
The Polymorphic Data Model
With Types

Dr. Christoph Dorn

Head of Research, Vaticle
Previously: Theoretical Computer Scientist in Category Theory
@ Oxford University

TypeDB Fundamentals Lecture 4
17th January 2024

Prologue:
The bigger picture

A brief overview of our Fundamentals Lecture Series

• Databases lack behind in providing high-level “zero-
cost” abstractions as now found in many modern
programming languages

• Type systems force developers to “think before they
write”, making applications not only more robust, but
also more composable and maintainable

• With type theory succeeding predicate logic, “types as
queries” is an ideal modern querying paradigm

• ... and it provides a framework for polymorphism

Lecture #1: The theoretical motivation

 Watch at TypeDB.com/lectures

https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean
https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean
https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean
https://stackoverflow.com/questions/69178380/what-does-zero-cost-abstraction-mean

• Regular mismatches between aged (or domain-specific)
data modeling paradigms and modern programming
language paradigms

• Object-relational mismatch

• Object-graph mismatch

• Object-document mismatch

• Data Integrity, lack of Polymorphic Querying...

• Wrappers, like ORMs, often yield costly abstractions
(non-optimal queries, additional object representations)

Lecture #2: The pragmatic pain points

 Watch at TypeDB.com/lectures

• TypeDB builds directly on a novel polymorphic data
model, equipped with type system that enables:

• an expressive query language that can leverage
inheritance and interface polymorphism

• principled database engineering, which is
maintainable and robust by design

• complex applications that are modular and
composable, continuously modifiable

Lecture #3: The polymorphic database

 Watch at TypeDB.com/lectures

Today's lecture: a deep dive into TypeDB's data model!

• Key modeling terminology: concepts, instances, dependencies

• Polymorphic entity-relation-attribute (PERA) model via TypeQL

• Comparison of PERA to other data model

• Pattern-based querying and reasoning

Lecture #4 overview

Part I:
Concepts and instances

Illustrated guide to key terminology in conceptual modeling

No meaning without concepts

“qwerty”

Literal value
Data defined in an abstract
mathematical framework

No meaning without concepts

“qwerty”

Literal value
Data defined in an abstract
mathematical framework

Plain-text password of a user

Message between Ana and Bob

Keyboard layout in our system

could represent a

No meaning without concepts

“qwerty”

Literal value
Data defined in an abstract
mathematical framework

Concept
Meaningful categorization of data

in the modeler’s framework

Plain-text password of a user

Message between Ana and Bob

Keyboard layout in our system

could represent a

No meaning without concepts

“qwerty”

Literal value
Data defined in an abstract
mathematical framework

Definition. Concept formation is the process of sorting data or data structures
into meaningful classes a.k.a. types.
—Hunt, Earl B.. "concept formation". Encyclopedia Britannica

Concept
Meaningful categorization of data

in the modeler’s framework

Plain-text password of a user

Message between Ana and Bob

Keyboard layout in our system

could represent a

No meaning without concepts

“qwerty”

Literal value
Data defined in an abstract
mathematical framework

Definition. Concept formation is the process of sorting data or data structures
into meaningful classes a.k.a. types.
—Hunt, Earl B.. "concept formation". Encyclopedia Britannica

Concept
Meaningful categorization of data

in the modeler’s framework

Plain-text password of a user

Message between Ana and Bob

Keyboard layout in our system

could represent a

instances of types

Two kinds of type instances

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990

instances are strings

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990

instances are strings
instances are dates

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990

instances are strings
instances are dates

Are persons the sum of names and birthdays?

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990

instances are strings
instances are dates

Are persons the sum of names and birthdays?
No.

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

instances are strings
instances are dates

Are persons the sum of names and birthdays?
No.

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990
NULL NULL

instances are strings
instances are dates

Are persons the sum of names and birthdays?
No.

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990
NULL NULL

instances are strings
instances are dates

Are persons the sum of names and birthdays?
No.

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

 Instances of are rows!person

Two kinds of type instances

person
name birthday

“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990
NULL NULL

instances are strings
instances are dates

Are persons the sum of names and birthdays?
No.

Definition. Two kinds of types:
1. Those collecting literal values
2. Those collecting freely constructible objects

attribute types
object types

Tables are a specific example…
Definitions apply to data models
in general as we will later see!⚠

Have concepts (i.e. types) of:
1. s
2. s
3. s

name

birthday

person

 Instances of are rows!person

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990“Bob”

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990“Bob”

creating new name requires a person
instance (i.e. row) to “have that name”

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990“Bob”

creating new name requires a person
instance (i.e. row) to “have that name”

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

NOT NULL FKs

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990“Bob”

creating new name requires a person
instance (i.e. row) to “have that name”

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

NOT NULL FKscreating new team_membership requires an employee and a team

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990“Bob”

creating new name requires a person
instance (i.e. row) to “have that name”

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

NOT NULL FKscreating new team_membership requires an employee and a team

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990“Bob”

creating new name requires a person
instance (i.e. row) to “have that name”

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

NOT NULL FKscreating new team_membership requires an employee and a team

Definition. A concept depends on another concept
if instantiating the former requires references to
instances of the latter.

The dependency hierarchy of concepts

person
name birthday
“Ana” NULL

NULL 01-Feb-1990“Bob”

creating new name requires a person
instance (i.e. row) to “have that name”

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

NOT NULL FKscreating new team_membership requires an employee and a team

Definition. A concept depends on another concept
if instantiating the former requires references to
instances of the latter.

concept 1 concept 2
dependency!

Conceptualizing dependencies

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

employee
emp_id name

1 “Ana”
2 “Bob”

Sc
he

m
a

1

Conceptualizing dependencies

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

employee
emp_id name

1 “Ana”
2 “Bob”

Sc
he

m
a

1

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_name employees

“Engineering” [1,2]
“Marketing” […]Sc

he
m

a
2

NOT NULL

Conceptualizing dependencies

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

employee
emp_id name

1 “Ana”
2 “Bob”

Sc
he

m
a

1

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_name employees

“Engineering” [1,2]
“Marketing” […]Sc

he
m

a
2

NOT NULL

employee team

Dependency hierarchy

team_membership

employee team

Conceptualizing dependencies

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

employee
emp_id name

1 “Ana”
2 “Bob”

Sc
he

m
a

1

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_name employees

“Engineering” [1,2]
“Marketing” […]Sc

he
m

a
2

NOT NULL

employee team

Dependency hierarchy

team_membership

employee team

Definition. Conceptualization refines
dependencies into concepts themselves.

