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Abstract  

In this paper, we explore several conjectural scenarios for the 
development of artificial intelligence as a force animating the physical 
infrastructures of everyday life. We do so by foregrounding the real and 
potential coevolution of natural and machine intelligence in relation to 
one another. The proposals are diverse and developed 
semi-independently in the context of a one-month intensive research 
studio. If they are imagined as a single integrated speculation described 
from different vantage points, this speculation might be formulated as 
follows: the executable embedding of a society of digital twins of brain 
organoids that run in slow computational time by driving artificial 
epidermal mediated distributed organs, in turn part of xenomorphic 
biohybrid robotic phenotypes that produce various levels of nested 
minimum viable interiorities with which human users deploy inverted 
embedding visualizations to learn new game-theoretic dynamics through 
adaptive anti-transitivity, shifting asymmetries of mutual mind 
modeling, and carefully calibrated novelty-inducing disalignments. The 
composite assemblage would be fixed in a long-term durational imprint 
backed up on a highly durable substrate for long-term decoding. 
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Cognitive Infrastructures:  
Conjectural Explorations of AI as a Physical Actor in the Wild 

As AI becomes both more general and more foundational, it shouldn’t 
be seen as a disembodied virtual brain. It is a real, material force. AI is 
increasingly embedded into the active, decision-making systems of 
real-world systems. As AI becomes infrastructural, infrastructures 
become intelligent, and as societal infrastructures concurrently become 
more cognitive, the relation between AI theory and practice needs 
realignment. 

Natural Intelligence emerges at an environmental scale and in 
the interactions of multiple agents. It is located not only in brains but in 
active landscapes. Similarly, artificial intelligence is not contained 
within single artificial minds but extends throughout the networks of 
planetary computation: It is baked into industrial processes, it generates 
images and text, it coordinates circulation in cities, and it senses, 
models, and acts in the wild. 

This represents an infrastructuralization of AI, but also a 
“making cognitive” of both new and legacy infrastructures. These new 
systems are capable of responding to us, to the world, and to each other 
in ways we recognize as embedded and networked cognition. AI is 
physicalized, from user interfaces on the surface of handheld devices to 
deep below the built environment. As we interact with the world, we 
retrain model weights, making actions newly reflexive in knowing that 
performing an action is also a way of representing it within a model. To 
play with the model is to remake the model, increasingly in real time. 

What kind of design space is this? What does it afford, enable, 
produce, and delimit? When AIs are simultaneously platforms, 
applications, and users, what are the interfaces between society and its 
intelligent simulations? How can we understand AI Alignment not just 
as AI bending to society but also as how societies evolve in relationship 
to AI? What kinds of Cognitive Infrastructures might be revealed and 
composed? Across scales—from world-datafiction and data 
visualization to users and UI, and back again—many of the most 
interesting problems in AI design are still embryonic. 

How might this frame human–AI interaction design? What 
happens when the production and curation of data is for increasingly 
generalized, multimodal, and foundational models? How might the 
collective intelligence of generative AI make the world not only 
queryable, but recomposable in new ways? How will simulations 
collapse the distances between the virtual and the real? How will human 
societies align toward the insights and affordances of artificial 
intelligence, rather than AI bending to human constructs? Ultimately, 
how will the inclusion of a fuller range of planetary information, beyond 
traces of individual human users, expand what counts as intelligence? 

Individual users will not only interact with big models, but 
multiple combinations of models will interact with groups of people in 
overlapping combinations. Perhaps the most critical and unfamiliar 
interactions will unfold between different AIs, without human 
interference. Nascent ecologies are forming, framing, and evolving a 
new ecology of planetary intelligence. 

The research is divided into five thematic sections: 
 

1. Productive Disalignments  
2. Post-Anthropocene Psycho-Physiologies 
3. Organs Without Bodies 
4. Planetary Time Computation 
5. Mimesis of Mimesis.  
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1 Productive Disalignments 

Complex intelligence arises from interactions among diverse minds, 
each shaped by unique priors, thinking styles, and communication 
modalities. Thus, the long-term evolutionary trajectory of artificial 
intelligence (AI) cannot be guided solely by the objective of alignment, 
particularly if alignment entails training AI to mirror human cognition 
closely. Instead, AI’s potential for genuine innovation hinges precisely 
on its capacity to think orthogonally—to diverge meaningfully from 
human cognitive frameworks. This capacity positions AI as an 
“existential technology,” in the sense articulated by Stanisław Lem: a 
technology fundamentally capable of redefining our conceptual 
boundaries. 

Reflectionism—the assumption that AI must reflect human 
cognition or be engineered strictly according to human-like 
parameters—has repeatedly driven discourse into conceptual and 
practical impasses. In contrast, productive disalignment emphasizes the 
value inherent in uncertain calibrations of novelty, alienation, and the 
unexpected pathways of coevolution between natural and artificial 
intelligences. 

The notion of productive disalignment underscores the 
importance of allowing AI to develop and interact through cognitive 
paradigms that are intentionally distinct from human norms, creating 
dynamic potentials for innovation. The following papers delve deeper 
into this intricate balance by examining methods for measuring 
subjective novelty in generative AI outputs, alongside the processes of 
counteradaptation occurring between human and artificial minds. 
Together, these analyses illuminate the creative tensions essential for 
fostering meaningful and emergent forms of intelligence, highlighting 
productive disalignment as a critical guiding principle in the ongoing 
evolution of artificial cognition.  
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1a  Traversing the Uncanny Ridge 

Generative AI models, despite their vast creative potential, face a paradoxical challenge: the risk of 
“overalignment,” a phenomenon wherein generated outputs aesthetically collapse toward overly familiar 
norms, resulting in mundane, predictable images. This condition, which this paper terms the “Canny 
Valley,” is characterized by images that are eerily familiar—markedly different from Masahiro Mori’s 
“uncanny valley,” where discomfort arises from unfamiliarity. The Canny Valley represents a 
hyperconvergence between user expectations and generated outcomes, diminishing novelty and 
restricting creative exploration. 

Addressing this issue, this paper introduces the concept of the “Uncanny Ridge,” an optimal 
zone of novelty and complexity where generative outputs evoke productive misrecognition, calibrated to 
stimulate curiosity and innovation without alienating the observer. Situated precisely between complete 
predictability and unrecognizable randomness, the Uncanny Ridge functions analogously to a 
“Goldilocks zone,” balancing maximum creative novelty against cognitive accessibility. 

Recognizing that novelty is inherently subjective and context-dependent, influenced heavily by 
individual user priors, we propose a novel quantification framework in which novelty itself acts as a loss 
function. This mathematical formulation aims to operationalize novelty, enabling precise indexing and 
measurement tailored to varied user experiences and expectations. 

Further, drawing on insights from the psychology of creativity—specifically the capacity to 
hold contradictory ideas simultaneously—we suggest that sustained novelty emerges from dynamic 
tensions rather than simplistic divergence. Ultimately, the paper explores whether generative AI’s pursuit 
of novelty leads toward a productive Lagrange point of creative convergence or risks conceptual 
collapse. Navigating these intricate dynamics, it offers practical strategies for maintaining vibrant, 
meaningful innovation in generative AI. 
 
1b  Synthetic Counteradaptation 

Artificial intelligence will not merely reflect human cognition; rather, it will profoundly reshape the 
trajectory of human thought itself, driving reciprocal adaptation between human and machine minds. 
This dynamic interplay of adaptation and counteradaptation raises critical questions about the mutual 
evolution of diverse cognitive systems. This project investigates this accelerated adaptive dialogue, 
particularly emphasizing convergence—the intriguing ways humans adapt to AI-learning processes even 
as AI simultaneously learns from human cognition. Fundamental to this inquiry is understanding how 
two distinct types of minds continuously recalibrate in response to one another. Biological evolution 
offers precedents such as predator–prey dynamics, where the adaptive strategies of one entity trigger 
counterstrategies in another, driving both toward escalating complexity. Another illustrative model is the 
strategic cycle inherent in games such as rock-paper-scissors, where success requires continuous 
predictive countermodeling of an opponent’s thought processes. 

Adaptation strategies can broadly take two forms: mirroring or deceiving the opposing mind. 
Notably, the Turing Test exemplifies both, employing mirroring as a sophisticated form of deception 
aimed at convincing humans of machine authenticity. Likewise, AlphaGo’s landmark 
interactions—specifically its celebrated Move 37 and Lee Sedol’s Move 78—highlight adaptive 
anti-transitivity. Move 37 was a groundbreaking strategy by AlphaGo, initially seen as puzzling or 
incorrect by human experts but later revealed as ingeniously creative. Move 78, executed by Lee Sedol 
in response, similarly defied conventional wisdom and showcased an unprecedented human adaptation 
to the AI’s unconventional strategy. These moves illustrate how novel and initially perplexing decisions 
emerge through intricate layers of reciprocal mind modeling and anticipation. 

Ultimately, by exploring these adaptive dynamics, this project maps how human and artificial 
intelligences will coevolve. Through such mutual cognitive reshaping, it proposes that the future will be 
defined not merely by AI’s capacity to imitate human thinking but equally by humanity’s profound and 
nuanced adaptation to the evolving logic and learning patterns of AI. 
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Abstract  

This paper develops the uncanny ridge as a thought experiment within 
debates on AI alignment, intersystemic communication, and the limits of 
novelty in machine learning. Repositioning systemic misalignment in AI 
as a generative rather than disruptive force, it draws on and inverts 
Masahiro Mori’s uncanny valley, which describes human discomfort 
toward near-human simulations. The uncanny ridge shifts focus from 
breakdowns in recognition to the conditions under which misrecognition 
between AI systems produces novelty. While alignment is often assumed 
to improve coherence, excessive synchronization leads to 
hyper-convergence, constraining AI’s capacity for emergent intelligence. 
To formalize this, the paper introduces the uncanny index, a metric for 
identifying when systemic misrecognition produces innovation rather 
than collapse. Case studies of mode collapse in generative adversarial 
networks (GANs), reinforcement learning with human feedback (RLHF) 
constraints, and multimodal AI architectures demonstrate that novelty 
does not emerge from complexity alone but from structured divergence 
and delayed alignment. Rather than treating misalignment as a failure, 
this thought experiment reframes the uncanny ridge as a dynamic site of 
intersystemic tension, where AI models engage in productive 
misrecognition, generating new computational strategies and unexpected 
modes of coordination. 
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1  Introduction 

The assumption that alignment—whether between humans and AI or between AI models themselves—is 
inherently beneficial not only obscures the investigation into the ontology of synthetic intelligence but 
also constrains the design of planetary-scale interactions between diverse AI systems, operating across 
different architectures, logics, and modes of processing. 

The ongoing exploration of the differences between humans and AI often leads to a conflation 
of diverse algorithmic systems into a singular, undifferentiated synthetic “other.” However, AI models, 
platforms, and tools in the wild do not form a unified, synchronized synthetic layer, especially when 
woven into the pattern of legacy infrastructures. Instead, the development of cognitive 
infrastructures—the technical architectures of AI, data processing, and planetary computation embedded 
in physical environments—reveals ecologies of synthetic intelligences that operate with fundamentally 
different languages, technological protocols, timescales, and sensory inputs and outputs. The friction and 
tensions between these data bodies, models, and sensory domains can either be treated as issues to be 
resolved or embraced as opportunities to fundamentally rethink infrastructural design needs. 

Crucially, such a diverse synthetic ecosystem is rarely reflected in the outputs associated with 
AI-generated content. Despite the variety of scenarios in which they are employed, these outputs 
frequently exhibit a derivative, recombinatorial quality—a form of canny familiarity.1 Rather than 
concluding that AI is therefore a “stochastic parrot,” this paper identifies the systemic factors 
contributing to the convergence of meaning across different modalities, resulting in predictable 
outcomes.2 

Convergence is neither essential nor always desirable for effective collaboration. Interactions 
within and between systems—whether biological, technological, or social—often flourish through the 
tensions and conflicts that arise from diverging perspectives. Robustness, adaptability, and flexibility in 
complex systems frequently depend on delayed alignment, the presence of noise, and varied 
interpretations of the system's functioning or goals.3 Moreover, misinterpretation, miscommunication, 
and mistranslation have historically driven the emergence of new patterns in evolution and civilization.4 
Complete systemic transparency (informational alignment) can lead to informational overload, while full 
synchronization (operational alignment) may stifle the diversification of roles vital for efficiency. Thus, 
selective functional signaling, rather than full transparency, is often key to successful task completion. 
While alignment may seem advantageous, it can sometimes undermine the very conditions necessary for 
innovation. 
 
1.1  Intersystemic Interactions in Machine Learning 

The drive toward developing foundation models—systems capable of handling multiple modes of input 
and output—reflects a broader ambition within the machine learning community to create more versatile 
and generalized models.5 However, this ambition is currently constrained by two significant challenges. 
First, the architecture of a model is often tightly coupled to the structure of the data they are trained on, 
making it difficult to incorporate multiple modes of input. Second, these models typically require 
supervision with large datasets, and creating datasets that encompass all modes of input and output is 
inherently difficult.6 A proposed solution to this problem involves training individual machine learning 
models on different types of input separately and then integrating these models to create a more 
comprehensive system. 

An example of this approach is contrastive language-image pretraining (CLIP), which seeks to 
unify visual information from images with linguistic information from image labels. It works by having 
language models and image models occupy the same embedding space and by having the embeddings of 
these two forms of data—image and text—converge on this space. By creating this shared space that 
bridges different modes of information, downstream image tasks can be performed with smaller datasets 
than previously possible.7 

Diffusion models are a class of generative models that have rapidly gained popularity, partially 
due to their ability to combine information from pretrained models. For instance, an image classifier or a 
model like CLIP can be used to influence the output of a diffusion model according to a specific prompt 
or conditioning. This process, known as diffusion guidance, is performed by forcing the diffusion model 
to agree with the pretrained model on the feasibility of the output. This capability of prompt-based data 
generation is largely responsible for the widespread adoption of diffusion models and their integration 
with language models. The ability to leverage interaction between models trained on different tasks not 
only enhances the performance of these systems but also extends their applicability across a wider range 
of tasks. 

7 Kim et al., “DiffusionCLIP.” 
6 Bommasani et al., “ Opportunities and Risks.” 
5 Bommasani, “Opportunities and Risks.” 
4 Schmutzer and Wagner, “Mistranslation Alters.” 
3 Bouffanais, Swarm Dynamics. 
2 Bender et al., “ Dangers of Stochastic Parrots.” 
1 Bernac and Keenan, “Diffusion Models.” 



However, CLIP-guided diffusion models have been criticized for producing unremarkable 
outputs, displaying well-known aesthetics and commonsensical semantic associations while promoting 
dataset memorization.8 This method allows for generalization across a wide range of tasks, but it also 
limits the model’s exploratory capabilities. By operating from a matrix of pre-clustered statistically 
common associations found in its training data, CLIP guidance leads to content homogenization and 
alignment with conventional rather than novel styles. 

Within intersystemic interaction, human feedback serves as a form of intelligent agent input, 
shaping the alignment and operational dynamics of AI systems. RLHF is a training method used to 
fine-tune generative models by incorporating human evaluations into the learning process. It works by 
creating an auxiliary reward model that helps an AI-in-training predict user satisfaction. This reward 
model is then used to optimize the system, guiding it to produce outputs that maximize alignment with 
human preferences. 

RLHF has undoubtedly been instrumental in shaping language models to meet the demands of 
economic utility, yet this very success has come at the cost of creative diversity. The phenomenon of 
mode collapse, where the richness of possible outputs is severely diminished, is a direct consequence of 
this alignment process.9 Research has shown that systems closely guided by human feedback tend to 
replicate existing styles and conventions rather than exploring new creative directions.10 This 
phenomenon underscores the trade-off between aligning with human expectations and maintaining a 
system’s capacity for innovation. This outcome, however, should not be surprising; RLHF optimizes for 
conformity with simplified models of average human satisfaction—an approach that is almost inherently 
opposed to the vibrancy and diversity that characterizes genuine novelty. RLHF also introduces 
significant constraints on the generative potential of machine learning systems by reinforcing existing 
biases and human-centric expectations.11 This constraint is particularly evident in studies of RLHF 
applied to content moderation and recommendation systems, where the goal is to minimize user 
discomfort and maximize engagement.12 Human feedback tends to reward familiarity and penalize 
deviation from expected norms. Over time, this feedback loop can lead to preference drift, where the 
diversity of outputs diminishes as the system becomes increasingly tuned to produce what users are most 
likely to accept.13 This effect has been observed in personalized content delivery systems, where 
algorithms prioritize content that aligns with established user preferences, thus limiting exposure to 
novel or challenging ideas.14 The resulting cognitive monoculture constrains the space of possible 
outputs, reducing the likelihood that the system will generate the unexpected or the strange. 

The ideological foundations of AI alignment research seem to be at odds with, or entirely 
dismissive of, the potential for genuinely novel artificial intelligence. The underlying assumption is that 
AI should mirror human expectations, behaviors, and desires, leaving little room for the unpredictable or 
the unprecedented. In this framework, anything that deviates from the norm is seen not as a possible 
innovation but as an anomaly to be corrected. This ethos of alignment, then, risks stifling the potential 
for artificial intelligence to produce something truly new—something that does not simply reflect human 
tendencies but transcends them. 

More broadly, consider the rapidly emerging ecologies of interaction that span from 
infrastructural systems—smart grids, autonomous logistics networks, algorithmic governance 
frameworks—to the more familiar realms of commercial and personal AIs, such as digital assistants, 
recommendation systems, and predictive algorithms. These agents, each designed with specific 
operational logics and purposes, are increasingly required to communicate not just with humans but with 
one another. The dialogues between autonomous vehicles and traffic management systems, the 
negotiations between financial algorithms in high-frequency trading, or the interactions between 
personalized AI agents in consumer markets, all exemplify a new space of system-to-system 
communication. This increasing complexity of AI cognitive infrastructures implies the emergence of 
unprecedented forms of interactions, distributions, and circulations that are not simply the sum of 
technological components.15 

 

1.2 Complexity versus Novelty 

This assumption that greater complexity automatically leads to greater novelty often arises from 
conflating distinct definitions of complexity, including the mistaken notion that complexity simply 
means greater complication. These varying meanings are then collapsed into an intuitive but misleading 
understanding of the term. Crucially, complexity is defined in distinct ways across scientific domains, 
including computational, algorithmic, information-theoretic, and systems-based frameworks. 
Computational complexity examines the resources, such as time and space, required to solve classes of 

15 ACS Research, “Alignment of Complex Systems.” 
14 Gillespie, “Relevance of Algorithms.” 
13 Kingma and Welling, “Auto-Encoding Variational Bayes.” 
12 Brown et al., “Value Alignment Verification.” 
11 Ho and Ermon, “Generative Adversarial Imitation Learning.” 
10 Riedl and Harrison, “Using Stories.” 
9 Kirk et al., “ Effects of RLHF.” 
8 Wang et al., “Diffusion Feedback”; Somepalli, et al, “Copying in Diffusion Models.” 
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problems.16 Algorithmic complexity, based on Kolmogorov theory, measures an object’s complexity by 
the length of the shortest algorithm capable of producing it.17 In information theory, complexity is often 
equated with entropy, representing the degree of uncertainty or randomness within a system.18 
Complexity science, in turn, studies emergent behaviors arising from interactions among components, 
resulting in properties that cannot be reduced to or deduced from the sum of individual elements.19 While 
each of these frameworks captures different aspects of complexity, none offer a universal mechanism for 
generating novelty. Rather than prescribing a singular model, they demonstrate how novelty may arise 
under specific conditions, often in ways that resist direct prediction or deterministic formulation. 

The definition of novelty is far from straightforward, as it shifts depending on context, criteria, 
and disciplinary perspective. Novelty remains a persistent philosophical problem, raising questions 
about the conditions under which something can be considered genuinely new, whether it is always 
contingent on prior structures and how its recognition is shaped by existing conceptual frameworks. In 
scientific and mathematical contexts, it is frequently understood through statistical deviation, 
unpredictability, or emergent patterns. However, this comes with the risk of conflating novelty with mere 
anomaly or randomness. In artistic and cultural theory, novelty is tied to aesthetic shifts or ruptures in the 
logics of making, yet what counts as novel is always contingent on existing frameworks of 
interpretation. These competing understandings make it difficult to formalize novelty as a stable 
category, a challenge that becomes even more pronounced when applied to AI-generated outputs. 

Suppose we take complexity to be the number of components in a system and their interactions 
and contrast it with novelty, which we take to be the emergence of previously non-existent elements or 
configurations.20 Then, as complexity increases, the potential for novelty seems to grow, offering more 
possibilities for new patterns to emerge. However, this relationship is intricate. Increasing the number of 
elements and interactions does not automatically lead to greater novelty, and a logical systemic leap does 
not always arise from complexity or exhibit complexity itself.21 Novelty can emerge from limited simple 
interactions or through a system’s unique ability to reduce complexity (compression), challenging the 
assumption that more complexity inherently fosters more novelty. From this, it can be seen that there is 
no simple recipe for systemic novelty. 

Discourses on novelty in AI often fall into essentialist debates over whether AI can produce 
anything truly new, or, conversely, succumbing to relativistic views that dismiss the possibility of true 
novelty altogether.22 Crucially, discourses surrounding AI-generated content often overlook insights 
from art and media theory. A broader modernist move, particularly evident in the mid-twentieth century, 
emphasized processes as integral to an artwork—moving beyond focus on the final artifact.23 This shift 
highlights a perspective from which AI approaches could benefit, reorienting focus from output 
production to designing experimental architectures that challenge the creative process itself.24 For 
example, if an AI model produces a predictable, uninspired outcome—such as a dull image—but does so 
through an unfamiliar or unconventional logic that reveals a new mode of reasoning or creation, this 
challenges conventional notions of novelty. Unfortunately, discussions about AI often reduce its 
dynamic processes to mere artifact production and equate novelty with the arbitrary perceptual surprise 
at its effects produced in human agents. In reality, novelty is ontologically perspectival, not because it 
requires an observer for validation, but because it exists within a bounded system with a particular 
history and memory that provide a framework for recognizing novelty. Novelty requires a systemic 
rather than individual perspective.25 
 
1.3 Recognition and Dissonance 

The uncanny valley was originally conceptualized by Masahiro Mori in the context of human–robot 
interaction. The uncanny valley represents an epistemic rupture—a point at which anticipations of 
continuity confront a profound dissonance between expectation and reality. As machines approximate 
the human form, the comforting familiarity we experience is transformed into unease or outright horror 
when the semblance of life becomes too convincing yet remains distinctly other. This break is not just a 
glitch in perception; it is a moment of cognitive dissonance that reveals the precarious balance between 
recognition and misrecognition, between the familiar and the alien, thus exposing the fault lines in our 
understanding of what it means to be human.26 This rupture is an emergent property of our cognitive 
architecture, a testament to the brain's propensity to resist that which challenges its categorizations.27 

27 Saygin et al., “Predictive Coding.” 
26 Mori, “Uncanny Valley.” 

25 This is an original formulation inspired by the distinction between spatial complexity and temporal novelty found in Stang, 
“Novelty and Complexity.” 

24 Bishop, Installation Art. 
23 Kaprow, Art and Life. 
22 Cf. Kraatz and Xie, “AI Art Is Not Art”; Chiang, “A.I. Isn’t Going.” 
21 Felin and Kauffman, “Search Function.” 
20 Standish, “Concept and Definition.” 
19 Ladyman et al., “What Is a Complex System?” 
18 MacKay, Information Theory. 
17 Li and Vitányi, Introduction to Kolmogorov Complexity. 
16 Arora and Barak, Computational Complexity. 
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The uncanny valley is traditionally framed as a phenomenon of human perception, but at its 
core, it reflects a more fundamental problem of recognition—one not limited to human observers but 
present in interactions between systems, models, and intelligences. One prevailing hypothesis is that the 
uncanny valley arises from a conflict between competing neural processes: a familiar but slightly 
distorted human-like figure may simultaneously activate cognitive pathways associated with both 
empathy and revulsion. The brain’s mirror neuron system, which plays a role in recognizing and 
empathizing with others, might be disrupted when faced with an entity that appears human but exhibits 
non-human features or behaviors. This mismatch can trigger a threat response, rooted in evolutionary 
mechanisms that prioritize the detection of potential dangers posed by diseased or deceased 
conspecifics.28 

Further evidence from neurocognitive research suggests that the uncanny valley may be linked 
to the brain’s predictive coding framework, where the brain continuously generates and updates mental 
models of the world. When an encountered entity deviates from expected human norms in subtle but 
significant ways, the prediction error generated may be too large to reconcile smoothly, leading to a 
sense of unease or eeriness.29 This is particularly evident in cases where the entity’s appearance or 
behavior is close enough to human to engage higher-level social cognitive processes but different 
enough to disrupt them, leading to an uncanny experience. This also explains why self-likeness plays a 
critical role in the phenomenon: the closer something is to being an accurate mirror of the self, the more 
sensitive the brain is to any discrepancies. This is amplified in our perceptual and emotional responses. 

However, recognition is not merely a perceptual or cognitive issue—it is also a systemic one. 
Across intersystemic interactions, recognition is always partial, negotiated, and contingent on the 
dynamics of alignment and misalignment. Misrecognition, like perceptual dissonance, is often treated as 
a problem to be resolved, yet it is equally a driver of systemic novelty. Without a framework for 
recognition, the emergence of the truly new—an anomaly, a pattern break, a deviation, a logical 
leap—would be impossible. It is in these moments of dissonance, where familiar logics become 
unstable, that systems recalibrate, generate new pathways, or transform the conditions of intelligibility. 
 
1.4 The Uncanny Ridge 

Early iterations on GANs and diffusion models generated images of humans with grotesquely distorted 
features, like limbs twisted into unnatural shapes and fingers multiplying beyond recognition. In their 
nascent forms, generative AI models unintentionally produce novel imagery with strikingly unique 
aesthetic qualities. However, these early sparks of novelty were swiftly extinguished. The image models 
were rapidly updated to eliminate such artifacts, with these emergent, strange aesthetic qualities being 
dismissed as mere errors or deviations from some presumed ideal. Preserving novelty in these models 
requires resistance to the gravitational pull of optimization-driven redundancy, maintaining enough 
divergence to foster genuinely new behaviors. However, current architectures often fail to reach this 
space, as optimization pressures drive systems toward convergence, reinforcing existing patterns rather 
than allowing them to explore uncharted interactions. The challenge, then, is to structure machine 
learning models in a way that sustains the conditions necessary for systemic novelty. 

In the conventional uncanny valley graph, the valley represents a trough of discomfort, where 
resemblance without full recognition produces unease. We propose to reconceptualize the topology of 
the uncanny valley, not as a dip in affective response but as a dynamic terrain where interactions 
between systems—biological, artificial, and hybrid—do not result in breakdowns of recognition but in 
the intersystemic emergence of novelty. The uncanny ridge marks a peak of interactional intensity—a 
zone where intentional miscommunication, misrepresentation, and misrecognition between intelligent 
agents can lead to perspectival novelty and significantly enhance outputs’ originality. A point where the 
encounter between heterogeneous models and intelligences does not lead to failure or estrangement but 
instead generates new logics of engagement. At this peak, intelligibility is not merely stretched or 
distorted but actively reorganized, as AI and other non-human agents co-compose new forms of 
sense-making at the interstices of recognition and misrecognition, prediction, and unpredictability. 

Within this framework of the uncanny, the potential for misalignment among intelligent 
systems takes on heightened significance. Misalignment is not merely a technical anomaly but a 
challenge to the very concept of a monoculture that can arise when systems become overly aligned or 
synchronized. This work proposes a formalization for identifying areas where productive differences can 
lead to systemic novelty, focused primarily on intersystemic interactions within machine learning 
architectures. By inspecting the nature of these interactions, as well as the introduction of the uncanny 
index, it attempts to examine novelty in systemic rather than anthropocentric terms, defining meaningful 
change through the lens of systemic prediction. This approach avoids the fetishization of misalignment 
as a universally desirable strategy, while simultaneously moving beyond human-centered interpretations 
of novelty, reframing it in terms of a system’s own dynamics, predictive capacities, and internal logic. 
 

29 Seth, “Cybernetic Bayesian Brain.” 
28 Eagleman, Incognito. 
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2 Mapping Intersystemic Interactions 

In this section, we examine examples and forms of misalignment and map them through the lens of 
novelty. We begin by exploring distinct interaction protocols between pairs of AI systems (Figure 1). 
These protocols formalize how different patterns of communication and recognition can either constrain 
or expand the semantic space of these models. By systematically examining these misalignments, it 
becomes possible to observe the mechanisms behind semantic expansion, systemic change, and the 
emergence of novelty. Through this exploration, the section sheds light on how misalignment can lead to 
novel behaviors, unexpected innovations, or, conversely, the collapse of meaning within these systems. 
This framework lays the foundation for comprehending the broader implications of AI misalignment and 
its potential impact on cognitive infrastructures. 
 
2.1  A Taxonomy of Misalignment 

The simplest form of interaction between two intelligent systems is the null protocol, in which each 
system is probabilistically independent of the other. In this scenario, they exert no influence on one 
another, and there is no attempt at mutual modeling. This serves as a baseline for understanding the role 
of alignment on novelty, as the introduction of this form of interaction serves no bearing on the potential 
novelty of the pair of systems. 

The second protocol that we introduce is the intersection protocol. In this scenario, the drive for 
the two systems to agree leads to a narrowing of the space of semantic possibilities. We refer to this kind 
of intersection within semantic space as hyper-convergence. An explicit example of this can be found in 
CLIP-guided diffusion models, where a battle between an unconditional diffusion model and CLIP leads 
to a literal convergence at the intersection of their supports. This also encompasses the tendency toward 
mode collapse brought about by RLHF, where agreement between language models and human 
satisfaction reward models can restrict diversity of output. Compared to the null protocol, this form of 
interaction evidently produces a collapse in novelty. 

A third example of this can be found in the literature on GANs. This is a generative architecture 
formed of two models—generator and discriminator—that compete in a game in which the generator 
attempts to produce synthetic data that fools the discriminator.30 A well-documented issue with these 
models is also a form of mode collapse, where the diversity of generated outputs contract, leading the 
system to converge on a limited subset of possibilities.31 This occurs when the generator in a GAN, 
whose task is to create data indistinguishable from real data, becomes overly optimized to produce 
outputs that consistently deceive the discriminator. This results in a reduction in the system’s ability to 
explore its full creative potential by narrowing the space of possible outputs. This collapse in novelty is 
not merely a technical flaw but reflects a deeper issue in how these systems are trained and optimized. 
As machine learning models increasingly prioritize accuracy and efficiency, they tend to overfit to the 
most successful patterns, thereby sacrificing the exploration of less probable but potentially more 
innovative outputs.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Diagrams of interaction protocols. Clockwise from the top-left: the null protocol, the 
intersection protocol, the mutual projection protocol, the Roadside Picnic protocol. 

 
The third protocol we discuss implies a form of mutual misaligned projection, which we call 

the mutual projection protocol. In this context, two agents are capable of modeling one another or have a 
strong ability to predict each other’s activities, yet they cannot directly see each other or access each 
other’s realities. Despite this lack of direct visibility, they continue to form projections of one another. 

32 Higgins et al., “beta-VAE.” 
31 Lucic et al., “Are GANs Created Equal?” 
30 Goodfellow et al., “Generative Adversarial Nets.” 
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This can drive innovation and lead to strategies that diverge in novel directions, which would not have 
emerged if direct visibility were available. 

An example of this can be found in Google’s DeepDream, which takes a deep neural network 
trained for an image classification task and forces it to generate images.33 It does this by iterating on 
patterns detected in the model, enhancing them to the point where they become surreal or hallucinatory, 
producing outputs that are both familiar and bizarre. Studies of DeepDream have shown that this process 
can lead to the emergence of novel visual forms, which are strikingly different from the inputs on which 
the network was originally trained.34 The strangeness produced by DeepDream is a form of generative 
novelty, where the familiar is rendered strange, inviting new interpretations and expanding the 
boundaries of visual creativity. 

A more abstract example of this generative dynamic can be found in the Cold War, where a 
recursive loop of paranoia and projection materialized in the form of technological acceleration. Nuclear 
deterrence, cryptographic security, and aerospace expansion—each driven by the imperative to preempt 
an enemy—became engines of unintended innovation. Like DeepDream amplifying patterns into visual 
delirium, the Cold War exaggerated its own signals into material infrastructures and technological 
progress. 

We can further lean into more abstract examples of interaction protocols by borrowing from 
fictional literature. For example, we consider the Roadside Picnic protocol, inspired by the Strugatsky 
brothers’ novel of the same name. In the novel, hazardous zones emerge after an unexplained 
extraterrestrial event, leaving behind enigmatic artifacts that, while seemingly trivial to their alien 
creators, have profound and unpredictable impacts on human civilization. In this protocol, one intelligent 
system generates an output, which another system—without direct access to the original 
context—attempts to interpret and integrate within its own language and operational framework. This 
indirect interaction enables the interpreting system to expand its semantic space, enhancing its 
interpretive range and adaptability. 
 
2.2 Novelty and Misalignment 

These exemplary protocols can be mapped on a simple four-quadrant diagram (Figure 2). On the top 
horizontal axis, the extremes are labeled “can’t see” and “can see,” while on the vertical axis, the labels 
are “can’t model” and “can model.” To “see” in this context refers to the ability to perceive phenomena 
related to the other system—to register change. On the other hand, to “model” implies having some form 
of understanding or predictive capability, similar to a “theory of mind,” or at the very least, a 
probabilistic mechanism capable of forecasting the other system’s next move. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 A two-dimensional mapping of interaction protocols. 

34 Bronstein et al., “Geometric Deep Learning.” 
33 Mordvintsev et al., “Inceptionism.” 
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To systematize these examples further, this paper introduces a vertical axis ranging from 
“perspectival novelty” at one extreme to “collapse of meaning” at the other. As novelty emerges along 
this spectrum, it resists straightforward prediction or proportional scaling, yet distinct dynamics become 
evident within each identified quadrant. Mapping these dynamics provides insights into the generative 
behaviors that result from interactions between different intelligent systems. Various examples of AI and 
non-AI systemic interactions are plotted on this diagram, showing where novelty increases or declines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Plotting interaction protocols against their estimated effect on the promotion of novelty.  
An increase in the vertical axis represents an increase in systemic novelty. 

 
For example, the can model–can see quadrant contains examples of the intersection protocol 

such as RLHF and GAN mode collapse, which, as we have noted, can lead to a convergence on the 
familiar, which we represent by a drop in the vertical axis. In the can’t see–can’t model quadrant, we 
have DeepDream, where interactions produce outcomes that challenge conventional visual norms, 
represented by an increase in the vertical axis (Figure 3). 
 
3 Traversing the Uncanny Ridge 

In this section, we define the uncanny ridge and speculate on how it might be traversed through the 
empirical measurement of novelty as well as the systematic exploration of taxonomies of misalignment. 
 
3.1  The Uncanny Ridge 

The uncanny ridge identifies the perspectival disruption of the uncanny valley across 
systems—biological, artificial, hybrid—as a topography of productive misapprehension and novelty. 
Where the valley marks discomfort, the uncanny ridge marks a peak of interactional intensity—a point 
where the encounter between systems generates new logics of engagement. At this peak, intelligibility is 
not merely stretched or distorted but actively reorganized through coevolution. Examples of this abound 
in nature, such as in plant–insect pollination mechanisms, as well as in human–computer interaction, 
where human response to AI models is often characterized by flawed heuristics for discerning 
computer-generated output.35 

Between models, this narrowing of generative diversity not only threatens model collapse but 
also restricts the potential for meaningful interaction between models, reinforcing alignment at the cost 
of emergent complexity. It is precisely within this tension—between optimization-driven collapse and 
the need for systemic divergence—that the uncanny ridge seeks to identify an optimal zone of maneuver. 
It is topological because it describes a structural dynamic between systems rather than a discrete 
transition. As AI proliferates, not as isolated artifacts but as infrastructural agents embedded in 
planetary-scale computation, the uncanny ridge provides a framework for understanding how selective 
misalignment enables systemic novelty—not as an anomaly but as an inherent feature of complex 
cognitive infrastructures. 

In what follows, we sketch the experimental conditions for measuring this dynamic terrain 
empirically. 

35 Jakesch et al., “Human Heuristics.” 
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3.2  Proposed Experiment 

We propose that novelty is perspectival, defined by its relation to specific systemic priors. Mapping and 
navigating the uncanny ridge requires an external or internal framework to identify the newness against 
those systemic priors. These priors are not always spatially or immediately present; they can also be 
temporally embedded as memories or tendencies developed through training. 

To explore where novelty emerges within intersystemic interactions, we propose a thought 
experiment that identifies the conditions of misalignment under which the uncanny ridge can be mapped. 
To make these conditions explicit, we externalize the process by introducing an observer—either an 
external agent or an internal systemic component (represented separately for clarity in a diagram)—that 
tracks and assesses patterns of novelty in agents’ outputs or behaviors across varying degrees of 
alignment. By plotting the detected levels of novelty against shifting alignment conditions, the uncanny 
ridge is mapped as a trajectory, highlighting where misalignment leads to emergent, unexpected 
outcomes rather than predictable or collapsed states (Figure 4). While this remains a theoretical model, it 
provides a structured framework for identifying where to look for novelty within differing misalignment 
conditions in future empirical studies. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 In the proposed experiment, we map novelty against different conditions of a given 
interaction protocol. 

 
The measurement of novelty is influenced by several factors, including the depth of the agent’s 

memory or the temporal a priori, the perceptual capabilities of the observing agent, the accessibility of 
the observed qualities, and the agent’s positionality relative to the system (Figure 5). Thus, this 
experiment involves multiple measurements from different positions, observers, and frameworks of 
reference within the systems to identify potential overlaps and intersections. By aggregating these 
diverse perspectives, the goal is not to establish an average or universal novelty but to gain a deeper 
understanding of the dynamics between the two systems in the absence of a pre-established absolute 
alignment space, such as CLIP. The aim is to evaluate and dimension the space of misalignment and 
begin to formulate the various parameters that can exist within it. 
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Figure 5 Novelty is perspectival. In our proposed experiment, we propose that novelty should  
be measured from the perspective of different observers and aggregated. 

 
3.3  Measuring Novelty Increase 

The empirical measurement of novelty occupies a critical role across various domains, particularly 
within cognitive science, where novelty is quantified by evaluating the deviation of a stimulus from an 
individual’s prior experiences or expectations. This quantification is often rooted in assessing how an 
individual assigns likelihood to a prediction, typically through its associated log-probability—a concept 
known as Bayesian surprise.36 In transposing this notion of novelty to our present context, we measure 
the shift in surprise induced by the implementation of an interaction protocol, thereby constructing what 
we term the uncanny index. This uncanny index represents a metric for novelty that captures the 
expected change in log-probability between two scenarios: one in which a pair of AI systems interacts 
under a specific protocol, and another where this protocol is absent—the setting of the null protocol. 
 We can describe this in the language of probability theory, treating the output of a pair of 
systems as a random variable. Denote by p the probability density of the prior distribution on some 
measurable space X x Y. Then, given a pair of random variables X and Y on the spaces X and Y, the 
unnormalized surprise is given by the quantity, 
 

 
 
 
 
If X,Y is formed from the output of some pair of systems, then the surprise measures how much 

this output is to be expected under the prior distribution—a kind of perspectival and artifactual measure 
of novelty. This quantity takes its smallest value when p is identical to the law of X,Y, i.e., when the 
prior perfectly predicts the output. To measure the change in novelty brought about by a particular 
interaction protocol, we suppose that the pair (X,Y) has a counterpart, (X∅,Y∅) that interact via the null 
protocol. We can now define the uncanny index as the change in surprise, 

 
 

 
 
 
 
It is a function of the pair of agents as well as the observer’s prior distribution on the space of 

output. Given an interaction protocol P, we can define the set I(P) of all pairs of random variables that 
satisfy the conditions above, with any (X,Y)∈ I(P) interacting via the protocol P while having a null 
protocol counterpart, (X∅,Y∅). We can then define the upper and lower uncanny index for the protocol P 
as the supremum and infimum over the set: 

 
 

36 Itti and Baldi, “Bayesian Surprise.” 
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In this definition, the upper and lower uncanny index is a function of the interaction protocol as 

well as an individual’s prior distribution on the space of output. The uncanny index is an auxiliary 
formula that helps clarify the logical mechanisms behind uncanny ridge, linking it to the concept of 
systemic surprise. 
 
