    (team: $t, leader: $d) isa team_leadership; 
};

• when clause 
• States $d is a director object 
• States $d is a member in a team $t

• then clause 
• States $d is a leader of team $t

• Note: same pattern-based QL used throughout!

In other words:  
“directors are automatically  
designated as leaders in all 
teams they are members in.” 
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• Patterns in the PERA model: 

• express combined statement about type instances and dependencies 

• are fully composable and declarative 

• can be type-checked!

• Patterns underlie two key functions to the PERA model: 

• type-theoretic query language: TypeQL 

• rule-based Reasoning Engine

Summary

Stay tuned for more!



Lecture review: 
The PERA model

A fast evolving foundational model for modern databases
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instances of instantiated  

with ref. to 

independent type dependent type

object 
types entity types relation types

attribute 
types (global constants) attribute types

• We defined concepts, instances, and 
concept dependencies abstractly

• Used these simple conceptual 
principles to develop the PERA model

• Reverse-engineered concepts and 
dependencies of existing data models

• In comparison, the PERA excels as a principled, 
modular, polymorphic, and types-first model

• Integrates type-theoretic querying and reasoning



Check out our previous lectures

 Watch at TypeDB.com/lectures

Replay now available Replay now available Replay now available



Thank you!



Q & A



More TypeDB Resources

TypeDB Learning Center 
typedb.com/learn

TypeDB Cloud 
cloud.typedb.com

Download TypeDB 
typedb.com/deploy

http://typedb.com/learn


Join us at typedb.com/discord