Conceptualizing dependencies

team
team_id team_name

1 “Engineering”
2 “Marketing”

team_membership
employee team

1 1
2 1

employee
emp_id name

1 “Ana”
2 “Bob”

Sc
he

m
a

1

employee
emp_id name

1 “Ana”
2 “Bob”

team
team_name employees

“Engineering” [1,2]
“Marketing” […]Sc

he
m

a
2

NOT NULL

employee team

Dependency hierarchy

team_membership

employee team

Definition. Conceptualization refines
dependencies into concepts themselves.

Deconceptualize

Summary

• Concept formation sorts our data into meaningful types

Summary person
name birthday
“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

name

birthday

person

• Concept formation sorts our data into meaningful types

• Some types can be freely instantiated (objects types),
Others collect pre-defined values (attribute types)

Summary person
name birthday
“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

name

birthday

person

• Concept formation sorts our data into meaningful types

• Some types can be freely instantiated (objects types),
Others collect pre-defined values (attribute types)

Summary person
name birthday
“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

name

birthday

person

“Bob” 01-Feb-1990

model allows us to
“invent” new instances!

• Concept formation sorts our data into meaningful types

• Some types can be freely instantiated (objects types),
Others collect pre-defined values (attribute types)

Summary person
name birthday
“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

name

birthday

person

“Bob” 01-Feb-1990

model allows us to
“invent” new instances!

“Bob”

cannot invent new instances!
value creation is idempotent

• Concept formation sorts our data into meaningful types

• Some types can be freely instantiated (objects types),
Others collect pre-defined values (attribute types)

• Dependencies indicate instantiation of types must
reference instances of other types

Summary person
name birthday
“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

name

birthday

person

“Bob” 01-Feb-1990

model allows us to
“invent” new instances!

“Bob”

cannot invent new instances!
value creation is idempotent

• Concept formation sorts our data into meaningful types

• Some types can be freely instantiated (objects types),
Others collect pre-defined values (attribute types)

• Dependencies indicate instantiation of types must
reference instances of other types

Summary person
name birthday
“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

name

birthday

person

“Bob” 01-Feb-1990

model allows us to
“invent” new instances!

“Bob”

cannot invent new instances!
value creation is idempotent

“Bob” 01-Feb-1990

name instance must live
in row, i.e. reference person

• Concept formation sorts our data into meaningful types

• Some types can be freely instantiated (objects types),
Others collect pre-defined values (attribute types)

• Dependencies indicate instantiation of types must
reference instances of other types

• Conceptualization turns a dependency into a concept itself

Summary person
name birthday
“Ana” 31-May-1997
“Bob” 01-Feb-1990
“Bob” 01-Feb-1990

name

birthday

person

“Bob” 01-Feb-1990

model allows us to
“invent” new instances!

“Bob”

cannot invent new instances!
value creation is idempotent

“Bob” 01-Feb-1990

name instance must live
in row, i.e. reference person

Part II:
The polymorphic data model

Exploring the PERA model with TypeQL

• The polymorphic entity-relation-attribute (PERA) builds directly on our previous definitions of
types, instances, dependencies in conceptual modeling, with key kinds of types:

Introducing the PERA model and its types

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• The polymorphic entity-relation-attribute (PERA) builds directly on our previous definitions of
types, instances, dependencies in conceptual modeling, with key kinds of types:

Introducing the PERA model and its types

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

employee

• The polymorphic entity-relation-attribute (PERA) builds directly on our previous definitions of
types, instances, dependencies in conceptual modeling, with key kinds of types:

Introducing the PERA model and its types

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

employee team_membership

• The polymorphic entity-relation-attribute (PERA) builds directly on our previous definitions of
types, instances, dependencies in conceptual modeling, with key kinds of types:

Introducing the PERA model and its types

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

employee team_membership

name

• The polymorphic entity-relation-attribute (PERA) builds directly on our previous definitions of
types, instances, dependencies in conceptual modeling, with key kinds of types:

Introducing the PERA model and its types

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• Incidentally, the above 2 x 2 classification closely matches classical ERA modeling,
however, for us, it fundamentally derives from simple type-theoretic principles.

employee team_membership

name

• Type system defines types and type operations to pass between types

• A fundamental operation is subtyping, allowing to cast type instances:

PERA type system: subtyping

• Type system defines types and type operations to pass between types

• A fundamental operation is subtyping, allowing to cast type instances:

PERA type system: subtyping

employee person

is a instance of is a instance of

object object as person

subtype of

upcast to

• Type system defines types and type operations to pass between types

• A fundamental operation is subtyping, allowing to cast type instances:

PERA type system: subtyping

employee person

is a instance of is a instance of

object object as person

subtype of

upcast to

subsumptive subtyping!

• Type system defines types and type operations to pass between types

• A fundamental operation is subtyping, allowing to cast type instances:

PERA type system: subtyping

employee person

is a instance of is a instance of

object object as person

subtype of

upcast to

subsumptive subtyping!

• A name “Ana” in type can be cast into the bare string “Ana” in type stringname

• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

contractor FT_employee

• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

child

contractor FT_employee

• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

child

contractor FT_employee

tax_payer

• The PERA model supports inheritance type hierarchies to describe concept specialization

PERA type system: inheritance polymorphism

employee

person

child

contractor FT_employee

tax_payer

Condition: the PERA model enforces
single inheritance, meaning types may
have at most one parent type.

avoids the “diamond problem”
enforces more performant model design

• The PERA model abstracts type dependencies as type capabilities implementable by other types

PERA type system: interface polymorphism

name

person

• The PERA model abstracts type dependencies as type capabilities implementable by other types

PERA type system: interface polymorphism

name

person city

• The PERA model abstracts type dependencies as type capabilities implementable by other types

PERA type system: interface polymorphism

name

person city

name_owner

can cast into

“cities, like persons, have the capability to be name owners”

• The PERA model abstracts type dependencies as type capabilities implementable by other types

PERA type system: interface polymorphism

name

person city

name_owner

can cast into

“cities, like persons, have the capability to be name owners”

team_membership

teamemployee

• The PERA model abstracts type dependencies as type capabilities implementable by other types

PERA type system: interface polymorphism

name

person city

name_owner

can cast into

“cities, like persons, have the capability to be name owners”

team_membership

teamemployee

“contributors, like employees, have the capability to be team members”

contributor work_group

member team

• The PERA model abstracts type dependencies as type capabilities implementable by other types