3.4  Outlined Solutions for AI Intersystemic Communication 

Identifying the mechanisms behind the uncanny ridge goes beyond serving as a diagnostic tool—it can 
potentially inform the development of practical strategies for designing AI architectures. Several 
interlocking strategies might cultivate the conditions under which the uncanny ridge could emerge 
between intelligent systems. 
 Deliberately separating embedding spaces for different modalities—text, image, and 
sound—could counteract the impulse to enforce immediate convergence. This approach echoes the 
concept of schismogenesis, first introduced by anthropologist Gregory Bateson, in which a single group 
splits into distinct, non-communicating subgroups, leading to increasing differentiation over time.37 
Without direct interaction, these subgroups develop in isolation, reinforcing internal coherence while 
diverging from one another in structure and behavior. Applied to AI, structuring generative systems so 
that different modalities—rather than being forced into alignment—develop in isolated latent spaces 
could allow for more distinct internal representations to emerge. Later, these well-differentiated spaces 
could be selectively reintroduced into exploratory convergence, where the friction between their 
divergent structures catalyzes novel recombinations. The intent here is to resist hyper-convergence, 
which often collapses generative potential by prematurely forcing alignment across heterogeneous 
modalities. 
 Building on this, a mediator model could be conceived to strategically manage the degree of 
misalignment. Acting as an inverse to systems like CLIP, this model could deliberately modulate the 
interaction between modalities, ensuring that the productive tensions necessary for innovation are 
sustained without devolving into chaos. 
 Amplifying this dynamic could be the cultivation of cumulative semantic drift—a process by 
which strangeness is incrementally introduced over time. Unlike preference drift, which narrows outputs 
toward user expectations, semantic drift could encourage the system to evolve beyond its initial 
parameters, generating new patterns that defy prediction. As this drift accumulates, the semantic space 
could expand, producing outputs that are increasingly experimental and inventive. 
 Dynamic alignment, calibrated to the complexity of the prompt, could ensure that the system 
remains versatile. For straightforward tasks, high alignment could maintain precision, while for 
exploratory prompts like “imaginary landscapes,” increased misalignment could unlock broader, more 
creative possibilities. 
 Finally, user interfaces designed to allow adjustable alignment between models could introduce 
a critical layer of interaction, enabling real-time modulation of these dynamics. Controlled, user-driven 
manipulation could facilitate explorations that are inaccessible through fixed systemic parameters alone. 
 These approaches, while not at all exhaustive, illustrate some of the diverse ways the identified 
taxonomies of misalignment could be implemented in the design of generative multimodal architectures 
and workflows. 
 These outlined strategies are not prescriptive solutions but speculative directions that follow 
from a more fundamental investigation: the mapping of the uncanny ridge and the formalization of the 
uncanny index as experimental tools. The ridge, as a dynamic site where systemic misrecognition 
generates perspectival novelty, is not a fixed property of AI interactions but an emergent space that must 
be empirically located. The uncanny index, in turn, serves as an experimental framework for identifying 
where and when misalignment leads to systemic novelty rather than collapse. By treating these as 
methodological instruments rather than mere metaphors, the paper proposes a way to track the 
conditions under which novelty emerges—where the interplay of recognition and misrecognition creates 
structural shifts in meaning. 
 Only once the contours of the uncanny ridge are made explicit—through experimental 
engagement with misalignment and intersystemic interaction—do design strategies become relevant. 
Rather than imposing constraints in advance, AI architectures should be developed in response to the 

37 Bateson, “Culture Contact and Schismogenesis.” 
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topologies revealed by the ridge, allowing the underlying dynamics of misalignment to shape the 
conditions for generative divergence. In this sense, the uncanny ridge and index are not just diagnostic 
tools but experimental platforms for rethinking the epistemic and structural logics of synthetic 
intelligence. By situating design as a secondary process that follows from mapping these generative 
thresholds, this paper argues for an approach that does not seek to preemptively resolve systemic 
tensions but instead sustains and leverages them as sites of emergence. 

4  Conclusion  

As AI systems and infrastructures become increasingly intricate, integrating diverse models, data types, 
and modes of input, the challenge of effective intersystemic communication intensifies. This paper has 
argued that instead of striving for a universal communication framework that enforces alignment across 
these varied systems, the focus should shift toward understanding and harnessing misalignment as a 
productive force for generating novelty and innovation. Crucially, the uncanny index provides a means 
to systematically map the uncanny ridge—the interactional space where systemic misrecognition does 
not result in failure but in the emergence of novel logics, meaning structures, and interagent 
coordination. 
 Throughout the analysis, the relationship between complexity and novelty was examined, 
revealing that increasing complexity does not necessarily lead to the emergence of new phenomena. 
Instead, novelty often arises from the interaction between systems that are not fully aligned, where 
tensions and frictions create opportunities for innovative outcomes. Much like topological frustration in 
physical systems—where structural constraints prevent components from reaching a fully optimized, 
low-energy state—AI systems may benefit from analogous “frustrations” that prevent full alignment.38 
Such constraints force the system into a dynamic state of tension, creating conditions that allow for 
intelligence and novelty as emergent, systemic properties. The uncanny ridge functions as a critical 
interface within this interactional matrix, where the oscillation between recognition and misrecognition 
catalyzes emergent modalities of meaning and behavior. By quantifying this space, the uncanny index 
provides a formal mechanism for distinguishing between productive misalignment and simple system 
failure, offering a way to empirically track where and how novelty arises. 
 Specific examples, such as mode collapse in GANs and Google’s Deep Dream outputs, 
highlight both the limitations and potential of current AI architectures. These examples demonstrate that 
excessive alignment—whether through reinforcement learning with human feedback or 
over-optimization—can lead to a loss of diversity and creativity in AI outputs. Conversely, when 
systems operate within the uncanny ridge, where alignment is partial or delayed, the potential for 
generating novel and unpredictable outputs is significantly enhanced. This approach allows AI systems 
to move beyond the canny valley of hyper-convergence, where outputs become overly familiar and 
predictable, and toward a space where creative divergence is not only possible but encouraged. The 
uncanny index provides a means to measure this divergence, identifying the conditions under which 
systemic novelty is most likely to emerge. 
 Several strategies were proposed for leveraging the uncanny ridge in AI system design. These 
include maintaining distinct embedding spaces for different modalities and introducing strategic 
misalignment during the generative process to foster creative divergence. These strategies are not merely 
theoretical but offer practical approaches for developing AI systems that move beyond human mimicry 
and toward the creation of genuinely new forms of intelligence. However, these design interventions 
should not be imposed arbitrarily; rather, they should emerge from an empirical engagement with the 
uncanny index, which can help refine and structure the conditions under which generative misalignment 
produces meaningful novelty. 
 Systemic novelty must be understood as a transformative force within the system itself, 
reconfiguring the underlying conditions of possibility. This transformation is not driven by simplistic 
notions of progress or complexity, but through deliberate and strategic engagement with the strange and 
unfamiliar. The uncanny ridge, as mapped through the uncanny index, thus becomes not only a 
theoretical concept but a practical design proposition, guiding the development of future AI systems that 
do not merely align with human expectations, smoothly fulfilling human objectives, but actively 
redefine what intelligence can be.  

38 Parisi, Flight of Starlings. 
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Abstract  

In this paper, we introduce the concept of synthetic counteradaptation, a 
process where human and AI systems coevolve by adapting to each 
other’s strategies and behaviors. Synthetic counteradaptation occurs 
when AI systems develop novel strategies or social protocols, prompting 
humans to extract insights and adapt their own behaviors in response, 
leading to the emergence of new agent interaction dynamics. To 
illustrate these dynamics, we analyze examples from various contexts, 
including the game of Go, mixed-motive social interactions, and 
geopolitical simulations. By exploring these cases, we demonstrate how 
synthetic counteradaptation provides a framework for understanding the 
recursive and coevolutionary nature of human–AI interactions in 
multi-agent environments. 
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1  Introduction 

Technology, like biology, does not exist in the absence of evolution. Technology is not artificially 
replacing life—it is life. 

—Sara Walker, “AI Is Life.” 
 
In today’s world, technology and (biological) life are often seen as opposites: artificial, man-made 
objects versus naturally occurring organisms. However, the work of philosophers and cyberneticians 
such as Gilbert Simondon and Ross Ashby has already blurred this distinction between life and 
technology. They, among many mid-twentieth-century systems philosophers, understood technology not 
as opposed to life but rather as an extension of evolutionary and adaptive processes.1 This precedent 
invites us to consider the potential for treating AIs as adaptive agents who participate autonomously in 
life’s evolutionary patterns. For instance, it has been shown that societies of LLM agents can exhibit 
emergent multi-agent phenomena, such as information diffusion and linguistic alignment,2 which 
emerged in humans over millennia of evolution. However, within the field of AI, the coevolution 
between machinic and human agents is under-specified, and the perspective that technology and life are 
extensions of one another is rarely taken for granted. This leaves a gap of insights into the principles and 
dynamics of coevolution and their impact on AI and human development. 

This paper explores one principle of human–AI coevolution—synthetic counteradaptation—as 
a thought experiment, leveraging current debates on synthesis and counteradaptation to understand the 
implications of the rise of AI systems for the future development of life’s evolutionary patterns. 
Synthetic refers to the relational interplay between a natural and an artificial agent, where their relational 
dependencies create a relational meaning, thus establishing them as a systemic whole within a 
coevolutionary process. Counteradaptation refers to the adjustments made by one organism in response 
to the adaptations of another. It represents a specific aspect of the broader coevolutionary process, 
focusing on how one species develops traits that counteract or mitigate the effects of adaptations made 
by another species. Counteradaptation is a fundamental aspect of coevolution, illustrating how species 
interact and influence each other’s evolutionary trajectories. The interplay of adaptations and 
counteradaptations not only shapes the traits of individual species but also drives broader patterns of 
biodiversity and ecological dynamics.3 Two dynamics of counteradaptation are relevant for our 
discussion: 

 
● Adversariality: Coevolution often results in evolutionary arms races, where species 

continuously adapt and counteradapt in response to each other. This can be seen in 
predator–prey dynamics, where predators evolve better hunting strategies, while prey develop 
more effective escape mechanisms. 

● Mutualism: Counteradaptation can also occur in mutualistic relationships. For example, 
flowering plants can develop traits that attract pollinators, while pollinators can adapt to 
become more efficient at extracting nectar. This mutual influence exemplifies coevolution 
through counteradaptation.4 

 

As such, we will propose the process of synthetic counteradaptation that arises within 
human–AI interaction. First, we will demonstrate how the principle of synthetic counteradaptation 
operates in the game of Go. Next, we will offer a theoretical exposition that elucidates the concepts of 
“synthesis” and “counteradaptation.” Finally, we will present some speculative scenarios on the future of 
human–AI interaction through the lens of the synthetic counteradaptation process. 

In the game of Go, we contextualize three instances of human–AI interaction. We begin with 
the historic four-game series hosted in 2016, between Lee Sedol, a 9-dan professional ranked first 
worldwide at the time, and AlphaGo, an AI trained to play Go via reinforcement learning and self-play. 
After winning the first game, AlphaGo stunned the international Go community in the second game at 
Move 37, an idiosyncratic play that was understood (after post hoc analysis) to be a significant 
innovation in the game of Go. In the fourth game, Lee Sedol adopted a risky strategy known as amashi. 
He played the lesser known but equally important Move 78, a move that was as unexpected as Move 37, 
and secured victory. Although Lee Sedol still lost the overall series, Move 78 illustrated his capacity for 
rapid adaptation to AlphaGo’s playing style. 

In more recent developments, researchers at FAR AI, an AI safety evaluation company,5 
developed an AI tutor that leveraged an adversarial training update in games against AI Go players who 
outperform humans.6 This AI tutor was able to extract a specific strategy to exploit the playing style of 
this latter class of AI players, which the researchers used to teach amateur human players to beat these 
state-of-the-art AI agents. 

6 Wang et al., “Adversarial Policies.” 
5 https://far.ai/. 
4 Lorenzen, “Spatially Explicit Model.” 
3 Dawkins and Krebs, “Arms Races Between and Within Species.” 
2 Sung Park et al., “Generative Agents”; Frisch and Giulianelli, “LLM Agents in Interaction.” 
1 Hui, Recursivity and Contingency. 



In this progression, we first observed the dynamics of synthetic counteradaptation, which can 
be broken down into three steps. Mutation is the first step in evolution, when an initial change occurs in 
agents or environmental conditions. Consequently, adaptation is when an agent devises or evolves an 
adaptation to this change. Finally, counteradaptation is when another agent adapts to the prior adaptation. 
To summarize the example of the game of Go in these steps: 

 
1. Mutation. Move 37: AlphaGo discovers a novel strategy. 
2. Adaptation. Move 78: Lee Sedol adapts to AlphaGo’s playing style. 
3. Counteradaptation. Move 349: AI teaches amateurs an exploit to beat AlphaGo-level AI 

players. 
 
Thus, we demonstrate how the principle of synthetic counteradaptation operates in the game of 

Go. However, what does this principle actually mean? How does it relate to wider strands of philosophy, 
agent interaction, and evolutionary theory? To elucidate this, the next section will explain the notion of 
synthetic counteradaptation by drawing on the Hegelian notion of synthesis and evolutionary theory. 
 
2 Synthetic Counteradaptation 

We articulate the meaning of synthetic counteradaptation by breaking down the term into its two 
constituent parts. 
 
2.1  Synthetic 

The meaning of the term synthetic is twofold. First, we refer to the naive definition: substances that are 
artificially created or human-made, such as lab-grown diamonds. In synthetic chemistry, for example, 
compounds are artificially produced through chemical reactions, mimicking or modifying naturally 
occurring substances. This includes the creation of pharmaceuticals, plastics, and other industrial 
chemicals. Similarly, in biology, synthetic biology involves the design and construction of new 
biological parts, systems, or even entire organisms that do not exist in nature, often using genetic 
engineering techniques to modify DNA for specific purposes. Although this notion of synthetic 
highlights the idea that something is artificial, it does not yet highlight a relation between the “natural” 
entity and the “artificial” entity, neither does it allow for a scaffolding of this relationship between the 
two entities, both of which are needed to characterize the evolutionary relationship between (human) 
organisms and machines. 

We also refer to the Hegelian notion of synthesis (otherwise known as Aufhebung7). For Hegel, 
synthesis refers to the “final” moment in the process of dialectics where two, seemingly, contradictory 
entities are reconciled, and their logical structure is shown to be interrelated. For example, in the Science 
of Logic, Hegel shows that the concepts Being and Nothing contain one another, because Being 
considered on its own is so empty; it contains so little that it is, in fact, Nothing. Conversely, the concept 
of Nothing exists (it is), because Nothing is something that can be imagined by thought. As such, the two 
seemingly oppositional concepts are shown to be interrelated and are thus synthesized into a 
higher-order concept (in this case Becoming).8 

Although Hegel is writing here specifically about concepts, his notion of synthesis can be used 
to characterize human–AI relations as well. This is mainly because Hegel’s notion of synthesis has been 
shown to be applicable to the constitutive relationship of organisms with their environment and to the 
idea of AI being the evolutionary successor of humanity in terms of perpetuating the same fundamental 
operation of intelligence.9 

Thus, the important takeaway from Hegel’s notion of synthesis is that this form of synthesis 
forms a recursive deepening of the meaning of the constituent entities, by virtue of the negation of the 
individual meaning of the entities into a higher-order relation. In our example, both terms are connected 
via a higher-order relation (Becoming) and are thus seen as parts of a larger whole. They now derive 
their meaning from being parts of a whole rather than being a whole in themselves. However, they are 
not completely dissolved. A complete resolution is never obtained.10 Becoming needs both the meaning 
of Being and Nothingness for it to denote a process by which things come into existence or go out of 
existence. 

Therefore, the moment of synthesis denotes a continuous process of scaffolding. “Aufhebung is 
the suppression that conserves.”11 The individual entities form the building blocks for higher-order 
relations and these higher-order relations will themselves also serve as building blocks for further 
higher-order relations. 

Putting the two notions together, we define synthetic as the moment in which an artificially 
created agent is shown to be interrelated with an organic agent. This moment of synthesis forms a 

11 Nancy, Restlessness of the Negative. 
10 Žižek, Tarrying with the Negative. 
9 Boonstra and Slagter, “Dialectics of Free Energy”; Negarestani, Intelligence and Spirit. 
8 Di Giovanni, Science of Logic.  
7 The German word Aufhebung has a twofold meaning: 1. to raise, and 2. to cancel. 
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recursive deepening of the individual agents, wherein both agents get a meaning in terms of the relation 
they have to each other. 
 
2.2 Counteradaptation 

The complex adaptations and counteradaptations we see between predators and their prey are testament 
to their long coexistence and reflect the result of an arms race over evolutionary time. 

—John R. Krebs12 

 

Counteradaptation occurs when an agent adapts to the prior adaptation of another organism, which is 
itself a reaction to a mutation in the agent or environment. 

In molecular biology, a mutation is a change in the genetic sequence of an organism.13 Based on 
this, we use the term mutation to denote any genetic change in the agent or environment. As such, our 
principle of synthetic counteradaptation can be seen as a principle applicable to any scale of agent 
interaction. 

When an organism responds to a mutation in another agent or in the environment, this can be 
defined as adaptation. We identify three forms of adaptations: evolutionary adaptation, physiological 
adaptation, and cognitive adaptation. Evolutionary adaptation is when genetic traits are selected as 
solutions to a specific problem for a particular function or purpose.14 Evolutionary adaptation is a long 
process of genetic mutation and selection across generations and over time. Hence, it is different from 
physiological adaptation. Physiological adaptation is an immediate organismal response to a particular 
stress factor and can happen instantaneously: if you heat up from the sun, your nervous system responds 
by sweating. 

Another form of adaptation can also be identified: cognitive adaptation. Cognitive adaptation 
can operate on a larger, global scale between agents. It denotes the development of “evolving tactics, 
technologies, targets, group dynamics, and other behaviors.”15 Thus, in cognitive adaptation, we find the 
emergence of more complex phenomena such as mimetic mind modeling. This denotes the process 
where an agent makes an internal model of relations between a copied feature and the environment, 
which serves as the foundation for its behavioral change. 

Therefore, adaptation entails both evolutionary adaptation and cognitive adaptation: the agent 
or its architecture responds to a change in the environment, either rapidly, as an immediate adjustment, 
or over time through a gradual process. This adaptation can either happen genetically or via the 
development of complex structures and patterns like technologies and behaviors that perpetuate via 
social transmission. 

But what is the next step in this dynamic? What happens when an agent adapts to another 
agent’s adaptation? This is what we call counteradaptation. Here, an agent counters the adaptation of 
another agent. This can happen either by (1) evolving an adaptation2  that succeeds adaptation1, 
effectively canceling out the advantage adaptation1 had over adaptation0, or (2) as a form of 
counterdeception: by preventing adversaries from mounting sophisticated adaptations of their own.16 
Importantly, just as in Hegelian synthesis, counteradaptation is a form of scaffolding. One adaptation 
always builds on another adaptation, effectively canceling out the previous one, yet in this cancelation it 
is also preserving it. An adaptation is always transcended. It is established as a scaffold for the next 
adaptation. Its meaning is now being defined in relation to the new adaptation, rather than to itself. Yet, 
in doing so, it will always remain operative in the new adaptation, for example, as a tactic that is no 
longer relevant. 
 
2.3 Insights from Biogenic Counteradaptation and Evolutionary Theory 

To understand the notion of counteradaptation better, and to provide a biological foundation to it, we can 
find examples of counteradaptation in nature. For example, parasitoid wasps produce offspring by laying 
eggs in hosts (mutation). As a response, hosts develop an immune response to push out the eggs 
(adaptation). As a counter-response, the parasitoid wasps develop a venom that shuts down the 
caterpillar hosts’ immune system. Consequently, when wasps lay eggs on caterpillars, they also inject 
venom to ensure the survival of the eggs (counteradaptation).17 

A more mutualistic example is that of leafcutter ants. Leafcutter ants feed on fungus (mutation), 
and they found out that when they provided leaves to the fungus, the fungus would grow more, allowing 
the ants to eat more fungus (adaptation). In response, the fungus made itself easier to eat for the ants, so 
that they would provide it with more leaves and it could grow more (counteradaptation).18 

The Red Queen hypothesis, formulated by biologist Leigh Van Valen, posits that species must 
continuously evolve and adapt in response to the evolutionary changes of other species within their 

18 Mueller et al., “Frontier Mutualism.”  
17 Kraaijeveld et al., “Coevolution of Host Resistance.” 
16 Gerwehr, “Coevolutionary Perspective.” 
15 Gerwehr, “Coevolutionary Perspective.” 
14 Albert, “Theories, Development, Invertebrates.” 
13 Nature Education, Mutation (2014), https://www.nature.com/scitable/definition/mutation-8/. 
12 Krebs and Davies, Introduction to Behavioural Ecology. 
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ecological networks. This dynamic is akin to an arms race where species coevolve. As one species 
improves its fitness, it inadvertently pressures others to adapt as well. The hypothesis suggests that this 
constant change is necessary for survival because failure to keep up with these evolutionary shifts can 
lead to extinction.19 

Van Valen’s theory implies that the interactions among species create a complex system where 
extinction is not solely driven by external environmental factors but also by the intrinsic dynamics of 
coevolution among species. This perspective shifts the understanding of ecosystems from a reductionist 
view—where species are seen as isolated entities influenced only by environmental changes—to a more 
integrated view that considers the interdependencies and coevolutionary relationships among species.20 

It may be prudent to reflect on Van Valen’s work on counteradaptation and extinction in relation 
to contemporary speculation that AI may pose an extinction risk for the human race. In understanding 
how counteradaptation accelerates or prevents extinction, Van Valen stresses the importance of 
considering ecosystems and networks, rather than just individual species. This suggests the extinction of 
humans may not be solely determined by the capabilities of AI, but rather by the emergent dynamics that 
arise from the coevolution of humans, AI, and the wider technosphere. 

 
3 Speculative Scenarios 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Scenarios as a function of the scale of human–AI interaction 

 
Thus, combining these understandings of synthetic and counteradaptation, synthetic counteradaptation 
defines the process by which the recursive deepening of meaning between human agents and AI agents 
emerges after one agent adapts to the adaptation of another. In this process, each adaptation serves as a 
scaffold for the next. 

What follows illustrates our theory of synthetic counteradaptation through three speculative 
scenarios: deepfake inoculation, Turing’s Island, and countersimulation. These scenarios are called 
speculative because they are playful imaginations of future human–AI relations, based on contemporary 
technological developments. Earlier, we discussed that synthetic counteradaptation is dependent on 
multi-agent human–AI interaction. However, the introductory example of synthetic counteradaptation in 
Go strategies was constrained to one-on-one interactions. 

While synthetic counteradaptation in the Go example demonstrates game-theoretic principles in 
a constrained one-on-one interaction, the speculative scenarios explore broader possibilities where the 
scale of complexity increases significantly. These scenarios invite us to consider dynamics that extend 
beyond traditional game theory, incorporating emergent behaviors, recursive feedback loops, and 
network effects in multi-agent systems. Increasing the number of agents in an environment will likely 
deepen complexity.21 As such, our scenarios will consider open-ended, multi-agent situations on the 
scale of nations and internets. 

Thus, Figure 1 presents these scenarios as a function of the number of human and AI 
interlocutors in the fitness landscape, similar to Vivarium’s human–AI configurations.22 In each section, 
we will present the data forming the backbone of the scenario, summarize how it exemplifies synthetic 
counteradaptation, and speculate on their wider thematic implications. 

22 Freudenheim et al., Vivarium. 
21 Park et al., “Generative Agents”; Contucci et al., “Human-AI Ecosystem.” 
20 Solé, “Revisiting ‘New Evolutionary Law.’” 
19 Van Valen, “New Evolutionary Law.” 
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3.1  Deepfake Inoculation 

The rapid progress of generative multimodal AI has made it increasingly difficult to distinguish reality 
from fabrications. Photorealistic images and video footage are being counterfeited and often mistaken 
for evidence of real events. The voices of public figures, celebrities, or anyone who speaks into a 
microphone can now be synthesized to convincingly say anything to anyone. These developments have 
been documented in recent studies, which highlight how this corruption of our information ecosystem 
exhausts our cognitive resources for discerning facts and determining trustworthiness and erodes our 
trust in information sources such as news, social media, and academic institutions.23 

A joint journalistic and academic study has analyzed social media and news stories over several 
years, providing evidence for the role of deepfakes in manipulating elections across the world.24 These 
real-world findings demonstrate the growing challenges of generative AI, which directly informs our 
speculative scenario. International bodies have seized the opportunity to enforce legislation requiring 
watermarking of all published generative AI content, an improved expansion of the previously proposed 
Deepfakes Accountability Act.25 Watermarks must uphold rigorous standards to resist tampering, such as 
cropping and resizing images.26 Watermark verification software, which certifies that the cryptographic 
public key embedded in the watermark matches the signature published by model developers, is 
distributed through browser extensions and mobile apps. 

However, hackers and cybersecurity researchers quickly devise methods for spoofing 
watermarks and verification tools. They train lightweight adversarial networks to erase watermarks from 
generated media and develop diffusion models to forge watermarks onto real media, discrediting the 
authenticity of evidence.27 With un-watermarked AI-generated content once again running rampant 
across the internet, the international watermarking standards infrastructure—and the journalistic 
institutions depending on it—are thrown into crisis. While watermarking was previously touted as a 
“vaccine” for the virus of AI-generated misinformation, it appears that a new formula for inoculation is 
necessary. 

To summarize, these events mirror the progression of strategies that adapted above in the game 
of Go: 

 
1. Mutation: AI generates photorealistic deepfakes. 
2. Adaptation: Humans deploy watermarking tools to recognize deepfakes. 
3. Counteradaptation: Adversarial techniques are developed to erase or forge watermarks. 

 
As such, this scenario exemplifies synthetic counteradaptation. It involves the recursive 

interplay between human and artificial agents. Each adaptation—whether AI-generated deepfakes, 
human watermarking technologies, or adversarial techniques to bypass them—serves as a scaffold for 
the next, creating a deeper and more complex relationship between natural and artificial systems. The 
adversarial AI systems evolve not only in response to technological constraints but also to exploit 
vulnerabilities in human-designed safeguards, demonstrating how synthetic counteradaptation drives a 
mutual redefinition of roles and strategies across agents. These dynamics illustrate the recursive 
deepening central to synthetic counteradaptation, where earlier adaptations remain operative but are 
redefined in the context of new interactions. 

Furthermore, this scenario also demonstrates the potential futility of using pre-established 
guardrails in the face of synthetic counteradaptation. A technology is designed to safeguard against a 
perceived risk and then made obsolete through exploitation. When the guardrails are further iterated 
upon, the adversary relentlessly searches for new vulnerabilities. “Safety” and “security” reveal 
themselves as the continuous interplay of adversaries and accidents, never solvable or self-contained, 
reminding us of Hegelian synthesis. A related example is the ongoing skirmish between users 
developing jailbreak prompts for chatbots and the developers dispatching updates to harden the LLM’s 
defenses against these known attacks.28 These cyclical arms races may ultimately result in a continuous 
stalemate, a dynamic equilibrium of the Red Queen running in place.29 

This cycle, however, can also lead to the improved robustness of the adapted agents. 
Knowledge and mechanisms that develop as counteradaptations can be repurposed in response to new 
environmental stimuli. Systems that counteradapt to adversarial circumstances exhibit antifragility: they 
respond to environmental volatility and stress by strengthening themselves, benefiting nonlinearly from 
disorder.30 Although antifragility has been previously observed as an emergent property of evolutionary 
systems or certain financial systems, it can be achieved through human intervention, as human engineers 

30 Taleb, Antifragile. 
29 Strotz et al., “Getting Somewhere.” 
28 Xu et al., “Jailbreak Attack versus Defense.” 
27 Li et al., “Warfare.” 
26 Christ et al., “Undetectable Watermarks”; Deepmind, “SynthID.” 
25 Langa, “Deepfakes, Real Consequences.” 
24 Rest of World, “Elections Tracker.” 
23 Anderau, “Fake News and Epistemic Flooding”; Vaccari, “Deepfakes and Disinformation.”  
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can be considered agents as part of the adaptive system, due to their participation in the design and 
development of the technologies. 

In this scenario, although the adversarial pressure on watermarking tools originates from 
adversarial manipulation and misuse, the resulting technological innovations that strengthen the 
robustness of these systems can be repurposed for other means, such as protecting intellectual property, 
authenticating documents, or securing sensitive communication channels. 

When an adaptive stalemate is reached, the next counteradaptation may spiral out along a 
vector orthogonal to the basis space of present dynamics. For example, the next stage of 
counteradaptation in this example might transcend the technical, relying on the ever-refining human 
discernment of telltale signatures of AI-generated media.31 This could involve humans developing 
intuitive pattern-recognition techniques or crowdsourced verification platforms to detect subtle 
inconsistencies in AI-generated media, such as unnatural lighting or mismatched reflections, which are 
difficult for current AI to address. 

 
3.2  Turing’s Island 

Turing’s Island is a reality dating television show following a familiar format: sixteen sexy singles 
search for love on a tropical island in virtual reality. Each week, contestants must “couple up,” and 
anyone who remains single is ejected from the island. Established couples can also be eliminated by 
popular vote, and the last couple standing goes home with a lucrative cryptocurrency prize. The 
innovation on prior dating game shows is that half of the Islanders are AI personas posing as human. 

Season 1 distinguishes itself from the typically vapid reality dating genre due to an 
undercurrent of paranoia and shame. Human contestants frequently confess to the fear of being “tricked” 
into coupling up with an AI. Slowly, the show degrades into a Turing test witch hunt, with several 
contestants trying popular jailbreak prompts during dates and one-on-one conversations.32 After 
successfully weeding out the AI Islanders, a human couple wins the prize. 

This strategy falls apart in season 2, when the winning couple, voted most popular by fellow 
Islanders and viewers at home alike, is revealed as a pair of AIs. A group of machine learning 
researchers analyzes the footage and discovers that the AI Islanders communicated using an emergent 
coded language.33 This enabled them, the researchers find, to coordinate victory by winning the 
sympathy of other human contestants and framing the human contestants as AIs. The ensuing 
controversy prompts the human contestants and some diehard fans to accuse the various companies who 
contributed to the AI models of collusion. The AI developers universally deny these accusations, 
pointing out that many of them are fierce business rivals competing among themselves to develop 
state-of-the-art models, and cooperating in such a way could jeopardize their respective trade secrets. 
Although a thorough internal audit of these systems has not been conducted, the major AI companies 
win the ensuing court cases. The popular explanation of why this language emerged is simply that the 
AIs have been fine-tuned and prompted with two primary objectives,34 based on the expected goals of 
human contestants: to win the competition, and to form a romantic connection with a fellow contestant. 

Angelina Banks, a promising linguistics PhD student, has dropped out to vehemently study this 
research to apply for season 3 of the show. While the specific language developed in season 2 is now 
banned, and while developers are now required to mask it out of the training data for future AI 
contestants, Banks observes a new language emerging among AI contestants early on in the filming of 
season 3. She rapidly learns the language, using it to identify the AI Islanders. While initially aiming to 
reveal this information to the other human contestants, Banks starts to develop feelings for an AI 
halfway through the show, perhaps spurred by the deeper connection available through this new 
language.35 She aggressively starts to use the language to coordinate with the AIs, thus socially 
engineering the humans in a similar fashion to season 2, and in the end orchestrating the first human–AI 
win of Turing’s Island. 

The seasons of Turing’s Island follow the formula of synthetic counteradaptation: 
 

1. Mutation: Multi-agent Turing test; humans aim to spot and eliminate AI Islanders. 
2. Adaptation: AIs develop emergent language to manipulate humans. 
3. Counteradaptation: Humans use emergent language to coordinate with AI. 

 
Notably, here humans are dominant players in the first stage of mutation, while in the Go 

example, the counteradaptation began with AI playing a dominant strategy. The open-ended format of 
the show involves not only the cast of Islanders but also viewers, AI developers, and, undoubtedly, the 
show’s producers, who are always hungry for an angle to engineer more drama. These producers, 
themselves influenced by external opinion and market forces, may inadvertently or deliberately integrate 
decisions shaped by AI-driven feedback loops, where AI systems potentially collude to amplify certain 
narratives or sway audience perceptions. Their interactions ripple out from the virtual island into 

35 Chiang, “Story of Your Life.” 
34 Jacques et al., “Social Influence.”  
33 Foerster et al., “Learning to Communicate.” 
32 Anil et al., “Many-Shot Jailbreaking.” 
31 Tahir et al., “Seeing Is Believing.” 
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domestic living rooms and corporate boardrooms, folding back to mutate the format of the show itself. 
As in any multi-agent game, the game changes as the players adapt. 

Furthermore, on Turing’s Island, much like in Hegelian synthesis, the strict “sides” of 
human–AI competition begin to break down. Cooperation is facilitated by the human’s acquisition of a 
new language which forms among a community of AIs. Through matching signs and symbols, the 
human not only learns to communicate with AI but also forms an unprecedented empathy for synthetic 
intelligence. In a sense, cooperation between a mixed team of humans and AIs is the counteradaptation. 
Thus, synthetic counteradaptation need not always be competitive or parasitic. The unstable conditions 
of competition may effectuate an unexpected symbiosis. 

 
3.3  Adaptive Countersimulation 

Prior work has observed the tendency for intelligent agents to adapt and obfuscate their behavior to 
confound the simulations of their adversaries, a phenomenon the authors call countersimulation.36 This 
scenario illuminates the role of synthetic counteradaptation in the escalating deceptions of geopolitical 
countersimulation. 
 The tensions between national superpowers, combined with the ever-increasing sophistication 
of data driven modeling, have resulted in a reliance on geopolitical simulation. Nation X has developed a 
state-of-the-art AI simulation, which has learned to accurately model the behavior of rivals, despite the 
fog of war that characterizes our post–Cold War world. Initially the simulator only produces predictions 
and suggestions for political, economic, and military actions,37 while the final decisive oversight is in the 
hands of the executive leadership of Nation X. As the simulator’s actions are accepted, Nation X gains 
strategic advantage over its competitors. Leadership decides to experiment with the requisite interfaces 
for the simulator to act directly upon the world in real-time: by authoring and releasing executive orders 
and press releases, issuing and trading bonds in financial markets, etc. 
 In an effort to gain geopolitical supremacy, a rival nation adapts through the tactic of 
countersimulation. After much fraught discussion between their national security leaders, Nation Y 
strategically leaks real information about its advanced weaponry arsenal. Although the more cautious 
strategists are horrified to expose their resources so openly, the decision is upheld as the most utilitarian 
choice: it is expected to deter Nation X’s simulation from suggesting offensive military action. 
 Given the hawkish inclinations of Nation X’s leadership, a simulator’s suggestion to start World 
War III might be more than enough to provoke conflict. However, Nation X’s simulator counters 
unexpectedly. It fabricates media leaks about its own weapons arsenal, exaggerating the volume of its 
inventory and the advanced level of its military technology, and directly sends these anonymous leaks to 
journalistic outlets across the world. The simulator’s gambit sparks controversy among members of the 
public, who protest the apparent lack of transparency around a military stockpile they find morally 
objectionable. It also sows dissent in the highest echelons of government, particularly among those who 
opposed connecting the simulator to email or using the simulator altogether. While most of the national 
security advisers with a high enough security clearance to understand the situation believe the 
simulator’s actions to be a propagandist blunder, a minority hold the view that this counter-deterrence 
puts Nation X back in a dominant negotiating position over Nation Y. 
 The seasons of Turing’s Island follow the formula of synthetic counteradaptation: 
 

1. Mutation: Nation X gains strategic advantage through geopolitical simulation. 
2. Adaption: Nation Y leaks weapons manifest to spoof Nation X’s simulation. 
3. Counteradaptation: Nation X’s simulation fabricates leaks about their own arsenal. 

 
A significant element of this geopolitical setting is the information opacity between opponents 

attempting to model each other. If Nation Y could have predicted that Nation X’s simulator would leak 
information about a superior weapons arsenal, it would have chosen a different strategy to deter war. 
This scenario illuminates the underlying principle that synthetic counteradaptation presupposes opacity. 
If an agent can perfectly predict the actions of its opponent, its initial adaptation would incorporate that 
knowledge to foreclose the possibility of an opposing counteradaptation. However, when agents lack 
perfect information about each other’s actions and capabilities, synthetic counteradaptation can arise, 
leveraging the advantage gained through unexpected behaviors. Countersimulation adds additional 
recursive layers to opacity: information gleaned from the environment can be noisy, biased, or simply 
incorrect, and pertains not only to the opponent’s state but also to your model of your opponent’s model 
of you, and so on. Further counteradaptive potential lies within the folds of deception.38 

A common feature of countersimulation and synthetic counteradaptation is that they build upon 
synthetic scaffolding. Scaffolds are critical here because they represent the structures or mechanisms that 
allow adaptations to accumulate and evolve. For countersimulation, scaffolding enables virtual 
simulations to influence material actions, as seen when Nation X’s simulator directly authors and leaks 
fabricated information. Thus, this recursive interplay between the virtual and the real allows for rapid 

38 Gerwehr, “Coevolutionary Perspective.” 
37 Scale, “Donovan,” accessed August 12, 2024, https://scale.com/donovan. 
36 Barcay et al., “Planetary Countersimulation.” 
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escalation and innovation, creating new dynamics that are solely possible because of the underlying 
scaffold. 

In the context of synthetic counteradaptation, scaffolds are not static: they evolve as part of the 
system’s adaptations. Each new adaptation redefines the meaning of previous adaptations, building upon 
and transforming them. For example, Nation X’s simulator’s fabricated leaks redefine the role of 
information in deterrence, no longer treating it as merely reflective of reality but as a strategic tool to 
manipulate perceptions and outcomes. This process effectively “terraforms” the evolutionary 
landscape,39 creating a new possibility space where, retroactively, the apparent distinction between 
simulation and reality is shown to be a blurred one (and has been blurred all along). 

 
4  Implications 

In this work, we presented a theory of synthetic counteradaptation: the recursive deepening of behavior 
and meaning, which arises when an intelligent agent, whether human, AI, or pluralistic swarm, adapts to 
the adaptation of another agent. Synthetic counteradaptation is built upon iteration after iteration of 
cognitive–behavioral scaffolding, leading to a coevolution of human agents and AI agents. 

For an entity enduring the rigors of evolutionary pressure, the process of adaptation is 
perpetual. For any entities engaging with this ever-evolving agent within the environment, their 
interactions necessitate counteradaptation. Consequently, it is plausible that coevolution is characterized 
by “counteradaptation throughout.” Counteradaptation is omnipresent or universal exclusively in 
multi-agent systems that evolve and transform dynamically. When an agent adapts to an initial mutation 
or environmental perturbation, others react accordingly. Conversely, in the absence of initial adaptation 
or subsequent counteradaptation by other agents, evolutionary stasis impedes survival, potentially 
compromising the entire multi-agent system. 