PERA type system: interface polymorphism

name

person city

name_owner

can cast into

“cities, like persons, have the capability to be name owners”

team_membership

teamemployee

“contributors, like employees, have the capability to be team members”

contributor work_group

member team

Condition: the PERA model enforces that
only object types can be given capabilities.
Object types may implement many interfaces!

avoids ambiguity due to idempotent value creation

c.f. “single-inheritance”

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

keyword for a define query
(think CREATE TABLE)

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

the type to-be-defined
keyword for a define query
(think CREATE TABLE)

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

the type to-be-defined

the default abstract
supertype of all
entity types

keyword for a define query
(think CREATE TABLE)

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

the type to-be-defined

the default abstract
supertype of all
entity types

keyword for a define query
(think CREATE TABLE)

• A new entity type subtyping is defined via:

define employee sub person;

personemployee

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

the type to-be-defined

the default abstract
supertype of all
entity types

keyword for a define query
(think CREATE TABLE)

• A new entity type subtyping is defined via:

define employee sub person;

personemployee

employee

person

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

the type to-be-defined

the default abstract
supertype of all
entity types

keyword for a define query
(think CREATE TABLE)

• A new entity type subtyping is defined via:

define employee sub person;

personemployee

• Abstractness ensures no instances can be created directly:

define person abstract;
employee

person

TypeQL practice: entity types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• A new entity type in our schema is defined via:

define person sub entity;

person

the type to-be-defined

the default abstract
supertype of all
entity types

keyword for a define query
(think CREATE TABLE)

• A new entity type subtyping is defined via:

define employee sub person;

personemployee

• Abstractness ensures no instances can be created directly:

define person abstract;
employee

personperson

TypeQL practice: relation types

• Define new relation type… marriage

define
marriage sub relation,
 relates spouse;

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

e

TypeQL practice: relation types

• Define new relation type… marriage

define
marriage sub relation,
 relates spouse;

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

e

spousemarriage

interfaces of
relations are
called roles

TypeQL practice: relation types

• Define new relation type… marriage

define
marriage sub relation,
 relates spouse;

case 1: role overwriting
define
hetero_marriage sub marriage,
 relates husband as spouse,
 relates wife as spouse;

and several subtypes:

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

e

spousemarriage

interfaces of
relations are
called roles

TypeQL practice: relation types

• Define new relation type… marriage

define
marriage sub relation,
 relates spouse;

case 1: role overwriting
define
hetero_marriage sub marriage,
 relates husband as spouse,
 relates wife as spouse;

and several subtypes:

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

e

wife

hetero_marriage

husbandsubroles
via as

spousemarriage

interfaces of
relations are
called roles

TypeQL practice: relation types

• Define new relation type… marriage

define
marriage sub relation,
 relates spouse;

case 1: role overwriting
define
hetero_marriage sub marriage,
 relates husband as spouse,
 relates wife as spouse;

and several subtypes:

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

e

wife

hetero_marriage

husbandsubroles
via as

spousemarriage

interfaces of
relations are
called roles

case 2: role inheritance
define
religious_marriage sub marriage;

TypeQL practice: relation types

• Define new relation type… marriage

define
marriage sub relation,
 relates spouse;

case 1: role overwriting
define
hetero_marriage sub marriage,
 relates husband as spouse,
 relates wife as spouse;

and several subtypes:

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

e

wife

hetero_marriage

husbandsubroles
via as

spousemarriage

interfaces of
relations are
called roles

case 2: role inheritance
define
religious_marriage sub marriage;

case 3: role extension
define
witnessed_marriage sub marriage,
 relates witness;

TypeQL practice: relation types

• Define new relation type… marriage

define
marriage sub relation,
 relates spouse;

case 1: role overwriting
define
hetero_marriage sub marriage,
 relates husband as spouse,
 relates wife as spouse;

and several subtypes:

independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

e

witnessed_marriage

witness

wife

hetero_marriage

husbandsubroles
via as

spousemarriage

interfaces of
relations are
called roles

case 2: role inheritance
define
religious_marriage sub marriage;

case 3: role extension
define
witnessed_marriage sub marriage,
 relates witness;

TypeQL practice: attribute types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• Define new attribute type, with pre-defined value type:name

define name sub attribute, value string;

TypeQL practice: attribute types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• Define new attribute type, with pre-defined value type:name

define name sub attribute, value string;

name_owner

1Note, n-ary attribute types can be
modeled of unary attribute types
of n-ary relation types

Condition: Attribute have a single1 ownership interface
…in TypeQL this interface is implicit!

name

TypeQL practice: attribute types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• Define new attribute type, with pre-defined value type:name

define name sub attribute, value string;

name_owner

1Note, n-ary attribute types can be
modeled of unary attribute types
of n-ary relation types

Condition: Attribute have a single1 ownership interface
…in TypeQL this interface is implicit!

name

• Define as subtype of first_name

define first_name sub name;

name

TypeQL practice: attribute types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• Define new attribute type, with pre-defined value type:name

define name sub attribute, value string;

name_owner

1Note, n-ary attribute types can be
modeled of unary attribute types
of n-ary relation types

Condition: Attribute have a single1 ownership interface
…in TypeQL this interface is implicit!

name

• Define as subtype of first_name

define first_name sub name;

name
first_name_owner first_name

must be
abstract!

name

TypeQL practice: attribute types
independent type dependent type

object
types entity types relation types

attribute
types global constants attribute types

• Define new attribute type, with pre-defined value type:name

define name sub attribute, value string;

name_owner

1Note, n-ary attribute types can be
modeled of unary attribute types
of n-ary relation types

Condition: Attribute have a single1 ownership interface
…in TypeQL this interface is implicit!

name

• Define as subtype of first_name

define first_name sub name;

name
first_name_owner first_name

must be
abstract!

name

Condition: attribute supertypes must be abstract!
avoids ambiguity due to idempotent value creation

The TypeQL practice: implementing roles

• Object types can implement (i.e. “play”) roles, defined via:

define person plays marriage:spouse;

The TypeQL practice: implementing roles

• Object types can implement (i.e. “play”) roles, defined via:

define person plays marriage:spouse;

the scoped marriage:spouse is used
here since role identifiers need only be
unique within relation type hierarchies

The TypeQL practice: implementing roles

marriagespouseperson
“persons can be

cast into spouses”

• Object types can implement (i.e. “play”) roles, defined via:

define person plays marriage:spouse;

the scoped marriage:spouse is used
here since role identifiers need only be
unique within relation type hierarchies

The TypeQL practice: implementing roles

marriagespouseperson
“persons can be

cast into spouses”

• Object types can implement (i.e. “play”) roles, defined via:

define person plays marriage:spouse;

the scoped marriage:spouse is used
here since role identifiers need only be
unique within relation type hierarchies

marriage

person

spouse

The TypeQL practice: implementing roles

marriagespouseperson
“persons can be

cast into spouses”

• Object types can implement (i.e. “play”) roles, defined via:

define person plays marriage:spouse;

the scoped marriage:spouse is used
here since role identifiers need only be
unique within relation type hierarchies

marriage

person

spouse

• Role capabilities are inherited

define
civil_servant sub person;
registry_entry sub relation,
 relates registrar,
 relates event;
civil_servant plays registry_entry:registrar;
marriage plays registry_entry:event;

The TypeQL practice: implementing roles

marriagespouseperson
“persons can be

cast into spouses”

• Object types can implement (i.e. “play”) roles, defined via:

define person plays marriage:spouse;

the scoped marriage:spouse is used
here since role identifiers need only be
unique within relation type hierarchies

marriage

person

spouse

• Role capabilities are inherited

define
civil_servant sub person;
registry_entry sub relation,
 relates registrar,
 relates event;
civil_servant plays registry_entry:registrar;
marriage plays registry_entry:event;

registry_entry

event

registrar

civil_servant

The TypeQL practice: implementing ownerships

• Object types can implement ownership of (i.e. “own”) attribute types:

define person owns name;

The TypeQL practice: implementing ownerships

• Object types can implement ownership of (i.e. “own”) attribute types:

define person owns name;

name_owner nameperson
“persons can be cast
into name owners”

The TypeQL practice: implementing ownerships

• Object types can implement ownership of (i.e. “own”) attribute types:

define person owns name;

name_owner nameperson
“persons can be cast
into name owners”

define
date sub attribute, value datetime;
marriage owns date;

marriage “marriages can be cast
into date owners” date_owner date

The TypeQL practice: implementing ownerships

• Object types can implement ownership of (i.e. “own”) attribute types:

define person owns name;

name_owner nameperson
“persons can be cast
into name owners”

• Like for roles, ownership capabilities are inherited

define
date sub attribute, value datetime;
marriage owns date;

marriage “marriages can be cast
into date owners” date_owner date

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner
has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner
has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner
has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner
has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

isa

has

name(,"Bob")

has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

isa

has

name(,"Bob")

has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

$m = new marriage(,) isa

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

has

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

$m = new marriage(,) isa

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

hasspousespouse

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

$m = new marriage(,) isa

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

hasspousespouse

date

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

$m = new marriage(,) isa

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

hasspousespouse

date

date(,17-05-2004)

 has isa

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

$m = new marriage(,) isa

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

hasspousespouse

date

date(,17-05-2004)

 has isa

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

$m = new marriage(,) isa

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

hasspousespouse

date

new registry_entry(,) isa

date(,17-05-2004)

 has isa

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

insert
$a isa civil_servant;
$a has name "Ana";
$b1 isa person,
 has name "Bob";
$b2 isa person,
 has name "Bob";
$m (spouse: $b1, spouse: $b2)
 isa marriage,
 has date 17-05-2004;
(event: $m, registrar: $a)
 isa registry_entry;

$a = new civil_servant()
isa

Not actual TypeQL syntax⚠

isaname(,"Ana")

$b1 = new person() isa

marriage

registry_entry

event

registrar

person

civil_servant

spousename

name_owner

$m = new marriage(,) isa

isa
$b2 = new person()

isaname(,"Bob")

has

isa

has

name(,"Bob")

hasspousespouse

date

new registry_entry(,) isa

date(,17-05-2004)

 has isa
eventregistrar

date_owner

• For given type schema can
insert data instances

• Must account for value
types and dependencies

TypeQL practice: data instances—the details

marriage sub relation,
 relates spouse;

1. Variadicity of roles
$m (spouse: $b1, spouse: $b2)
 isa marriage,

defined then inserted

TypeQL practice: data instances—the details

marriage sub relation,
 relates spouse;

1. Variadicity of roles
$m (spouse: $b1, spouse: $b2)
 isa marriage,

defined then inserted

number of spouses is variadic

TypeQL practice: data instances—the details

marriage sub relation,
 relates spouse;

1. Variadicity of roles
$m (spouse: $b1, spouse: $b2)
 isa marriage,

defined then inserted

number of spouses is variadic

fully addressed in TypeQL 3.x!

TypeQL practice: data instances—the details

marriage sub relation,
 relates spouse;

1. Variadicity of roles
$m (spouse: $b1, spouse: $b2)
 isa marriage,

defined then inserted

number of spouses is variadic

2. Globality of attributes

insert
 "Chloe" isa name;

fully addressed in TypeQL 3.x!

TypeQL practice: data instances—the details

marriage sub relation,
 relates spouse;

1. Variadicity of roles
$m (spouse: $b1, spouse: $b2)
 isa marriage,

defined then inserted

number of spouses is variadic

2. Globality of attributes

insert
 "Chloe" isa name; yields an unowned attribute : nameisaname(_ ,"Chloe")

a.k.a. "global constant"

fully addressed in TypeQL 3.x!

TypeQL practice: data instances—the details

marriage sub relation,
 relates spouse;

1. Variadicity of roles
$m (spouse: $b1, spouse: $b2)
 isa marriage,

defined then inserted

number of spouses is variadic

2. Globality of attributes

insert
 "Chloe" isa name; yields an unowned attribute : nameisaname(_ ,"Chloe")

a.k.a. "global constant"

3. Intentionality of castings
In all instantiations, objects must cast into interfaces
without having to pass through sub-interfaces.

ownershipadult car_owner owner

cannot instantiate with adult

fully addressed in TypeQL 3.x!