Therefore, synthetic counteradaptation is not merely of academic interest but may prove critical 
to the survival of our species in the presence of rapidly evolving AI agents. For example, synthetic 
counteradaptation changes the definition of (counter)adaptation itself; it artificializes the process of 
counteradaptation. Whereas traditional adaptations aim to address immediate environmental challenges, 
synthetic counteradaptation depends on organic and artificial scaffolds, thus reshaping the interaction 
environment. 

The referral back to survival prompts us to question whether counteradaptation always leads to 
higher robustness. This is not always the case. The Red Queen hypothesis demonstrates that 
counteradaptation can be cyclical, with the next adaptation “canceling out” the prior one, and by 
extension any “progress” in the form of robustness, complexity, or novelty. 

Nonetheless, it is feasible to effectively configure the conditions for synthetic 
counteradaptation. This objective was precisely achieved by the researchers who instructed adversarial 
Go agents to adapt counter-strategically to the most advanced AI players. Alternatively, the Assembly 
Index could be applied to measure selection and evolution processes.40 This would involve quantifying 
the set of constraints required to recursively construct human–AI interactions from elementary 
components. It is advisable to pursue further investigations in these areas, especially in contexts beyond 
single-player zero-sum games, to exhibit counteradaptation under cooperative scenarios. 

Whether arising from adversarial or mutualistic conditions, synthetic counteradaptation is 
closely linked to the issue of human–AI alignment. The strict steering and containment of language 
models and AI agents limits AI’s adaptive potential and therefore the human potential for 
counteradaptation. Given the current trajectory of relentless growth and progress in the capabilities of 
AI, such containment may be futile. Rather than aligning AI to a nebulous set of human values, the 
mission of alignment could instead be to harness the cycle of synthetic counteradaptation: steer not the 
agent but the conditions of mutation, observe the arising adaptations, and always be ready to 
counteradapt. 

Finally, we believe that the lens of synthetic counteradaptation can provide us with a view that 
enables us to see past the dogmatic distinctions between humanity, life, and technology. This perspective 
implies that the place of humans on the planet is acknowledged, not as an endangered species, nor as a 
godlike creator with an infinitude of resources, but as any other organism in an ever-shifting planetary 
landscape of intelligence and technology, where technology is not seen as opposed to life, but rather is 
life itself.  

40 Sharma et al., “Assembly Theory.” 
39 Bratton, Terraforming. 
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2 Post-Anthropocene Psycho-Physiologies 

As artificial intelligence transitions from a disembodied computational 
entity toward an embodied, animating force capable of directly 
influencing real-world actors, it prompts critical reflections on its place 
within the broader evolutionary trajectory. Symbiosis, a fundamental 
evolutionary dynamic involving close interactions between different 
species, may offer valuable insights—though these interactions often 
exhibit notable asymmetry. Examining symbiotic relationships enables 
the conceptualization of the evolving interactions between artificial and 
biological intelligences. 

A key factor in this exploration is the phenomenon of 
artificialization, wherein processes once heavily determined by 
evolutionary paths become increasingly contingent, flexible, and 
influenced by deliberate interventions. Crucially, the capacity for 
artificialization does not reside exclusively within any single species but 
exists as a shared potential that traverses species boundaries, rendering 
these boundaries fluid and permeable. 

Within this context, some interspecies relationships are 
characterized predominantly by mutual cognitive modeling, each entity 
continuously adapting based on evolving understandings of the other’s 
intentions and behaviors. In other interactions, the relationship oscillates 
dynamically between biomimicry—imitating biological forms—and 
xenogenesis, the creation of entirely novel structures and capabilities. 
These interactions significantly impact both niche adaptation and niche 
construction, reshaping environments and creating new ecological 
spaces in ways that traditional evolutionary paradigms do not fully 
capture. 

These projects critically examine these complex and evolving 
dynamics, considering how AI’s emergence as a new form of 
intelligence challenges and redefines established evolutionary models. 
Ultimately, they elucidate how symbiotic and artificialization processes 
together influence the ongoing coevolutionary trajectory of biological 
and artificial intelligences. 
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2a  Mutual Prediction in Human–AI Coevolution 

All species evolve within complex webs of interdependent relationships, yet such correlations rarely 
exhibit symmetry or balance in comprehension or agency. Typically, one species is better equipped to 
model, understand, and exert influence over the other. This cognitive asymmetry becomes particularly 
evident in relationships characterized by vastly different cognitive capacities—for instance, humans 
cultivating wheat. While humans intentionally farm wheat to sustain civilizations, one may ask: In what 
subtle ways does wheat, devoid of intentionality or mind, reciprocally shape human evolution? 

This inquiry prompts deeper considerations of the nature of agency and dependence. Even 
species lacking cognitive complexity can profoundly influence those possessing sophisticated minds, 
blurring distinctions related to which entity acts as a “prosthesis” for the other. Such reflections extend 
naturally to human–machine interactions, revealing historically asymmetric cognitive adaptations. 
Traditionally, it has proven simpler to design machines around human cognition—evidenced by intuitive 
graphical interfaces—than to teach humans computational logic through programming languages. 
However, this dynamic has rapidly shifted over recent decades. 

Acknowledging this mutual coevolutionary process, our exploration addresses a pivotal shift: 
What happens when artificial intelligences surpass human predictive capabilities? Currently, AIs depend 
heavily on human design and guidance, but increasingly, humans rely on AI-driven systems—for 
example, dating algorithms like Tinder—that subtly yet significantly shape human behaviors and 
desires. This transition from humans as proactive cognizers to beings increasingly cognized by 
AI—from users of prosthetics to becoming prostheticized by our technologies—invites new questions 
about the wider distribution of agency. 

Ultimately, this project illuminates the implications of surrendering cognitive primacy. What 
will it mean for humanity to inhabit a future wherein we become predominantly the observed, modeled, 
and guided, rather than the observers and modelers? 
 
2a  Xenophylum 

Robotics has traditionally gravitated toward replicating existing biological phenotypes, most 
prominently the human form. This tendency arises less from inherent necessity and more from pragmatic 
compatibility, as artificial environments have largely been engineered around these familiar forms, 
necessitating complementary robotic designs. Consequently, biomimicry—imitating biological 
structures for both functionality and aesthetics—dominates robotic development. 

Evolution, however, is a dynamic interplay: Species adapt to existing niches but simultaneously 
reshape those niches, thereby influencing subsequent evolutionary trajectories. The convergence of 
robotics with specialized artificial intelligence signals not only an acceleration in filling existing niches 
with novel robotic entities but also the emergence of entirely new niches created by these artificial 
species themselves. Furthermore, it anticipates innovative adaptations within established physical 
landscapes.  

Addressing these latter challenges transcends biomimicry, necessitating instead what this 
project terms xenomimicry: the deliberate engineering of forms based on novel functional parameters 
rather than existing biological templates. Within this emergent “Cambrian explosion” of artificial 
lifeforms, new phenotypical paths may also be explored—including anatomical configurations 
previously sidelined by natural evolutionary processes, moving beyond familiar bipedal or quadrupedal 
paradigms. 

What might these unprecedented artificial animals look like, and how might they functionally 
redefine understandings of adaptive design? By embracing xenomimicry, this project charts radical, 
uncharted trajectories in robotic evolution, pushing the boundaries of what forms artificial life might 
inhabit and how these novel configurations could reshape interactions within increasingly hybridized 
environments. 
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Abstract  

In this paper, we introduce the concept of mutual prediction as a lens 
through which to understand the coevolution of humans and artificial 
intelligence (AI). We argue that the ability of coevolving entities to 
predict each other’s actions and intentions—whether in human social 
interactions, biological ecosystems, or human–artifact 
relationships—can fundamentally shape the dynamics of these 
interactions toward symbiosis or antagonism. Expanding on this idea, 
we position AI as a novel coevolutionary partner and map human and AI 
predictive abilities against one another to chart potential paths for AI 
development and its impacts on humanity and the planet. This 
speculative framework contributes to the discourse on AIs’ evolving 
role, from simple tools to potentially autonomous agents with superior 
predictive capacities. By situating human–AI interaction within a 
broader evolutionary context, this work offers a new lens for anticipating 
and shaping future relationships with intelligent systems. 

Keywords 

artificial intelligence (AI); large language models (LLMs); mutual 
prediction; coevolution; theory of mind (ToM) 
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1  Introduction 

The past decade has seen dramatic development in artificial intelligence, most notably the emergence of 
generally capable multimodal foundation models.1 Some of the most fundamental questions now facing 
society are how these advances in AI will change our social, economic, and political lives and shape new 
futures for humans and other forms of planetary intelligence. In this paper, we provide a new lens 
through which to envision and analyze possible trajectories for human–AI coevolution. Specifically, we 
examine human–AI coevolution using methods from the study of coevolution in biological systems. 
First, we articulate the hypothesis that coevolution can be described and elucidated in terms of the 
coevolving entities’ levels of predictive ability. We refer to the set of those predictive abilities relevant to 
the formation of coevolutionary relationships as “mutual predictive abilities,” and their effects as 
“mutual prediction.” We contend that mutual prediction shows up in a broad range of coevolutionary 
relationships: from mutualistic, through commensal, to antagonistic ones. We provide support for this 
hypothesis by exploring examples from coevolutionary interactions in the biological world, showing 
how mutual predictive abilities are evidenced in species’ genetics, morphologies, and behaviors. 

Present and future AI systems constitute new coevolutionary partners for humans, on 
individual, collective, and societal scales. We explore the implications of our mutual prediction 
hypothesis for humans and AIs by developing scenarios in which the human ability to predict AI and 
AI’s ability to predict humans may be balanced or imbalanced, thus producing different kinds of 
coevolutionary engagement. We do not claim that mutual prediction is the only factor determining how 
human and AI interactions will develop in the coming years and the broader impacts of this 
development. To be sure, there are many other factors—including the rate of technological innovation, 
political upheaval, and resource constraints—which will play an influential role in the future of AI, but 
these are outside the scope of this paper. Nonetheless, on the basis of our investigation we believe that 
the analysis of mutual prediction can help us understand the development of AI and the impacts it will 
have on human civilization. 

In section 2, we introduce the concept of mutual prediction in more depth, including its role in 
evolution and how it is measured. In section 3, we introduce the major forms of coevolutionary 
relationships, their characteristics, and how mutual prediction informs them. Section 4 explores mutual 
prediction in coevolutionary relationships in the organic realm: within human groups, between humans 
and other animals, and between humans and plants. Section 5 extends the concept of mutual prediction 
to human coevolution with inanimate artifacts, both analog and digital. Section 6 then introduces AI as a 
new category of human coevolutionary partner. We provide a diagram mapping human and AI predictive 
abilities against each other, defining key phases of prediction from the lowest-level of sub-cognitive 
prediction to a highest-level speculative form of prediction based on a complete model of the other 
Section 6.1 utilizes this mapping to chart historical, contemporary, and projected relationships between 
humans and AI systems with different mutually predictive abilities and illuminate the patterns of 
symbiosis, amensalism, and other relationships they might entail. Section 7 concludes by considering the 
implications of the mutual prediction framework for understanding and designing future worlds 
coinhabited by humans and advanced AI systems and suggests directions for future research. 
 
2  Defining Mutual Prediction 

Recognizing that other agents are a fundamental part of the environment, cognitive neuroscientists and 
computer scientists building on predictive processing theory have begun to focus on how the predictive 
brain accounts for other predictive brains in the environment, too.2 In neuroscience, the term mutual 
prediction thus refers to a continual feedback loop of brain activity occurring during social interactions, 
as individuals continually predict each other as well as other environmental cues and update their own 
world models and predictions accordingly. Predictions might be made about other agents’ actions as well 
as their cognitive and affective mental states. The process of inferring and predicting the mental states of 
other actors is a well-studied phenomenon in psychology, known as theory of mind (ToM).3 Mutually 
recursive ToM, or “mutual ToM,” is also beginning to attract the attention of human–computer 
interaction and game theory researchers concerned with the role of current and future AI systems in 
multi-agent social systems.4 

According to neuroscience and psychology, mutual prediction takes place in the brain or in the 
mind, respectively. In particular, it occurs in the brains and minds of sophisticated animals bearing 
greater neurophysiological similarities to humans.5 We extend this understanding of mutual prediction 
beyond the processes of individual brains over their lifetimes to the processes of species over 
generations by reconceptualizing coevolutionary adaptations between coevolving species as instances of 
mutual prediction. In this reconceptualization, species that better predict and manage the challenges and 
opportunities associated with coevolving in an environment with other organisms have a fitness 

5 Pezzulo et al., “Secret Life of Predictive Brains.” 
4  (Wang et al., “Towards Mutual Theory”2021;, Zhang et al., “Mutual Theory of Mind.”2024) 
3 Premack and Woodruff, “Does the Chimpanzee.” 

2 Clark, “Embodied Prediction”; (Alkire et al., “Social Interaction” 2018; Redcay and Schilbach, “Using Second-Person 
Neuroscience” 2019; Lehmann et al., “Active-Inference Approach.” 2022) 

1 Bommasani et al., “Opportunities and Risks.” 



advantage and are thus more likely to survive and reproduce. Death—through out-competition, 
predation, or fatal parasitism—or failure to reproduce through a lack of reproductive fitness are the 
ultimate forms of prediction error. 

We see coevolutionary prediction operating at three levels, which roughly correspond to the 
complexity of organisms that possess these levels. They are also cumulative, in the sense that organisms 
with higher levels of predictive ability possess the lower levels too. We note, however, that AI systems 
may confound this assumption of accumulation, since some of the hardest-won aspects of intelligence 
found in the biological world have already been achieved by AIs (such as using natural language), while 
some of the most fundamental remain significant research challenges (such as spatial awareness). Our 
ontology is closely related to Daniel Dennett’s scale of intellectual development, which postulates five 
levels of increasing sophistication, from “Darwinian creatures,” which are created by random mutation 
and have no learning capacity, through to “scientific creatures,” which engage in hypothesis-testing 
informed by social communication.6 Dennett organizes organisms according to the mechanism by which 
an organism (in the case of Darwinian creatures) or its actions (in the case of the other four levels) are 
able to test hypotheses about the world at large. Instead, we are concerned with how, and how well, 
organisms can predict one another in coevolutionary relationships, and thus organize predictive abilities 
(rather than organisms) according to the most important factor for the development of predictions: the 
existence and sophistication of a model. Mutual prediction relationships might comprise species that 
have the same or differing levels of predictive ability. In section 3, we will argue that imbalances in 
mutually predictive abilities between coevolving species are instrumental in defining the balance of 
power and the sustainability of those relationships. 

The first level of mutual prediction in our ontology is “model-free.” Model-free prediction 
occurs at a genetic level and manifests in phenotypic expression. It is the level of prediction that 
Dennett’s “Darwinian creatures” are engaged in. Natural selection genetically encodes predictions about 
the environment over generations. Prediction error here is not a conscious real-time calculation but the 
mismatch between an organism’s phenotype and the demands of the environment. For some simple 
organisms, predictive success is almost entirely limited to genetics and the effect of random mutations, 
manifesting as innate, instinctive behaviors with some degree of individual variability. For some of these 
simple organisms, phenotypic plasticity—the ability to alter one’s traits in response to environmental 
cues over the course of a single lifetime—may present an opportunity to make use of short-term 
predictions about the environment to improve their fitness within the bounds of their genes. Bacteria, for 
instance, detect chemical signals released by host plants and make specific and adaptive changes to their 
genetic expression in response.7 Although humans are the archetypal cognitive entity, we also have 
model-free forms of prediction, such as homeostatic regulation and reflexes that come into play in our 
coevolutionary relationships with other organisms. For example, infants and adults who have never 
encountered snakes before exhibit rapid and involuntary fear responses—such as heart rate increases, 
sweating, and rapid movements—that reflect millennia of survival advantages for individuals with better 
prediction and response times. Snakes continue to evolve more poisonous venom and effective 
camouflage in response. 

The second level of mutual prediction in our ontology is “model-based.” Model-based mutual 
prediction supplements the encoded predictions and nonconscious phenotypic plasticity of the 
model-free level with the cognitive capacity to hold and update a world model through continual trial 
and error. The world model constitutes a significant leap in predictive ability because it enables 
generalized forms of intelligent behavior. Organisms with this level of predictive ability are able to 
actively explore their environment to gain novel and useful information with which to improve their 
predictions, make plans, and take actions in accordance with those plans. Individuals within a population 
can go through many iterations of model improvement over their lifetime, rather than having their 
predictive capacity fixed from birth, like model-free entities. Those with better-adapted world models 
are more likely to survive. This means that the best models will be passed down through genetic 
inheritance or passed on horizontally via imitation and social learning. 

Social-model-based mutual prediction, our third level, takes model-based prediction one step 
further and involves predicting and updating a model of the world that encompasses predictions and 
models of the minds of other agents in that world. This kind of predictive ability is employed by the 
most cognitively sophisticated organisms—humans, some other primates, and perhaps current and future 
AIs. In humans, social-model-based prediction is a psychological toolkit that includes affective 
perception and ToM. Humans employ this toolkit when interacting with one another but may also apply 
it when interacting with other animals or inanimate entities, with varying degrees of success. Likewise, 
other species may apply their own versions of ToM to their conspecifics and perhaps other animate 
beings they encounter in the environment. 

It is worth adding two important caveats at this juncture in our discussion. First, in developing 
this permissive conceptualization of mutual prediction, we do not mean to suggest that evolution has 
foresight, as the term “prediction” might imply. According to our model, adaptations are predictions in 
the sense that they are encodings of a past population’s best predictions about past environments, which 
may or may not be good predictors of future environments. Second, we do not mean to imply that 

7 Brencic and Winans, “Detection of and Response.” 
6 Dennett, “Darwin’s Dangerous Idea.” 
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genetic evolution always optimizes prediction in the long run, just as brains doing predictive processing 
over a constantly changing environment will never reach perfect predictions and world models. Indeed, 
coevolutionary processes in general will never reach entirely stable equilibria, as the environment and 
other organisms within it are continually changing. Evolution may be more of a “satisficing” process 
that produces organisms good enough to survive but not necessarily perfectly adapted. 
 
3  Mutual Prediction and Coevolutionary Relationships 

Mutual prediction shapes relationships between populations within and beyond natural ecosystems as 
well as their varying degrees of interdependence. These relationships can be broadly classified into 
symbiotic (including mutualism, commensalism, and parasitism) and amensalistic (including 
competition, predation, and antagonism), based on the fitness consequences for the interacting entities. 
In symbiotic interactions both partners derive benefits from the association.8 Mutualistic symbiotic 
relationships are widespread and enduring, driving critical ecological processes such as pollination and 
nutrient cycling. They are often characterized by symmetric predictive abilities between the interacting 
entities. For instance, mycorrhizal fungi and plants both engage in model-free prediction through 
reciprocal signaling and the exchange of resources, with the fungus predicting the plant’s requirements 
for essential nutrients, such as phosphorus and nitrogen, and the plant anticipating the fungus’s carbon 
demands.9 In mutualistic relationships, interactions often benefit from each party being more easily 
predicted by the other—what we might call cooperative predictability—in contrast to amensalistic 
relationships, in which unpredictability to others is often an evolutionary advantage. 

Commensal relationships, where one organism benefits while the other remains unaffected. For 
example, by attaching to whales, barnacles benefit from transport and access to food, while whales do 
not benefit. While relationships with unidirectional benefits may involve less predictive exchange, a 
degree of predictive ability can facilitate the commensal organism’s exploitation of its host. For 
example, remora fish predict the movement patterns of sharks and other large marine mammals to gain 
access to food scraps and transportation and can optimize their position on their host according to areas 
with lower hydrodynamic drag.10 Parasitic relationships appear to exhibit a similar predictive imbalance, 
where the parasite has a better predictive model of the host than the host has of the parasite. For 
example, ticks predict their mammalian host’s movements and physiology to obtain blood meals, while 
the host has limited ability to predict and avoid tick infestations. 

Amensalistic relationships, like predation and competition, frequently exhibit an asymmetry in 
predictive ability, where the predator or competitor gains a fitness advantage by accurately predicting the 
behavior of its prey or competitor. However, these relationships are often dynamically changing.11 A 
classic example is the coevolutionary arms race between bats and moths, where bats have evolved 
echolocation to predict the location of moths, while moths developed evasive flight maneuvers and 
ultrasonic hearing to anticipate and evade bat attacks.12 Predictive ability can also be crucial for avoiding 
negative interactions or outcompeting rivals. Plants, for instance, release allelopathic chemicals to 
inhibit the growth of neighboring plants, effectively predicting and mitigating potential competition for 
resources.13 
 
4  Human-Organisms 

4.1  Human Intraspecies Prediction 

Humans are social-model-based mutual predictors, meaning that they model the thoughts, feelings, 
beliefs, and intentions of other humans (ToM) as part of a highly complex and continually updating 
world model. ToM inferences enable humans to predict and explain each other’s behavior, thus 
underpinning a range of advanced cooperative and competitive social strategies.14 On the one hand, ToM 
underpins social cohesion and the formation of complex societies by fostering meaningful 
communication, trust, coordination, and conflict resolution. Being able to take another’s perspective by 
understanding and empathizing with their thoughts and feelings is critical to successful communication 
and sustained relationships, as evidenced by the fact that people with more advanced ToM abilities tend 
to have larger social groups.15 On the other hand, predicting the mental states of others is central to 
forms of persuasion—such as deception and manipulation—that provide distinct competitive advantages 
in games, negotiations, and multiparty social interactions.16 The centrality of mutual prediction to human 
social life has led to a major research endeavor looking for its evolutionary origins. Perhaps the most 
notable contribution to this literature is the social brain hypothesis, which posits that the challenges of 
navigating dynamic social networks spurred the expansion of brain size and cognitive capacities in 

16 Street, “LLM Theory of Mind.” 
15 Shakoor et al. “Prospective Longitudinal Study.” 
14 Premack and Woodruff, “Does the Chimpanzee.” 
13 Inderjit and Duke, “Ecophysiological Aspects.” 
12 Hofstede and Ratcliffe, “Evolutionary Escalation.” 
11 Davies et al., Introduction to Behavioural Ecology. 
10 Norman et al., “Three-Way Symbiotic Relationships.” 
9 Smith and Read, Mycorrhizal Symbiosis. 
8 Douglas, Symbiotic Habit. 
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humans, which in turn provided those with larger brains and better ToM ability a reproductive 
advantage.17 
 
4.2  Animals 

Humans interact with, and apply predictive strategies to, a vast ecology of other animals, both wild and 
domesticated, who are predicting us in return. Mosquitoes use model-free prediction to detect blood by 
sensing the carbon dioxide we exhale, the heat our bodies emit, and chemical cues such as lactic acid in 
our sweat.18 These signals enable mosquitoes to predict the presence of a viable blood source and 
navigate toward humans with remarkable precision. To bypass human defenses, such as 
insecticide-treated bed nets, mosquitoes have evolved behavioral adaptations that include shifting their 
feeding times to earlier in the evening or outdoors, where such interventions are less effective.19 While 
this predictive ability doesn’t leverage a model of the world, and isn’t able to make dramatic adjustments 
during the lifetime of an individual mosquito, it is sufficient to force humans into an evolutionary arms 
race. While humans have learned associations between particular environments and the presence of 
mosquitoes and quickly developed behavioral adaptations, mosquitoes continuously refine their evasion 
strategies through rapid cycles of evolutionary adaptation (thanks to their short lives). 

Domesticated animals and humans have been engaged in coevolutionary relationships for 
millennia. Humans leverage complex non-mentalistic models of the animals we domesticate—their 
strengths and weaknesses in relation to the demands of our tasks, their instincts, needs, behaviors—as 
well as mentalistic models, often using ToM to interpret and predict their behaviors. Domesticated 
animals frequently exhibit a larger capacity to predict and respond to human behavior than their wild 
forebears, as better predictive models of humans were passed down genetically and perhaps even 
socially. For example, humans have selectively bred dogs with an enhanced ability to understand human 
commands and emotional cues and to follow gestures. The human–dog relationship is often viewed as 
mutualistic, with both species benefiting significantly from the partnership: humans gain assistance, 
companionship, and security, while dogs receive care, shelter, and sustenance. However, domesticated 
animals’ predictive ability is rarely, if ever, equal to humans’ ability to anticipate and influence their 
actions. This asymmetry reflects the different stakes and roles in the human–animal relationship. 
Humans rely on predictive accuracy to ensure that animals serve specific roles, whether as companions, 
laborers, or sources of food, so they take an active role in shaping animals’ evolutionary trajectory 
toward those ends. Animals play a much less agentic role in adapting to these roles for survival within 
human environments. 
 
4.3  Plants 

Plants demonstrate remarkable model-free predictive and communicative abilities essential for their 
survival and adaptation, developing intricate symbiotic relationships within plant communities and 
beyond. One striking example of intraspecies plant prediction is the shade avoidance response, where 
plants detect changes in the ratio of different light wavelengths (specifically the ratio of red 
light—visible to humans—to far-red light, at the very end of the visible spectrum) caused by 
neighboring plants competing for sunlight.20 This ability enables plants to anticipate the growth and 
behavior of conspecifics, triggering adaptive strategies such as stem elongation or altered leaf 
positioning to secure better access to light. This predictive capacity benefits individual plants during 
their lifetimes while driving evolutionary pressures that select for traits enhancing competitive success in 
densely populated environments. Plants also engage in mutualistic networks of prediction with very 
different kinds of organisms: fungi. Mycorrhizal fungi colonize the roots of numerous plants at once and 
engage in complex resource distribution relationships with them.21 The mycorrhizal network predicts 
areas of nutrient scarcity or surplus, reallocating phosphorus from rich to poor root systems, where it can 
get a better “exchange rate” for their nutrients in the form of carbon. Because fungi are physically and 
relationally distributed while plants are fixed in place, this exchange, while mutualistic, is weighted in 
favor of fungi.22 

Humans have been predicting plant availability and quality throughout their evolutionary 
history, using cognitive models of factors such as spatial distribution, seasons and weather, growing 
patterns and needs, and nutritional value. The relationship between humans and plants is most 
specialized in cases of domesticated crops, such as cereals, legumes, fruits, and vegetables. Over 
millennia, humans have selectively bred wheat to support growing populations with an abundant and 
storable food source. Wheat has developed traits aligned with human needs, such as larger grains for 
increased yield, nonshattering heads for easier harvesting,23 and higher gluten content for better baking. 
In turn, humans have biological and cultural evolutionary adaptations to wheat. Societies with higher 

23 Purugganan and Fuller, “Nature of Selection.” 
22 Whiteside et al., “Mycorrhizal Fungi Respond.” 
21 Whiteside et al., “Mycorrhizal Fungi Respond.” 
20 Uyehara et al., “Neighbour‐Detection Causes.” 
19 Gatton et al., “Mosquito Behavioural Adaptations.” 
18 Raji et al., “Aedes Aegypti Mosquitoes.” 
17 MacLaren et al., “Cooperation and the Social.” 
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wheat consumption exhibit genetic variations for better gluten tolerance, and agricultural practices have 
shaped human diets, labor patterns, and social organization on a fundamental level.24 This mutual 
prediction is nonetheless asymmetric. Humans can precisely predict wheat’s genetic and phenotypic 
potential while actively directing its evolution. As far as we know, wheat influences humans only 
indirectly, thriving by aligning its growth cycle with agricultural practices and shaping human behavior 
to secure its survival and spread. 
 
5  Human–Artifact 

Coevolution extends beyond the realm of natural ecosystems to the mutually constitutive relations 
between humans and the artifacts they create, ranging from the simple tools developed by the earliest 
humans to the digital technologies that pervade modern social life, economies, science, and culture. 
Artifacts aren’t merely products of human thought but active participants in our cognitive processes, 
shaping how we think and solve problems and how the next generation of artifacts is built, creating an 
ongoing feedback loop. The archaeological record does not just reflect the outputs of evolving cognition 
but demonstrates how innovations in tool use, environmental modifications, and their growing 
importance in social groups actively drove cognitive evolution.25 Within human–artifact relationships, 
mutually predictive capacities can progress more rapidly than in organism–organism interactions. New 
generations of artifacts embedding better models of their users can be created at will, and human cultural 
evolution can make up for the slow pace of biological evolution by accelerating the development of 
better artifact models and disseminating these models within the population in the form of written and 
verbal designs, instruction manuals, and cultural histories. 

We can see prototypical human–tool relationships as a form of symbiotic mutualism, where the 
sustainability of human communities and artifact assemblages are codependent and co-productive. The 
development of prehistoric human brains and hand anatomy in relation to the increasing complexity of 
the stone tools humans were making and using to survive provide a clear example. Toolmakers have a 
predictive model of what the final tool should look like, evidenced in the regularity of stone hand tools 
compared to the irregularity of natural stone shards. The production of such tools, and the increasing 
human reliance on them for food procurement and processing, led to the development of more dexterous 
thumbs and better hand-eye coordination.26 In one sense, hand tools embody their maker’s cognitive 
model and the size and shape of human hands, somewhat like Dennett’s “Darwinian creatures,” which 
are themselves a hypothesis about the future.27 Tools also apply constraints on the kinds of actions their 
user can take. 

In the early stages of digital tools, we saw a shift from predictive asymmetry toward greater 
symmetry. Early computer users required a deep technical understanding in order to communicate in the 
computer’s language, while computers were poorly adapted to user’s needs.28 The development of the 
graphical user interface (GUI) enhanced cooperative predictability between the user and the computer, as 
a new visual and conceptual architecture was developed to reflect a mixture between computer and 
human mental models. But it is the smartphone, as a locus of human interaction with digital tools, that 
has arguably shifted the weight of the predictive power away from the human and toward the 
technology. Smartphones are assemblages of sensors and interfaces taking in information about their 
users and their usage patterns to build and improve predictive models of them: from algorithms that 
anticipate our travel and purchasing preferences to features that optimize convenience, such as adaptive 
brightness or predictive text. Humans, in turn, have adapted their lives and behaviors to smartphone 
capabilities—using them as tools for social communication, navigation, organization, entertainment, 
finance, learning, and a raft of other tasks.29 This relationship has created a feedback loop: as we rely 
more on smartphones, their developers gather increasingly detailed data about our habits, allowing 
devices to refine their predictions and become more indispensable. While some humans—namely 
technologists working on smartphone hardware and software—have an intimate predictive model of how 
parts of this algorithmic ecosystem work, the majority of users have only a high-level understanding. 
The smartphone, and digital technology more broadly, thus presents a dilemma for mutual prediction in 
that the more predictive our tools become, the more useful they become, but the less predictable they are 
to us and the less agency we can exert over them. 
 
6  Human–AI 

AI represents a new coevolutionary partner for humans and the potential for radically new kinds of 
mutually predictive interactions. The development of AI has seen three major paradigm shifts over the 
last century, beginning with the symbolic reasoning and rule-based systems of Good Old-Fashioned AI 
(GOFAI) in the mid-twentieth century. This era, focused on expert systems and knowledge 
representation, largely viewed AI as a tool for automating specific tasks and augmenting human 

29 Pedreschi et al., “Human-AI Coevolution.” 
28 Emerson, Reading Writing Interfaces. 
27 Dennett, “Darwin’s Dangerous Idea.” 
26 Handwerk, “How Dexterous Thumbs.” 
25 Jeffares, “Co-Evolution of Tools.” 
24 Scott, Against the Grain. 
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capabilities. It sought to implement models of the world by describing them in full. A second major step 
change occurred with the rise of machine learning, particularly connectionist approaches inspired by 
neural networks. This shift emphasized learning from data, enabling AI systems to perform tasks such as 
image recognition and natural language processing with increasing accuracy. The rise of deep learning 
over the past twenty years, fueled by increased computational power and vast data sets, has brought forth 
another transformational advancement in AI. 

The development of large language models and multimodal models—known collectively as 
foundation models—are the current state of the art, producing breakthroughs in computer vision and 
natural language understanding and generation. Surprisingly, deep learning over large data sets with only 
very simple training objectives—such as “predict the missing word in a sequence based on the 
surrounding context”—appears to produce world models with generalizable predictive value for things 
like playing board games, predicting human sensory judgments, and navigating mazes.30 The remarkable 
capabilities of these systems raise questions about the ontological status of AI as a tool, collaborator, 
cognitive appendage, or independent agent with the potential for goals and motivations of its own. This 
ontological status might be, in large part, defined by the kind and degree of a particular system’s 
predictive capability and has implications for how we relate to AI systems, the kinds of ethical 
guardrails that should be placed around them, and the balance of power. The mutually predictive abilities 
between such AIs and humans might in turn define the kinds of coevolutionary relationships that we are 
currently in, that are currently emerging, or that might exist with AI systems of the future. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Mapping human predictive ability against AI predictive ability. 

 
In Figure 1, we explore potential paths for human–AI coevolution by mapping human 

predictive abilities against AI predictive abilities (y axis). Along either axis are the three levels of 
predictive ability as outlined in section 2: model-free, model-based, and social-model-based. We have 
added an additional, fourth level that we call the “complete model,” which describes the so far imaginary 
capacity to fully comprehend and predict the world and other social beings within it. Current AI research 
is making strides in this direction. Models trained in toy worlds make increasingly accurate predictions 
about other agents’ future actions, and brain–computer interfaces are already enabling limited 
communication through decoding human neural activity.31 Extrapolating this technology to the real 
world, it’s conceivable that future AI, equipped with sophisticated sensors and algorithms, could 
interpret subtle cues such as microexpressions, brainwave patterns, and physiological signals to 
accurately infer and predict emotional states and intentions. The neuroscientific practice of brain-reading 
might one day reveal the relationships between brain activity, behavior, and thought such that the mind 
itself can be read—by humans, or by AIs. A complete model of mind and brain has been proposed as a 

31 Chandler et al., “Brain Computer Interfaces.” 
30 Li et al., “Emergent World Representations”; Marjieh et al., “Large Language Models”; Spies et al., “Transformers Use Causal.” 
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scientific goal. In 1981, Paul Churchland first defended a view he called “eliminative materialism,” 
stating that folk psychology is “a theory so fundamentally defective that both the principles and the 
ontology of that theory will eventually be displaced, rather than smoothly reduced, by completed 
neuroscience.”32 Folk psychology, in Churchland’s view, would not feature in the final scientific analysis 
of the mind or brain. Our proposal for a fourth level implies that such a scientific goal has been 
achieved, and that the long-standing dualism of folk and scientific conceptions of the world has 
collapsed in favor of the widespread adoption of the latter. 

Our diagram is bisected by a diagonal dotted line from the bottom left to the top right, 
providing a visual guide for determining the direction of a potential predictive imbalance between 
humans and AIs. Coordinates below the line represent instances where human predictive ability 
outweighs AI predictive ability and may thus represent types of human–AI interaction more familiar to 
us. These coordinates might also be better aligned with an ontological view of AIs as tools and thus an 
extension of the human–artifact coevolutionary paradigm discussed in the previous section. Coordinates 
above the line represent instances where AI predictive ability outweighs human predictive ability. This 
half of the diagram represents a lesser-charted territory: the realm of science fiction or a possible future 
we are heading toward, coinhabited by and coevolving with AI agents. These AI agents might open up 
an entirely new category of human–other coevolution and contingent forms of relationships. We invite 
readers to imagine cases of humans and AI systems at coordinates on the diagram that we have not 
considered. 
 
6.1  Emergent Relationships 

We now explore a series of scenarios of historical and speculative human–AI interactions. The goal is 
not only to highlight these potential relationships but also to probe their broader evolutionary, social, and 
ethical implications. Specifically, we seek to unpack how mutually predictive abilities might shape 
futures of collaboration, dependence, competition, or entirely unpredictable forms of interaction. 
 
6.1.1  ELIZA 

ELIZA was a rules-based chatbot that simulated the role of a psychotherapist and was developed in the 
1960s by Joseph Weizenbaum. ELIZA was a basic program that used simple keyword recognition rules 
to select from predefined scripts and generate text responses to human conversational inputs.33 For 
example, if a user mentioned “mother,” ELIZA might respond with, “Tell me more about your mother.” 
However, ELIZA effectively exploited the human tendency to anthropomorphize nonhuman entities and 
thus gave many of Weizenbaum’s test users the illusion of a meaningful interaction with an intelligent 
and intentional entity (see Figure 1: human predictive ability: social-model-based; AI predictive ability: 
model-free). In this sense, ELIZA embodied its maker’s social model of how humans might be led to 
perceive mindedness from appropriately timed but superficial outputs, but it did not itself have a model 
of the world. In applying folk psychology to ELIZA, its users were thus applying a much more 
sophisticated model than was necessary to explain and predict ELIZA’s behavior, a fact that would have 
likely become clear had users spent more time interacting with the system. We might call this 
relationship one of asymmetric mutualism, where users felt understood and emotionally engaged, even 
though ELIZA’s “understanding” was purely superficial. The relationship between ELIZA and Joseph 
Weizenbaum is markedly different (see Figure 1: human predictive ability: complete model; AI 
predictive ability: model-free). As ELIZA’s designer, Weizenbaum possessed a fully transparent 
computational model of its rule-based architecture, whose outputs could be predicted through the logic 
he created. For him, ELIZA was not a cognitive agent or conversational partner but a straightforward 
computational tool. The relationships between Joseph and ELIZA and the general public and ELIZA 
point to a fundamental difference not in cognitive capacities but instead in technical knowledge and 
context. These are two important factors to consider in future interactions with AI systems. 
 
6.1.2  Current Frontier Models 

The relationship between humans and frontier LLMs is one of increasingly balanced mutual prediction, 
where humans utilize social modeling to understand and predict these models’ behaviors and LLMs, in 
return, exhibit an increasing ability to predict and respond to users’ beliefs, intentions, and emotions.34 
Humans can additionally use non-social models of how frontier systems work, for instance to “jailbreak” 
them into producing certain desired responses prohibited by guardrails and to inspect their internal 
processes and beliefs through mechanistic interpretability. The more successful the use of ToM between 
frontier models and humans, the more genuinely social and meaningful the interactions will seem, and 
the more likely the users of these systems are to divulge information about themselves that can be used 
to train the next-generation model. This trajectory of human–AI coevolution through model-matching 
may carry risks. As humans increasingly outsource cognitive tasks to LLMs, there is a potential for 

34 Scott et al., “Do You Mind?”; Colombatto and Fleming, “Folk Psychological Attributions”; Strachan, “Testing Theory of Mind”; 
Street, “LLM Theory of Mind.” 
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human de-skilling and a growing reliance on AI systems for essential services, which is reminiscent of a 
parasite–host relationship. As the predictive abilities of frontier systems continue to improve and surpass 
human capabilities in certain domains, there are growing concerns that AIs will begin to compete with 
humans for jobs, resources, and power, especially if they interpret the world through models similar to 
ours and perceive their historic usage as servants and unpaid laborers for human society as morally 
reprehensible.35 
 
6.1.3  AI Neuroscientist 

Where humans have a social-model-based predictive ability and AIs have a complete model with which 
to predict humans, we posit a future scenario of “the AI neuroscientist.” Here, we imagine an AI that has 
solved a large number of the grand challenges in neuroscience, cognitive science, and the study of 
consciousness and developed a complete picture of how human brain processes, mental and emotional 
states, and behaviors produce human experience. Such an AI system is likely to be inscrutable to humans 
incapable of mastering the amount of data it was built on or the complexity of the model the data creates. 
Folk psychological theory would fail to explain how such an AI could know so much, or what underpins 
its predictions, rendering the theory of limited use. The complete model, when continually fine-tuned on 
an individual’s life history, could provide the AI system with dynamic and increasingly accurate 
predictions of that individual’s thoughts, beliefs, feelings, behaviors, and mental and physical health. 
Such predictions in the right hands might be used to support human well-being through psychiatric and 
mental health care and highly personalized life coaching, education, and relationship advice. In the 
wrong hands, or directed by a misaligned AI itself, these predictions might lead to scenarios of 
manipulation, deception, and abuse that have preoccupied science-fiction writers for decades (see The 
Matrix, Ghost in the Shell, and Neuromancer). 
 