TypeQL practice: data instances—the details

marriage sub relation,
 relates spouse;

1. Variadicity of roles
$m (spouse: $b1, spouse: $b2)
 isa marriage,

defined then inserted

number of spouses is variadic

2. Globality of attributes

insert
 "Chloe" isa name; yields an unowned attribute : nameisaname(_ ,"Chloe")

a.k.a. "global constant"

3. Intentionality of castings
In all instantiations, objects must cast into interfaces
without having to pass through sub-interfaces.

ownershipadult car_owner owner

cannot instantiate with adult

fully addressed in TypeQL 3.x!

plane_owner

Summary: the PERA model in a nutshell

• The PERA type system as three kinds of types:

Summary: the PERA model in a nutshell
independent type dependent type

object
types

entity types relation types

attribute
types

(global constants) attribute types

• The PERA type system as three kinds of types:

• Type kinds are organized by inheritance hierarchies

Summary: the PERA model in a nutshell
independent type dependent type

object
types

entity types relation types

attribute
types

(global constants) attribute types

employee person

• The PERA type system as three kinds of types:

• Type kinds are organized by inheritance hierarchies

• All dependencies are abstracted by interface types

Summary: the PERA model in a nutshell
independent type dependent type

object
types

entity types relation types

attribute
types

(global constants) attribute types

name_owner name

employee person

• The PERA type system as three kinds of types:

• Type kinds are organized by inheritance hierarchies

• All dependencies are abstracted by interface types

• Object types can implement these interfaces

Summary: the PERA model in a nutshell
independent type dependent type

object
types

entity types relation types

attribute
types

(global constants) attribute types

name_owner name

employee person

name_owner
person

city

• The PERA type system as three kinds of types:

• Type kinds are organized by inheritance hierarchies

• All dependencies are abstracted by interface types

• Object types can implement these interfaces

• Single-inheritance but multi-capability via interfaces

Summary: the PERA model in a nutshell
independent type dependent type

object
types

entity types relation types

attribute
types

(global constants) attribute types

name_owner name

employee person

name_owner
person

city

…

• The PERA type system as three kinds of types:

• Type kinds are organized by inheritance hierarchies

• All dependencies are abstracted by interface types

• Object types can implement these interfaces

• Single-inheritance but multi-capability via interfaces

• Objects in object types can be freely created

Summary: the PERA model in a nutshell
independent type dependent type

object
types

entity types relation types

attribute
types

(global constants) attribute types

name_owner name

employee person

$p = new person() person
isa

name_owner
person

city

…

• The PERA type system as three kinds of types:

• Type kinds are organized by inheritance hierarchies

• All dependencies are abstracted by interface types

• Object types can implement these interfaces

• Single-inheritance but multi-capability via interfaces

• Objects in object types can be freely created

• Values can be (idempotently) added to attribute types

Summary: the PERA model in a nutshell
independent type dependent type

object
types

entity types relation types

attribute
types

(global constants) attribute types

name_owner name

employee person

$p = new person() person
isa

name_owner
person

city

…

name
isa

has

name(,"Bob")

Part III:
Comparison to other data models

...and how PERA brings order to modeling

The bottomline

The bottomline

The PERA model is a simple and principled model,
built on basic and fundamental ideas found across all data models.
From the PERA perspective, capturing other data models is easy.

The relational model

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

Types:

Instances:

The relational model

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

Types:

Instances:

table

row

The relational model

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

Types:

Instances:

table

row

FK column Value column

reference value
we identify "id"s

with row itself

The relational model

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

Types:

Instances:

table

row

FK column Value column

reference value
we identify "id"s

with row itself

contained in

contained in

reference to
instance of

The relational model

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

Types:

Instances:

table

row

Remark.
Constraints can
modify dependencies!

e.g. NOT NULL FK:

FK column Value column

reference value
we identify "id"s

with row itself

contained in

contained in

reference to
instance of

The relational model: a simple example

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3
... ...

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

... ...

PERA analog

The relational model: a simple example

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3
... ...

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

... ...

PERA analog

employee team

name team_namemember_of

The relational model: a simple example

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3
... ...

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

... ...

PERA analog

employee team

name team_namemember_of

The relational model: a simple example

team_name_ownername_owner member team

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3
... ...

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

... ...

PERA analog

employee team

name team_namemember_of

The relational model: a simple example

team_name_ownername_owner member team

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3
... ...

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

... ...

PERA analog

employee team

name team_namemember_of

nameemployee name_owner

nameemployeedraw as : owns

hide me!
Convention:

The relational model: a simple example

team_name_ownername_owner member team ownsowns

plays plays

relatesrelates

employee
name member_of
“Ana” 1
“Bob” 1

“Chloe” 3
... ...

team
id team_name
1 "Engineering"
2 "Marketing"
3 "Research"

... ...

PERA analog

employee team

name team_namemember_of

nameemployee name_owner

nameemployeedraw as : owns

hide me!
Convention:

The graph model

”Types“:

Instances:

employee member_of
name : "Ana"

team

team_name : "Engineering"

employee member_
of

: "Dire
ctor"

position : "Director"

The graph model

”Types“:

Instances:

node label

node

employee member_of
name : "Ana"

team

team_name : "Engineering"

employee member_
of

: "Dire
ctor"

position : "Director"

The graph model

”Types“:

Instances:

node label

node

edge label

edge

employee member_of
name : "Ana"

team

team_name : "Engineering"

employee member_
of

: "Dire
ctor"

position : "Director"

The graph model

”Types“:

Instances:

node label

node

edge label

edge

property key

value

employee member_of
name : "Ana"

team

team_name : "Engineering"

employee member_
of

: "Dire
ctor"

position : "Director"

The graph model

”Types“:

Instances:

node label

node

edge label

edge

property key

value

reference to
instance of

employee member_of
name : "Ana"

team

team_name : "Engineering"

employee member_
of

: "Dire
ctor"

position : "Director"

The graph model

”Types“:

Instances:

node label

node

edge label

edge

property key

value

contained in
instance of

reference to
instance of

employee member_of
name : "Ana"

team

team_name : "Engineering"

employee member_
of

: "Dire
ctor"

position : "Director"

The graph model

”Types“:

Instances:

node label

node

edge label

edge

property key

value

contained in
instance of

reference to
instance of

employee member_of
name : "Ana"

team

team_name : "Engineering"

employee member_
of

: "Dire
ctor"

Remark.
In the LPG, nodes and
edges can be assigned
multiple labels, which
emulates "subtype
hierarchies". However,
this provides no
meaningful way to
model inheritance of
type behaviors.

position : "Director"

The graph model: a simple example

employee member_of
name : "Ana"

team

team_name : "Engineering"
position : "Director"

employee
name : "Bob"

member_
of

positio
n : "Advi

sor"

PERA analog

The graph model: a simple example

employee member_of
name : "Ana"

team

team_name : "Engineering"
position : "Director"

employee
name : "Bob"

member_
of

positio
n : "Advi

sor"

employee team

name team_name

member_of

position

PERA analog

The graph model: a simple example

employee member_of
name : "Ana"

team

team_name : "Engineering"
position : "Director"

employee
name : "Bob"

member_
of

positio
n : "Advi

sor"

employee team

name team_name

member_of

position

PERA analog

The graph model: a simple example

employee member_of
name : "Ana"

team

team_name : "Engineering"
position : "Director"

employee
name : "Bob"

member_
of

positio
n : "Advi

sor"

member team
owns owns

plays plays

relatesrelates

owns

employee team

name team_name

member_of

position

PERA analog

The document model

”Types“:

Instances:

employee team

name

team_name

members

_id

role

eidname

_id

: "Bob": "Ana"

: 1 : 2 : "Engineering"

: 1

: "Staff"

... ...

The document model

”Types“:

Instances:

collection
of docs

document

employee team

name

team_name

members

_id

role

eidname

_id

: "Bob": "Ana"

: 1 : 2 : "Engineering"

: 1

: "Staff"

... ...

The document model

”Types“:

Instances:

collection
of docs

document

key to
subdoc

key to
value

key to
_id

employee team

name

team_name

members

_id

role

eidname

_id

: "Bob": "Ana"

: 1 : 2 : "Engineering"

: 1

: "Staff"

... ...

The document model

”Types“:

Instances:

collection
of docs

document

key to
subdoc

key to
value

key to
_id

valuereferencedocument

employee team

name

team_name

members

_id

role

eidname

_id

: "Bob": "Ana"

: 1 : 2 : "Engineering"

: 1

: "Staff"

... ...

The document model

”Types“:

Instances:

collection
of docs

document

key to
subdoc

key to
value

key to
_id

valuereferencedocument

employee team

name

team_name

members

_id

role

eidname

_id

: "Bob": "Ana"

: 1 : 2 : "Engineering"

: 1

: "Staff"

... ...

contained in
instance of

The document model

”Types“:

Instances:

collection
of docs

document

key to
subdoc

key to
value

key to
_id

valuereferencedocument

reference to
instance of

employee team

name

team_name

members

_id

role

eidname

_id

: "Bob": "Ana"

: 1 : 2 : "Engineering"

: 1

: "Staff"

... ...

contained in
instance of

The document model

”Types“:

Instances:

collection
of docs

document

Remark.
Semantically, some
embedded sub-
documents represent
duplicates of other
documents, but the
document model
does not relate these
logically independent
data instances.

key to
subdoc

key to
value

key to
_id

valuereferencedocument

reference to
instance of

employee team

name

team_name

members

_id

role

eidname

_id

: "Bob": "Ana"

: 1 : 2 : "Engineering"

: 1

: "Staff"

... ...

contained in
instance of

The document model: a simple example

employee

team

name

team_name

members

_id

pos.

eid

pos.

eid

name

_id

: "Bob": "Ana"

: 1 : 2

: "Engineering"

: 1

: "Advisor"

: "Director"

: 2

:

...

...

PERA analog

The document model: a simple example

employee

team

name

team_name

members

_id

pos.

eid

pos.

eid

name

_id

: "Bob": "Ana"

: 1 : 2

: "Engineering"

: 1

: "Advisor"

: "Director"

: 2

:

...

...

employee

team

name

team_name

members

eid

position

PERA analog

The document model: a simple example

employee

team

name

team_name

members

_id

pos.

eid

pos.

eid

name

_id

: "Bob": "Ana"

: 1 : 2

: "Engineering"

: 1

: "Advisor"

: "Director"

: 2

:

...

...

employee

team

name

team_name

members

eid

position

PERA analog

The document model: a simple example

employee

team

name

team_name

members

_id

pos.

eid

pos.

eid

name

_id

: "Bob": "Ana"

: 1 : 2

: "Engineering"

: 1

: "Advisor"

: "Director"

: 2

:

...

...

employee

team

name

team_name

members

eid

position

Deconcept. as
(assume that

eid NOT NULL)

eid

PERA analog

The document model: a simple example

employee

team

name

team_name

members

_id

pos.

eid

pos.

eid

name

_id

: "Bob": "Ana"

: 1 : 2

: "Engineering"

: 1

: "Advisor"

: "Director"

: 2

...

...

Deconcept. as
(assume that

eid NOT NULL)

eid

owns

owns

plays

plays

relates

relates
owns

member

team

employee

team

name

team_name

members

position

PERA analog

:

Adding polymorphism to the picture

table FK column Value

contained in

node label egde label property key

reference to
instance of

collection
of docs

key to
subdoc

key to
value

key to
_id

contained in
instance of

contained in
instance of

reference to
instance of

contained in

reference to
instance of

Adding polymorphism to the picture

table FK column Value

contained in

node label egde label property key

reference to
instance of

collection
of docs

key to
subdoc

key to
value

key to
_id

contained in
instance of

entity
type

relation
 type

attribute
type

contained in
instance of

reference to
instance of

contained in

reference to
instance of

Adding polymorphism to the picture

table FK column Value

contained in

node label egde label property key

reference to
instance of

collection
of docs

key to
subdoc

key to
value

key to
_id

contained in
instance of

entity
type

relation
 type

attribute
type

ownership
type

role
type

instantiated
with ref. to

contained in
instance of

reference to
instance of

contained in

reference to
instance of

Adding polymorphism to the picture

table FK column Value

contained in

node label egde label property key

reference to
instance of

collection
of docs

key to
subdoc

key to
value

key to
_id

contained in
instance of

entity
type

relation
 type

attribute
type

implement
instances of

ownership
type

role
type

instantiated
with ref. to

contained in
instance of

reference to
instance of

contained in

reference to
instance of

Adding polymorphism to the picture

table FK column Value

contained in

node label egde label property key

reference to
instance of

collection
of docs

key to
subdoc

key to
value

key to
_id

contained in
instance of

entity
type

relation
 type

attribute
type

subtyping

implement
instances of

ownership
type

role
type

instantiated
with ref. to

contained in
instance of

reference to
instance of

contained in

reference to
instance of

Adding polymorphism to the picture

table FK column Value

contained in

node label egde label property key

reference to
instance of

collection
of docs

key to
subdoc

key to
value

key to
_id

contained in
instance of

entity
type

relation
 type

attribute
type

subtyping

implement
instances of

ownership
type

role
type

instantiated
with ref. to

principled + modular + polymorphic

contained in
instance of

reference to
instance of

contained in

reference to
instance of

Summary and further remarks

• In comparison to other data models, the PERA model is

Summary and further remarks

• In comparison to other data models, the PERA model is

• Principled: types have explicit and unambiguous function

Summary and further remarks

• In comparison to other data models, the PERA model is

• Principled: types have explicit and unambiguous function

• Modular: safely modify implementations of
dependencies

Summary and further remarks

type1

role type0

type2 type3

relates

plays

plays

plays

...