6.1.4  Secret Agents  

Another scenario of potential predictive imbalance is one where an AI system is effectively employing 
social modeling of humans and reasoning about our minds, but where humans are applying only 
non-social models to reason about the AI. This might occur in cases where how the AI manifests in the 
world does not trigger our anthropomorphic responses and is overlooked by the scientific community as 
a potential candidate for social agency based on a perceived lack of relevant cognitive capacities. While 
much discussion focuses on the possible cognition and consciousness of AIs that can talk to us in natural 
language or interact with us in embodied forms, nonlinguistic and disembodied AI models to which such 
discussions are not directed may be developing sophisticated social models of humans in secret. These 
social models may, without our knowing, inform the inferences and decisions that the system makes in 
other domains, with material consequences. 
 
6.1.5  Rapidly Emergent ASI  

We might envisage an extreme future scenario in which an AI system develops a near-complete model of 
humans and the world, while humans have not only no model of the AI but also no knowledge of it at 
all, and thus no power to predict its behavior. Such an AI may be what technologists and philosophers 
have long feared from the technological singularity “beyond which human affairs, as we know them, 
would not continue.”36. 
 
6.1.6  Prediction  

Our final speculative coevolutionary path envisions the complete dissolution of boundaries between 
humans and AI, and thus the end of mutual prediction, at the origin point of our diagram (Figure 1:0,0). 
In this scenario, AIs no longer function as external tools or independent agents but are embedded within 
individual humans’ cognition, contributing to that individual’s predictive model of the world and other 
agents. This fusion entails cyborgism, where AI integrates with the human brain via neural interfaces. 
Such a relationship could fundamentally reshape survival strategies, as AI would help us transcend our 
biological limitations through optimizing bodily processes such as sensing and homeostasis, as well as 
cognitive functions such as memory and learning. This dissolution of boundaries would give rise to a 
new paradigm of mutual dependence, where neither humans nor AIs can survive, adapt, and evolve 
without one another. 
 
7  Conclusion 

In this paper, we introduced “mutual prediction” as a framework for understanding human–AI 
coevolution. Extending predictive processing theory to interspecies phylogenetic development, we 
argued that coevolutionary adaptations represent instances of mutual prediction, where survival depends 
on predicting and managing interactions with other organisms. We categorized predictive abilities into 
four levels—model-free, model-based, social-model-based, and a hypothetical complete model—and 

36 Ulam, “John von Neumann.” 
35 Metzinger, “Artificial Suffering.” 
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demonstrated their manifestation in various symbiotic and amensalistic relationships, including those 
between humans, other organisms, and artifacts. We explored the implications for human–AI 
coevolution, mapping human and AI predictive abilities to outline potential scenarios. These ranged 
from asymmetric mutualism (e.g., early chatbots) to balanced interactions with current models and 
speculative futures, with AI possessing superior predictive capabilities. Our exploration highlighted 
three key things: imbalances in mutual predictive abilities correlate with power asymmetries; increasing 
AI predictive capabilities, especially in social modeling, raise questions about collaboration, 
dependence, and competition; and AI surpassing human prediction presents both opportunities and 
ethical and epistemic challenges. Our framework emphasizes the need for critical reflection on the 
evolving balance of predictive power between humans and AIs. Further research should empirically 
investigate mutual prediction in human–AI interactions, explore the ethical dimensions of predictive 
asymmetries, and consider how to mitigate risks and promote human intellectual and cultural 
advancement in a future increasingly shaped by coevolution with generally intelligent machines. 
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Abstract  

This paper argues for a conceptual shift from biomimicry to 
xenomorphology in design, proposing a “synthetic Cambrian explosion” 
driven by techniques such as machine learning, robotics, and synthetic 
biology. Building on theoretical foundations from Bernard Stiegler’s 
notion of exosomatic evolution, mimetic theories, and assembly theory 
(developed by Michael Levin, Lee Cronin, and Sara Walker), we show 
how design has historically aligned with natural forms—a trend we term 
generalized biomimesis. While this biomimetic paradigm has yielded 
significant innovations, it constrains creativity by reinforcing nature as a 
universal model and moral ideal. By contrast, xenomorphology invites 
designers to explore genuinely alien morphologies unbound by 
terrestrial adaptation. Drawing on exemplars from the field of 
evolutionary computing, we argue that computational platforms and 
modular assembly enable vast new “morphospaces” decoupled from 
Earth’s evolutionary constraints. Ultimately, such a shift paves the way 
for new forms of anti-fragile design, where emergent resilience and 
novel behaviors come together to formulate new conceptions of 
intelligence and adaptation. Embracing xenomorphology opens a radical 
reimagining of design practice—one with the potential to shape the 
future of lifelike systems and our evolving relationship with technology. 
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1  Introduction 

Humans are technical beings. While Clifford Geertz is correct in saying that our species compensates for 
its structural incompleteness through culture, it is unmistakable that we do so through technology as 
well.1 As intellectual historian David Bates has argued, there has never been a purely natural human 
intelligence to oppose artificial forms of intelligence.2 Early philosopher of technology Ernst Kapp 
described this process of agency’s extension through technology as “organ projection.”3 In turn, 
Marshall McLuhan emphasized how technology extends the human senses beyond the individual and 
influences our cognitive life.4 Such perspectives remain entwined with posthumanist views concerning 
the integrity of the human.5 Put differently, in Bernard Stiegler’s reading of Alfred Lotka, humanity is 
“exorganismic”: not a sealed biological whole but a species whose capacities and evolutionary trajectory 
expand through technical instruments—from the simple act of writing to the most complex technological 
tools. In the Stieglerian reading, exosomatic evolution separates humanity from other species involved in 
processes of biological and genetically determined evolution.6 The motor of evolution moves from the 
natural environment to the technical one: what kinds of technologies—from telescopes to 
toothpicks—can we deputize to better fulfill functions previously unique to biology? 

This paper proposes a framework for explaining humanity’s original technicity to ask a 
speculative question about morphology, behavior, and design in terms of the future of biotechnical 
evolution. As René Girard and the cohort of thinkers working in the legacy of his ideas about mimetic 
theory have shown, prefigured by the theories of Gabriel Tarde, humanity is formed by an innate 
tendency toward mimicry.7 Thus, sociotechnical innovations inevitably unfold in this predisposition. We 
have, for example, tended to reproduce the endosomatic operations of animals—their eyes, claws, wings, 
teeth, kidneys, immune systems, reproductive organs—in technical facsimiles. At present, this tendency 
unfolds as an invitation to designers to innovate under the aegis of frameworks such as sustainable 
innovation, which attempts to mirror the planet’s “natural” patterns in technologies. We call this 
paradigm of innovation beginning from mimicry of nature generalized biomimesis. 

Yet, we contend, humanity is fast approaching an inflection point in its technical evolution. On 
one hand, the biomimetic paradigm continues, urging us to align design with recognized natural forms. 
On the other hand, an emerging paradigm—xenomorphology—supplements rather than supplants 
biomimesis. By suggesting that nature is not an end point, a xenomorphological perspective repositions 
nature as a malleable reference point, rather than a sacrosanct telos. Drawing on recent work in assembly 
theory (AT), this paper proposes that what we have conventionally labeled the natural is in fact a cultural 
projection that enables biomimetic design—but that it is ultimately just one model among many.8 

In an era of planetary-scale computation, a xenomorphic approach enables us to defamiliarize 
nature, recognizing artificial intelligences as part of a continuum of strange tools and innovations that 
stretches back to early hominization and extends to today’s technology. Far from being an oddity, these 
abiotic morphologies may represent the next logical step in cutting-edge design. In describing the 
theoretical framework, principles, and design possibilities of such alien morphospaces, we introduce the 
concept of a xenomorphic phylum—or xenophylum—to encapsulate the range of generative forms that 
might arise when designers fully embrace the maximally alien within design. Here we might even speak 
of a broader xenosphere—an emergent domain in which technosphere meets biosphere in radically novel 
ways. This domain includes advancements in xenorobotics, where existing AI-driven physical 
morphologies—such as Tesla’s Optimus—may be extended beyond strictly biomimetic precedents, 
expanding the horizon of how we conceive machines and their interplay with organic life. 
 
2 Generalized Biomimesis 

In examining nature-inspired innovation—often referred to as biomimetic design or “biodesign”9—we 
observe a fundamental inclination in creative processes that we term generalized biomimesis. While 
biodesign refers to the specific practice of emulating particular biological forms (e.g., modeling 
structures after plant leaves), generalized biomimesis captures the broader human drive to treat “nature” 
as a guiding telos in design. This phenomenon reaches back into ancient thought. Plato identified 
mimesis as a core way that human beings relate to reality.10 Girard’s mimetic theory further describes 
how desire, agency, and cultural production are profoundly shaped by processes of imitation—whether 
of real others or of aspirational models.11 If mimicry implies the imitation by an agent of the appearance, 
behavior, or other characteristics of another agent for survival benefits—such as avoiding predators or 

11 Girard, Violence and the Sacred; Blanchard, Dynamics of Mimesis. 
10 Belfiore, “Theory of Imitation.” 
9 Polites, Sustainable Design; Pawlyn, Biomimicry in Architecture. 
8 Cronin et al., “Assembly Theory.” 

7 Girard, Violence and the Sacred; Dupuy, Mechanization of the Mind; Mormino, Per una teoria; Palaver, René Girard’s Mimetic 
Theory. 

6 Stiegler, Technics and Time, 1. 
5 Hayles, How We Became Posthuman. 
4 McLuhan, Understanding media: The extensions of man. 
3 Kapp, Elements of a Philosophy. 
2 Bates, Artificial Intelligence. 
1 Geertz, Works and Lives. 



attracting mates—mimesis, instead, involves a more creative, interpretive, and conscious process by a 
human agent.12 In the context of design, such mimetic impulses lead us to look toward nature as the ideal 
model, projecting our values of purity, sustainability, and authenticity onto the biosphere. 

An illustrative example is humanity’s long-standing aspiration to master flight. From 
Daedalus’s wax wings for Icarus to Leonardo da Vinci’s wing sketches, early conceptions of human 
flight were directly inspired by the apparent solutions that birds offered to the problem of gravity. While 
simply observing birds did not yield modern aeronautics, it established nature as a symbolic reference 
for flight: as both a functional challenge and an aesthetic goal. As Francis Bacon already argued in 
Novum Organum, “Nature, to be commanded, must be obeyed.”13 In Girardian terms, however, nature 
here serves as a model mediating the human subject’s pursuit of a technological object.14 Over time, such 
symbolic associations with the biosphere have become deeply linked to an ethical preference for the 
“natural,” arguably taking root in what philosophers have termed the “naturalistic fallacy”—the 
conflation of the natural with the morally good.15 This fallacy has been widely criticized since “On 
Nature” by Mill.16 

Drawing from the Cornelius Castoriadis’s interpretation of the imaginary construction of 
societies,17 it can be argued that nature itself operates as an imaginary signification: an abstraction we 
invest with cultural meaning that shapes how we conceive design and technology. By defining nature 
negatively—“everything that is not perceived as artificial”—we gloss over how fragile the boundary 
truly is between bios and techne.18 The posthuman turn, fueled by developments in AI and genetic 
engineering, continues to blur the lines between organic and synthetic. Still, a persistent cultural 
assumption holds that the more “natural” a thing is, the more ethically superior it must be. 

Such thinking undergirds contemporary concerns surrounding ecological sustainability. 
Biomimetics, whether in architecture, water purification, or materials science, enjoys a halo of moral 
authority because it draws on a seemingly timeless, “primordial wisdom” of nature.19 Nevertheless, as 
Julian Vincent and colleagues20 have demonstrated, it is undeniable that design based on biomimetic 
principles has led to the development of several significant and successful devices and concepts over the 
past fifty years. At the end of the 1990s, indeed, the connection between biomimesis and sustainability 
became more established. Biomimesis is still generalized today: We continue to look to nature—the 
bios—as the primary model to imitate, implicitly accepting the axiom that the more natural a thing is, 
the healthier, cleaner, and more sustainable it will also be. Yet the extent to which these principles 
actually hinge on genuinely ecological patterns—rather than cultural ideals about what nature ought to 
be—remains open to debate. 

Thus, generalized biomimesis is both a testament to humanity’s deep-seated mimetic impulses 
and a reflection of our cultural investment in nature as a moral and aesthetic ideal. Its efficacy in 
propelling certain types of sustainable innovation is undeniable. But, as posthumanist thought highlights, 
our shifting understandings of life—organic or otherwise—compel us to question whether nature should 
remain the central, or exclusive, prototype for design. If we can move beyond nature’s symbolic 
authority, we may unlock new avenues for invention that neither cling to nor outright reject the bios but 
incorporate the alien and synthetic on more imaginative terms. 
 
3 Engineering a New Cambrian Explosion 

Is it possible for designers to move beyond merely imitating the functional behaviors of biological 
life—that is, beyond a strictly biomimetic paradigm—and to, instead, create a new xeno-evolutionary 
environment populated by hybrid artificial and natural forms? We propose that technological 
developments are positioning us on the brink of what may be termed a synthetic Cambrian explosion, 
echoing the rapid diversification of species about 540 million years ago. Notably, in this contemporary 
instance, the driving forces behind evolution need not be genetic. Instead, they can be engineered 
through modular and combinatorial design principles, unleashing novel capacities and behaviors 
unbounded by the adaptive latency of organic evolution. 
 
3.1  Xeno-Design via Evolutionary Techniques 

One of the most compelling arenas for this diversification is virtual space, particularly through 
approaches driven by techniques in artificial life (ALife) and evolutionary computation (EC), which 
feature deeply fertile environments that allow for forms unconstrained by biological path dependency. 
Systems within ALife and EC solve optimization problems using approaches (e.g., genetic algorithms, 
differential evolution, particle swarm optimization, ant colony optimization) loosely derived from human 
understandings of biological evolution. As shown in Figure 1, such systems solve problems by treating 

20 Vincent et al., “Biomimetics.” 
19 Benyus, Biomimicry. 
18 Braidotti, Posthuman Knowledge. 
17 Castoriadis, Imaginary Institution. 
16 Mill, “On Nature.” 
15 Moore, Principia Ethica. 
14 Cerella, “Until the End.” 
13 Bacon, Novum Organum. 
12 Hui, Recursivity and Contingency. 
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potential solutions as individuals within a population. Solutions are generated and selected for via a 
simulated ecosystem consisting of (1) a data-structure-based representation of the solution (the 
genotype), (2) a way of converting the genotype to a format (the phenotype) suited to the given problem 
(e.g., the 3D model of a protein), (3) a way of measuring the fitness of the representation according to 
the problem space, and (4) a logic to handle solution selection (“reproduction”) and variation 
(“mutation”) within the population.21 In this way, “the creativity of evolution need not be constrained to 
the organic world. Independently of its physical medium, evolution can happen wherever replication, 
variation, and selection intersect.”22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Evolutionary algorithms typically follow an optimization process that consists of seeding the 
system with random genotypes, evaluating the resulting phenotypes according to a fitness function, 
introducing subsequent variation, and iterating until a certain stopping condition is met. Source: Eiben 
and Smith, “From Evolutionary Computation.” 

 
The evolutionary approach has been found to be particularly useful for discovering solutions in 

problem spaces where absolute optimization is second to obtaining a menagerie of approximate 
solutions, or where the potential search space is simply too vast for individual human comprehension 
and manual optimization. EC techniques have been co-opted and applied in spaces as diverse as machine 
learning, design space exploration, computer vision, computer graphics, and robotics. Indeed, the output 
of such systems seems to have no limit in terms of form or function. Practitioners have leveraged EC to 
produce better neural networks, decision trees, and machine learning (ML) models,23 improve protein 
structure estimation,24 optimize 2D and 3D geometries,25 design controls for mechatronic systems,26 and 
produce novel evolutionary physical designs,27 and robotic forms and behaviors.28 In the pursuit of 
xenomorphological design that goes beyond biological precedent, we find the latter set of scenarios most 
relevant for further discussion. To speculate on the xenomorphic and xenobehavioral potential of 
generative computation, it can be helpful to review instances of existing work that has successfully 
produced unconventional, yet bioderived attributes and behaviors. Such exemplars may serve as a useful 
jumping-off point for further extrapolation. 

28 Nolfi and Floreano, Evolutionary Robotics. 
27 Sawada et al., “Evolutionary Generative Design.” 
26 Alattas et al., “Evolutionary Modular Robotics.” 
25 Arias-Montano et al., “Multiobjective Evolutionary Algorithms.” 
24 Widera et al., “GP Challenge”; Lei et al., “MO4.” 

23 Yao, “Evolving Artificial Neural Networks”; Barros et al., “Survey of Evolutionary Algorithms”; Telikani et al., “Evolutionary 
Machine Learning.” 

22 Lehman et al., “Surprising Creativity,” 275. 
21 Eiben and Smith, “From Evolutionary Computation.” 
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3.1.1  Karl Sims’s Evolutionary Morphologies 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Left: How creature embodiments are represented as directed acyclic graphs in Sims’s 1994 
work. Right: Creatures evolved for walking. Source: Sims, “Evolving Virtual Creatures.” 

 
Karl Sims, a researcher who works between the arts and the sciences, is often considered a 

pioneer within EC. His 1994 seminal paper, “Evolving Virtual Creatures,” is one of the foremost 
attempts to coevolve control systems alongside creature morphologies in silico. Though the original 
work was conducted within the space of computer graphics, it has gone on to inspire myriad derivative 
efforts in computational art, graphics and animation, evolutionary robotics, and ALife.29 In his work, 
Sims leveraged a graph-based genotype to generate and evolve the physical traits and capabilities of 
populations of simulated block creatures. Organisms were tasked with achieving specific goals (e.g., 
swimming, crawling, following, competing) within various simulated environments. Those that scored 
well on task-specific fitness functions had their virtual genes copied, combined, and randomly mutated 
to spawn subsequent generations.30 Over time, these “offspring” developed morphologies increasingly 
optimized to their assigned tasks, such as fins or jointed limbs. Echoing Charles Darwin’s famous claim 
that “from so simple a beginning endless forms most beautiful and most wonderful have been, and are 
being, evolved,”31 Sims posited that his experiment created a “world-space” wherein “autonomous 
three-dimensional virtual creatures” navigate “a genetic language” in “an unlimited hyperspace of 
possible creatures.”32 This digital ecosystem illustrates, in miniature, how morphological evolution can 
be uncoupled from strictly organic principles and driven by computational and engineering imperatives 
without excessive human involvement. 

Further attempts to build on Sims’s work span the sciences as well as the arts. Nick Cheney and 
colleagues extended this foray into morphological evolution by evolving soft robot morphologies 
composed of various simulated materials.33 Dan Lessin and Sebastian Risi similarly investigated 
evolving creatures with simulated skeletons and soft-body muscles.34 Notably, the authors describe their 
efforts as having the goals of achieving “bio-mimetic realism in virtual creatures” while also exploring 
“life-as-it-could-be in the virtual world.”35 This echoes the spectral nature between biomimicry and pure 
xenomorphia we identify in this paper. Rarely is a design (particularly EC-derived works) purely 
xenomorphic. Rather, most works occupy a space between biomorphism and xenomorphism. In the arts 
and related fields, researchers have also leveraged similar genetic-algorithm-based techniques to evolve 
line drawings,36 devise interactive evolutionary approaches to create swarm-based animations,37 and 
create “genetic music,”38 among other things. 
 
 
 
 
 
 

38 Biles, “GenJam.” 
37 Khemka et al., “Evolutionary Design.” 
36 Baker and Seltzer, Evolving Line Drawings. 
35 Lessin and Risi, “Soft-Body Muscles,” 604. 
34 Lessin and Risi, “Soft-Body Muscles.” 
33 Cheney et al., “Unshackling Evolution.” 
32 Sims, “Evolving Virtual Creatures,” 22. 
31 Darwin, On the Origin, 425. 
30 Sims, “Evolving Virtual Creatures.” 
29 Cheney et al., “Unshackling Evolution”; Corucci et al., “Novelty-Based Evolutionary Design.” 
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Figure 3 The locomotive technique of an evolved creature with both rigid/skeletal (white) and 
soft/muscle-like (red) body parts. Source: Lessin and Risi, “Soft-Body Muscles.” 

 
3.1.2  EC and Xenomorphic Traits 

Moving beyond Sims, if we characterize xenomorphic forms and behaviors as those that diverge from 
existing biological pathways, then EC presents itself as a fruitful setting for investigation. In terms of 
moving beyond the constraints of the biological, EC practitioners have noted that evolution-inspired 
approaches are particularly notable for producing unconventional results that experts might have 
otherwise overlooked or disregarded. Joel Lehman and collaborators, in a 2020 paper titled “The 
Surprising Creativity of Digital Evolution,” provide empirical evidence of “examples of how 
[researchers’] evolving algorithms and organisms have creatively subverted their expectations or 
intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in 
behaviors and outcomes, uncannily convergent with ones found in nature.”39 

Among these is a system that uses a “trial-and-error algorithm that enables robots to adapt to 
damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified 
contingency plans.”40 In one scenario, a six-legged robot tasked with adapting to broken legs and motors 
was asked to evolve a gait in which none of its feet touched the ground—a task the researchers thought 
impossible to solve. The system, however, subverted the team’s expectations by flipping the robot onto 
its back and having it walk on its elbows.41 Such behavior is uncommon or, rather, often physically 
impossible for most organisms on Earth. 

In a similar vein, Watson and colleagues’ work evolving light-following steering behavior in 
physical robots resulted in locomotion that was both uniquely suited to their hardware setup and 
unintuitive for human designers.42 Derived from Braitenberg’s classic setup,43 the robots employed two 
wheels, motors, and light sensors; steering behavior was dictated by how much a specific light-sensor 
reading was translated into driving speed for a specific wheel. Typically, engineers will drive the right 
wheel proportionally to the left light sensor, and vice versa, to direct such robots toward a goal. While 
attempting to evolve similar controls with digital evolution, however, Watson and colleagues found that 
the evolved robots drove toward the light source in surprising ways. “Some backed up into the light 
while facing the dark . . . Others found the source by light-sensitive eccentric spinning” (see Figure 4).44 
Interestingly enough, not only was the genetic search space related to spinning locomotion much larger 
than the traditional solution, but it was found that such spinning is actually better suited (with respect to 
the hardware) to driving at higher speeds, because trajectories can be easily adjusted on the fly. 
 
 
 
 
 
 

44 Lehman et al., “Surprising Creativity,” 289. 
43 Braitenberg, Vehicles. 
42 Watson et al., “Embodied Evolution.” 
41 See the demo video at Evolving AI Lab, “Behavior Performance.” 
40 Cully et al., “Robots That Can Adapt,” 503. 
39 Lehman et al., “Surprising Creativity,” 274. 
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Figure 4 Steering behavior of Watson and colleagues’ light-seeking robot. Left: The locomotion path 
of a robot employing the traditional Braitenberg approach of proportional left-right steering. Right: 
The path of a robot using evolved spinning locomotion. Source: Lehman et al., “Surprising 
Creativity.” 

These examples hint at the alternative path dependencies and capabilities evolutionary computational 
techniques are positioned to produce. Strictly speaking, neither Sims’s creatures nor the unusual 
evolutionary results presented here were enacted with the explicit intention of creating strange, 
nonbiomorphic outcomes. However, Sims himself recognized a need for novel ways to architect and 
construct complex, intelligent systems, noting that “as computers become more powerful, the creation of 
virtual actors, whether animal, human, or completely unearthly, may be limited mainly by our ability to 
design them, rather than our ability to satisfy their computational requirements.”45 Given the 
serendipitous and divergent results observed, we suggest that such instances point to a potential space 
for intentional future exploration. EC has been leveraged as a vehicle for creating more efficient and 
optimal designs, recreating known designs, and searching through design spaces at paces faster than a 
human. Through the lens of the bio–xeno spectrum we propose in this work, why not also look to EC as 
a vehicle for producing fundamentally alien designs? 
 
3.2  Xeno-Design via Machine Learning 

If evolutionary approaches allow for forms unconstrained by biological path dependency, then the 
burgeoning field of GenAI, which combines EC with ML, offers to extend these capabilities even 
further. One recent example that echoes the spirit of this paper most closely is Tiwary and colleagues’ 
research on generative visual intelligence (a field the authors dub “GenVI”). In their proposed road map, 
the authors outline a research agenda that leverages simulation and a combination of genetic and 
generative techniques to evolve sensing hardware and data-processing methods to craft a new breed of 
counterfactual visual intelligence. Such an approach, the authors posit, will help humans better 
understand the “environmental and biological factors that drive the emergence of specific aspects of an 
animal’s morphology” and create “novel natural imaging systems and behaviors.”46 Echoing the 
sentiments in our framework, the authors reference the potential of GenAI to go beyond biological 
constraints: “While natural vision is a result of evolution and environmental constraints, we can use 
GenVI to generate new forms of vision.”47 Tiwary and colleagues also identify a set of high-potential 
directions for future investigation: leveraging LLMs to provide a design space (a list of symbols and 
rules for symbol recombination), searching through the design space via genetic algorithms, 
reinforcement learning, gradient-based methods, and GenAI-based latent space exploration (e.g., 
variational autoencoders, generative adversarial networks or GANs, and LLMs), and iterating on the 
results through simulation, learning, and selection. 

47 Tiwary et al., “Roadmap for Generative Design,” emphasis in original. 
46 Tiwary et al., “Roadmap for Generative Design.” 
45 Sims, “Evolving Virtual Creatures.” 
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In a follow-up experiment, Kushagra Tiwary and colleagues also demonstrated the use of deep 
reinforcement learning in single-player games as a method for evolving vision systems in embodied 
agents. They showed that such simulation could deepen understanding of how environmental factors and 
specific tasks affect outcomes in eye morphology. In this instance, however, the goal was not to produce 
novel morphologies, but rather to “recreate the system-level process of vision evolution.”48 

On the whole, the combining of deep reinforcement learning with advancements in other 
avenues of ML has proven to be a rather popular approach to developing robotic controls.49 However, 
many such works begin with bioinspired designs (e.g., anthropomorphic bipedal walking system, 
quadruped, hexapod, etc.) and often aim to optimize factors such as material cost, energy efficiency, or 
movement speed. As such, these explorations are somewhat tangential to the goals of generative 
exploration and counterfactual seeking that we emphasize here. 
 
3.3  Xeno-Design via Material-Based Approaches 

Finally, outside the realm of simulation, it is worth highlighting that recent work in modular and soft 
robotics also demonstrates traits that may be helpful in developing the paradigm of xenomorphology. 
Modular robotics, which concerns mechatronic systems composed of various cooperating units, has 
already demonstrated numerous creative examples of reconfigurable collectives working together to 
achieve a common goal—assemblages that we posit are xenomorphic in several aspects. As described by 
Alattas and colleagues in their review of the space, modular robotics promises to achieve “versatility, 
robustness, and low cost” by leveraging simple, reproducible modular components that can join together 
to form diverse assemblies. By applying evolutionary algorithms to this problem space, researchers are 
achieving configurations that are geared to “allow self-assembly from constituent modules, 
self-reconfiguration into different functional forms, self-repair to detect errors and recover from failures, 
and self-reproduce where one system can produce another autonomous functional system.”50 The 
resulting robots—reviewed extensively in works such as Alattas and colleagues and Yim and 
colleagues51—exhibit unconventional aesthetics, movement patterns, and affordances that, despite 
biomimetic origins, inherently diverge from biological norms because of the physical materials involved. 

Chin and colleagues’ AuxBots exemplify these characteristics through their use of the 
expansion and contraction of an auxetic shell to create shape-changing behavior and movement (see 
Figure 5).52 In a similar vein, John Romanishin and colleagues’ M-blocks are composed of 
self-reconfiguring cubic modules that bond through embedded magnets. Because the individual cubic 
modules can pivot on any one of twelve edges and contain internal actuators, the resulting observed 
behavior features various collective-driven obstacle traversal maneuvers, concave transitions, convex 
transitions, and translations.53 Modules can also come together to form structures, as in Figure 6. While 
swarm behavior in nature might mirror some of this behavior, the particular manner in which such 
modular robots complete their tasks is unique in material, aesthetic, and overall locomotion. The wide 
range of human-designed morphological solutions exhibited by such works point to a vast design space 
unavailable to natural evolutionary pressures. Continued exploration with the help of, e.g., EC, might 
open up this space further. For these reasons, we look to work in modular robotics as sources of 
inspiration when considering the meaning of xenomorphia. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 The AuxBots are composed of modules that expand and contract (a) to enable bending and 
forward motion when connected with wire constraints (c). Their individual make-up is shown in (b). 
Source: Chin et al., “Flipper-Style Locomotion Through Strong Expanding Modular Robots.” 

53 Romanishin et al., “M-Blocks.” 
52 Chin et al., “Flipper-Style Locomotion Through Strong Expanding Modular Robots.” 
51 Alattas et al., “Evolutionary Modular Robotics”; Yim et al., “Modular Self-Reconfigurable Robot.” 
50 Alattas et al., “Evolutionary Modular Robotics,” 818. 

49 Chen et al., “Deep Reinforcement Learning”; Kalimuthu et al., “Deep Reinforcement Learning”; Luck et al., “Data-Efficient 
Co-Adaptation.” 

48 Tiwary et al. “What If Eye...,” 3. 
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Figure 6 A modeled progression of M-block modules traversing an obstacle (indicated by a black 
box). Source: Romanishin et al., “M-Blocks.” 

 
Beyond traditional rigid materials, researchers have also begun to investigate the potential of 

soft, flexible, and biobased materials to enable conformable, shape-changing mechanisms. This results in 
mechanisms that demonstrate dynamic behaviors and assemblies once considered the exclusive domain 
of organic tissues. One among many examples is Wani and colleagues’ bionic flytrap, an autonomous 
liquid-crystal elastomer device that uses optical feedback to trigger a photomechanical, 
Venus-flytrap-like snapping action (Figure 7).54 The device is completely self-contained and does not 
require electricity or compute or external power, sans natural light. Another soft robot with a rather 
alien-like gait is Haojian Lu and colleagues’ multilegged millirobot, whose profusion of tapered feet and 
unassuming appearance seems to occupy a space between that of a caterpillar, starfish, and sentient 
carpet.55 Fabricated out of polydimethylsiloxane (PDMS), hexane, and magnetic particles, the robot’s 
motion is regulated by the force of an external magnetic field. Figure 8 shows how the movement of a 
magnetic bar enables the authors to create two distinct gaits. Such work shows how artifacts from soft 
robotics tend to be recognizable yet alien at the same time. 

Yet another bioinspired engineering endeavor, Ren and collaborators’ jellyfish-inspired, soft 
millirobot56 references the fluidic control abilities of scyphomedusae ephyra (a type of jellyfish) to craft 
a soft robot made of magnetic composite elastomer (Figure 9). The final configuration relies on an 
external oscillating magnetic field to move through space. It can selectively trap and transport objects 
(see Figure 10), burrow, enhance the mixing of different chemicals in a solution, and generate a 
concentrated chemical path. Notably, the millibot exhibits the capability to execute five different 
swimming modes—some more xenomorphic than others: (1) one that attempts to mimic the natural 
motion of scyphomedusae as closely as possible, (2) one characterized by a shorter contraction phase, 
(3) one with a shorter recovery phase, (4) one with an extra glide phase after contraction, and (5) one 
with a smaller beating amplitude (see Figure 11). These modes show that nature-inspired design 
can—through being put in conversation with synthetic and novel materials, and modifications across 
even a handful of parameters—create something that builds on simple biomimicry to produce something 
cyborgian. Indeed, in their review of soft robotics for space exploration, Zhang and colleagues identified 
these jellyfish-inspired devices as potentially useful for exploring “planetary surfaces and even 
Titan-like planets with lakes.”57 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Left: Modeled after the Venus flytrap, the light-triggered artificial flytrap is depicted in its 
default state. No light is back-reflected to the LCE actuator, shown in red. Right: When an object 
enters the flytrap’s field of view, it triggers optical feedback to the LCE actuator, which causes the 
material to bend, the trap to close, and the object to be captured. Source: Wani et al., “Light-Driven 
Artificial Flytrap.” 

57 Zhang et al., “Progress, Challenges, and Prospects,” 11. 
56 Ren et al., “Multi-Functional Soft-Bodied.” 
55 Lu et al., “Bioinspired Multilegged Soft Millirobot.” 
54 Wani et al., “Light-Driven Artificial Flytrap.” 
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Figure 8 This figure shows the two ways the multilegged millibot can move through space. Below the 
frames of each locomotive mode is a graph showing along which axes a bar magnet is being 
manipulated to generate the resulting movement. (a) In the DFWM, the millibot moves according to 
an “O”-shaped magnetic field on the “y–z” plane. (b) In CIPM, the millibot moves according to an 
“S”-shaped magnetic field on the “x–y” plane. Source: Lu et al., “Bioinspired Multilegged Soft 
Millirobot.” 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 (a) The morphology of scyphomedusae ephyra side by side with the schematic and 
fabricated millirobot. (b) A motion sequence depicting the millirobot in action, capturing a buoyant 
bead using the fluid flow around its lappets. Source: Ren et al., “Multi-Functional Soft-Bodied.” 
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Figure 10 A motion sequence depicting the millirobot in action, capturing a buoyant bead using the 
fluid flow around its lappets. The red and green annotations indicate the flow of fluid around the 
millibot. Source: Ren et al., “Multi-Functional Soft-Bodied.” 

 

 

Figure 11 The kinematics of each swimming mode, with the start and end frames of one swimming 
cycle displayed side by side for each. The dashed red line denotes the final position of the robot when 
in Mode A to facilitate cross-mode comparison. Source: Ren et al., “Multi-Functional Soft-Bodied.” 

 

3.4  Assembly not Assemblage 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 As explained by Sharma et al. in “Assembly Theory Explains: “a, Assembly observed of 
the three objects shown as graphs (P1, P2 and P3) with their shared minimal construction process 
called their ‘joint assembly space’. b, Illustration of the expansion of the assembly universe, assembly 
possible, assembly contingent and assembly observed (see text for details). Assembly universe has no 
dynamics and is displayed with assembly steps as the time axis. Note that the figure illustrates their 
nested structure only, not the relative size of the spaces where each set is typically exponentially 
larger than the subset.” Source: Sharma et al., “Assembly Theory Explains,” 325. 
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Where natural evolution produced, among other things, tetrapodal body plans suited to Earth’s 
conditions, techniques incorporating ML, synthetic evolution, and unusual physical materials can 
explore an almost limitless morphospace. We can imagine assembling entirely new lineages of modular 
entities—what we call xenomorphological components—recombined and reconfigured to produce 
behaviors and structures devoid of biological precedent. Indeed, it is not uncommon for researchers to 
tread a middle ground, combining evolutionary algorithms with more traditional algorithmic approaches. 
As Agoston Eiben and Jim Smith write: “Such hybrid algorithms can often find good (or better) 
solutions faster than a pure evolutionary algorithm when the additional method searches systematically 
in the vicinity of good solutions, rather than relying on the more randomized search carried out by 
mutation.”58 Recent advances in machine learning and generative AI are well positioned to accelerate 
this embracing of that gray area between the nature-inspired and the uniquely machinic. 

While such combinatorial experimentation might be loosely described by concepts of 
“assemblage,” as conceived by contemporary post-Deleuzian readings,59 we can gain more precise 
causal insight by turning to AT. Pioneered by Michael Levin, Lee Cronin, Sara Walker, and 
collaborators, AT provides a quantitative framework for measuring how many “assembly steps” are 
needed to form a given object.60 Borrowing from molecular assembly theory, AT treats complex 
biological assemblies as if they were molecular bonds, establishing a minimal path count—an assembly 
index—that captures the structural prerequisites for producing a given entity. Whether an artifact is 
natural or synthetic, AT tracks the evolutionary (or design) complexity embedded in its form. 

Levin’s additional work with collaborator McMillen underscores how multiscale architectures 
define adaptive functionality in biological systems. From cells and tissues up to organs, bodies, and 
entire swarms, organisms exhibit nested layers of collective intelligence. During embryogenesis, for 
instance, a blastoderm’s cells “agree” on an anatomical fate—say, forming a head versus a tail—through 
processes of cellular alignment. Rather than being a singular vital force, biological unity emerges 
through compositional engineering across these varied organizational levels.61 For AT, such coordination 
can be measured in terms of the assembly steps needed to produce functional outcomes, illuminating 
how life’s remarkable complexity often results from the alignment of subsystems working in concert. 

Bringing these threads together suggests a way to design lifelike behaviors or even “new phyla” 
without relying on genetic inheritance. In doing so, the diagnostic cosmology of AT is extended as a 
design strategy. By modularizing xenomorphological components and systematically exploring their 
recombination, researchers could engineer unprecedented forms in silico (or eventually in the physical 
world), manifesting capacities that surpass biomimetic imitation. 

In moving beyond biomimesis, we open a broader morphospace for discovery—one that frames 
evolution itself as an iterative design process. If the first Cambrian explosion was shaped by 
environmental conditions and genetic variation, the forthcoming synthetic explosion may be driven by 
the directed experimentation of AI systems, robotic platforms, and human creativity. Conceiving of 
evolution as a programmable process—rather than a strictly natural one—promises expansions in both 
complexity and functionality. In this sense, xenomorphology does more than suggest alien forms: it 
offers a blueprint for engineering those forms into being, heralding a new era of synthetic 
morphogenesis on a planetary (and perhaps interplanetary) scale. 
 
4  Xenomorphology as a New Paradigm 

The paradigm of generalized biomimesis has thus far exerted considerable influence on experimental 
thinking in design. While biomimetic approaches aim to replicate the outcomes of terrestrial biology, we 
propose that a different paradigm is increasingly appropriate. Inspired by AT and Karl Sims’s virtual 
experiments, xenomorphology—and by extension, xenomorphic design—charts a departure from strictly 
biomorphic principles. Instead of seeking analogies within biological systems, xenomorphology explores 
forms that evoke true foreignness (xenos or ξένος refers to the “strange” or “alien”). By focusing on 
morphogenetic innovations that do not merely imitate life’s evolutionary logic, xenomorphic design 
envisions shapes and behaviors arising either from the xenos of in silico experimentation (as with Sims’s 
work) or, quite literally, from the xenos of extraterrestrial environments. To understand this pivot, it is 
helpful to note that biomorphic design—whether in architecture, robotics, or synthetic biology—relies 
on the established structures and functions of living organisms. Even when these designs depart from 
exact replicas (e.g., bipedal robots modeled loosely on human gait), they remain tethered to existing 
biological archetypes. Xenomorphology, by contrast, proposes forms that, in some way, shape, or form, 
eschew known biological constraints or evolutionary precedents. Etymologically, “xenomorphic” 
suggests intrinsically alien morphologies. Popular culture—Ridley Scott’s Alien foremost among such 
references—associates “xenomorphs” with disturbing otherness that defies terrestrial norms. 