• In comparison to other data models, the PERA model is

• Principled: types have explicit and unambiguous function

• Modular: safely modify implementations of
dependencies

Summary and further remarks

type1

role type0

type2 type3

relates

plays

plays

plays

...

• In comparison to other data models, the PERA model is

• Principled: types have explicit and unambiguous function

• Modular: safely modify implementations of
dependencies

• Polymorphic: directly express type capabilities and type
inheritance

Summary and further remarks

type1

role type0

type2 type3

relates

plays

plays

plays

...

subtype1

sub

• In comparison to other data models, the PERA model is

• Principled: types have explicit and unambiguous function

• Modular: safely modify implementations of
dependencies

• Polymorphic: directly express type capabilities and type
inheritance

• ... and more: variadicity, globality, ...

Summary and further remarks

type1

role type0

type2 type3

relates

plays

plays

plays

...

subtype1

sub

role2 role3

relates relates

...

• In comparison to other data models, the PERA model is

• Principled: types have explicit and unambiguous function

• Modular: safely modify implementations of
dependencies

• Polymorphic: directly express type capabilities and type
inheritance

• ... and more: variadicity, globality, ...

Summary and further remarks

type1

role type0

type2 type3

relates

plays

plays

plays

...

subtype1

sub

role2 role3

relates relates

...

no surprise fields!
second_favorite_music_instrument: "Guitar"

• The PERA model follows a type-first approach

• In schema-less approaches types are an after-thought

• Requires us to think about types ahead of time, but
modularity makes continuous development painless

Epilogue:
Beyond the basics

Polymorphic pattern-based querying and reasoning

Polymorphic querying and reasoning

• Type-theoretic querying
• Queries via patterns ... patterns via types
• Elegant and intuitive querying paradigm

Polymorphic querying and reasoning

• Type-theoretic querying
• Queries via patterns ... patterns via types
• Elegant and intuitive querying paradigm

Polymorphic querying and reasoning

“data type of solutions”
→ fully declarative QL

• Type-theoretic querying
• Queries via patterns ... patterns via types
• Elegant and intuitive querying paradigm

Polymorphic querying and reasoning

“data type of solutions”
→ fully declarative QL

• Type-theoretic reasoning
• Type system is a collection of rules (e.g.: subtyping)
• User-defined rules can extend this to derive new data

• Type-theoretic querying
• Queries via patterns ... patterns via types
• Elegant and intuitive querying paradigm

Polymorphic querying and reasoning

“data type of solutions”
→ fully declarative QL

Both are key functions of the PERA model ...let's give a brief preview!

• Type-theoretic reasoning
• Type system is a collection of rules (e.g.: subtyping)
• User-defined rules can extend this to derive new data

Pattern-based querying with interface polymorphism

match
 $eng_team isa team, has team_name "Engineering";
 (team: $eng_team, member: $m) isa team_membership;
fetch
 $m as engineer: name;

Pattern
statements with variables that can be
“solved for” by substituting objects and
attributes for variables

Pattern-based querying with interface polymorphism

match
 $eng_team isa team, has team_name "Engineering";
 (team: $eng_team, member: $m) isa team_membership;
fetch
 $m as engineer: name;

Pattern
statements with variables that can be
“solved for” by substituting objects and
attributes for variables

Pattern-based querying with interface polymorphism

match
 $eng_team isa team, has team_name "Engineering";
 (team: $eng_team, member: $m) isa team_membership;
fetch
 $m as engineer: name;

• match clause, line 1
• $eng_team is some existing team object
• that object must be the owner of the team_name "Engineering"

Pattern
statements with variables that can be
“solved for” by substituting objects and
attributes for variables

Pattern-based querying with interface polymorphism

match
 $eng_team isa team, has team_name "Engineering";
 (team: $eng_team, member: $m) isa team_membership;
fetch
 $m as engineer: name;

• match clause, line 1
• $eng_team is some existing team object
• that object must be the owner of the team_name "Engineering"

• match clause, line 2
• there exists a team_membership object, left unassigned, but required to

have a team roleplayer $eng_team and a member roleplayer $m

Pattern
statements with variables that can be
“solved for” by substituting objects and
attributes for variables

Pattern-based querying with interface polymorphism

match
 $eng_team isa team, has team_name "Engineering";
 (team: $eng_team, member: $m) isa team_membership;
fetch
 $m as engineer: name;

• match clause, line 1
• $eng_team is some existing team object
• that object must be the owner of the team_name "Engineering"

• match clause, line 2
• there exists a team_membership object, left unassigned, but required to

have a team roleplayer $eng_team and a member roleplayer $m

What concept (i.e. type)
does $m belong to?

The answer is “polymorphic”: $m can
belong to any type that implements
the member role.

Pattern
statements with variables that can be
“solved for” by substituting objects and
attributes for variables

Pattern-based querying with interface polymorphism

match
 $eng_team isa team, has team_name "Engineering";
 (team: $eng_team, member: $m) isa team_membership;
fetch
 $m as engineer: name;

• match clause, line 1
• $eng_team is some existing team object
• that object must be the owner of the team_name "Engineering"

• match clause, line 2
• there exists a team_membership object, left unassigned, but required to

have a team roleplayer $eng_team and a member roleplayer $m
• fetch clause, line 1

• for each “engineer” object $m return the name attribute(s) of $m

What concept (i.e. type)
does $m belong to?

The answer is “polymorphic”: $m can
belong to any type that implements
the member role.

Pattern-based querying with inheritance polymorphism

match
 $e isa employee;
 (team: $t, leader: $e) isa team_leadership;
fetch
 $e as leader: name;
 $t as team: team_name;

team_membership

team_leadership

employee

leader

member

director

relates

relatesplays

plays

sub sub

sub

...

Pattern-based querying with inheritance polymorphism

match
 $e isa employee;
 (team: $t, leader: $e) isa team_leadership;
fetch
 $e as leader: name;
 $t as team: team_name;

team_membership

team_leadership

employee

leader

member

director

relates

relatesplays

plays

sub sub

• match clause, line 1
• States $e is a employee object
• In particular, $e could be a
director object!

sub

...

Pattern-based querying with inheritance polymorphism

match
 $e isa employee;
 (team: $t, leader: $e) isa team_leadership;
fetch
 $e as leader: name;
 $t as team: team_name;

team_membership

team_leadership

employee

leader

member

director

relates

relatesplays

plays

sub sub

• match clause, line 1
• States $e is a employee object
• In particular, $e could be a
director object!

• match clause, line 2
• States a team_leadership

exists with leader $e
• Can infer $e is a director

sub

...