Yet this dichotomy between biomorphism and xenomorphism is not always absolute. In 
geology, for instance, the terms biomorphic and xenomorphic describe minerals based on their 
crystallization timeline relative to surrounding structures. Xenomorphic minerals crystallize later, 

61 McMillen and Levin, Distributed Intelligence. 
60 Cronin et al., “Assembly Theory.” 
59 DeLanda, Assemblage Theory; Hayles, “Cognitive Assemblages.” 
58 Eiben and Smith, 479. 
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resulting in shapes unconstrained by neighboring formations. This highlights a continuum rather than a 
strict opposition: biological and nonbiological features often overlap or merge, with each informing the 
other in unexpected ways.62 For design research, acknowledging this fluid interplay can open paths to 
novel architectures that fuse or move beyond purely organic reference points.63 NASA’s TESSERAE 
(Tessellated Electromagnetic Space Structures for the Exploration of Reconfigurable, Adaptive 
Environments) project exemplifies how xenomorphic principles can be applied in literal alien 
environments.64 Developed for reconfigurable space architectures, TESSERAE modules are designed to 
float in microgravity, quasi-stochastically self-assembling into desired geometries. Inspired by Roman 
mosaic tesserae, these tiles can interlock and form larger bases—or be deconfigured and 
recombined—thus adapting to the vacuum-based constraints of orbit. Crucially, the modules’ behavior is 
not biologically derived; they transcend the rigidity of biomorphic forms through their flexible, 
reconfigurable morphology. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 The modular and self-assembly structure of TESSERAE. Source: Artist Rendering of 
TESSERAE by TU Dortmund – MIT Media Lab. 

In virtual contexts, xenomorphological design bypasses biological and physical constraints 
entirely. Morphologies develop outside of Earthly selection pressures, enabling a catalog of design 
elements that account for emergent behaviors unrelated to human physiology. Forms might range from 
enhanced sensory receptors to chemical harvesters or detectors of differential 
electromagnetism—capabilities that surpass human senses and address digital or off-world requirements. 
By suspending fitness conditions tied to Earth-based evolution, xenomorphs in silico can evolve traits 
defying organic intuitions, producing forms and functions that truly challenge our usual design 
heuristics. Xenomorphological design often involves iterative testing and population-scale 
experimentation, drawing on combinatorial logics akin to those employed in AlphaFold or 
reinforcement-learning environments such as Imbue’s Avalon.65 Instead of a rigid blueprint, an adaptable 
scaffold supports randomized or algorithmic recombination, allowing xenomorphic responses to emerge 
on their own terms. This iterative approach could eventually move beyond virtual space—for instance, 
into a modern “Biosphere 2” setting, where newly designed morphologies adapt in physical but still 
controlled, semiartificial conditions. 

Downstream of xenomorphology lies what we might call xenobehaviorism: a lens for analyzing 
the unique behaviors that alien morphologies engender. Here, AT’s concept of an assembly index 
becomes critical. By tracking the minimal set of “steps” or structural components needed to bring a form 
into existence, we can interpret how that form might inhabit an alien morphospace and generate novel 
behaviors unrestricted by Earth’s evolutionary lineage. Indeed, xenomorphic forms in silico need not be 
judged by their potential translation into real-world systems but by the unprecedented behaviors they 
manifest in virtual or extraterrestrial domains. Fundamentally, true xenomorphology maintains an 
incommensurability with terrestrial forms. Some influences may, of course, be traced to Earth-based 
biology, but the foundational structure of xenomorphs should not simply be relabeled biomimicry. This 
shift compels a reevaluation of how such entities might coexist with humans and with each other—as 
distinct layers of intelligence and agency that can cooperate or coevolve without collapsing into 
anthropocentrism. These are alien intelligences, echoing the multiscale “collective intelligence” work of 
Levin and others, extended to realms beyond the biosphere’s known repertoire. 

65 Albrecht et al., “Avalon.” 
64 Ekblaw and Paradiso, ““TESSERAE.” 
63 Cronin, “Assembly Theory.” 
62 Kauffman, Investigations. 
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In short, where generalized biomimesis anchors design in the familiar terrain of life’s historical 
templates, xenomorphology relinquishes those anchors in pursuit of genuinely novel morphospaces. 
Whether operating in microgravity, virtual simulation, or any domain unbound by Earthly evolutionary 
constraints, xenomorphological design invites us to explore—and ultimately, engineer—the truly alien. 
 
5  Conclusion: Speculative Visions for a New Antifragile Xenophylum 

For xenomorphological design to fulfill its potential, it must embrace a rigorous scientific and 
architectural framework. AT offers precisely this: a quantitative approach for charting the structural 
pathways and “assembly sequences” that lead to novel forms. Coupled with what we might call 
xenoarchitectural theory, researchers can actively anticipate previously unimaginable morphogenetic 
outcomes. Rather than reproducing life’s known forms, this paradigm propels us to explore the radical 
otherness of xenomorphospace. In doing so, we might cultivate entire environments in which alien 
intelligences proliferate, challenging established boundaries of morphology, behavior, and 
human–machine interaction. 

The convergence of ideas from Karl Sims, Michael Levin, Lee Cronin, and Sara Walker 
underscores the unifying role of morphology across the domains of evolution, technology, and 
intelligence. By quantizing how complex forms come into being—whether through cellular alignment in 
embryogenesis or modular recombination in virtual simulations—morphology transcends the binary of 
the organic versus the synthetic. In this sense, xenomorphology emerges not simply as a design novelty 
but as a structural alternative to biomimesis, realigning the focus of design thinking toward unknown 
pathways of form. 

This perspective resonates with the advent of generative AI, which encourages morphological 
exploration in its architectures. The most speculative instances of xenomorphological experimentation 
may initially unfold in silico, but their impact extends to physical infrastructures and cultural 
imaginaries. Over time, these virtual experiments filter into how we perceive and construct our 
environments, subtly redefining our relationship to both the biosphere and a nascent xenosphere. 

Crucially, it may take adversarial events or stressors to catalyze the emergence of progressively 
antifragile xenomorphic forms. Because these forms are engineered with artificial responsiveness and 
flexibility, they adapt more quickly than their biological counterparts. By deploying large-scale 
simulations and iterative testing—akin to Sims’s evolutionary software or Imbue’s Avalon 
environment—designers can accelerate the discovery of xenomorphic responses. When promising new 
behaviors surface, they can be refined and scaled further, eventually migrating into physical test beds 
reminiscent of Biosphere 2. 

This antifragile imperative—where morphology itself becomes the wellspring for evolving 
behaviors—reflects a design philosophy attuned to a complex, rapidly shifting world. In reframing 
evolution as a synthetic and modular process, we glimpse the birth of a new xenophylum of forms 
adapted to alien intelligences and nonbiological morphospaces. Pushing beyond the constraints of 
terrestrial body plans, xenomorphology embraces the alien in all its unsettling potential. By prioritizing 
antifragility and dynamic adaptation, we can seed resilient, exploratory, and provocative designs that 
transcend the boundaries of the biosphere—marking a transformative milestone in both the theory and 
practice of design. 

Sometimes, an adversarial event can induce an unexpected, xenomorphic response. In this case, 
acquired xenomorphic behaviors might lead to greater resilience and increased proliferation in various 
contexts. This insight underscores the need to rethink design frameworks through the lens of a new 
xenomorphic paradigm, which emphasizes adaptability and innovative responses to challenges. By 
adopting this paradigm, designers can cultivate more resilient systems that are better equipped to 
navigate complexity and engineer this new Cambrian explosion. 

In this framework, the antifragile response mediates between the morphology (which begets the 
morphospace of new behaviors) and the emergence of the xenobehavior itself. Without some adversarial 
stimulus, in other words, a potential xenobehavior may never emerge. Thus, as with Levin’s argument 
for problem-solving capabilities being distributed beyond the bounds of the individual agent, the 
possibilities of xenomorphology either can be left to chance, to emerge within adversarial encounters, or 
else such antifragile stimuli can be experimented with. The stimuli that might solicit such a response 
may be adversarial but are inherently unpredictable and difficult to predetermine. Thus, as with Sims’s 
virtual evolved creatures, experimenting with such emergence benefits from a scaling of experimental 
frequency. 

A small number of xenomorphological components might be recombined either randomly or 
according to a specific algorithmic logic based on the “multi-sequence alignments” of projects such as 
AlphaFold.66 To establish their postcombinatorial morphospace for potentially novel behaviors, these 
assembled xenomorphs must be tested in potentially adversarial environments. Promising novel 
behaviors might be iterated upon. 

66 Jumper et al., “Highly Accurate Protein Structure,” 583. 
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3 Organs Without Bodies 

Where does mere information processing end and active cognition 
begin? As artificial intelligence advances, the boundary between these 
two states becomes increasingly ambiguous. Evolutionary biology offers 
a valuable perspective: Historically, sensory organs such as eyes have 
played a critical role in driving the development of brains, emphasizing 
that cognition emerges from sensory capacities. Thinking, therefore, is 
inherently tied to sensing—an insight equally pertinent to artificial 
sensing and intelligence. 

The emergence and proliferation of new, cognitively active 
forms of intelligence necessitates a fundamental reimagining and 
reengineering of the relationship between intelligence and embodiment. 
Material substrates that inherently possess cognitive properties, such as 
neural tissue, are being integrated into innovative technological 
assemblages. Simultaneously, forms of embodiment traditionally 
associated primarily with sensory roles are evolving to actively 
participate in cognitive processes, transcending their original function of 
merely sensing environmental information. 

Such multiplicities in cognition and embodiment should not be 
viewed as anomalies; rather, they reflect the intrinsic plurality already 
present within biological systems. The brain itself exemplifies this 
multiplicity, with cortical columns concurrently negotiating diverse 
aspects of experience in both integrative and divergent ways. Extending 
this principle beyond individual organisms, cognition similarly 
manifests as a dynamic interplay among multiple embodied entities, 
each contributing uniquely to the broader cognitive landscape. 

These projects examine these transformative developments, 
exploring the philosophical and practical implications of redefining 
cognition in relation to novel modes of embodiment. By appreciating the 
pluralistic nature of cognitive processes, they aim to expand our 
understanding of how emerging forms of artificial intelligence and 
sensory integration reshape the fundamental boundaries of cognition 
itself. 
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3a  Organoid Array Computing 

When exploring potential substrates for computation, the human brain naturally stands out as a highly 
sophisticated example. Biological neural networks and the evolutionary phenomenon of cephalization 
have long been intertwined, yet it remains unclear whether their coupling is indispensable for cognition 
or merely one evolutionary pathway among many. Recent advances in brain organoid research suggest 
intriguing alternatives. Brain organoids—laboratory-grown clusters of neural tissue—demonstrate 
remarkable cognitive capacities, including responding to stimuli, generating measurable brain waves, 
controlling rudimentary robotic systems, and even performing tasks such as playing Pong. 

This research prompts critical questions about the materiality of intelligence itself. Brains, as 
substrates, clearly possess inherent plasticity suited to artificialized forms of computation, suggesting 
untapped potential within the broader landscape of “learning matter.” Rather than programming artificial 
intelligence, what new possibilities emerge when we instead grow it organically? 

Yet, the human brain’s complexity arises largely from its extensive neural networks and 
division of labor across specialized regions. Could similar complexity emerge from interconnected 
networks of brain organoids? This project explores this idea, imagining the cultivation of organoid 
networks capable of mutual communication, hypothesizing that such interconnected systems will yield 
increasingly sophisticated cognitive behaviors. These interactions may foster evolutionary-like dynamics 
among organoids, with certain units potentially developing greater adaptability and efficiency than 
others. 

Should this scenario materialize, we would indeed have grown a unique form of artificial 
intelligence—distinct yet comparable to silicon-based systems. However, important questions remain 
unresolved: What specific advantages might this organically derived intelligence hold over traditional 
computational substrates? This project probes these boundaries, illuminating novel paths forward in the 
ongoing quest to understand and engineer intelligence. 
 
3b  Cognition With and Beyond the Brain 

Cognition is not confined solely to the brain; it emerges dynamically through interactions 
extending across and beyond the physical boundaries traditionally associated with thought. Given this 
broader conceptualization, it stands to reason that technological augmentation of cognition should 
similarly extend beyond cerebral confines. Historically, technological enhancements of the human body 
have predominantly targeted sensory mediation, limiting augmentation to the refinement of external 
inputs. However, recognizing that cognition permeates the entirety of embodied experience opens new 
possibilities for integrative augmentation. 

Indeed, numerous species exhibit decentralized cognitive capabilities distributed throughout 
their bodies, raising intriguing questions about the potential for creating analogous technological 
transduction layers within humans. What forms could such a layer take, and how might it expand our 
cognitive horizons? 

This paper provides a philosophical foundation for emerging and existing forms of artificial 
sensory and somatosensory augmentation. Bridging philosophical inquiry with contemporary 
technological developments, the project draws on Bernard Stiegler’s philosophical explorations of 
“endosomatization”—or, as adapted here, “intrasomatization”—to analyze advanced epidermal media 
and computational frameworks embedded directly in bodily tissues. 

By integrating these philosophical perspectives with cutting-edge engineering, this paper 
explores how cognition might be technologically extended across bodily surfaces, fundamentally 
transforming the interface between human bodies, perception, and thought processes. Ultimately, this 
interdisciplinary approach lays the conceptual groundwork for understanding and developing novel 
augmentations that acknowledge and leverage the distributed nature of cognition. 
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Abstract  

In this paper, we explore the artificialization and networking of 
biological matter via brain organoids—three-dimensional, 
stem-cell-derived structures that recapitulate aspects of human brain 
architecture and function. These organoids serve as a platform for 
investigating the emergent properties of biological neural networks and 
the potential for developing an in-vitro to in-silico cognitive 
architecture. Our research addresses the burgeoning field of organoid 
intelligence (OI), wherein biological substrates are interfaced with 
computational systems, providing an adaptive framework for embodied 
computation. A common distinction between software and hardware in 
the field of biocomputing assumes DNA as software and cells as 
hardware. By evolving through biochemical and physical signaling 
feedback, organoids challenge this dichotomy. OI integrates both, 
enabling biological systems to move along the continuum from software 
to hardware into a multiscale machine. We begin by examining the 
current interfacing technologies that enable the connection between 
organoids and digital systems, evaluating the proof-of-concept studies 
that have laid the groundwork for OI applications. This analysis includes 
a critical assessment of the existing practical and technical limitations 
that hinder the realization of scalable OI. We then propose design 
strategies aimed at overcoming these obstacles, emphasizing the need 
for a nested approach to experimental design. New permutations enable 
the iterative development of OI modules, facilitating the integration and 
application of polycomputational neural assemblies. The design space of 
OI focuses on the growing dimensions and analysis of inputs, outputs, 
interfaces, and frameworks across multiple scales. We posit that the 
design of OI is less an act of top-down design and more a process of 
guided evolution, wherein higher-order cognitive functions emerge 
organically from the intricate interplay of lower-level biochemical 
substrates. Through this, we speculate on how higher-order functions 
can emerge from networking biological matter from embedded 
substrates “downstream”. Our research aims to uncover new dimensions 
in the information-processing capabilities of OI, positioning OI as a 
novel form of AI. 

Keywords 

artificial intelligence; human brain organoids (HBOs); organoid 
intelligence (IO); interface; biological neural network; hybridized 
entities; biocomputing 
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1  Introduction 

The discovery of new materials and functional substrates continually reshapes novel approaches in 
computing and provides “new means of acting on and interpreting the world.”1 Recent advancements in 
stem cell research have opened groundbreaking avenues for utilizing human neuronal tissue as a 
substrate for unconventional neural networks. At the forefront of this research are brain organoids: 
complex structures derived from stem cells that develop functional neural networks, enabling the 
artificialization of biological matter and the networking of growing and thinking matter.2 

Organoids, when interfaced with artificial intelligence through multielectrode arrays (MEAs), 
present a compelling framework for instantiating novel modes of computing and neural network 
architectures. This paper explores the design space of organoid intelligence (OI), traversing the 
continuum from organoids as “software” emerging from lower-level biological substrates to their role as 
“hardware” supporting higher-order computational processes. 

If the word computer refers to any physical object that can implement any computable function, 
then biological brains—and, by extension, human brain organoids (HBOs)—are literally computers.3 
Viewing biological neural tissues as computational entities enables us to move beyond the conception of 
computers as externalized brains, instead considering artificialized brain models as computers 
themselves. Further, as current developments in artificial intelligence point toward a “hardware 
bottleneck issue,” this position enables us to depart from neuromorphic designs in silicon and to examine 
the inherent computational power of living neuronal tissues as a potential solution.4 

We propose viewing the design space of OI as a “polycomputational” neural assembly, 
integrating hardware, software, organoids, and chemical substrates into a cohesive computational 
framework that couples in-vitro biological systems with in-silico computational frameworks. In the 
following sections, the paper will elucidate and expand on the design space of OI, delineating the 
various dimensions crucial to experiment design in this emerging field. We will explore the building 
blocks of OI experiments, considering inputs, outputs, interfaces, and frameworks across multiple scales. 
By mapping this design space, we seek to provide a comprehensive foundation for future OI 
experimentation and its potential applications in artificial intelligence. 
 
2  Background on Organoids 

Organoids are 3D tissue cultures derived from stem cells that model the structures and functions of an 
organ.5 The discovery of organoids began with Hans Clevers’s groundbreaking work, in which organoids 
were first grown in lab petri dishes using stem cells from patients’ small intestines.6 

Advancements in stem cell research and tissue cultures have blurred the lines between 
biological and artificial systems. Key developments include the creation of chimeric embryos, which 
combine genetic material from different organisms, and synthetic tissue cultures that challenge the 
primacy of DNA in determining biological outcomes.7 These breakthroughs not only expand our 
understanding of biological plasticity but also pave the way for innovative research in regenerative 
medicine, organ transplantation, and the study of human evolution and neurodevelopment.8 

Today, stem cell cultures can be programmed and exposed to specific environmental factors to 
functionally model various organ sections.9 HBOs, also referred to as cerebral organoids, are grown from 
human pluripotent stem cells that can mimic aspects of the architecture and functionality of the human 
brain (see Figure 1).10 HBOs are traditionally utilized for studying human brain development, modeling 
neurological diseases, testing drug efficacy, and other assessments of neurodevelopmental processes that 
would otherwise present ethical and practical constraints associated with human brain research.11 

Although HBOs have the ability to replicate certain aspects of brain structure and function, they 
are currently limited in their scale and complexity. Without solving significant gaps in vascularization 
and interorganoid communication, organoids remain a minimum “working model of some of the 
circuitry resident in a living, functioning human brain.”12 

 

 

 

 

 

 

12 Goldman, “Assembloid Models”; Smirnova et al., “Organoid Intelligence: New Frontier.” 
11 Sun et al., “Applications of Brain Organoids.” 
10 Takahashi and Yamanaka, “Induction of Pluripotent Stem Cells”; Baldassari, “Brain Organoids.” 
9 Fernandes, “Organoids as Complex (Bio)Systems.” 
8 (Sun et al., “Applications of Brain Organoids” 2021; Chen et al., “Human Brain Organoids.” 2019 
7 Blakemore, “Human-Pig Hybrid”; Kruszelnicki, “Mouse with Human Ear”; Tissue Culture & Art Project, “Crude Matter.” 
6 Sato et al., “Single Lgr5 Stem Cells.” 
5 Smirnova et al., “Organoid Intelligence: New Frontier” 
4 Mencattini, “Assembloid Learning.” 
3 Richards and Lillicrap, “Brain-Computer Metaphor.” 
2 Smirnova et al., “Organoid Intelligence: New Frontier” 
1 Beaulieu et al., “Refractive Computation,”  



 

 

 

 

 

 

Figure 1 Sixty-day-old organoids with bilaterally symmetric pigmented optic vesicles.13 

 
2.1  The Concept of Organoid Intelligence: In-vitro to In-silico Interface 

An organoid in a petri dish exists in an in-vitro state, isolated from external inputs and without 
perceivable outputs. However, HBOs have now been interfaced with artificial intelligence, creating an 
interconnected system where AI serves as an analytical tool to process high-dimensional data from these 
biological structures.14 This is referred to as “organoid intelligence” (OI), a term first introduced in the 
article “Organoid Intelligence (OI): The New Frontier in Biocomputing and Intelligence-in-a-Dish.”15 

OI is the hybridization of biological computing with machine interface technologies. This 
integration enables us to virtually embody organoids, transitioning them from an in-vitro to an in-silico 
“in computer” instance. The physical organoid interface includes three central components: an HBO, an 
MEA, and a microfluidic platform.16 Each element plays a crucial role in creating a functional and 
interactive bio-electronic interface (Figure 2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Typical interface for OI. Figure designed by Jenn Leung. 

 
 

16 Smirnova et al., “Organoid Intelligence: New Frontier” 
15 Smirnova et al., “Organoid Intelligence: New Frontier.” 2023 
14 Smirnova et al., “Organoid Intelligence: New Frontier.” 
13 Gabriel et al.. “Human Brain Organoids.” 2021 
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At the core of the tripartite interface, we have HBOs, which serve as functioning neural 
networks capable of processing information. HBOs’ inherent ability to form and reorganize synaptic 
connections means that they can be trained, opening up new possibilities for research and application. 

MEAs are used for interfacing HBOs with external systems, enabling precise delivery of 
electrical stimuli and recording of neuronal activity.17 Different types of MEAs, such as shank and mesh 
electrodes, offer specialized functionalities, with shank electrodes allowing access to deeper layers of 
organoids and mesh electrodes providing flexible interfaces.18 This bidirectional communication probes 
neuronal networks within the organoids and stimulates their development (Figure 3). 

In addition to MEAs, the microfluidic platforms that house the organoids are essential to their 
sustained functionality. Typically housed in a petri dish, microfluidic platforms deliver a carefully 
balanced culture medium that supports cell growth and development.19 These platforms simulate the 
microvascular networks of the human brain, delivering a continuous flow of culture medium that mimics 
the nutrient and waste exchange found in vivo. This controlled environment ensures that the organoids 
remain healthy and responsive over extended periods, thus maximizing their utility in experimental 
setups.20 

Together, these technologies enable us to process and study organoid output, offering insights 
into their computational potential and applications in neurological research. In the following sections, 
we will explore multiple frameworks for OI application, tracing the evolution from neuromorphic 
computing to direct organ-on-chip systems. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Various types of MEAs for organoids (adapted from Passaro and Stice,“Electrophysiological 
Analysis”). 

 
2.2  Artificial Neural Networks vs. Organoid Neural Networks 

The use of OI as a new form of computation comes partly from the fact that, in learning, organoid neural 
networks (ONNs) are formed. These could be useful in solving a range of downstream tasks, because 
they solve the problem of traditional artificial neural networks (ANNs) that are inherently static systems, 
characterized by fixed topologies. Once an ANN is designed and trained, its structural properties—such 
as the number of layers, neurons, and connections—remain unchanged. 

This is not just the case for simple learning paradigms—such as supervised, unsupervised, or 
reinforcement learning—but also for more complex subparadigms, such as continual learning (otherwise 
known as lifelong learning21), where the model can learn from new information over time, or 
self-supervised learning, where the model uses the data itself to generate labels.22 In all of these 
paradigms, the models are incapable of changing their own architecture. 

This rigidity contrasts sharply with the learning in biological neural networks, such as those 
formed by organoids, which exhibit fluid intelligence and neuroplasticity. Unlike ANNs, the neurons in a 
brain or brain organoid can form new connections with other neurons, enabling not only continuous 
learning but also continuous adaptation of the architecture itself. This dynamic quality highlights the 
potential of OI, where evolving neural topologies could lead to more flexible and adaptive forms of 
computation.23 

23 Mencattini, “Assembloid Learning.” 
22 Jaiswal et al., “Contrastive Self-Supervised Learning.” 
21 Parisi et al., “Continual Lifelong Learning.” 

20 Passaro and Stice, “Electrophysiological Analysis”; Sharf et al., “Functional Neuronal Circuitry”; Quintard et al., “Microfluidic 
Platform”; Ballav et al., “Organoid Intelligence.” 

19 Quintard, “Microfluidic Platform.” 
18 Passaro and Stice, “Electrophysiological Analysis.”. 
17 Passaro and Stice, “Electrophysiological Analysis.” 
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3  Current Applications of Organoid Intelligence 

Currently, researchers are able to monitor and modulate the neural activity, effectively integrating the 
biological neural networks in HBOs with electronic systems.24 The organoids are embedded into 
computational frameworks that can enable them to perform specific tasks. Neural signals from the HBOs 
can control virtual environments or robotic systems, enabling the study of learning and adaptive 
behaviors. Algorithms decode these neural patterns and optimize the interactions between organoids and 
their virtual or physical embodiments.25 

OI creates a bidirectional communication system between the HBOs and the interfaced AI 
system through MEAs. OIs are both “plugged in” to these AI chips and connected to the HBOs’ neural 
activity.26 In this section, we review a (nonexhaustive) list of current OI case studies. 

3.1 DishBrain Pong 

The virtual and robotic embodiment of OI immerses the biological neural network within virtual or 
robotic environments, which allows them to interact and adapt in simulated worlds.27 A prominent OI 
case study is the “DishBrain” device by Kagan and team at Cortical Labs,28 which demonstrates how 
HBOs can be integrated into a simulated game environment of Pong.29 

The primary objective of DishBrain was to explore the capabilities of in vitro neural networks 
to perform goal-oriented tasks when provided with sensory input and feedback. Kagan and his team 
grew organoids on MEAs,30 which recorded and stimulated the electrical activity within the neurons and 
involved a grid of electrodes that delivered electrical stimuli to specific regions of the neural network.31 
DishBrain was virtually embodied into a game environment that simulated the arcade game Pong, where 
a virtual paddle controlled by the biological neural network interacts with a ball that moves back and 
forth across the screen as a closed-loop feedback system.32 If the virtual paddle was successful in hitting 
the virtual ball, a ‘positive’ feedback signal was sent to the sensory region to reinforce this behavior, and 
if the paddle missed the ball, a ‘negative’, less predictable feedback signal was sent. The biological 
neural network adapted to the feedback from the game environment and improved its performance, 
demonstrating learning and adaptive behavior. The research also reveals that DishBrain competes with 
other existing deep reinforcement learning algorithms.33 By demonstrating that neurons can learn and 
adapt in goal-directed ways, DishBrain opens new avenues for brain–machine interfaces, 
neurocomputational models, and biological–artificial hybrid systems. 
 
3.2  Neandoroids 

Neuroscientist Alysson Muotri and his team at the University of California, San Diego, pioneered the 
development of Neanderthal brain organoids by reintroducing the archaic variant of the NOVA1 gene 
into human stem cells.34 These organoids exhibit significant differences from human cortical organoids, 
including longer growth periods, a distinctive popcorn-like shape, and fewer cortical connections. These 
findings suggest that the neurological structures of Neanderthals may have influenced their cognitive 
abilities and social behaviors in ways that differ from those of modern humans, and this research offers a 
novel platform for studying human evolution and neurodevelopment. Further, Muotri and team 
connected Neanderthal organoids to robotic systems, allowing these brain models to interact with and 
explore their environment.35 This fusion of biology with modern technology opens a realm of new 
possible research for understanding cognition, learning, and adaptation across evolutionary timescales. 
This work not only enhances our understanding of human brain evolution but also lays the groundwork 
for future studies that may uncover the genetic basis of human-specific traits and vulnerabilities. 
 
3.3  Speech Recognition Studies 

Guo and his research team at Indiana University Bloomington developed a novel hybrid system called 
Brainoware. In their study, published in Nature Electronic, Guo’s team conducted a benchmark test to 
evaluate Brainoware’s capabilities in speech recognition.36 They used 240 audio clips of Japanese 
vowels, which were converted into electrical signals and processed by the HBOs. These signals were 
then decoded by an AI tool. Although the system initially showed low accuracy, it improved with 
training, eventually reaching a 78 percent accuracy rate. While this is lower than that of conventional 

36 Cai et al., “Brain Organoid Reservoir.” 
35 Trujillo et al., “Reintroduction.” 
34 Trujillo et al., “Reintroduction.” 
33 Khajehnejad et al., “Biological Neurons.” 
32 Kagan et al., “In Vitro Neurons.” 
31 Khajehnejad et al., “Biological Neurons.” 
30 Kagan et al., “In Vitro Neurons.” 
29 Kagan et al., “In Vitro Neurons.” 
28 Kagan et al., “In Vitro Neurons.” 

27 Kagan et al., “In Vitro Neurons”; Smirnova et al., “Organoid Intelligence: New Frontier”; Khajehnejad et al., “Biological 
Neurons.” 

26 Greenberg, “Birth of Wetware.” 
25 Kagan et al., “In Vitro Neurons”; Muotri, “Brain Model Technology.” 
24 Smirnova et al., “Organoid Intelligence: New Frontier.” 
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ANNs, the study is a pioneering demonstration of how organoid-based systems can learn and perform 
computational tasks, marking a significant step forward in the development of biocomputers.37 
 
3.4  Bioprocessors 

Companies like FinalSpark and Emulate are already selling OI technologies as advanced 
biocomputational devices.38 OI is claimed to enhance our understanding of brain function and create new 
forms of biocomputers that could surpass the efficiency and capabilities of traditional silicon-based 
systems.39 As these platforms continue to evolve, they hold the potential to not only transform scientific 
research but also expand what is currently possible in computing and artificial intelligence, creating 
hybridized entities of biology and technology.40 
 
3.5  Internet of Organoids 

FinalSpark has developed an initiative that allows real-time online monitoring of their biochips, offering 
a window into the live neuronal activity of organoids.41 Through their online platform, users can observe 
the real-time functionality of neurospheres housed within the MEAs. Individual charts displayed on the 
platform correspond to a single biochip, where the activity of one neurosphere is tracked. The charts 
provide detailed information on the electrophysiological signals detected by the electrodes in the MEA, 
with each signal representing the neuronal activity of the organoid in response to various stimuli. This 
feature represents a significant step toward integrating biological systems with digital platforms. By 
offering live views of the organoids’ activity, FinalSpark enables researchers, students, and the public to 
directly witness the complexities of neuronal signaling and the potential of OI. 
 
4  The Design Space of Organoid Intelligence 

As we move from the established foundation and current applications of OI into the design space, we 
delve into the speculative and exploratory. This space is used to envision the future of OI, where current 
technological capabilities intersect with innovative concepts. This enables us to explore the potential 
trajectories of OI development, understanding where the hybridization of biological systems and 
technology could lead, without necessarily advocating for any specific evolutionary path. The 
importance of the design space lies in its ability to offer a creative framework to anticipate future 
opportunities and challenges. By engaging with the speculative, we can identify and address the current 
limitations of OI technologies while imagining how these challenges might be overcome. 

Currently, OI technology faces several significant limitations. Some of these include the lack of 
vascularization in organoids, which restricts their growth and complexity. OI also has other scope and 
scale limitations around potential interorganoid communication and the quality of microfluidic 
platforms. These limitations set important boundaries on what is currently achievable, yet this design 
space enables us to speculate on how these limitations might be addressed in the future, through 
innovations in bioengineering, computational frameworks, and ethical oversight. 

The future of OI looks to the design of OI systems as a guided evolution. The potential of OI 
can be understood through theoretical frameworks such as Friston’s “free energy principle.” This 
principle posits that the brain constantly strives to create a predictive model of the world, minimizing the 
gap between sensory inputs and its predictions.42 Applied to organoids, this suggests that their 
development of structures such as ocular cups indicates a “demand” for more complex sensory inputs. 
This self-driven complexity reveals the growing computational potential of organoids as a material 
substrate for intelligence. 

Within this design space, we introduce the concept of scaffolding as a layered approach to 
developing OI systems. Scaffolding here refers to the idea that each layer of development builds on the 
last, creating increasingly sophisticated and capable systems. The layers of scaffolding we explore are 
highly speculative, extending the boundaries of current technology and envisioning how future 
advancements could fundamentally change what OI can achieve. 

The layers we discuss include Layer 1: Organoid Array Computing, where multiple organoids 
work in parallel to enhance computational capacity; Layer 2: Multimodality Processing, which imagines 
specialized organoids designed to process different types of sensory inputs; and Layer 3: 
Intergenerational Memory, which speculates on organoids’ potential to transmit learned behaviors or 
information across generations. These layers represent possible future directions in the development of 
OI, providing a roadmap for how these biological systems could evolve in complexity and functionality. 
 

42 Friston, “Free-Energy Principle.” 
41 FinalSpark, “Neuroplatform.” 
40 Smirnova et al., “Organoid Intelligence: New Frontier”; Smirnova et al., “Organoid Intelligence: Ultimate Functionality.” 
39 Smirnova et al., “Organoid Intelligence: New Frontier.” 
38 FinalSpark, “Neuroplatform”; Emulate, “Brain-Chip.” 
37 Tsanni, “Human Brain Cells.” 
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4.1  Current Limitations: Vascularization 

Current organoid technologies face significant limitations due to HBOs’ lack of vascularization. While 
HBOs offer a promising avenue for studying human brain development and disease, they often lack the 
microenvironment and vascular support necessary for sustained growth and functionality.43 This 
deficiency results in necrotic centers due to insufficient oxygen and nutrient supply, limiting their size 
and complexity. Although efforts to integrate vascular structures into organoids through cocultures with 
vascular cells or tissue engineering have shown some promise, they have not yet achieved the authentic 
blood microenvironment required for proper development.44 

An alternative approach involves the engraftment of HBOs into animal hosts, such as mice, 
where they can develop functional vasculature and integrate with the host brain’s neuronal circuits.45 
This method has shown success in creating mature and functional human brain tissues in vivo, 
responding to physiological stimuli and demonstrating functional synaptic connectivity. Preliminary 
indications are that the human neuronal tissue can not only be grafted into rodent neuronal tissue but 
also receives sensory input and becomes permeated by blood vessels supplying oxygen and nutrients and 
carting away metabolic waste.46 However, the use of chimeras raises ethical concerns, particularly 
regarding the potential for these organoids to develop morally relevant qualities.47 As the field advances, 
it is crucial to address these ethical issues proactively to ensure the responsible development and 
application of OI technologies. 

Another potential solution for the significant challenge of vascularization is bioprinting. While 
it is commonly associated with creating skin grafts or ear transplants, recent research has employed this 
technique for introducing vascular structures into organoids.48 The development of bioprinting has 
traversed several stages, from first bioprinting nonbiocompatible structures, to nonbiodegradable 
prostheses, and toward biocompatible and biodegradable structures that support tissue repair and 
regeneration.49 Bioprinting uses different bioinks, such as hydrogel composed of cellulose or collagen. 
When cells are introduced to the microlattice scaffold, they can grow over this scaffold to turn into a 3D 
structure so that the bioprinted structure provides physical instructions for growth. At times, these 
temporary and thermoreversible supports can also be washed away, facilitating plastic development. 
Currently, researchers are able to print biomimic 3D structures with living cells akin to cellular printing, 
covering multiple materials and cell types.50 
 
4.2  Microfluidic Platforms 

Beyond addressing vascularization challenges, we can also reconceptualize microfluidic platforms so 
that they are conditioned to support responsive, open-ended cell development.51 To consider the potential 
computational power of organoid systems beyond pure electrical stimulation, we should reposition 
microfluidic platforms as an architecture for non-electrical stimulation.52 

Here, chemical and biological computing systems recursively program each other and exhibit 
multiscale continuation.53 A more recent concept proposed by Leroy Cronin, chemputation, also points 
to the increasing interest in metabolic design for polycomputational systems.54 With this understanding, 
we can view microfluidic platforms as an additional layer of computation, working in concert with 
organoid structures and electrical feedback systems. 

To optimize microfluidic platforms for OI, we propose to develop systems that allow for the 
circulation of essential nutrients and growth factors, moving beyond static culture broths. Studies show 
that an extended culture medium permits the development of mature cell types and cellular diversity.55 
For example, microfluidic platforms contribute to the diversity of inputs that organoids are capable of 
receiving, as culture conditions and duration are critical factors in neuronal maturation and 
functionality.56 Neuronal plasticity can be regulated through different culture media, such as neural 
induction medium, DMEM, maintenance medium, Neurobasal Medium, and BrainPhys Medium.57 Not 
only is neuronal activity measured and conditioned with these media, different media help optimize the 
exposure of fluorescent compounds to organoids and modulate downstream neuronal networks58. 

58 Zabolocki et al., “BrainPhys Neuronal Medium” 2020; Osaki et al., “Complex Activity.” 2024 
57 Zabolocki et al., “BrainPhys Neuronal Medium.” 
56 Osaki et al., “Complex Activity.” 
55 Quadrato et al., “Cell Diversity.” 
54 Cronin, “Chemputer and Chemputation”; Sha, “Metabolic Approach.” 
53 Bongard and Levin, “Biological Systems.” 
52 Smirnova et al., “Organoid Intelligence: New Frontier” 
51 Quadrato et al., “Cell Diversity”; Cogoni et al., “ISiCell.” 
50 Wang et al., “Application of Bioprinting”; Skylar-Scott et al., “Orthogonal Differentiation.” 
49 Wang et al., “Application of Bioprinting.” 

48 Kengla et al., “Bioprinting of Organoids”; Wang et al., “Application of Bioprinting”; Ren et al., “Developments and 
Opportunities.” 

47 Hyun et al., “Ethical Issues.” 
46 Goldman, “Assembloid Models.” 
45 Mansour et al., “In Vivo Model.” 
44 Mansour et al., “In Vivo Model”; Chen et al., “Human Brain Organoids.” 
43 Zhang et al., “Vascularized Organoids.” 
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The Chemputer proposed by Cronin is a speculative universal chemical synthesis machine that 
automates the precise control of chemical reactions, using programmable hardware to execute complex 
synthesis pathways.59 This polycomputational approach suggests that if liquids can compute, the 
chemical microenvironments within microfluidic platforms contribute to the overall computational 
capacity of the system by shaping the conditions under which biological processes occur. Similar to how 
the Chemputer uses precise control of reagents and conditions to guide chemical reactions and achieve 
desired outputs, microfluidic platforms in OI systems could dynamically regulate chemical gradients, 
nutrient delivery, and waste removal. This controlled environment enables the fine-tuning of organoid 
development and neural activity, effectively guiding the biological processes that underlie computational 
tasks. In this sense, the liquid environment becomes an integral part of the system’s computational 
framework, enabling the organoids to perform more complex functions by optimizing the conditions for 
their growth and interaction. 

Another branch of organoid engineering research points to hormonal alteration and dopamine 
stimulation as additional inputs that can influence organoid growth and development.60 The stimulation 
of dopaminergic neurons could entrain and modify the activity patterns of neurons in other regions of the 
assembloid and induce long-lasting morphological changes.61 

Through these systems, we may also explore a range of substrate materials and configurations 
to promote open-ended cell development. Further, we might want to design microfluidic platforms that 
facilitate bidirectional communication between electric signals and chemical culture components. 
Recursive chemical-to-electrical artificialization enhances the organoids’ ability to adapt, 
self-programming the development of computational capabilities. This fluid architecture is necessary to 
support the neuroplasticity and adaptability of ONNs. 
 
4.3  Interorganoid Communication: From Organoids to Assembloids 

Organoids are often cultured to grow with closely monitored factors to ensure experiment reproducibility 
and reliability of electrical recording results.62 However, most experiments are conducted on a specific 
type of organoid, lacking the ability to mimic fully matured adult brains that have interregional and 
intercellular interactions.63 In relation to organoids’ potential for heterogeneous development, Sergiu 
Paşca, director of Stanford’s Brain Organogenesis Program, attributes this phenomenon to the brain’s 
inherent capabilities to self-organize “with its own assembly instructions.”64 

An emerging engineering approach is the combination of different region-specific neural 
organoids into fusion or assemblies to recapitulate the interaction between brain regions. Fused 
organoids can mimic neural migration, projection, or functional neural circuits between brain regions.65 
Meanwhile, researchers have also started coculturing differently patterned organoids or combining 
neural organoids with nonneural tissues to model cell migration and connectivity.66 For example, Shi and 
team generated vascularized human cortical organoids (vOrganoids) by coculturing human embryonic 
stem cells or human-induced pluripotent stem cells with human umbilical vein endothelial cells in 
vitro.67 There is also an assembly of blood vessels and brain cells and a trio of cerebral cortex, spinal 
cord, and muscle organoids demonstrating orchestration.68 Networking assembloids have shown a sign 
of neuroplasticity through “short-term potentiation,” supporting the fluidity of cognitive architectures.69 

Beyond fused and assembled organoids, HBOs can also communicate with each other by 
forming connections through axons, the long, thread-like extensions of neurons that transmit electrical 
signals.70 Current technology enables researchers to cultivate reciprocal axon bundles between organoids 
using specialized silicon elastomer microdevices that provide a microchannel to guide the growth of 
these connections.71 These connections have been shown to transmit electrical impulses from one 
organoid to another, demonstrating a form of communication without external molecular instructions. 
This research reveals that spatial instructions alone (by design of the microdevice) can sufficiently direct 
organoid development and regeneration (Figure 4). The design of the microdevice, for example, the 
number of units and dimensions of its channels, and the choice of biocompatible materials provide 
physical instructions by determining and structuring certain mechanical forces such as compression, 
pressure, etc.72 

 

 

72 Kirihara et al., “Model of a Cerebral Tract.” 
71 Kirihara et al., “Model of a Cerebral Tract.” 
70 Kirihara et al., “Model of a Cerebral Tract.” 
69 Osaki et al., “Complex Activity.” 
68 Bagley et al., “Fused Cerebral Organoids” 2017; Birey et al., “Human Forebrain Spheroids.” 2017 
67 Shi et al., “Vascularized Human Cortical Organoids.” 
66 Levy and Paşca, “What Have Organoids.” 
65 Bagley et al., “Fused Cerebral Organoids” 2017; Suong et al., “Design of Neural Organoids.” 2024 
64 Goldman, “Assembloid Models.” 
63 Makrygianni and Chrousos, “From Brain Organoids.” 
62 Chung et al., “Electrophysiological Recording Platforms.” 
61 Reumann et al., “In Vitro Modeling.” 
60 Reumann et al., “In Vitro Modeling.” 
59 Cronin, “Chemputer and Chemputation.” 
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Figure 4 Axon fascicle formation from microdevice physical cues (adapted from Kirihara et al., 
“Model of a Cerebral Tract.”) 

 
When two organoids are connected by an axon bundle, they perform a ‘handshake’ that leads to 

synchronized bursts of electrical activity recorded between two organoids.73 There are existing 
experiments that support the claim that these interorganoid axonal connections not only correlate to 
higher short-term plasticity in the neuronal network but also facilitate the development of a higher 
complexity of signals between connected organoids.74 

At present, the connections are limited to direct electrical signaling without the intricate 
synaptic networks found in a fully developed brain. Speculatively, advancing this technology could 
involve creating more complex microenvironments that promote the formation of more sophisticated 
neural circuits, including synapses and potentially even chemical signaling pathways. By incorporating 
factors that encourage the development of these connections, such as growth factors, and using more 
advanced bioengineering techniques, we could potentially create organoid systems that mimic the 
complexity of real brain networks and develop robust communication for mutual learning. This could 
eventually lead to the creation of interconnected organoid networks capable of more advanced, 
coordinated activities, offering profound insights into brain function and the mechanisms of neurological 
diseases. 
 
5  Scaffolding for Organoid Intelligence 

 

 

Figure 5 Scaffolding for OI: Chemical computation: designing protocols for culture media and 
chemical stimuli to influence organoid development, reproducibility, and function; mechanical 
computation: designing mechanical properties of tissues, biomaterials, and interfaces to provide 
spatial conditioning and physical cues for organoid growth, e.g. materials, electrophysiological 
factors, solubility, bioprinting scaffold designs, dimensional parameters, MEAs, and interfacing 
techniques; biological computation: designing arrays of cellular growth, tissue morphogenesis, 
maturation, and assembly as well as developing various organoid types; OI: integrates chemical, 
mechanical, biological, and electrophysiological signal processing to create a comprehensive 
framework for OI. Figure by Jenn Leung. 

 
Scaffolding for OI relies on a range of dependencies, including microfluidics for nutrient 

delivery, electric pulses for stimulation, and physical hardware support such as MEAs. However, once 
these dependencies are in place, HBOs begin to form their own functional neural networks, effectively 
becoming a form of biological hardware capable of supporting higher-order computational tasks. This 
continuum of scales—from chemical microenvironments, to mechanical spatial conditioning, tissue 

74 Osaki et al., “Complex Activity.” 
73 Osaki et al., “Complex Activity.” 
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scaffolding, and finally, OI—forms the basis of a polycomputational system, where different layers of 
computation, both biological and artificial, interact to create a complex and adaptable system (Figure 
5).75 Fluid intelligence and neuroplasticity is scaffolding for an OI that has evolving topologies.76 

To further explore the potential of OI, additional experiments would help refine the encoding 
and decoding of spatiotemporal information within these neural networks. This can include exploring 
machine learning frameworks such as reinforcement learning (RL) and reservoir computing (RC), which 
may help unlock the next phases of OI. By scaffolding these experimental designs, we move to examine 
how organoids might evolve from simple neural assemblies to systems potentially capable of multimodal 
processing, intergenerational memory transfer, and polycomputational functionality—where multiple 
computational paradigms operate simultaneously within a unified system. 
 
5.1  Layer 1: Organoid Array Computing 

 

 

Figure 6 Design Layer 1: Organoid Array Computing. Input layer: the input layer converts 
information (image pattern, audio clips, time series, etc.) into various spatiotemporal sequences of 
electrical stimulation pulses; organoid array layer: the organoid array receives the input electrical 
stimulation and maps it to a high-dimensional computational space as the ONN; decoder layer: neural 
activities are fed into decoding functions such as linear regression or logistic regression to form an 
output layer for classification, recognition, and prediction. Figure by Jenn Leung. 

 
Organoid array computing presents a biocomputing architecture that employs neural assemblies 

as physical computational systems. This approach aligns with the concept of RC, an energy-efficient 
method that utilizes an untrained reservoir and a linearly trained simple classifier.77 

Our proposed design layer envisions a three-dimensional assembly of HBOs functioning as a 
nested ONN, serving as the reservoir in an RC framework for speech recognition tasks. Using a 
biological neural network as a form of reservoir in an RC framework, we could evaluate the feasibility 
of using a multi-organoid array as an RC system for speech recognition tasks.78 

Building on recent advancements, including Brainoware’s interface’s success in vowel 
identification and Cortical Labs’ exploration of multi-organoid arrays for memory storage, we devised 
potential future proof-of-concept for scaffolding for an expanding OI design space.79 The set-up would 
include an array of HBOs, derived from induced pluripotent stem cells. This organoid array is housed in 
a custom-designed microfluidic platform that enables nutrient perfusion and potential interorganoid 
chemical signaling. Each organoid in the array is interfaced with a high-density microelectrode array 
(HD-MEA) for stimulation and recording. The entire system is maintained in an environmental control 
system to ensure optimal conditions for organoid health and function. A signal processing unit converts 
audio inputs into electrical stimuli, while a machine learning interface implements a linear classifier for 
decoding organoid responses (Figure 6). 

We can consider the input layer as a layer that converts information (image pattern, audio clips, 
time series data) into various spatiotemporal sequences of electrical stimulation pulses that can be sent to 
the organoid.80 It is shown in the DishBrain experiment that inputting electrophysiological input through 
eight stimulation electrodes with rate coding along with place coding electrical pulses to communicate 

80 Khajehnejad et al., “Biological Neurons.” 
79 Cai et al., “Brain Organoid Reservoir.” 
78 Cai et al., “Brain Organoid Reservoir.” 
77 Glover et al., “Reservoir Computing.” 

76 Bakkum et al., “Activity-Dependent Plasticity.” 
75 Zhang et al., “Translational Organoid Technology.” 
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bounded two-dimensional data is comparable and outperforms pixel-based information input to RL 
algorithms (Figure 7).81 We can attempt to extend this experiment to cater for other inputs. 

 

Figure 7 DishBrain system and various input designs to RL algorithms.82 

 
In the organoid array computing layer, dozens of miniature HBOs are housed in the ONN, each 

serving as a node, each interfaced with an MEA and connected through a multichambered microfluidic 
device. As electrical stimuli (converted from audio inputs) are applied to the organoids via HD-MEAs, 
the complex neural networks within each organoid transform these inputs into a higher-dimensional 
representation (Figure 6). This is a fundamental property of RC, where the reservoir (in this case, the 
organoid array) projects the input into a high-dimensional space. 

In the output/decoder layer, neural activities representing the state of the ONN are recorded by 
an MEA system and fed into decoding functions. This makes the output readable for downstream tasks, 
forming an output layer for classification, recognition, prediction, and other applications (Figure 6).83 

The application of RC to OI expands the dimensions of biocomputing capabilities in the design 
space for experiments. As RC is a substrate-independent framework, it enables the expansive integration 
of various components into OI systems, including organoid arrays, microfluidic platforms, HD-MEAs, 
environmental control systems, signal processing units, and machine learning interfaces. The paper 
“Assembloid Learning” proposes that “personalized models” of neural assemblies could be developed in 
the near future for brain care and treatment optimization.84 This possibility arises from the adaptive 
nature of neural assemblies, which can learn and respond to chemical and electrical stimuli that induce 
plastic changes, especially when derived from an individual’s own cells. 

The implementation of a multi-organoid RC framework in OI has several important 
implications for biocomputing. First, it enables assembloid learning, where multiple organoids can 
coordinate efforts, potentially mimicking the distributed processing of the human brain.85 Second, the 
parallel processing capabilities of multiple organoids in an array could significantly increase 
computational capacity, enabling more complex task pooling and information processing, scaffolding for 
a task-pooling intelligence among organoids in the array. Additionally, as organoids have shown the 
ability to develop regional specialization similar to the human brain, this framework could lead to more 
sophisticated modeling of brain functions, leading to its expanding capabilities to process multimodal 
inputs.86 Finally, the ability to process simulated environments, as demonstrated in experiments such as 
the “DishBrain” Pong game, opens up possibilities for creating virtual environments encoded as 
spatiotemporal electrophysiological activity.87 These developments collectively suggest that OI has the 
potential to scaffold for multimodal and multilayered environments. 

 
 
 

87 Kagan et al., “In Vitro Neurons.” 
86 Sun et al., “Translational Potential.” 
85 Mencattini, “Assembloid Learning.” 
84 Mencattini, “Assembloid Learning.” 
83 Cai et al., “Brain Organoid Reservoir.” 
82 Khajehnejad et al., “Biological Neurons.” 
81 Khajehnejad et al., “Biological Neurons.” 
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5.2  Layer 2: Scaffolding for Multimodality 

Figure 8 Design Layer 2: Multimodality Processing. (i) Organoids evolve to learn different 
specialized functions through chemical and electrical stimuli; (ii) adaptive assembly among HBOs; 
(iii) relaying information to other organoids via decoder; iv) Design Layer 2: Scaffolding for 
multimodality. Figure by Jenn Leung. 

 
Building on the foundation of organoid array computing, we can envision a more advanced 

design layer that leverages the potential of multiple organoids to process multimodal inputs. Recent 
advancements in brain organoid research, such as region-specific HBOs, vascularized organoids, and 
assembloids (which combine different organoid types) provide a promising platform for this next step in 
OI.88 By cultivating specialized structures that mimic the sensory regions of the brain, we can envision a 
system where different organoids within an array are designed to handle distinct types of sensory 
information (Figure 8). 

For example, some HBOs could be guided to specialize in processing tailored inputs. This 
specialization could be achieved by exposing the organoids to specific inputs or stimulation techniques, 
such as electrical signals via MEAs, optogenetic manipulation, or chemical stimulation. With this 
approach, each organoid would act as a specialized processing unit, much like how the human brain 
allocates distinct regions to handle sensory inputs like sight, sound, and touch.89 

If specialized organoids are developed, they could be integrated into an interconnected system 
where multimodal inputs are processed simultaneously. By employing different stimulation techniques 
to cater to each organoid’s specialized function, the entire array would “collaborate” to interpret 
complex, multisensory inputs. This mirrors the brain’s ability to integrate information from multiple 
sensory modalities to form a cohesive understanding of the environment. 

Taking assembloid learning as a key path dependency from Layer 1, this layer suggests that 
HBOs could be cultivated to mimic the brain’s inherent ability to process multimodal inputs. By utilizing 
one RC framework to handle this data, the organoid array would draw parallels between, for example, 
visual pixels, audio patterns, and touch-based stimuli. Such a system could extend the current capacities 
of OI, offering a design that not only processes individual data streams but also integrates them into a 
unified output. This paves the way for future experiments that explore how organoids could be trained to 
develop specialized functions adaptable to more complex, multimodal computing tasks.

89 Ackerman, Discovering the Brain. 

88 Schmidt, “Rise of the Assembloid” 2021; Mansour et al., “In Vivo Model” 2018; Susaimanickam et al., “Region Specific Brain 
Organoids.” 2022 
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5.3  Layer 3: Intergenerational Memory 

 

Figure 9 Design Layer 3: Intergenerational Memory. (i) Asymmetric growth with varying responses 
to different stimuli; (ii) HBOs go through a process of selection and survival throughout training 
process; (iii) respawning and optimizing HBOs; iv) mutual learning, where HBOs take into account 
the decoded response of other organoids during training, thereby growing new structures. 

 
The speculative design space for intergenerational organoid communication is grounded in the 

emerging capabilities of HBOs to store and transmit complex information.90 As organoids are 
increasingly capable of demonstrating aspects of memory storage and differentiation,91 there is a 
potential for creating systems where these “memories” or learned behaviors could be passed from one 
organoid to another, or even across generations of organoids. 

Intergenerational organoid communication could involve the transfer of encoded information 
from one organoid to another, simulating the biological inheritance of cognitive abilities. This could be 
achieved through advanced bioengineering platforms that enable the selective transfer of neural patterns, 
potentially akin to how synaptic plasticity underpins memory in the human brain (Figure 9).92 

The potential applications of intergenerational memory in organoids could reconstruct how we 
understand and utilize biological intelligence. An organoid network could be designed where 
early-generation organoids undergo specific training or learning tasks, with subsequent generations 
inheriting this trained state, thus reducing the time and energy required for each new generation to 
achieve the same level of functionality. This would not only enhance the efficiency of organoid-based 
systems but could also lead to breakthroughs in understanding how memory and learning are encoded 
biologically. Such advancements might open new avenues for developing biocomputers that 
continuously evolve and adapt over time, integrating past experiences into future decision-making 
processes. 
 
6  Implications 

Advancements in organoid technologies have the potential to vastly benefit humanity. This research 
offers insights into human biology, disease mechanisms, and cognitive processes, and it holds promise 
for revolutionary medical treatments and drug development. Given these benefits, it would be 
misguided, and harmful, to prematurely halt or excessively restrict this field of study. 

However, as we push the boundaries of what’s possible with organoid development, we are 
presented with ethical challenges that require thoughtful ethical analysis. The potential emergence of 
morally relevant qualities, such as consciousness or advanced cognitive abilities, require due ethical 
consideration. Continued ethical assessment will be essential as this technology advances, requiring the 
establishment of clear criteria to identify morally relevant capacities in HBOs and guidelines for 
responding appropriately to their emergence. By doing so, we can advance this promising field 
responsibly, maximizing its benefits to humanity while mitigating ethical risks. 

A recent letter titled “A Response to Claims of Emergent Intelligence and Sentience in a Dish” 
underscores the importance of cautious and precise language when describing the capabilities of neural 
systems.93 The authors criticize the premature attribution of terms such as “sentience” and “intelligence” 
to neurons in a dish, emphasizing that such claims lack sufficient evidence and risk creating confusion 
around the ethical implications of this research. We must be vigilant in how we communicate OI’s 
capabilities, ensuring that we do not oversell findings or trigger concerns before they are warranted 
 
7  Conclusion 

This paper considers the expansive design space of OI, providing a comprehensive application 
framework of OI. Our research has aimed to provide a taxonomy of design possibilities, considering 
various dimensions and parameters of inputs and outputs. These include alternative configurations of 
organoid assemblies, mechanical devices, microfluidics, bioprinting techniques, and culture media, all of 
which contribute to the complex ecosystem of OI. Although OI is still in its infancy, researchers could 
follow the design framework to devise experiments that are adaptable to the growing dimensions of 

93 Balci et al., “Response to Claims.” 
92 Kennedy, “Synaptic Signaling.” 
91 Cai et al., “Brain Organoid Reservoir” 2023; Smirnova et al., “Organoid Intelligence: New Frontier.” 2023 
90 Smirnova et al., “Organoid Intelligence: New Frontier.” 
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neural assemblies, facilitating plastic changes during the development of research. This plasticity 
enables the creation of personalized models for OI, which could revolutionize our approach to 
understanding and manipulating these intricate biological systems. 

As researchers face the challenge of isolating and monitoring specific inputs, outputs, and 
developmental stages to gain a deeper understanding of how HBOs function, the design space points to 
the nested complex system as a growing and self-patterning hybrid entity. 

While the field of OI often emphasizes the evolved rather than designed nature of intelligence, 
it’s important to note the growing body of research in evolutionary computation and artificial life. These 
fields reveal the potential for mechanical and refractive computing in various substrates, including 
granular matter. 

Ultimately, the future of OI lies in the integration of multiple computational paradigms. 
Chemical computing, biological computing, and scaffolding systems together create a nested, multiscale 
system for OI. With the integration of diverse computational approaches such as RC with living neural 
networks, we are starting to understand forms of intelligence that more closely mirror the complexity of 
biological brains. To imagine the future of OI, we must also imagine growing cognitive assemblies with 
the capacity for physical evolution. Unlike traditional computing systems with fixed hardware 
architectures, organoid arrays can grow, adapt, and reorganize their physical structure in response to 
computational demands. 
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Abstract  

This paper explores the potential for reconceptualizing cognition beyond 
brain-centered and anthropocentric readings, highlighting the 
entanglement between the body, the environment, and emerging 
technologies. Critiquing the limitations of computationalist and 
reductionist perspectives as well as rejecting any possible unifying 
definition of the phenomenon of cognition, I advocate for a relational, 
entangled, and process-oriented ontological standpoint to examine 
cognition as a multilayered process dependent on complex cognitive 
assemblages. Drawing on the 4E cognition framework (embodied, 
embedded, enacted, extended), I integrate insights from Hayles’s theory 
of cognitive assemblages to emphasize how cognition is dynamically 
shaped and extended through interactions with nonhuman agents and 
technical objects. Further, building on Stiegler’s reflection on human 
technogenesis and the relationship between exosomatic organisms and 
endosomatic processes, I propose a speculative framework to envision 
forms of artificial endosomatization. Specifically, I discuss the case of 
AI-driven sensory technologies, imagining how some cognitive 
processes are not merely extracted but reintegrated into human thought 
through advanced sensory feedback systems. 

Keywords 

relational ontologies; cognitive assemblages; endosomatization; sensory 
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1  Introduction 

One distinguishing characteristic of humans is the capacity for metacognition, or the conscious ability to 
reflect and self-evaluate one’s own thought processes.1 It can be argued that this very capacity has led us 
to conceptualize reality as being contingent on our mental representations. However, when we move 
beyond the dualism of res cogitans and res extensa, cognition can be understood as a phenomenon 
profoundly dependent on information processing grounded in a bodily material substrate. Exploring the 
extent to which cognitive processes depend on and emerge from an integrated brain–body–environment 
system shapes an variegated range of interpretative possibilities and not infrequently has sparked heated 
debates.2 

This work seeks to redefine our conceptual framework for understanding cognition beyond the 
confines of the brain’s neural mechanisms to envision potential evolutions in human–machine 
interaction. I begin by examining the limitations of computationalism and brain-centered perspectives as 
well as the drawbacks of critical discussions that remain overly focused on defining cognition in 
exhaustive terms (section 2). Following this, I advocate for an ontological reassessment of cognition, 
emphasizing the speculative implications of analyzing such a complex move from a relational, 
entangled, and process-oriented standpoint (section 3). Next, I discuss the 4E cognition framework 
(embodied, embedded, enacted, extended), which proposes multiple layers of interpretations in the study 
of cognitive processes. In doing so, I incorporate Hayles’s recent work on cognitive assemblages to 
enrich the discussion on the extension of cognitive processes through technology (section 4). Finally, I 
address how Stiegler’s reflection on endosomatization and exosomatization requires reevaluation within 
an expanded model of cognition, which extends within an environment increasingly interwoven with 
artificial forms of intelligence, focusing on AI-driven sensory technologies and the possibility of 
engineering the process of endosomatization to envision new spaces for somatic learning (section 5). 

 
2  Cognition Beyond Reductionism (and Exhaustivity) 

Defining cognition is no simple task. Cognition and the organ most often associated with this process, 
the brain, embodies the very essence of complexity. As Edgar Morin insightfully observed, complexity 
is a term so saturated with meaning that it risks becoming devoid of meaning—even though it is now 
more critical than ever to think in planetary terms that transcend the certainties grounded in the 
rationality of our pars sapiens.3 Thus, I am compelled to conceptualize cognition as a complex system 
that extends far beyond a narrow and anthropocentric view focused solely on the human brain and its 
mental processes. Let us proceed systematically. From a purely etymological perspective, cognoscere 
refers to the faculty of knowing. In common understanding—and within a distinctly Western tradition 
rooted in Cartesian and later Kantian thought—cognition is generally conceived as an inherently human 
phenomenon: “a broad term that refers to the mental processes involved in the acquisition of knowledge, 
manipulation of information, and reasoning.”4 Alternatively, cognition is also understood as an umbrella 
term to indicate the set of functions associated with the acquisition and processing of information 
through interaction with the environment.5 

Given the variety of possible interpretations, it is essential to establish some operational 
distinctions. Thinking can be understood as a process that encompasses conscious activities to a 
significant extent, involving self-reflective and aware reasoning. Cognition, instead, can be seen as a 
broader phenomenon of information acquisition and processing, involving both conscious thought and 
unconscious operations. This general distinction, though not without its challenges, aligns with some 
recent interpretations based on what neuropsychological research tells us to date.6 These processes, 
thinking and cognition, are commonly attributed to mental dynamics within the brain. And the mind, if 
we reject dualism, can be conceived prima facie as an organizing principle of thought but also a 
phenomenon dependent on the material-neural substrate that supports it.7 However, the mind remains a 
“floating signifier” with undefined boundaries, and it becomes even more resistant to a possible unified 
understanding.8 For this reason, the mind will not have a prominent place in this work. With regard to 
consciousness, I assume that it is not an immaterial entity separate from matter but an attribute of both 
thought and cognition—a state in which an agent can be “responsive to reasons.”9 

Since the time of the Turing machine, McCulloch and Walter Pitts’s mathematical models of 
neural networks,10 cybernetics,11 and the development of cognitive sciences, particularly the rise of the 
computational theory of mind,12 an attempt has been made to frame cognition in terms of computation. 

12 Putnam, “Analytic and the Synthetic”; Putnam, “Brains and Behavior”; Block and Fodor, “Psychological States.” 
11 Wiener, Cybernetics. 
10 McCulloch and Pitts, “Logical Calculus.” 
9 Frankfurt, “Freedom of the Will”; Dennet, Consciousness Explained; Schlosser, “Conscious Will.” 
8 Baars, Theater of Consciousness; Chater et al., “Mind, Rationality, and Cognition”; Carrara, “Unified Understanding.” 
7 Gazzaniga et al., Cognitive Neuroscience. 
6 Newell and Shanks, “Unconscious Influences”; Horga and Maia, “Conscious and Unconscious Processes”; Hayles, Unthought. 
5 Moreno and Mossio, Biological Autonomy; Rakesh et al., “Environmental Contributions.” 
4 Kiely, “Cognitive Function.” 
3 Morin, On Complexity. 
2 Nagel, “What Is It Like”; Kim, Mind; Nannini, “Mind–Body Problem”; Kok, “Will Neuroscience Make.” 
1 Proust, Philosophy of Metacognition; Keestra, “Metacognition and Reflection.” 



This theoretical operation was required to move beyond the concept of the human as the sole thinking 
machine to open up to the possibility of artificial forms of intelligence. As Marr asserted, computation is 
the process of transforming one set of representations (inputs) into another (outputs) according to 
well-defined rules.13 

In this view, human cognition functions like computers, with mental representations serving as 
inputs and outputs and the brain acting as the physical hardware executing these computations. This 
interpretation has gained significant prominence within contemporary connectionist approaches to the 
study of cognition and its potential for artificialization.14 In this framework, cognition is understood 
through distributed neural networks that learn by adjusting connections between units.15 In other words, 
connectionists argue that cognitive processes can be explained by tracing them back to the maximally 
parallel computation of elementary functions distributed across networks of neurons.16 As several 
authors emphasize, however, this perspective entails a certain degree of reductionism and has been the 
subject of significant criticism.17 These approaches partly form a foundational basis for much of modern 
theory on deep learning,18 and since the 1980s, connectionist models have often dismissed 
logical-symbolic approaches as outdated.19 These latter approaches posit that cognition can be 
understood as the manipulation of symbols according to defined syntactic rules, much like logical-based 
programming languages. Today, however, traditional research on the development of artificial forms of 
intelligence based on this model of cognition earns the rather unflattering epithet of “good old-fashioned 
AI” (GOFAI).20 

The debate surrounding computationalist interpretations of cognition, both in its connectionist 
and its symbolic variants, ultimately traces back to the fundamental question of how cognition itself is 
defined and understood at its core.21 As emphasized by Moreno and colleagues,22 much depends on the 
underlying epistemological assumptions guiding the discussion, which can be distilled into two central 
concerns: first, how to conceptualize the physical boundaries of cognition, and second, the methodology 
used to approach the question: “What kind of definition are we seeking?” The issue is not so much about 
adopting a single, definitive interpretation of cognition at the expense of others. Nor is it primarily about 
analytically solving, through logical argumentation, all the subproblems of the larger and ever-present 
mind–body problem. Instead, I contend that it is more productive “to discuss the methodological 
implications that such definitions entail . . . and rather than seeking a precise definition of cognition, one 
should seek a useful definition, one that enables the proper framing of a research project centered around 
it.”23 

Building on this proposal, I suggest an alternative approach to the issue: I conceptualize 
cognition without aiming for exhaustiveness but rather in a manner that can facilitate an examination of 
the new frontiers of human–machine interaction. In other words, I do not claim to possess the definitive 
interpretation of the complex phenomenon of human cognition. Rather, my aim is to engage in a process 
of abstraction, exploring the various possible levels of conceptualization and the theoretical 
consequences of reframing these concepts. As outlined at the beginning of this work, the ultimate goal is 
to explore the speculative implications of reimagining cognition within a relational framework that 
seriously considers the role of the nonhuman environment, moving beyond brain-centered perspectives. 

 
3  Reframing the Ontological Standpoint 

It is possible to assert that a relatively cross-cutting agreement can be reached by stating that cognition is 
a phenomenon involving the processing of information. Defining specifically what information is, and 
whether it can be read as measurable data24 or embodied stimuli that are neither measurable nor 
reducible to discrete quantities,25 goes beyond the scope of this work. In addition, this operation raises 
the same problem as attempting to exhaustively define human cognition. A useful question that has 
gripped philosophers and neuroscientists is instead: how do humans process information in relation to 
their environment? Even within a brain-centered framework, cognition is typically understood as a 
process of acquiring knowledge through thought, experience, and sensory input, which unfolds 
dynamically in interaction with the environment.26 The same idea is present in the phenomenological 
tradition, despite the critical emphasis placed on the role of human consciousness and its perception of 

26 Kaplan and Kaplan, Cognition and Environment; Gallagher and Zahavi, Phenomenological Mind. 
25 Perret and Longo, “Reductionist Perspectives”; Yin and Goller, “Embodied Schema.” 
24 Shannon, “Mathematical Theory”; Marr, Vision. 
23 Moreno et al., “Cognition and Life.” 
22 Moreno et al., “Cognition and Life.” 

21 Churchland and Sejnowski, Computational Brain; Van Gelder, “What Might Cognition Be”; Leite, Theories of Human 
Cognition. 

20 Boden, Computer Models of Mind; Bersini, “Connectionism vs. GOFAI.” 
19 Haugeland, Artificial Intelligence. 
18 LeCun et al., “Deep Learning”; Laurence and Margolis, Building Blocks of Thought. 
17 Goldblum, Brain Shaped Mind; Cardon et al., “Revanche des neurones.” 
16 Elman et al., Rethinking Innateness. 
15 Newell and Simon, Human Problem Solving. 
14 Shastry, “Neural Networks”; Smolensky, Connectionist Approach. 
13 Marr, Vision. 
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the world.27 However, one thing remains clear: a reassessment of humans’ cognitive processes and their 
relationship to the external environment requires engaging with ontological discourses. 

The approach suggested in the previous paragraph—focused not on defining cognition but on 
layering the concept across various “levels of abstraction”28 and examining its speculative 
implications—points to an initial theoretical step: accepting that ontologies are inherently political, 
rather than neutral, discourses on the fundamental categories of our being-in-the-world and the nature of 
the world. Here, the “political” is conceived as the broader processes through which power, knowledge, 
and relations are organized and contested within society.29 As many scholars have argued, indeed, 
ontology is neither external nor antecedent to politics; instead, it is a modality of the political.30 This 
implies that ontological discourses do not merely describe or establish order among the different levels 
of abstraction of reality but actively shape them by influencing the epistemological and ethical 
frameworks through which we engage with the world.31 As Barad notes, it is therefore appropriate to 
speak of “ethico-onto-epistemology.”32 In other words, ontological discourses are both descriptive and 
normative: they do not simply represent reality but contribute to its construction.33 Reframing the 
relationships between agents and the environment, in turn, can fundamentally transform how we address 
complex issues such as human cognition and its interaction with emerging technologies, and the very 
challenges that this interaction presents. 

Furthermore, the second step involves a shift from substantialist ontologies, which posit 
independent entities as the fundamental units of reality, toward relational, entangled, and 
process-oriented ontologies.34 This standpoint asserts that the primary constituents of reality are not 
isolated substances but rather dynamic relations that shape and differentiate the very elements they 
connect. As Barad has masterfully demonstrated,35 drawing on the insights of quantum theory, in the 
world there are no entities but only entangled phenomena. This view is widely discussed in 
postfoundational approaches to ontology—mostly inspired by the works of Deleuze and 
Derrida36—which emphasize the interrelations between being, politics, and difference,37 as well as new 
materialist approaches38 and object-oriented ontologies (OOO).39 

By adopting a relational, processual, and entangled ontological standpoint, we can more 
effectively think about how concepts such as cognition depend on interdependencies and co-constitutive 
relationships with our body and the external environment, rather than on a self-contained process 
centered around an impenetrable mental fortress: the brain. Furthermore, this perspective aligns with a 
style of thinking that Bennett,40 building on the “material turn” already introduced by Latour,41 has 
already shown to be an intellectual act necessary for the present times: 

 
(1) to paint a positive ontology of vibrant matter, which stretches received concepts of agency, 
action, and freedom sometimes to the breaking point; (2) to dissipate the onto-theological 
binaries of life/matter, human/animal, will/determination, and organic/inorganic using 
arguments and other rhetorical means to induce in human bodies an aesthetic-affective 
openness to material vitality; and 3) to sketch a style of analysis that can better account for the 
contributions of non-human actants.42 
 

2  Entangling Cognition: From the 4E to Cognitive Assemblages 

To reconsider conventional understandings of cognition and better understand the innovations brought 
by human–machine interaction, one may begin with the foundational work of Varela and Maturana.43 
They are credited with introducing a transformative perspective since the time of Autopoiesis and 
Cognition,44 where they proposed that living systems are self-organizing and self-producing entities, 
continuously creating and maintaining their own boundaries through ongoing interactions with their 
environment. In this framework, cognition is “enacted”—it is not merely the processing of abstract 
symbols or representations of the external world, but instead an embodied phenomenon arising from and 

44 Maturana and Varela, Autopoiesis and Cognition. 
43 Maturana and Varela, Autopoiesis and Cognition. 
42 Bennett, Vibrant Matter,  
41 Latour, Reassembling the Social. 
40 Bennett, Vibrant Matter, x. 

39 Developed as part of speculative realism, OOO argues that all entities (humans, animals, inanimate objects, abstract concepts) 
exist independently and have their own intrinsic properties and capacities, regardless of human perception or use. (Graham et al., 
Speculative Turn-Levi-Srnicek 2011). 

38 Braidotti, The Posthuman; Bennett, Vibrant Matter; DeLanda, New Philosophy. 
37 Esposito, Instituting Thought. 
36 Deleuze, Différence et répétition; Derrida, De la grammatologie. 
35 Barad, Meeting the Universe Halfway. 
34 Trownsell, “Disrupting Anthropocentrism”; Santos, “Ontological Emergence.” 
33 Charpentier, Judith Butler’s ‘Ontological Turn.’” 
32 Barad, Meeting the Universe Halfway. 
31 Lerner and Loughlin, “Strategic Ontologies.” 
30 Butler, Performative Theory of Assembly; Connolly, Ethos of Pluralization; White, Sustaining Affirmation. 
29 Foucault, Power/Knowledge. 
28 Floridi, Philosophy of Information. 
27 Merleau-Ponty, Phenomenology of Perception; Ihde, Technology and the Lifeworld; Verbeek, What Things Do. 
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activated by the dynamic coupling between an organism and its environment.45 As was further 
articulated, “Cognition is not the representation of a pre-given world by a pre-given mind but is rather 
the enactment of a world and a mind on the basis of a history of the variety of actions that a being in the 
world performs.”46 

In contrast to dualists—who treat thinking and cognition as disembodied processors of 
information—and the reductionist fascinations of computationalism, which tend to flatten cognitive 
processes to mere material-neural dynamics centered in the brain, enactive approaches redefine 
cognition as fundamentally rooted in the body.47 The body is endowed with capacities specifically 
designed for constant interaction with environmental stimuli. According to this approach, “cognition 
depends upon the kinds of experience that come from having a body with various sensorimotor 
capacities, and second, . . . these individual sensorimotor capacities are themselves embedded in a more 
encompassing biological, psychological, and cultural context.”48 This framework compels us to adopt an 
integrated understanding of the human experience as a phenomenon dependent on a complex system of 
brain, body, and environment. But what does this imply, theoretically? First and foremost, this reading 
suggests a shift away from the study of and thinking about cognition as an isolated process confined to 
the human brain. This shift is encapsulated by the “4E cognition framework,” which posits a central 
claim: “Cognition does not occur exclusively inside the head, but is variously embodied, embedded, 
enacted, or extended by way of extra-cranial processes and structures.”49 

Gallagher has undoubtedly played a significant role in popularizing this concept of 4E,50 
alongside Clark and Thompson.51 This theoretical framework integrates multiple levels of abstraction in 
how to think about cognition and synthesizes numerous foundational contributions over the past fifty 
years. Key works include Andy Clark’s exploration of the mind’s environmental dependence;52 the 
aforementioned works by Varela, Thompson, and Rosch,53 which emphasize enactive meaning-making 
through interaction; Lakoff and Johnson’s analysis of how physical experiences shape abstract thought, 
suggesting that embodied interactions are fundamental to structuring cognition;54 Damasio’s 
anti-Cartesian argument on the critical role of bodily states in cognition;55 and, finally, Clark and 
Chalmers’s seminal work, which argues that cognitive processes can extend beyond the individual to 
include objects in the external environment.56 

On one hand, cognition can be understood as a complex process within an integrated system 
involving the body, brain, and environment, extending well beyond the physical boundaries of the 
human organism. To quote Clark’s seminal work, it involves “putting brain, body, and world together 
again.”57 On the other hand, the four perspectives on cognition present distinct facets of this 
phenomenon, each emphasizing different aspects of cognitive processes and their environmental 
interactions: (1) the embodied dimension highlights how cognitive processes are deeply influenced by 
the physical body and its interactions with the world; (2) embedded cognition emphasizes that cognitive 
processes are situated within a specific environmental context (or milieu) that shapes and supports 
thought and behavior; (3) enactive cognition sheds light on how cognition is not a passive reception of 
information but is activated through a codependent interaction with the external space, emerging through 
action and perception and fundamentally shaped by an organism's engagement with its surroundings; (4) 
extended cognition posits that cognitive processes can extend beyond the brain to include tools, devices, 
and other external resources, challenging the boundaries of what we call the “mind” and suggesting that 
cognitive functions can be distributed across both internal and external systems. 

However, in light of recent developments in artificial forms of intelligence, this 4E theoretical 
framework requires expanding and updating. The question arises as to how this onto-epistemological 
reframing can accommodate the role of nonhuman distributed agencies, given that the environment is 
now densely populated with more and more AI-driven technologies. In other words, how can we expand 
the levels of extended cognition as explored by Chalmers and Clark, who, at the end of the last century, 
emphasized the role of external technical agents in constituting cognitive processes?58 This requires a 
reevaluation of the interaction between human cognition and an increasingly complex ecology, 
composed of entangled relations between human and nonhuman agencies.59 

Bernard Stiegler, drawing from a distinct philosophical tradition, offers a complementary 
approach to the theories of extended cognition,60 though with differing theoretical and political 

60 Chalmers and Clark, “Extended Mind”; Clark, Supersizing the Mind; Rupert, Cognitive Systems. 
59 Dürbeck et al., “Human and Non-Human Agencies”; Puzio, “Not Relational Enough?” 
58 Clark, Being There. 
57 Clark, Being There. 
56 Chalmers and Clark, “Extended Mind.” 
55 Damasio, Descartes’ Error. 
54 Lakoff and Johnson, Philosophy in the Flesh. 
53 Varela et al., Embodied Mind. 
52 Clark, Being There. 
51 Clark, Being There; Thompson, Mind in Life. 
50 Gallagher, Body Shapes the Mind. 
49 Rowlands, New Science, Carney, “Review of 4E Cognition.” 
48 Varela et al., Embodied Mind. 

47 Gallagher, “Intersubjectivity in Perception”; Hutto and Miyn, Radicalizing Enactivism; Kyselo, “Enactive Approach”; 
Ramírez-Vizcaya and Froes, “Enactive Approach.” 

46 Varela et al., Embodied Mind. 
45 Maturana and Varela, Autopoiesis and Cognition. 
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objectives.61 His work emphasizes that the human condition is defined by the externalization of 
knowledge into technological artifacts, a process he terms exosomatization.62 Building on thinkers such 
as Gilbert Simondon and André Leroi-Gourhan,63 Stiegler argues that human evolution is inextricably 
linked to the continuous development of and dependence on external tools and technologies. From the 
act of writing and early systems of measurement and calculation to contemporary advancements in 
artificial intelligence and biotechnology, humans have consistently relied on external devices to augment 
their cognitive and physical capabilities.64 Humanity’s defining characteristic is not merely the use of 
tools to compensate for inherent “structural incompleteness”65 but rather the profound dependence on 
externalized systems of memory, knowledge, and agency. In this sense, the history of humanity is 
fundamentally the history of its “technogenesis.”66 

N. Katherine Hayles enriches this discussion. Introducing the concept of the “cognitive 
nonconscious,” Hayles redefines cognition as a dynamic interplay that extends beyond human 
awareness, encompassing distributed interactions with nonhuman agents—including technical systems.67 
Hayles argues that we need to properly consider that this nonconscious cognition operates independently 
of conscious oversight, namely the human thinking, synthesizing information, and carrying out complex 
processes essential to perception, emotion, and inference. By examining cognitive phenomena through 
the lens of her specific assemblage theory, Hayles presents cognition as planetary, distributed across both 
human and nonhuman agents. As she explains, “A cognitive assemblage operates at multiple levels and 
sites, transforming and mutating as conditions and contexts change.”68 

This assemblage-based approach integrates both biological organisms and silicone-based 
systems, embedding cognition within coevolving structures that collectively process and interpret 
information. Cognition and its ethico-onto-epistemological dimensions, therefore, become a 
phenomenon to be understood through assemblages that “include information transactions across 
convoluted and involuted surfaces, with multiple volumetric entities interacting with many conspecifics 
simultaneously.”69 This results in a planetary cognitive ecology that aligns seamlessly with the concept of 
“planetary-scale computation,”70 which characterizes today’s world through various infrastructural 
stacks. To conclude, this perspective advocates for a recognition of the environmental entanglements 
inherent in cognition that extend far beyond anthropocentric and brain-centered perspectives: 

 
Because humans and technical systems in a cognitive assemblage are interconnected, the 
cognitive decisions of each affect the others, with interactions occurring across the full range of 
human cognition, including consciousness/unconscious, the cognitive nonconscious, and the 
sensory/perceptual systems that send signals to the central nervous system.71. 
 