Pattern-based querying with inheritance polymorphism

match
 $e isa employee;
 (team: $t, leader: $e) isa team_leadership;
fetch
 $e as leader: name;
 $t as team: team_name;

team_membership

team_leadership

employee

leader

member

director

relates

relatesplays

plays

sub sub

• match clause, line 1
• States $e is a employee object
• In particular, $e could be a
director object!

• match clause, line 2
• States a team_leadership

exists with leader $e
• Can infer $e is a director

• fetch clause:
• The time we return tuples of

employees $e (with names) and
teams $t (with team_names)

sub

...

Reasoning in complex domains

define rule director-team-members-are-leader: when {
 $d isa director;
 (team: $t, member: $d) isa team_membership;
} then {
 (team: $t, leader: $d) isa team_leadership;
};

Reasoning in complex domains

When clause
contains a pattern stating
the rule's assumptions

define rule director-team-members-are-leader: when {
 $d isa director;
 (team: $t, member: $d) isa team_membership;
} then {
 (team: $t, leader: $d) isa team_leadership;
};

Reasoning in complex domains

When clause
contains a pattern stating
the rule's assumptions

Then clause
statement of data to be derived

define rule director-team-members-are-leader: when {
 $d isa director;
 (team: $t, member: $d) isa team_membership;
} then {
 (team: $t, leader: $d) isa team_leadership;
};

Reasoning in complex domains

When clause
contains a pattern stating
the rule's assumptions

Then clause
statement of data to be derived

define rule director-team-members-are-leader: when {
 $d isa director;
 (team: $t, member: $d) isa team_membership;
} then {
 (team: $t, leader: $d) isa team_leadership;
};

• when clause
• States $d is a director object
• States $d is a member in a team $t

Reasoning in complex domains

When clause
contains a pattern stating
the rule's assumptions

Then clause
statement of data to be derived

define rule director-team-members-are-leader: when {
 $d isa director;
 (team: $t, member: $d) isa team_membership;
} then {
 (team: $t, leader: $d) isa team_leadership;
};

• when clause
• States $d is a director object
• States $d is a member in a team $t

• then clause
• States $d is a leader of team $t

Reasoning in complex domains

When clause
contains a pattern stating
the rule's assumptions

Then clause
statement of data to be derived

define rule director-team-members-are-leader: when {
 $d isa director;
 (team: $t, member: $d) isa team_membership;
} then {
 (team: $t, leader: $d) isa team_leadership;
};

• when clause
• States $d is a director object
• States $d is a member in a team $t

• then clause
• States $d is a leader of team $t

In other words:
“directors are automatically
designated as leaders in all
teams they are members in.”

Reasoning in complex domains

When clause
contains a pattern stating
the rule's assumptions

Then clause
statement of data to be derived

define rule director-team-members-are-leader: when {
 $d isa director;
 (team: $t, member: $d) isa team_membership;
} then {
 (team: $t, leader: $d) isa team_leadership;
};

• when clause
• States $d is a director object
• States $d is a member in a team $t

• then clause
• States $d is a leader of team $t

• Note: same pattern-based QL used throughout!

In other words:
“directors are automatically
designated as leaders in all
teams they are members in.”

Summary

• Patterns in the PERA model:

• express combined statement about type instances and dependencies

• are fully composable and declarative

• can be type-checked!

Summary

• Patterns in the PERA model:

• express combined statement about type instances and dependencies

• are fully composable and declarative

• can be type-checked!

• Patterns underlie two key functions to the PERA model:

• type-theoretic query language: TypeQL

• rule-based Reasoning Engine

Summary

• Patterns in the PERA model:

• express combined statement about type instances and dependencies

• are fully composable and declarative

• can be type-checked!

• Patterns underlie two key functions to the PERA model:

• type-theoretic query language: TypeQL

• rule-based Reasoning Engine

Summary

Stay tuned for more!

Lecture review:
The PERA model

A fast evolving foundational model for modern databases

Lecture #4 conclusion

entity
type

relation
 type

attribute
type

ownership
type

role
type

subtyping

implement
instances of instantiated

with ref. to

independent type dependent type

object
types entity types relation types

attribute
types (global constants) attribute types

Lecture #4 conclusion

entity
type

relation
 type

attribute
type

ownership
type

role
type

subtyping

implement
instances of instantiated

with ref. to

independent type dependent type

object
types entity types relation types

attribute
types (global constants) attribute types

• We defined concepts, instances, and
concept dependencies abstractly

Lecture #4 conclusion

entity
type

relation
 type

attribute
type

ownership
type

role
type

subtyping

implement
instances of instantiated

with ref. to

independent type dependent type

object
types entity types relation types

attribute
types (global constants) attribute types

• We defined concepts, instances, and
concept dependencies abstractly

• Used these simple conceptual
principles to develop the PERA model

Lecture #4 conclusion

entity
type

relation
 type

attribute
type

ownership
type

role
type

subtyping

implement
instances of instantiated

with ref. to

independent type dependent type

object
types entity types relation types

attribute
types (global constants) attribute types

• We defined concepts, instances, and
concept dependencies abstractly

• Used these simple conceptual
principles to develop the PERA model

• Reverse-engineered concepts and
dependencies of existing data models

Lecture #4 conclusion

entity
type

relation
 type

attribute
type

ownership
type

role
type

subtyping

implement
instances of instantiated

with ref. to

independent type dependent type

object
types entity types relation types

attribute
types (global constants) attribute types

• We defined concepts, instances, and
concept dependencies abstractly

• Used these simple conceptual
principles to develop the PERA model

• Reverse-engineered concepts and
dependencies of existing data models

• In comparison, the PERA excels as a principled,
modular, polymorphic, and types-first model

Lecture #4 conclusion

entity
type

relation
 type

attribute
type

ownership
type

role
type

subtyping

implement
instances of instantiated

with ref. to

independent type dependent type

object
types entity types relation types

attribute
types (global constants) attribute types

• We defined concepts, instances, and
concept dependencies abstractly

• Used these simple conceptual
principles to develop the PERA model

• Reverse-engineered concepts and
dependencies of existing data models

• In comparison, the PERA excels as a principled,
modular, polymorphic, and types-first model

• Integrates type-theoretic querying and reasoning

Check out our previous lectures

 Watch at TypeDB.com/lectures

Replay now available Replay now available Replay now available

Thank you!

Q & A

More TypeDB Resources

TypeDB Learning Center
typedb.com/learn

TypeDB Cloud
cloud.typedb.com

Download TypeDB
typedb.com/deploy

http://typedb.com/learn

Join us at typedb.com/discord