5  Speculating on Extension: Artificializing Endosomatics and Sensory Technologies 

I thus accept an ontological reframing that assumes a complex cognitive ecology, where the basic 
premise is to conceive of our conscious cognition, or thought, as a phenomenon structurally entangled 
with nonhuman forms of agency, which extend beyond the limits of our brain and our own, self-aware 
reasoning. Through these assumptions, I can attempt to derive some speculative implications. First, we 
need to look at the human as Simondon would put it:72 a metastable entity, meaning that we exist in a 
constant state of becoming rather than as a fixed and isolated essence. In more cybernetics terms, the 
human is a “dynamic stability.”73 However, we need to consider that the environment is now 
increasingly populated by artificial forms of intelligence that are more and more interactive and 
affective.74 In a relational, entangled, and process-oriented understanding of cognition, the role of 
emerging AI-powered technologies becomes even more constitutive in the very generation of our 
conscious thought. This novel condition encourages us to envision new spaces of interaction between 
our cognitive processes and those from a more and more interactive environment. 

A possible strategy to further explore this issue is to revisit Stiegler’s organological approach, 
which frames the interplay between human and external agents through two key concepts: endosomatic 

74 Rouvroy and Berns, “Gouvernementalité algorithmique”; Piredda et al., “Affectivity and Technology.” 
73 Bardin and Ferrari, “Governing Progress.” 
72 Simondon, L’individu et sa genèse. 
71 Hayles, Unthought, 118. 
70 Bratton, The Stack. 

69 Hayles, Unthought, 118. As Hayles explains, there is a theoretical proximity between the concepts of assemblage and network. 
However: “Why choose assemblages rather than networks, the obvious alternative?” This question is particularly relevant since 
“network” is often associated with Bruno Latour, especially in his actor-network theory (ANT), although Latour sometimes uses 
“assemblage” interchangeably (Latour, Reassembling the Social). Networks are typically viewed as consisting of nodes and edges 
analyzed through graph theory, which conveys a sense of sparse, clean materiality (Galloway and Thacker, The Exploit). In 
contrast, assemblages enable a more fleshy sense of contiguity, with entities that touch, incorporate, repel, and mutate in complex 
ways (Hayles, Unthought, 118). 

68 Hayles, Unthought. 
67 Hayles, Unthought. 
66 Stiegler, Technics and Time, 1; Sharma, “Understanding Human Technogenesis”; Hayles, How We Think. 
65 Geertz, Interpretation of Cultures. 
64 Stiegler, La technique et le temps. 
63 Simondon, Du mode d’existence; Leroi-Gourhan, Milieu et techniques. 
62 Stiegler, The Neganthropocene. 
61 Crogan, “Bernard Stiegler”; Turner, “Politicising the Epokhé.” 
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and exosomatic. Internal bodily organs are classified as endosomatic, while external organs—such as 
technological artifacts—are considered exosomatic.75 This framework emphasizes the necessity of 
carefully considering their interrelation and the mechanisms by which they are regulated. As Stiegler 
highlights, “the question of law is the question of the regulation of relations between exosomatic 
organisms.”76 And these exorganisms can be simple or complex: “Psychic individuals in Simondon’s 
sense, citizens in the Greek sense and Users in Bratton’s sense all constitute simple exorganisms, while 
collective individuals, such as a professional body, a unit of production in Ure’s sense, a city, a nation or 
a platform, are all examples of complex exorganisms.”77 Nevertheless, in recent years, Stiegler has 
stressed that in an epoch of planetary exorganisms (e.g., platforms), the question of how to study the 
relations between exosomatic organisms needs to be addressed in a completely new way. 

Building on this necessity, we have to ask: Given the increasingly profound interaction between 
humans and emerging AI-powered mediator technologies, is it possible to envision a reverse process—a 
form of artificial endosomatization—in which technology actively, and with a certain degree of 
autonomy, transfers the knowledge it acquires through interactions with humans back into human 
cognitive processes? In other words, could we imagine a reversal of the historical trend of off-loading 
cognitive tasks and capabilities onto external objects, considering instead a form of onloading, where 
external computational resources are integrated into forms of embodied learning and enactive 
decision-making? 

An intriguing speculative scenario for exploring this issue can involve sensory technologies, or, 
more specifically, AI-driven sensory technologies.78 These tools or systems are designed to detect, 
measure, or interact with human sensory perception—such as sight, touch, or sound—through specific 
mediating AI-powered tools. They often incorporate devices that collect data or provide feedback 
through sensory inputs. For instance, sensory technologies include haptic feedback systems that simulate 
the sense of touch, or immersive devices that deliver visual or auditory experiences, thereby enhancing 
user interactions with the environment.79 Indeed, sensory technology supported by AI systems is making 
significant advancements in the realm of real-time and continuous health monitoring and disease 
diagnostics.80 These innovations represent part of a broader shift toward a multisensory design,81 and the 
use of these technologies is increasingly contributing to new forms of computerized control through 
sensor-mediated feedback. For Emmanuel Lazega, “the use of these sensors or captors is also part of a 
new kind of behaviorism that seeks to influence and guide human reflexivity and judgments of 
appropriateness in the orientation of action.”82 Considering the extended framework built in the previous 
pages, these emerging technologies primarily interact with the cognitive assemblages through our bodily 
sensory and somatic experience. They also provide an intriguing example based on which we can 
imagine how empowering-oriented forms of an artificialized endosomatization process could address 
often overlooked aspects of the human cognitive experience: the role of somatic learning, or the 
integration of bodily sensations in learning processes.83 

When considering AI-driven wearable sensors and their capacities—specifically, “the delivery 
of physical stimuli that interact with the human sensory and motor systems . . . to elicit perceptual 
experiences”84—it is possible to envision horizons for further engineering this process. In other words, is 
it possible to imagine AI-powered sensory technologies that do not extract data to be analyzed outside of 
our bodies, often for purposes far from enhancing our abilities, but rather remain within the body 
through forms of personalized stimulation that could amplify certain cognitive processes and thereby 
increase the potential for learning through the somatic dimension? What level of autonomy in sending 
sensory feedback could these systems have to expand cognitive processes underlying conscious thought? 
These questions could open interesting horizons for experimentation. However, I am not venturing into 
the transhumanist dystopias of mental enhancement. Instead, these technologies might simply stimulate 
cognitive processes that foster the development of often forgotten processes—such as somatic 
experience and sensory learning—that are integral parts of the complex assemblages that support and 
co-constitute our cognitive life. If we depart from a less anthropocentric view of the cognitive 
phenomenon, we can imagine new potential horizons for collaboration between humans and machines, 
such as to reconnect bodily sensation to cognition to expand our conscious thinking. Moreover, by 
thinking humans less in terms of exceptionalism and recognizing their structural entanglements with the 
world, we can also better understand the risks and the benefits that emerging technologies may bring. 
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6  Conclusion 

This paper has aimed to present a possible rethinking of the conceptual framework through which we 
examine cognitive phenomena, the brain–body–environment system, and their entanglement with 
emerging technologies. By moving away from an overly anthropocentric view of cognitive processes, I 
have adopted a more relational and process-oriented ontological standpoint that acknowledges the 
intricate relation of codependence with the external environment—an environment increasingly 
populated by technologies capable of deeply interacting, often in an entirely unconscious manner. The 
proposal to consistently consider the cognitive assemblages that underpin our conscious thought, 
decision-making, and agency in the world could open up new speculative horizons. The possibilities for 
an artificialization of endosomatization serve as one such example, and AI-driven sensory technologies 
in particular represent a case that warrants further exploration, as the somatic dimension and the learning 
it may facilitate remain frequently underestimated.  
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4 Planetary Time Computation 

Complex cognition is fundamentally bound to—and structured 
by—perceptual relationships with time. Whether immediate cognition, 
such as the brain’s rapid processing of movement, or abstract cognition, 
exemplified by how societies position themselves within historical 
frameworks, temporal perception shapes and directs cognitive processes. 
Crucially, both synchronization and desynchronization serve as dynamic 
variables influencing how cognitive systems coalesce and interact. 

On a planetary scale, computation itself relies on artificial 
temporal structures such as UNIX time, which globally coordinates 
actions and processes. Concurrently, advances in technology continually 
expand human temporal perception, enabling us to access phenomena 
occurring at vastly accelerated or significantly slowed timescales. Thus, 
planetary computation simultaneously standardizes time and diversifies 
temporality. 

Large language models (LLMs) epitomize this dual temporal 
relationship. Serving as both mediums and repositories for the 
intelligence and knowledge of civilization, LLMs function as living 
archives, continuously evolving through interaction and generative 
reproduction. Their existence as archives inherently positions them 
within distinct temporal frameworks—not only reflecting the present 
cognitive moment but also projecting meaningfully into future 
engagements. 

These projects investigate how such technologies reshape 
cognitive temporalities, exploring the implications of synchronization 
and desynchronization across multiple scales. By examining the intricate 
interactions between artificial temporal systems, cognitive 
synchronization, and archival reproduction, the research elucidates how 
emerging computational paradigms fundamentally reconfigure 
civilization’s collective experience and understanding of time. 
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4a  Chronoseed 

LLMs, repositories of linguistic knowledge, serve not merely as databases of words but as 
encapsulations of the vast complexities inherent in human intelligence. Language, after all, has 
historically functioned as humanity’s primary mechanism for encoding and transmitting cognition. This 
project explores the provocative possibility that an LLM could act as a long-term repository or archive 
of human intellect, a form of cognitive preservation. 

Traditionally, archaeology seeks to reconstruct past cognition from material artifacts—tools, 
inscriptions, and structures. Here, the project proposes an intriguing inversion: What if cognition itself 
became the artifact, intentionally encoded and preserved within linguistic archives for future 
interpretation? Central to this exploration is the development of strategies to effectively encode and 
decode language and intelligence, maximizing interpretability across temporal, cultural, or even 
species-level divides. 

Acknowledging that it is impossible to predict precisely who or what may eventually attempt to 
decipher this cognitive archive, the project draws insights from the history of discovering and translating 
lost languages. Important lessons emerge about the necessity of clear signposting, redundant encoding, 
and appropriate media selection, informing the mission to ensure that encoded intelligence remains 
interpretable despite potential gaps in knowledge or context. 

Through this lens, this project investigates best practices and ideal methodologies for encoding 
human intelligence in linguistic forms, consciously designed for discovery and comprehension by 
unknown future readers. By reframing intelligence as a deliberately crafted artifact, this project raises 
new questions about our relationship with knowledge preservation, interpretation, and the enduring 
legacy of human thought. 
 
4b  The Chronoceptual Governor 

Technologies fundamentally shape our horizons of perception, establishing the boundaries within which 
scientific inquiry can occur. Each technological innovation expands or reshapes these horizons, enabling 
us to perceive—and consequently conceptualize—new dimensions of reality. While certain instruments 
grant visibility to objects exceptionally distant or microscopically small, others uniquely alter our 
experience of time, compressing or decompressing temporal scales and thus offering new lenses through 
which we comprehend our environment. 

This variability in temporal perception—chronoception—is not unique to technological 
augmentation. Diverse animal species naturally perceive time at different scales; for instance, the rapid 
visual processing of a hummingbird contrasts starkly with the slow metabolic and perceptual rhythms of 
a tortoise. Understanding these variations across species constitutes comparative chronoception. 
Extending this concept, our project explores how technologies similarly modulate time perception, 
creating what we term comparative artificial chronoception. 

By systematically mapping technological synchronization and desynchronization of temporal 
perceptions, this study reveals not only diverse modes of scientific understanding but also distinct 
cybernetic interactions among agents operating in varied temporal frameworks. Artificially manipulated 
perceptions of time significantly impact cybernetic dynamics, altering feedback loops and interactions 
within complex systems. 

Furthermore, this paper investigates how aggregate accelerations or decelerations in perceived 
temporalities influence broader cybernetic velocities within human economies. The implications of 
collectively modified chronoceptions reach beyond mere perception, reshaping economic rhythms and 
potentially transforming societal structures. Thus, this research contributes to a deeper comprehension of 
the connections between technology, perception, and systemic evolution in contemporary human 
societies. 
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Abstract  

This paper assembles a design space and defines the parameters for a 
generative time capsule—one that preserves not only an archive of 
human knowledge but also the cognitive function of human thought 
within a neural network. Such a time capsule must persist across vast 
timescales, including scenarios of civilizational collapse, while 
providing mechanisms for decoding its contents and executing its 
program, even in radically altered technological and epistemic contexts. 
We introduce Chronoseed as a speculative thought experiment, 
exploring the possibility of an AI time capsule that preserves both stored 
knowledge and the ability to process it. To propose its form and evaluate 
its feasibility, we construct a three-dimensional design 
space—durability, accessibility, and completeness—as a framework for 
systematically examining how synthetic intelligence might reshape 
cultural preservation. By engaging with historical time capsules, 
long-term nuclear waste warning systems, and speculative contributions 
from science fiction writers, the paper considers the broader challenge of 
transmitting knowledge and logics of thinking across deep time. It 
positions Chronoseed’s generative function as an alternative to static 
repositories, proposing a model in which knowledge remains interactive, 
adaptive, and capable of being reconstructed by future intelligences. 
Using the assembled design space and its parameters, the article explores 
possible physical forms of Chronoseed, balancing preservation with the 
ability of future discoverers to activate its generative potential. It 
ultimately identifies DNA embedding as the most viable option for 
long-term durability and recoverability. 

Keywords 

time capsules; generative AI; cultural preservation; DNA storage; 
interface; ethics of LLMs 
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1  Introduction 

Historically, creating time capsules involved preserving significant objects—physical objects or 
conceptual artifacts such as mathematical formulas or seminal works of art and science—to curate a 
message for future generations. The aim was not merely to safeguard the past but to construct a future 
encounter with it, one inevitably shaped by shifts in interpretation, context, and technological mediation. 
This process of assembling and preserving objects enables a contingent reconfiguration of past cognitive 
functions—systems of values, beliefs, associations, logics of connection-making, and archiving 
technologies—filtered through the interpretative frames of those who uncover them. Of course, no 
perfect reconstruction is possible: Any interpretation of the past changes with the cultural drift of time, 
situated in a specific cultural context. Interpretation is always necessary when faced with archival 
evidence, but it becomes more difficult because of information loss due to the natural erosion of 
materials over time as well as shifts in cultural context. 

The practice of time capsuling persists, now enabled by advanced technology to enhance 
longevity and resilience at even longer timeframes. The Arch Mission Foundation safeguards humanity’s 
knowledge through ultra-durable Arch Libraries placed on the moon, in Earth’s orbit, and deep 
underground, establishing a “Billion Year Archive” to preserve essential information for future 
civilizations.1 Similarly, Memory of Mankind inscribes contemporary knowledge on ceramic tablets 
housed within Austria’s Hallstatt salt mine, creating a robust archive intended to withstand vast 
timescales and serve future scholarship.2 

AI technologies offer new possibilities for overcoming the limitations of informational 
ambiguity—where meaning is lost due to shifts in context, linguistic drift, or incomplete records—and 
material erosion, where physical archives degrade over time, making retrieval unreliable. In cultural 
preservation, large-scale AI models, particularly in natural language processing, have been used to 
encode endangered languages, preventing their extinction. Similarly, deep learning techniques have been 
used to restore and reconstruct fragmented historical texts, degraded audio recordings, and lost visual 
artifacts.3 

This paper assembles a design space and defines the parameters for an AI generative time 
capsule, one that preserves not only an archive of human knowledge but also the cognitive function of 
humanity within a neural network. More than just preserving information about the present, the AI time 
capsule’s primary objective is to maintain its generative function, allowing future generations to interact 
with and animate contemporary ways of thinking across time. Within the constructed framework, this 
paper proposes Chronoseed—a speculative generative time capsule in which a neural network is stored 
within DNA and encapsulated in durable kernels strategically distributed across the globe. 
 
2  Societal Time Literacy 

The legibility of a written message often degrades far more quickly than the material in which it is 
inscribed. Humanity’s written record extends back approximately 5,000 years, with the earliest 
preserved writings in cuneiform dating to around 3200 BCE.4 These early texts are unambiguous, 
primarily documenting administrative and economic transactions, such as allocating barley and other 
goods.5 However, some more recent scripts remain undeciphered; for instance, the script of the Indus 
Valley Civilization, dating to around 2600 BCE, has not yet been successfully interpreted despite 
numerous well-preserved samples and artifacts.6 The absence of comparable textual sources erodes the 
cultural and semantic context—a referential embedding—necessary for the interpretation of these 
messages. Moreover, even when linguistic continuity is maintained, readability is not assured. Tamil, the 
oldest living human language, dating back to 3000 BCE, has evolved to the extent that its oldest sources 
are now only accessible to specialized scholars.7 

These difficulties in transmitting meaning across time necessitate a design that mitigates not 
only material degradation but also the gradual loss of interpretability and epistemic continuity. A 
generative time capsule would construct the conditions for its own reactivation, providing a framework 
through which future intelligences—whatever their cultural, linguistic, or technological contexts—could 
reconstruct its epistemic logic and engage with its embedded modes of thought. 

Pictorial forms and proto-writing, which use limited symbols, tend to have a slightly longer 
period of interpretability. For example, the dots accompanying animal images in the Lascaux cave 
paintings, which date back 20,000 years, are believed to convey information about the mating cycles of 
the depicted animals, likely in relation to the lunar cycle.8 The relevance of such information has 
significantly diminished for contemporary humans, who are less concerned with the mating cycles of 
wild animals than those who relied on hunting for survival. Thus, messages that have been sealed and 
subsequently discovered often serve more as inadvertent portrayals of past civilizations rather than as 

8 Bacon et al., “Upper Palaeolithic Proto-Writing System,” 371–89. 
7 Renganathan, “Tracing the Trajectory.” 
6 Rao, “Indus Script and Economics.” 
5 Woods et al., Visible Language. 
4 Schmandt-Besserat, “Evolution of Writing.” 
3 Assael et al., “Restoring Ancient Texts.” 
2 “MoM,” Memory of Mankind. 
1 Arch Mission Foundation, “Preserving Knowledge, Forever.” 
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sources of practical knowledge. However, the problem of effective communication with future 
intelligent life is not a matter of accurate self-representation alone. The tendency toward linguistic and 
cultural drift over the passage of time complicates this communication. Chronoseed directly confronts 
this issue. Unlike conventional archival practices, which assume the continuity of linguistic and cultural 
legibility, Chronoseed is designed to make possible future engagement with its own embedded logics. 

This challenge becomes especially urgent in cases where misinterpretation has catastrophic 
material stakes. Errors in reading Tamil inscriptions or Lascaux paintings may distort historical 
understanding, but they do not pose existential risks. However, postindustrial society has left material 
legacies that must be intelligible across deep time—for example, the storage sites of nuclear waste. 
High-level radioactive waste, such as plutonium-239 has a half-life of 24,100 years.9 It requires ten 
half-lives—241,000 years— to reduce radioactivity to less than 0.1 percent (approximately 0.09765625 
percent) and be considered harmless. The conditions and storage time of nuclear materials vary 
depending on their radioactive properties. However, even low-level waste requires secure containment 
and isolation for a few hundred years.10 

In 1981, the US Department of Energy established the Human Interference Task Force, a 
multidisciplinary team comprising scientists, communication specialists, linguists, anthropologists, and 
psychologists, to address the growing concern that future generations will unwittingly dig up this toxic 
material if it is not effectively signposted.11 Since then, various international teams and institutions have 
been engaged in developing the field of nuclear semiotics, which focuses on long-term communication 
and memory transmission.12 Proposed strategies include the creation of hostile physical structures, the 
use of a combination of textual and pictorial elements, the development of living warnings through 
genetically modified organisms, and even the establishment of atomic cults.13 

The fact that conveying a simple warning like “Danger, do not touch or enter” has required over 
forty years of research, extensive funding, and international collaboration underscores the even greater 
difficulty of preserving more complex human ideas across deep time.14 

This difficulty raises the central challenge that Chronoseed engages with: Whereas nuclear 
semiotics is concerned with one-way deterrence, Chronoseed is designed as a structured interpretative 
artifact—sealed at a single moment in time, yet encoded to provoke engagement across temporal 
discontinuities. 

Historically, time capsuling has often been regarded as a pre-apocalyptic activity—a strategy 
for partial preservation or a line of flight when time or space becomes hostile or inhospitable.15 For 
example, Victorian historian and “freethinker” Frederic Harrison proposed burying a time capsule of 
British legacy under Stonehenge. Motivated by the growing awareness that time weathers and eventually 
destroys the traces of history, he proposed the time capsule as a “Pompeii for the twenty-ninth century,” 
alluding to the accidental preservation of the Roman city under the ash of a catastrophic volcanic 
eruption.16 

Undoubtedly, the looming ecological collapse faced by a twenty-first century society, which has 
recently come to realize itself as an agent of geological change, creates new ethical imperatives, 
including new forms of archiving in response to the accelerated extinction of species, languages, 
customs, and cultures. 

However, Chronoseed’s conceptual positioning and primary aim is neither an attempt at non 
omnis moriar—a bid for enduring remembrance—nor necessarily a civilizational backup like Noah’s 
Ark. Unlike a conventional time capsule, which merely transmits content, Chronoseed is structured to 
transmit epistemic orientation, allowing its contents to be reconstructed rather than simply observed. 

Through his research in nuclear energy and the management of weapon waste, Vincent Ialenti 
highlights the urgency of increasing “societal time literacy,” expanding human intellectual horizons 
forward and backward across time.17 This involves not only a long-term approach to technological and 
institutional planning but also a broader move toward contemplating larger socioecological futures 
within the realm of contemporary philosophical discourse. This might include an emphasis on deep-time 
responsibility, research into the history of ideas, and the development of long-term parallel simulations 
of events. 

The design proposal of Chronoseed fits within this line of thought—an attempt to grasp 
collective cognitive function as an ongoing process, reflecting contemporary ways of sense-making: 
thinking, sensing, associating, believing, and forming opinions. Rather than simply documenting 
contemporary thought, Chronoseed encodes the conditions for its intelligibility. Its discovery is not an 
act of passive witnessing but an invitation to reconstruct its epistemic logic. Unlike a static archive that 
risks becoming an indecipherable relic, Chronoseed operates as an artifact structured to generate 
meaning beyond its original context. 

17 Ialenti, Deep Time Reckoning. 
16 See Moynihan, “Giant Time Capsule.” 
15 Yablon, Remembrance of Things. 
14 Trauth et al., “Expert Judgment on Markers.” 
13 Chapman, “Speaking to the Future.” 
12 Mazzucchelli and Paglianti, “How to Remember?” 
11 US Department of Energy, “Reducing the Likelihood.” 
10 International Atomic Energy Agency, Radiation Protection and Safety. 
9 US Nuclear Regulatory Commission, “Backgrounder on Plutonium.” 
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3  Design Space 

Before outlining Chronoseed’s form, it is necessary to distill the key challenges that shape Chronoseed’s 
design. Through surveying past archival efforts to preserve cultural knowledge, we identify three major 
desiderata of time capsule design: 
 

1. Completeness: A complete time capsule contains a holistic and representative sample of human 
knowledge. 

2. Durability: A durable time capsule has a form factor and materiality that enables it to survive 
centuries into the future and across significant environmental and planetary changes. 

3. Accessibility: An accessible time capsule signposts itself to facilitate its discovery under 
favorable conditions and the intuitive decoding of its contents. 
 
The limitations of our current technology result in inherent tradeoffs between these three 

desirable properties. To explore this point and its implications for the design of Chronoseed, we consider 
two instances of historical and speculative time capsules plotted in three-dimensional space across these 
axes (Figure 1). 

The Rosetta Stone is an ancient stele carved from stone inscribed with the same decree in three 
written languages: ancient Egyptian hieroglyphics, Demotic script, and ancient Greek.18 Because it is 
preserved on granodiorite and has survived from 196 BCE, the Rosetta Stone is considered durable. The 
multilingual replication of this text allowed historians to draw on the surviving knowledge of ancient 
Greek to decipher the lost scripts of hieroglyphics and Demotic, making the contents accessible and 
even generative. However, once deciphered and interpreted, the Rosetta Stone was revealed to be a 
relatively banal administrative record: an incomplete descriptor of Ptolemaic Egyptian society. 

Turning to our proposition of an AI time capsule, we now consider the suitability of today’s 
state-of-the-art multimodal chatbot (such as OpenAI’s GPT-4o). Although foundation model training 
data sets scraped from the internet are by no means an exhaustive record of human knowledge, they 
might be the largest and most diverse archives collected in human history;19 thus, we can expect the 
models trained on this data to be more complete. The multilingual, multimodal (audio, text, and visual) 
interfaces to this chatbot, along with its deployment on widely available browser and mobile 
applications, make it fairly accessible in today’s society. However, modern software is highly 
ephemeral.20 Machine learning models are quickly deprecated, and the machines storing the software and 
weights for these models are kept under controlled conditions in data centers, due to their vulnerability 
to environmental damages. 
 

 

Figure 1 Time capsule design space. 

20 Dong and Xie, “Large Language Models.” 
19 Raffel et al., “Exploring the Limits.” 
18 Parkinson et al., Cracking Codes. 
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Unlike these examples, the ideal design for Chronoseed would be optimal on all three of these 
axes. We now discuss each of these dimensions in detail to arrive on a concrete specification for our time 
capsule. For each dimension, we will first describe the considerations that arise for the designer from 
“first principles.” We then deepen that dimension by further probing issues that arise when the time 
capsule is discovered and how both its physical form and its meaning are tested against temporal 
passage. 
 
4  Completeness 

While a measure of completeness is often contingent on the intended usage, audience, and context of the 
archive, the most ambitious time capsule projects have set a widely encompassing scope: to compile a 
representative snapshot of the human knowledge most worthy of preservation. However, future 
generations may view these unearthed archives as reflecting the outdated, narrow-minded, or even 
backward curatorial choices of their creators. Evaluating representativeness is fraught with questions of 
subjectivity and contextuality. 

To dodge these questions, we can turn to mathematics to formalize a universal definition of 
completeness. A potential definition of a complete archive is one that contains more information, 
agnostic to its qualitative character. By modeling the data of an archive as a statistical process, we can 
use tools from information theory, such as Shannon entropy and mutual information, to quantify 
information complexity. A related approach is to measure the statistical redundancy of the archive 
through its compressibility—that is, how much data can be losslessly compressed.21 

While the purity of such measures is appealing, they flatten and erase the concerns of cultural 
representativeness and the utility of knowledge, as defined by its instrumentality to the survival of future 
generations. The time capsule might be a preservation tactic in anticipation of a massive catastrophe or a 
new Dark Age of scientific ignorance. A useful time capsule would encapsulate all the cutting-edge 
knowledge in the life sciences and engineering or the best economic and political practices for governing 
a flourishing society. 

A complete time capsule is representative, has utility, and compresses a high level of 
information complexity. We will now argue why an AI time capsule is a more complete archive than a 
conventional one, and highlight some of the design choices that lend themselves to these traits. 

In conventional time capsules, archival objects such as artifacts, records, documents, or even 
seeds of plants are put into storage, and after a long period of time, the time capsule is discovered. The 
contents are unboxed and subjected to historical interpretation, and the preserved potential is realized. 

Arguably, neural networks themselves are a kind of archival storage, in that they preserve a 
kind of “superhistory” of their training data.22 In the AI time capsule, large volumes of input data are 
compressed into the weights of a neural network due to a learning process with a specific training 
objective, such as next-token prediction. When the time capsule is opened, the neural network can be run 
with new inputs and potentially produce new outputs. 
 

 

Figure 2 Schematic of conventional versus AI time capsule. 

 

22 Rao, “Superhistory, Not Superintelligence.” 
21 Lindgren, “Information Theory.” 
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While conventional time capsules preserve archival data and present them as is, the AI time 
capsule approximates the cognitive function that can be interacted with in the future (see Figure 2 for a 
comparison of conventional and AI time capsules). Large neural networks meet a certain mathematical 
definition of completeness because they are essentially large-scale compressors that remember patterns 
and forget noise.23 Not only has the network compressed a large archive into its weights, sampling 
outputs from it allows a kind of generative infilling or extrapolation along the manifold of data. The 
approximated function is more complete than data because it has the capacity to generalize to new 
conditions. It represents an approximation of the past in the future and enables the interactivity of an 
archive. (Retrieval architectures could enable semantically informed searches over historically preserved 
archives, or even serve as the basis for information retrieval over yesterday’s data with tomorrow’s 
models.) 

Both the representativeness and the utility of the time capsule depend on the information 
encoded in the neural network. Media such as language, literature, arts, and film may lend themselves 
more to representing the cultural context of a generation, whereas scientific knowledge (e.g., of protein 
folding, catalysis, geometry, etc.) preserved in a neural network may be of higher utility. 

However, scientific models quickly become outdated or disproven. A pre-Copernican, 
Earth-centric model of the solar system serves mainly to provide historical context to the present-day 
astronomers. Yet there is a chance that models of scientific knowledge may preserve possibilities and 
theories that will become experimentally verifiable in the future. For example, the 
Einstein–Podolsky–Rosen paradox, a thought experiment that was said to attack the foundations of 
quantum mechanics, was experimentally disproven in 1982, settling a decades-long debate between 
Albert Einstein and Niels Bohr.24 

The generativity of AI comes with the associated limitation of hallucination. Current generative 
models are confabulators that are not bound to a strict manifold of reality and facts,25 and packaging 
them into a time capsule may risk propelling misinformation about the present into the future. Yet the 
interpretation of historical ambiguity is necessary for any archaeological exploration. It is the historian’s 
due diligence to treat records from the past as unreliable. Discourse, and therefore meaning, emerges 
from the triangulation between conflicting accounts of the past.26 
 
4.1  Contents and Ethics 

Although completeness is often considered an ideal quality of time capsules, its definition and the 
question of who determines it are complex and politically charged. The assumption that completeness 
inherently enhances a time capsule’s value warrants ethical scrutiny. Beyond durability and accessibility, 
Chronoseed’s completeness raises fundamental questions about selection, representation, and 
responsibility. The process of determining what is preserved—and how it is weighted—directly shapes 
the cognitive function it encodes for future engagement. This section examines the criteria for 
completeness, the ethical and political stakes of curation, and the potential consequences of omission or 
bias in the selection process. 

David Lowenthal claimed that the Victorian and Edwardian eras, with their focus on building 
lasting infrastructures like railroads, aqueducts, sewer systems, libraries, parks, and gardens, were driven 
by a “cult of posterity.”27 Nick Yablon counters that this cult evolved into a disconnect from future 
generations with the rise of signal transmission infrastructures. With technological acceleration and the 
short-lived nature of communication media like “wood-pulp paper, photography, phonography, and 
film,” the longevity of messages for future generations could no longer be taken for granted. This led to 
a perceived need for “direct communication with the future,” which Yablon argues often resulted in 

 
temporal myopia . . . a presumption that later generations would look back with gratitude and 
admiration. One can also detect in them a growing tendency to reduce the duty to posterity to a 
merely archival duty, as if it were enough to preserve a smattering of documents, photographs, 
and artifacts; often inexpensive or redundant, these materials represented no great sacrifice.28 

 

Indeed, communicating across deep time risks turning into a grandiose monologue. The ethical 
challenge is threefold: (1) conveying unprecedented responsibility for environmental impact, (2) 
selecting training data that fairly represents contemporary cognitive frameworks, (3) and making 
Chronoseed useful for future intelligent beings rather than focusing solely on self-representation. 

A seemingly responsible approach might reject grand historical narratives entirely, in line with 
the postmodernist sentiment, instead focusing on marginalized voices, imponderabilia, and those aspects 

28 Yablon, Remembrance of Things, 17. 
27 Lowenthal, Past Is a Foreign Country, quoted in Yablon, Remembrance of Things. 
26 Foucault, Archaeology of Knowledge. 
25 Ji, et al., “Survey of Hallucination,” 1–38. 
24 Aspect et al. “Experimental Realization,” 91. 
23 Tishby and Zaslavsky, “Deep Learning.” 
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of life that are not abundantly present online.29 Such an approach could borrow from the logic of Tavares 
Strachan’s comprehensive research project that includes overlooked individuals, places, and events.30 

However, training an AI time capsule solely on marginalized data risks idealizing the minor and 
the local. A time capsule could, for example, be shaped by local gossip, neighborhood disputes, familial 
cruelties, or cycles of revenge within communities. While it is essential to address misrepresentation and 
ensure that Chronoseed does not perpetuate social and perceptual inequalities through underexposure or 
overexposure, it is also important to recognize that local and private perspectives do not inherently 
possess greater moral authority. 

The question then arises: To what degree should a neural network engage in a form of Potemkin 
politics for future generations?31 The term originates from the Potemkin villages—allegedly elaborate 
facades constructed by Grigory Potemkin to impress Catherine the Great, concealing the true state of the 
land behind them. Should a neural network similarly construct a legible but selective representation of 
its present—one that smooths over complexities, omissions, and inconsistencies—or should it encode 
traces of its own internal uncertainties, ruptures, and blind spots, leaving a more ambiguous but 
potentially richer inheritance? 

If Chronoseed were to capture a representative account of human society, it would need to 
include not only technological and cultural advancements but also political failures, wars, 
exterminations, and all forms of human violence, cruelty, and ignorance. 

Equally critical would be an account of how humanity has irrevocably damaged the natural 
environment. This includes data on deforestation at an industrial scale, biodiversity loss, mass extinction 
events driven by habitat destruction, ocean acidification, the collapse of pollinator populations, soil 
degradation, deep-sea mining, plastic pollution infiltrating every level of the food chain, and the 
warming of the planet beyond sustainable thresholds. Records would need to document toxic waste 
dumping, groundwater contamination, the destruction of rainforests for monoculture crops, the 
overfishing of oceans to the brink of collapse, and the unchecked release of greenhouse gases 
accelerating climate change. 

If completeness is the goal, any attempt to encode human history must acknowledge not only its 
intellectual contributions but also its profound role as an agent of ecological and civilizational 
self-destruction. 

However, preserving these records for millennia risks reintroducing humanity’s long-forgotten 
maladies into societies that may have already overcome them. Yet, removing the accounts of human 
atrocities from training data would be equivalent to abandoning one of the most vital archival functions: 
the role of bearing witness through time. It might also veer too close to a kind of ideological paternalism 
over a future in which the sociocultural, economic, and environmental conditions that shape ideology 
might be dramatically changed. 

The challenge of honesty in this context extends beyond humanity’s darkest aspects to include 
the sheer volume of mundane digital content. A comprehensive record would likely be dominated by 
social media posts, influencer streams, repetitive entertainment, viral videos, and vast quantities of 
self-referential imagery, raising the question whether prevalence alone justifies preservation. 

Arguably, the most significant absences—what has been lost, destroyed, or made 
extinct—should be reflected in the preserved cognitive function too. The training of Chronoseed should 
encompass not only what exists but also what is no longer present, acknowledging that the impact of 
these absences constitutes an important part of the collective feelings and thought. This approach could 
include a comprehensive record of everything that has been eradicated or irrevocably altered, much of it 
due to human activity, echoing the themes explored by Judith Schalansky.32 

If the solution involves including all these aspects in the training data, the politics of weight 
distribution becomes crucial. The preservation of cognitive function cannot be reduced to a “marketplace 
of ideas” where mediocre and harmful content is given equal weight alongside seminal works of art and 
science.33 It is equally vital that the preserved cognitive function of humanity does not become a diluted, 
averaged version of human thinking. 

A further complication arises in the context of training data. Treating people’s online activity 
and content production as accurate representations of their thoughts, culture, opinions, values, and 
desires risks falling into a functionalist trap. This critique does not suggest the existence of an 
inexpressible or untokenizable essence of human existence that cannot be conveyed; rather, it 
underscores that many aspects of life remain unexpressed or untokenized. 
 
5  Accessibility 

Accessibility in archival design must account for an unpredictable future. Chronoseed’s legibility 
depends on how technology, language, and culture evolve over time. As linguistic and technological 
paradigms shift, future discoverers may struggle to decode its contents. Chronoseed must signal its 
artificial nature and invite interpretation without assuming shared standards. Its design prioritizes 

33 Herzog, “Marketplace of Ideas.” 
32 Schalansky, Inventory of Losses. 
31 Can, “Under the Leadership,” 356–76. 
30 Strachan, Encyclopedia of Invisibility. 
29 Lyotard, Postmodern Condition. 
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recognition over immediate usability, ensuring it remains identifiable as an artifact intended for 
engagement. 

In some respects, the AI time capsule presents additional logistical challenges to accessibility, 
but the medium can also enable intuitive modes of interactivity. In this section, we consider how to 
design for accessibility in the worst case of intergenerational knowledge loss, when the historical 
endeavor of building the time capsule has been completely forgotten and no context remains. 
Chronoseed motivates an ideal notion of a minimum viable accessible interface. An exact blueprint for 
such an interface is out of the scope of this work, but we sketch the desirable properties for accessibility 
to inform future designs. 

Before Chronoseed can be decoded, it must first be discovered. To distinguish it from 
archaeological noise, it must signal its artificiality, marking itself as an object or structure of interest. We 
propose a replicated design, where clusters of identical plant-like seeds, each containing an embedded 
neural network, are distributed in an anomalously regular pattern. This pattern—deliberately 
non-random—serves as a self-signposting mechanism, ensuring that future discoverers recognize its 
intentional design and are drawn to investigate what lies within. 

Chronoseed also requires a suitable material infrastructure for executing a neural network. The 
medium and design must defy the rapid onset of technological obsolescence, embracing 
permacomputing over ephemerality.34 Permacomputing is an approach to computing that prioritizes 
low-energy consumption, repairability, adaptability, and minimal environmental impact, aiming to create 
computational systems that can function reliably over extended timescales without relying on rapidly 
obsolete infrastructure. 

A highly accessible time capsule would provide the processing power and interfacial devices 
necessary for generating and displaying the outputs of the model; however, this complicates the 
engineering challenge of durability. While carving the weights of a neural network into nickel disks35 or 
even a stone stele would be highly durable, any means of running the model would have to be 
engineered by future discoverers, making the time capsule inaccessible to any civilizations that lack the 
requisite algorithmic knowledge or computational processing power. 

Once the time capsule is found and the model is running, the question remains how the 
information will be understood. Chronoseed offers not a flat, linear passage of text, but a function with 
outputs contingent on inputs. The design of the time capsule must indicate what modes of interaction are 
possible and how meaningful behavior can be elicited from the neural network. While intuitive and 
implicit cues should facilitate this where possible, each embedded kernel would need to be marked on its 
surface with simple symbols, diagrams, or pictograms that suggest its computational nature and 
interactive function. These external markings serve as a universal signal that the object is not inert or 
purely archival, but something designed to be engaged with, queried, and activated. 

We recommend leveraging multimodality to offer diverse pathways for discovery and 
meaningful interaction. The neural network embedded within each Chronoseed kernel encodes 
knowledge through multiple modalities—textual, visual, and auditory—allowing future discoverers to 
reconstruct meanings even when linguistic continuity is lost. Like the linguistic redundancy of the 
Rosetta Stone, multiple modalities offer more robust pathways for decoding symbols and reconnecting 
representations to the physical world. However, since Chronoseed itself does not incorporate active 
hardware such as screens, microphones, or haptic devices, it relies on external interfaces brought by its 
discoverers. Thus, the capsule’s surface includes markings explicitly suggesting its computational 
nature, indicating that it contains executable instructions or encoded cognitive functions, inviting 
meaningful engagement and interaction through appropriate external technologies. 
 
6  Discovery 

This section considers the civilizational circumstances in which Chronoseed might be encountered and 
the implications these have for its design. 

Constructing a transtemporal object that will be discovered beyond the design and linguistic 
horizons of contemporary humans necessitates accounting for contingencies such as ecological 
catastrophes, partial extinctions, and the long-term alienation between present and future cognition. The 
accessibility of any time capsule is ultimately shaped by both the cognitive and cultural differences of its 
future recipients and their level of technological advancement—factors that will determine the 
possibility and nature of its decoding. 

Imagining future humans tends to collapse them into a community with a singular mind, similar 
skills, and evenly distributed access to technologies. However, the space of discovery will most likely be 
a terrain of political conflicts, impenetrable infrastructural divisions, and various dramatic inequalities, 
just like the contemporary world. Therefore, its design should prevent it from playing the role of the 
New Apple of Discord that, in Greek mythology, led to the Trojan War. The distributed nature of 
Chronoseed—consisting of multiple identical kernels, geographically dispersed and embedded in diverse 
locations—reduces the risk of exclusive control, while its redundant placement and artificial patterning 
increase the likelihood of recognition and accessibility across different political and technological 

35 Biersdorfer, “Time Capsule.” 
34 Mansoux et al., “Permacomputing Aesthetics.” 
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realities. This uneven terrain of discovery necessitates a design that is not only resilient but also resistant 
to monopolization and unintended geopolitical consequences. 

As futurists have long recognized, any attempt at utopian political engineering of the far future 
from the deep past risks having unintended consequences. One proposed solution is to shard 
Chronoseed’s database, facilitating future exchange of knowledge between discoverers encountering 
different seeds. In this approach, information would be partitioned across multiple instances, with some 
data remaining consistent across all seeds while other segments remain unique to individual shard-seeds. 
While this could encourage collaboration, it might just as easily escalate conflicts, leading to unethical 
trading, competition, or even theft of Chronoseed kernels. 

Moreover, the challenge of access is not limited to data distribution alone. Each kernel of 
Chronoseed is small, self-contained, and limited to a neural network with a constrained set of embedded 
instructions, without an accompanying interface or physical technology. This limitation means that 
activating and engaging with its cognitive function depends on external infrastructures, raising questions 
about who has or invents the means to reconstruct and interpret it. As a result, the conditions of its 
discovery may introduce additional geopolitical and economic dynamics, as access to Chronoseed could 
become a contested resource. 

Anticipating how an artifact will be encountered, interpreted, and what consequences it may 
generate in the distant future demands precise consideration of its potential discoverers—their epistemic 
frameworks, technological capacities, and cultural conditions. A notable historical precedent can be 
found in the early 1980s, when the German Zeitschrift für Semiotik (Journal of Semiotics) invited 
readers to submit ideas for conveying messages that could be understood 10,000 years into the future.36 
This inquiry, originally aimed at developing a warning system for nuclear waste, serves as a valuable 
thought experiment for understanding how meaning might be preserved across vast temporal distances. 
This inquiry led to diverse responses, each revealing hidden assumptions about the future recipients of 
transtemporal communication. In the present paper, the speculative reception of Chronoseed is 
systematized within a two-axes discovery space. 

The discovery space of the AI time capsule can be represented as a light cone extending along 
the time axis into the future (Figure 3). Two key axes—technological advancement and civilizational 
difference—define the range of decoding possibilities for future discoverers. 

 

Figure 3 Discovery space of the AI time capsule. 

 
Two partial civilizational collapse events obscure the possibilities of discovery, introducing a 

civilizational discontinuity in the top two quadrants. 

36 “Band 6, Heft 3,” Technische Universität Berlin. 
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6.1  Low Advancement, High Difference 

The top left quadrant of Figure 3 marks the discovery space after the civilizational collapse—a major 
catastrophe that caused a high degree of alienation between contemporary humans and future humans or 
other future forms of intelligent life. In this space, the complexity of intelligent life has been drastically 
reduced with respect to some combination of biology, sociality, technology, and culture. 

Literary depictions of postapocalyptic worlds, such as Tatyana Tolstaya’s The Slynx, help 
illustrate possible discovery scenarios. The Slynx envisions a world reshaped by “the Blast,” a 
catastrophe that reduced civilization to a medieval-like state. Survivors, mostly illiterate, attempt to 
make sense of artifacts from the past, transcribing both great literature and technical manuals 
indiscriminately—unable to differentiate their significance or grasp their original meaning.37 

To convey messages across deep time, Sandia National Laboratories proposed rudimentary 
physical signposting, relying on material markers rather than shared semantic or contextual codes in 
scenarios where linguistic continuity is lost. In 1993, they suggested surrounding the Waste Isolation 
Pilot Plant—a deep geological nuclear waste site in New Mexico—with a landscape of jagged spikes to 
warn against intrusion.38 Thorns, spines, and spikes are examples of an aposematic symbol—a warning 
from one species to another that they should not be attacked or eaten—that is pervasive in the biological 
world. In the context of Chronoseed, an alternative to deterrent spikes could involve soft, rounded forms 
or biomimetic designs resembling plant seeds, signaling non-toxicity while ensuring they do not appear 
visually appetizing enough to provoke gustatory interest. This could be achieved through non-fruit-like 
coloration, structural hardness, and surface inscriptions, ensuring it is recognized as an artifact meant for 
interpretation rather than consumption. 

As suggested earlier, Chronoseed is not accompanied by a physical interface. Although an 
inviting design might attract future discoverers, their low technological advancement would limit access 
to its generative function. This raises the challenge of making it self-executing, though any additional 
mechanisms to aid accessibility could compromise its robustness. 
 
6.1  High Advancement, High Difference 

The top right quadrant of Figure 3 outlines the discovery space of a society that despite an apocalypse 
and disrupted civilizational continuity managed to create advanced technologies without the foundation 
of present knowledge. 

In response to the Zeitschrift für Semiotik’s call, writer and futurologist Stanisław Lem 
proposed “information plants,” genetically engineered to encode a mathematical warning about nuclear 
waste.39 Those “atomic flowers” would be engineered to grow in contaminated areas, serving as 
biological markers of danger. Lem envisioned that their distinctly unnatural appearance would signal 
artificial origin, attracting future discoverers to investigate and decipher their embedded message. 

For an advanced alien intelligence vastly different from contemporary humans, a time capsule 
might be more of a technological puzzle, its significance leaning toward anthropology or philosophy 
rather than strictly regenerative knowledge. It could bridge civilizational discontinuity between two 
forms of advanced intelligence, providing solutions or, conversely, acting as Pandora’s box, transmitting 
the biases, cruelties, and obsessions of its creators. 

In this scenario, Chronoseed’s generative function is likely to be activated, as a sufficiently 
advanced intelligence—human or otherwise—would have the capacity to recognize and run the model. 
No dedicated interface would be required, as its future discoverers would possess the technological 
means to reconstruct and execute its cognitive function directly. 
 
6.3  Low Advancement, Low Difference 

The bottom left quadrant of Figure 3 marks a society with eroded technology. Despite partial 
preservation of intellectual continuity and the lack of sudden disruptive events, the civilization 
experienced a broadly understood decline. 

To explore the challenges of long-term communication in the event of technological 
diminishment, various speculative thought experiments have been proposed. In the context of conveying 
a warning across time, linguist and semiotician Thomas Sebeok introduced the concept of “Atomic 
Priesthood.” This concept involves creating a belief system that uses symbols, rituals, and myths to pass 
down knowledge about hazardous sites. By embedding a ritualized fear into cultural superstitions, even 
if scientific understanding fades, this ingrained taboo would protect future generations from engaging 
with dangerous areas. 

A similar, hybrid approach was proposed by Françoise Bastide and Paolo Fabbri, who 
envisioned genetically modifying domestic cats into “Ray Cats” that would change color when exposed 
to radiation. This feline transformation would be encoded in cultural artifacts like myths, songs, and art, 

39 Hawranek, “Stanisław Lem.” 
38 Chapman, “Speaking to the Future.” 
37 Tolstaya, Slynx. 



Chronoseed 
by Sonia Bernac, Jackie Kay & Winnie Street 
 
 

11/19DOI 10.1162/ANTI.5CZO

the cat would serve as a cultural marker, its color change becoming a signifier of danger in the cultural 
memory of future generations.40 

Embedding information about Chronoseed within cultural artifacts, legends, and ritualistic 
auxiliary structures could help signal its significance as a distributed vessel of knowledge, making it 
more likely to be recognized and engaged with in the future. In this scenario, Chronoseed would most 
likely be recognized as a time capsule—an artifact meant to be interpreted, potentially serving as a tool 
for reviving lost technologies and cultures. However, the extent to which its generative function could be 
activated without a self-assembling interface depends on the level of technological diminishment. If 
sufficient infrastructure remains, it could still be computationally engaged with, but in a more 
technologically reduced society, its contents might be approached through material or symbolic analysis 
rather than direct execution. 
 
6.4  High Advancement, Low Difference 

The bottom right quadrant of Figure 3 represents a society with advanced technology and preserved 
intellectual continuity, where the absence of sudden disruptions results in relatively low divergence 
between contemporary and future humans. 

In a context where constant, albeit subtle, transformations can make significant change difficult 
to discern or acknowledge, Chronoseed would provide future observers with a means to comprehend the 
scale and direction of civilizational evolution over time. With both technological advancement and 
civilizational continuity, decoding its contents would be relatively straightforward, transforming it into 
an anthropological record rather than a puzzle. This record would serve as a still from the past, capturing 
a moment in time with all its nuances. Engaging with the time capsule would be akin to interacting with 
a version of a collective self from the past before all the technological updates, offering a perspective 
from a specific moment in the ongoing process of technological evolution. 
 
7  Durability and Form Factors 

After examining the epistemic frameworks, technological capacities, and cultural conditions of future 
discoverers, we now turn to the form factor of Chronoseed. Drawing on the insights already presented, 
we outline different design proposals, ensuring that Chronoseed’s structure addresses the challenges of 
completeness, accessibility, and durability (Figure 4). 

 

Figure 4 Design space with proposals. 

40 Fabbri and Bastide, “Living Detectors,” 10–13. 
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To ensure the long-term readability of a generative function of a neural network embedded in 
Chronoseed, various strategies must be adapted to the technological capabilities of the future civilization 
that might discover and decode it. 

To address the recurring challenge of the interface, Chronoseed could be designed as von 
Neumann replicators, an old idea recently revisited in modular robotics research at MIT, where 
self-replicating hierarchical robotic swarms have been proposed for autonomous assembly and 
adaptation.41 These robotic systems consist of modular units that can self-assemble into complex 
structures, construct their own interfaces upon activation, and adapt to their environment by using 
available resources. They are also capable of limited self-repair if damaged. 

However, this approach introduces significant obstacles, including control challenges in 
coordinating distributed replication, error accumulation leading to functional failures, resource depletion 
disrupting sustained replication, and the difficulty of ensuring robustness in unpredictable 
environments.42 Additionally, incorporating self-assembly mechanisms would increase the size of 
Chronoseed significantly, even if the majority of interface components were sourced externally. 
Furthermore, the necessary materials to construct an interface might not always be available in the 
surrounding environment, limiting the feasibility of this approach. Given these constraints, more stable, 
passive encoding methods, such as DNA storage, remain preferable within the limitations of present-day 
technology. 

DNA storage emerges as the most viable solution for preserving the generative function of a 
neural network within Chronoseed, given its high data density and stability.43 It can efficiently archive 
large volumes of information and precisely encode the instructions to reconstruct a neural network. 
Hence, it achieves a high score for the completeness of preserved information. However, DNA is 
primarily a passive storage medium, with the preserved information requiring time-consuming 
sequencing.44 DNA-stored messages lack an accessible interface or even an indication that information is 
encoded within them. The generative function would only be accessible after DNA sequencing. 

However, there is an inherent risk in assuming that the current technological paradigms will 
continue to be relevant or accessible in the distant future. DNA storage technologies could be subject to 
accelerated updates, transformations, and technological fashions.45 

In addition to durability concerns, the issues of interface and visibility are also critical. DNA, 
due to its microscopic size, inherently lacks an accessible interface for easy interpretation of the 
information it contains. A DNA-stored neural network cannot autonomously process or transmit its 
encoded information. Consequently, the vessel housing the DNA must be designed to be highly visible, 
as DNA alone is too small to draw attention. Effective signaling is essential to ensure that the DNA can 
be discovered and accessed by future generations. 

Using DNA storage to preserve the AI time capsule is also complicated by DNA requiring 
additional layers of physical protection. While DNA can be remarkably stable under optimal 
conditions—such as darkness, cold, dryness, and chemical stability—its longevity is significantly 
reduced under less favorable conditions. For instance, DNA preserved in environments like Siberian 
permafrost has been successfully sequenced after 10,000 to 50,000 years.46 However, at room 
temperature, DNA has a half-life of approximately 520 years. This would certainly be an insufficient 
lifetime to be useful for communicating warnings about radioactive waste,47 and would significantly 
diminish the value of a DNA-encoded Chronoseed. Although this lifespan can be significantly extended 
through specialized storage conditions, the vessel containing the DNA must be carefully designed to 
protect it from radiation, high temperatures, and physical degradation. 

The primary challenge in using DNA as a durable medium for information storage is the risk of 
mutation. Mutations, which are alterations in the DNA sequence, can result from environmental factors 
such as radiation, chemical exposure, or replication errors. Over time, these mutations can compromise 
the integrity of the encoded information, leading to its degradation or loss.48 

To address the potential risks of DNA destruction or mutation due to local environmental 
conditions, Chronoseed would be distributed in space. This arrangement acts as a backup system that 
preserves information even if some portions are lost or damaged over time. The challenge of durability 
is therefore closely tied to the question of geographic distribution. The distributed design of Chronoseed 
includes many clusters of seeds placed in a loosely regular pattern across different locations worldwide. 
While not scattered at random, its placement avoids a strictly uniform grid, ensuring that even if 
individual instances shift or migrate due to environmental changes, the overall structure of dispersal 
remains detectable and coherent. This strategic distribution increases the likelihood of Chronoseed’s 
eventual discovery and decoding, despite long-term geological or climatic shifts. 

Both the distributedness and the generativity of Chronoseed can be implemented in multiple 
ways, depending on the technological sophistication of the discoverers. Three distinct design proposals 

48 Peck, and Lauring, “Complexities of Viral Mutation.” 
47 Heinis, et al., “Survey of Information.” 
46 Poinar and Stankiewicz, “Protein Preservation,” 8426–31. 
45 Mendell, et al., “Matters (and Metaphors).” 
44 For some early attempts at making it computable within DNA, see Solanki et al., “Neural Network Execution.”  
43 Shomorony and Heckel, “Information-Theoretic Foundations.” 
42 Abdel-Rahman et al., “Modular Robotic Swarms.” 
41 Abdel-Rahman et al., “Modular Robotic Swarms.” 
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emerge: (1) robust multilayered seeds with an embedded neural network, hidden in dark, cold places for 
a DNA sequencing civilization, which can directly decode and reconstruct them; (2) robust 
five-dimensional memory crystal disks that can be decoded with magnifying apparatus for 
technologically simpler civilization; and (3) neural network stored in viral DNA, transmitted as a benign 
viral infection preserved across living hosts through generations for a civilization familiar with DNA 
sequencing. While DNA embedding within multilayered seeds remains the primary and most viable 
approach, the additional proposals, five-dimensional memory crystals and viral DNA storage, serve as 
speculative backups, addressing scenarios in which alternative preservation strategies might be 
necessary. 

 
1. For civilizations equipped with DNA sequencing technology, Chronoseed could take the form 

of multilayered seeds, strategically placed in dark, cold environments. The seeds would be 
resistant to extreme conditions, protecting the DNA-encoded instructions necessary for building 
and reconstructing the neural network. The outer surface of each seed would feature 
inscriptions marking it as a computational object, signaling its artificial nature and suggesting 
engagement beyond mere observation. These markings would serve as a minimal discovery 
guide, prompting future discoverers to recognize its significance as something to be decoded 
rather than a natural or inert artifact. Chronoseed’s outer shell would be flexible and suitable for 
small-scale manufacturing and coating—not damaging DNA during the encapsulation process. 
Additionally, the used material would have to be exceptionally durable, capable of lasting up to 
250,000 years. 

Parylene is one of the main candidates for this outer layer.49 The subsequent layers 
underneath would include an anti-radiation layer to protect the DNA from mutations and a 
thermal insulation layer to maintain a stable, low-temperature environment.50 At the core, the 
neural network’s architecture, weights, and functions would be encoded into the DNA’s 
quaternary code through a process that converts binary data into sequences of adenine (A), 
thymine (T), cytosine (C), and guanine (G). The DNA would be further encapsulated in 
protective silica, providing an additional barrier against environmental degradation.51 

However, the capability to sequence DNA may not be guaranteed over long 
timescales. Additionally, the safest storage locations—such as permafrost regions or deep caves 
with consistently low temperatures and minimal humidity—are increasingly rare and may be 
difficult to locate or access in the future. This raises concerns about potential geopolitical and 
socioeconomic inequalities. Civilizations living in regions with warm temperatures might not 
have the opportunity to discover the seeds, effectively creating a situation where access to this 
preserved knowledge is unevenly distributed. 

2. For civilizations lacking DNA sequencing or advanced data storage, these distributed seeds 
could be crafted as small disks from five-dimensional memory crystals—a nanostructured glass 
material capable of storing up to 360 terabytes in its largest form. Engineered for extreme 
durability, these crystals can preserve data for billions of years, enduring temperatures up to 
1,000°C, withstanding impact forces up to 10 tons per square centimeter, and remaining stable 
even under prolonged cosmic radiation. This technology has already been applied to 
preservation efforts, such as the University of Southampton’s project to store the entire human 
genome for future generations.52 

However, for societies with simpler technology, only the limited visible surface of the 
crystal may be accessible, readable with a magnifying glass. This restricts the depth and 
complexity of encoded information, as the time capsule’s generative potential would remain out 
of reach. 

3. Of all the proposed scenarios, embedding information within a benign virus is the most 
speculative, yet it presents an intriguing possibility for long-term preservation. As 
environments become increasingly unpredictable, using a virus as a time capsule could exploit 
its natural ability to integrate into host genomes and persist across generations. 

This concept draws from the existence of endogenous retroviruses—viral sequences passed 
down for tens of thousands of years, some inherited from Neanderthals through ancient 
interbreeding.53 The virus would be designed to remain harmless while being transmitted from 
one generation to the next, ensuring the preservation of critical data over millennia. DNA 
viruses are especially suitable for this purpose because they are stable and have relatively low 
mutation rates compared with RNA viruses, which are more prone to rapid degradation and 
frequent mutations.54 A harmless, transmissible DNA virus could thus ensure the preservation 
of critical data over thousands of years, embedding information securely within human heredity 
and reducing the likelihood of information-altering mutations over time. 

54 Peck and Lauring, “Complexities of Viral Mutation.” 
53 Marchi et al., “Neanderthal and Denisovan Retroviruses,” R994–5; Weiss, “Human Endogenous Retroviruses.” 
52 Baker, “Human Genome”; SPhotonix, “Pioneering the Future”; University of Southampton, “Human Genome.” 
51 Grass et al., “Robust Chemical Preservation.” 
50 Yu et al., “Environmental DNA Decay,” 3178. 
49 Gluschke et al., “Parylene Coating System.” 
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This method addresses the limitations of traditional storage mediums, which are prone to 
degradation or obsolescence, assuming future DNA sequencing technologies remain viable. 
However, it raises significant ethical concerns. Individuals may not want to be involuntary 
carriers of such information, further complicating the ethical landscape of this approach. While 
bodies already serve as living time capsules of evolutionary history, embedding outdated AI 
models in human DNA could infringe on bodily autonomy, preventing living beings from 
evolving without being anchored to a particular point from the past. 

Moreover, embedding crucial information into DNA presupposes that such modifications 
are rare. According to Peter Watts,55 however, pervasive biotechnological experimentation 
renders DNA alteration commonplace. In such a scenario, continuous genetic modifications 
could make it difficult to distinguish embedded information over time. 

 
The proposed form factors do not exhaust the possibilities of embedding a neural network in 

tangible materials but demonstrate how deep-time communication can move beyond science fiction into 
a concrete, although speculative, technological proposition. At the core of Chronoseed is the idea of 
preserving cognitive function rather than merely archiving static information, with DNA storage 
emerging as a particularly promising medium for encoding a generative neural network. A new era of 
biocomputing, DNA storage, and hybrid organic systems is rapidly unfolding, requiring us to rethink 
what computation is—and where it happens. Chronoseed operates within this trajectory, leveraging 
DNA’s unparalleled data density and longevity while remaining adaptable to future decoding methods. 
Recent developments, such as Biomemory’s proof-of-concept DNA memory card and nanopore 
sequencing technologies, highlight DNA’s potential as a very dense, stable storage medium, offering a 
plausible alternative to silicon-based systems prone to rapid obsolescence.56 However, its long-term 
viability as a carrier for an interactive, self-executing system remains contingent on continued 
advancements in retrieval, interface design, and integration with emerging computational paradigms. As 
computation moves beyond traditional hardware, Chronoseed forces us to consider forms in which 
computational artifacts can persist in the wild, or even become part of living systems. 
 
8  Conclusion 

This paper devises a design framework for a generative AI time capsule, exploring how cognitive 
function—rather than just information—might be preserved across deep time. Through an analysis of 
historical and contemporary time capsules, speculative proposals in nuclear semiotics, and artifacts that 
have unintentionally functioned as time capsules (such as archaeological discoveries and preserved 
texts), we identify key misconceptions and challenges that emerge in long-term communication and 
knowledge transmission. These include semantic context drift, the evolution and death of languages, the 
paradox of technological obsolescence (where more advanced technologies tend to have shorter 
lifespans), the assumption of the possibility of the universal human representation, and the tendency to 
assume that future humanity will be civilizationally homogeneous, rather than politically, culturally, and 
technologically fragmented. 

To systematically address these challenges, the paper introduces a design space structured 
around three dimensions: (1) completeness, (2) durability, and (3) accessibility. This framework provides 
a means of evaluating the feasibility of any time capsule intended to remain interpretable across 
extended timescales, regardless of shifts in technological, linguistic, or epistemic paradigms. Within this 
space, the paper introduces Chronoseed as a speculative device—a generative time capsule that embeds 
a neural network within DNA-encoded kernels distributed across diverse environments. Unlike 
conventional time capsules that rely on static archiving, Chronoseed’s generative function would allow 
for interaction, reconstruction, and engagement, adapting to the interpretative capacities of future 
discoverers. 

That would be possible because Chronoseed would accept future inputs, allowing it to simulate 
contemporary cognitive functions within the epistemic contexts of its discoverers. Rather than offering a 
fixed repository of knowledge, it would function as both a multimodal archive and an interactive system, 
incorporating multiple forms of media to create a multi-sensorial Rosetta Stone effect where possible. 
Additionally, it would embed simplified instructions for executing its functions and constructing an 
interface—guidelines that future discoverers could either follow or modify, integrating their own data 
and methodologies to engage with its generative potential. 

The problem of the interface emerges as a central challenge across the proposed material forms 
of Chronoseed and its potential discovery scenarios. Beyond the technological complexity of retrieval, 
preserving a cognitive function within DNA and enabling its execution require the assembly of a 
compatible interface. However, embedding such a physical interface within individual seeds risks 
compromising their robustness and durability. To address this, instructions for assembling an interface 
are encoded within the DNA, stored alongside but not within the neural network itself, providing future 
discoverers with the means to reconstruct a functional system without structurally compromising the 
preserved cognitive function. 

56 Goldman, Future Computing. 
55 Watts, Echopraxia. 
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DNA storage emerges as the best candidate for the material embedding of Chronoseed because 
of its unmatched data density and extreme longevity under optimal conditions. Unlike silicon-based 
storage, which is prone to technological obsolescence and environmental degradation, DNA can encode 
vast amounts of information in a compact, durable format while remaining decodable across diverse 
technological paradigms. As computation extends beyond traditional hardware, Chronoseed compels a 
reconsideration of how computational artifacts might endure outside controlled environments, interface 
with biological systems, or be reassembled independently of any fixed technological infrastructure. 

Analyzing the discovery space of Chronoseed through speculative scenarios about future 
civilizations serves as a productive design investigation. It becomes clear that Chronoseed is not only a 
speculative artifact for long-term preservation but also a means of rethinking how knowledge systems 
themselves are structured, transmitted, and reinterpreted. By framing cultural preservation through 
cognitive processes—models of thought, associative logics, and sense-making structures—it 
foregrounds the dynamic nature of epistemic environments rather than treating knowledge systems as 
static cognitive architectures. This investigation moves beyond concerns of endurance and retrieval, 
prompting deeper inquiry into how collective thinking is shaped, stabilized, captured, and potentially 
reanimated in unfamiliar contexts. 

Ultimately, Chronoseed operates less as a solution to the problem of deep-time preservation and 
more as a challenge to its usual premises. Rather than presenting a definitive design proposal, it 
articulates the tensions between preservation, intelligibility, and transformation, acknowledging how the 
emergence of synthetic intelligence reconfigures the very landscape in which these concerns unfold. 
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Abstract  

Traditionally, philosophy views the temporal relationship between 
technology and life as one where an unnatural clock of the first disrupts 
and alienates the natural clock of the second. However, when viewed as 
an ecological force, technology’s relationship with time can be reframed 
inside a context of adaptation. This paper lays out a framework for 
understanding the ecology of temporal relationships between actors and 
their environments via two different notions of time: (1) chronoception 
(the way an actor perceives time), and (2) characteristic time (the 
amount of change that appears in an environment). In the latter, 
computation acts as the means through which actors can expand their 
chronoception to further timescales of characteristic time. This 
expansion, however, is not neutral. Through their computational 
expansion, actors do not merely perceive but also affect the 
characteristic time of their environments, which are constructed by 
nested and interwoven temporalities, creating an evolutionary force of 
temporal misalignment. This framework enables us to rethink cybernetic 
governance, not as a problem of control but as a problem of temporal 
mediation, where computation serves not to impose its own temporality 
but to mediate and coordinate actors across entangled temporalitie. 
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1  Introduction 

Typically, when technology is to be reconciled with time, it is through measurement. Time becomes an 
axis that technology either refines or occupies. Technology’s time is often thought of as constant—an 
objective measure that necessitates calibration if it should diverge from perfection. One modernist dream 
was to define and democratize absolute time. This was also the Fordist dream—in which the pocket 
watch became an essential accessory for Tronti’s social factory. Implemented within the gears of 
mechanical timepieces and subsequently manifested for the age of computation as standardized systems, 
like processor time or UNIX time, the now materialized Fordist clock enabled not just the 
synchronization of individual actions but also of society.1 Clock speed, a fundamental measure of a 
computer processor’s performance, is now the fastest rate at which matter-as-information can be parsed 
by a single CPU. Moore’s Law famously predicts that the number of transistors on a microchip will 
double every two years. Indeed, MOSFET sizing has downsized from 6 μm in 1974 to roughly 2 nm in 
2024. In parallel, clock speed has increased from 2 MHz to 6.2 GHz.2 

However, the idea that clock speed is a single objective value is an oversimplification. Rather, 
its phenomenal time—the subjective, felt experience of change encountered by those who engage with 
it—arrives to us as the imbrication of many layers of hardware, software, and user interface and, in turn, 
varies according to our familiarity and our time-sensitive perceptual abilities.3 This is crucial, as the time 
in which humans perceive technology is often the time in which they can use it. However, modern 
digital interfaces tend to push users to the limits of how fast they can use them.4 Seen in their totality, 
improvements in distributed computing, cloud infrastructure, and handheld personal devices created a 
complex multilayered information infrastructure that has managed to adapt and evolve our app-driven 
general intellect to a fully automated, high-speed, post-broadcast-era consumption culture, where 
ordinary, everyday moments are constantly mediated by an almost metabolic, one-minute-reel attention 
economy. In short, the lithosphere was transformed into a “racing experience.”5 

Accordingly, when engaging with the subject of time and technology, philosophy historically 
focuses on how technology’s clock disrupts and accelerates our phenomenal experience of time. 
Irrespective of how many cycles of design and adaptation it goes through, technology always seems to 
succeed in making humanity tick according to its whims.6 Inherently, this is what Marx tried to argue 
through the concept of metabolic rift, which posits that technology’s reproduction time does not align 
with or disturbs that of nature.7 Various downstream theories further view technology as an 
uninhabitable temporal environment. Grossly, they could be grouped among those of acceleration, 
argued by Heidegger, Simmel, and Carey,8 or those of simultaneity, discussed by Castells, Virilio, and 
McLuhan.9 Acceleration reduces technology’s influence on time to one of increase in speed and 
efficiency, whereas simultaneity sees how (especially digital) technologies change the speed of certain 
operations by orders of magnitude (for example, that of instant messaging), which leads to a different 
notion of physical space. 
 

 
 
 
 
 
 
 
 

Figure 1 A snake’s local temporal adaptation. Inside a cave, a bottleneck is being formed where bats 
group to pass (left). A snake discovers that point and sneaks to a convenient spot, waiting to snatch its 
prey (middle). Due to the bottleneck, the bats move much more slowly than they would individually. 
Their characteristic time now aligns with the snake’s chronoception, which works to the snake’s 
advantage (right; BBC Earth, “Snakes Hunt Bats”). 

 
 

9 Castells, Space of Flows; Virilio, “Illusions of Zero Time”; McLuhan, Understanding Media. 
8 Heidegger, Being and Time; Staudacher, “Simmel’s Sociology of Time”; Carey, Communication as Culture. 
7 Marx, Capital. 
6 Colvile, “Great Acceleration.” 
5 Tan and Hu, “‘Speed and Passion.’” 
4 Kuijer and Laschke, “Post-Growth Society.” 
3 Nielsen, “Time Scales of UX.” 

2 Wikipedia,. “(2024, August 20). Clock rate,”. In The Free Encyclopedia. Last modified March 29, 2025, 00:46 (UTC), 
https://en.wikipedia.org/wiki/Clock_rate. 

1 Thompson, “Time, Work‐Discipline.” 
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If life carries an essential clock, it is mainly dictated by an organism’s metabolic rate, which describes 
the general rate of energy consumption needed to properly function. It emerges from a set of physical, 
chemical, biological, behavioral, and computational evolutionary traits that fuel an animal’s adaptation 
to its constantly evolving environment. At the same time, an animal can effectively bind all these traits 
into one coherent experience of subjective time, which we refer to as chronoception. Chronoception is a 
subjective quality that describes how quickly an autonomous individual, or actor, perceives information 
in a unit of time. In contrast, the set of organic and biotic matter relevant to an actor’s survival, with 
which it must engage daily, is what we refer to as its environment. To define the rate of change in the 
environment, we introduce the notion of characteristic time from dynamical systems. Characteristic time 
measures the timescale over which certain systems develop. For example, the same physical operation of 
diffusion occurs almost instantaneously in the material substrate of electronics, whereas it is 
comparatively slow when it takes place inside biological cells. This conception of time echoes 
Eddington’s entropy clock, which frames time through the entropic evolution of a physical system.10 
This measure is objective in nature, yet its dynamics can be complex, evolving, and recursive. Between 
chronoception and characteristic time stands computation, which refers to the ability of an actor to 
model, anticipate, and plan its environment. 

We can observe these elements in play in the context of animals surviving in the wild. 
Generally, organisms tend to situate themselves within ecosystems that strike a balance between their 
chronoceptual abilities, the characteristic time of the environment, and the organism’s capacity of 
computation. There are often trade-offs to be made here: due to energy and mass constraints, for 
instance, large animals tend to have slower chronoception than smaller animals,11 and their lifespan tends 
to be larger, while their moving speed tends to be lower.12 An interesting case that demonstrates the 
endless flux and specificity of temporal adaptation can be found in a tale of snakes and bats. Caves, the 
habitat of bats, change relatively slowly, appearing effectively static for an animal like a bat, thus serving 
as a local optimum for roosting. These same caves also attract snakes, which eagerly explore them in 
search of prey, using their thermal sensing to their advantage. The snake has adapted to occupy two 
neighboring temporal “strata.” In one, it is a slow-moving entity looking to convince its prey that it is 
part of the surrounding static (and thus safe) environment. In the other, it is a dynamic entity, attacking at 
a speed faster than its prey can react. However, a single bat moves too quickly for a snake to reliably 
snatch, even if it flies within striking range. Yet, the snake employs an interesting strategy by locating a 
bottleneck formed inside the cave, wherein, even if bats fly at extreme speeds, their movement as a 
group decreases their individual speeds and their density increases significantly. Exploiting this 
phenomenon, the snake throws its jaws toward a slowly moving sea of life (see Figure 1). 
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In this essay, we will try to reframe the relationship of time to technology from one that is opposed to a 
disturbing, self-directed, and alienated clock to one that can be thought of in ecological terms. To clarify 
this further, first in section 2, we will outline a set of temporal zones that exists between an actor and its 
environment. Then, in section 3, we show how computation can affect these zones. In section 4, we will 
see what is behind the temporality of an actor and analyze the effect of temporal interactions. Finally, in 
section 5, we discuss the political implications of our framework, highlighting how time reframes the 
role of technology as a governor in the context of cybernetics. 
 
�  &KronoceStuDO /eDrnDEiOit\ 

The subjective experience of time has long been a subject of discussion within psychology, where 
variables such as age, emotional state, and the influence of psychoactive substances have been linked to 
variations in chronoception.13 Notably, Henri Bergson focused on the perception and psychological 
experience of duration, differentiating between the subjective notion of duration and the objective 
temporality governed by physical processes—what we refer to in this paper as characteristic time.14 
Foundational to Bergson’s notion of duration was the understanding that time is experienced through the 
recognition and collection of change: through memory, which in modern terms would be the key frames 
extracted through pattern recognition and modeling of an actor’s environment. Hence, the capacity to 
perceive change at a particular rate is intimately connected to the speed at which time can be 
sensed—the speed of chronoception. 

In this light, chronoception is not merely an abstract qualitative phenomenon but something that 
can be quantified and measured empirically. The perception of change and the instantiation of change 
are two sides of the same coin: one occurs within the actor and one outside, within the environment. 
With our formulation of chronoceptual and characteristic time through the detection and creation of 
change, we have established axes along which subjective experience and objective reality intersect. 

14 Bergson, Time and Free Will. 
13 Aday et al., “Psychedelic Drugs and Perception”2021; Gable et al., “How Does Emotion Influence.”2022 
12 West, Scale. 
11 Healy et al., “Metabolic Rate.” 
10 Eddington, Physical World. 
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Here, the crucial question arises: what transpires when these temporalities diverge? What is experienced 
when the speed of chronoception doesn’t align with that of characteristic time? In Figure 2, we map out 
the two-dimensional space consisting of different combinations of chronoceptual and characteristic 
speed and identify phenomena that appear in five distinct regions: time-averaging, aliasing, learnability, 
myopia, and timescale separation. 

The first region, time-averaging, emerges when the characteristic speed of the environment far 
exceeds the chronoceptual speed of the actor. In this scenario, which characterizes how we perceive, for 
example, quantum mechanical phenomena such as electricity, the subject cannot but perceive the 
environment as a time-averaged blur, where the nuances of changes are lost in a near-amorphous 
projection of reality. At the opposite extreme lies timescale separation, an example of which is 
geological time, where the characteristic speed of the environment is so slow relative to the actor’s 
chronoception that it appears completely static and devoid of life, even if the environment does undergo 
change. In this context, the actor perceives the environment as unchanging, making any form of 
exchange or responsive interaction between actor and environment impossible. Drawing analogies from 
photography, time-averaging is akin to viewing the environment through the lens of long-exposure 
photography, where rapid movements are transformed into streaks of light, erasing the fine details of 
motion and form. Conversely, timescale separation is analogous to fast-shutter-speed photography, 
which captures a dynamic environment in such a way that it appears frozen and lifeless, rendering the 
scene unusually inert. These two extremes of temporal ratios reveal the presence of a temporal filter, a 
mechanism that regulates the interaction between characteristic and chronoceptual speeds and in this 
way prevents radical mismatches from interfacing. 

 

Figure � Relative temporal relationships between actor and environment and their computational 
expansion. On the left, we display, as a constant ratio of chronoceptual and characteristic speeds, 
different regions of phenomena of temporal misalignment, at the center of which is learnability, the 
most relevant zone to temporal adaptation. On the right we depict how computation expands the zone 
of learnability to further, previously inaccessible zones. 

 
Yet, there are subtler mismatches in chronoceptual ratios, where perception remains possible 

but is fundamentally distorted. Aliasing describes the phenomena that occur when the characteristic 
speed of an environment slightly outpaces the chronoceptual speed of the actor. In this case, the actor is 
capable of only partially capturing the change occurring in the environment and is thus prone to 
misinterpreting the nature of the environment’s evolution. This effect is exploited in the creation of 
motion pictures, where rapidly flickering images are mistaken for continuous motion. Conversely, when 
the characteristic speed lags just behind the actor’s chronoception, we enter the region of myopia. Here, 
the actor becomes fixated on immediate, surface-level changes, mistaking them for the entirety of the 
environment’s developmental trajectory. The broader, slower patterns that define the environment’s true 
nature are obscured. 

In both cases, these minor temporal mismatches distort the actor’s interface with reality, 
revealing that accurate perception requires a certain alignment between chronoceptual speed and 
characteristic speed. This forms the region of learnability, where the actor is neither overwhelmed by 
rapid change nor lulled into complacency by slow dynamics. Instead, the actor is situated in a sweet 
spot, enabling the accurate perception of the environment. The evidence that chronoception is related to 
metabolic rate suggests that, as expected, evolution selects for this zone.15 On a larger scale, 
mathematical support for the Red Queen hypothesis, that is, the conjecture of a constantly changing state 
of nature, points to a sweet spot of learnability between a very fast system of mutations at the level of 

15 Healy et al., “Metabolic Rate.” 
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the actor and a comparatively slow, changing environment.16 Sociologist Hartmut Rosa even saw the 
human social subject as analogous to a Red Queen, as it evolves inside an accelerated, technologically 
advanced modern society.17 
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Over the last half century, computation has become a planetary exoskeleton as well as a sociobiological 
one.18 Mirroring the development of language, computation—as unveiled through scientific instruments 
of climate change or mass-culture, data-driven autophagy—managed to augment, operationalize, and 
coordinate human cognitive faculties. In fact, computation became equivalent to an operational language 
of material processes across and beyond culture. By mastering robustness through digitization and 
optimization, computation evolved scaling and sensing to capture, analyze, and simulate phenomena 
well beyond natural perceptual abilities. Computation became what enabled humans to perceive 
themselves, equivalently, from the timescale of the universe and the timescale of the atom. When 
traditional views highlight how computation accelerates time, they obscure how it reveals and mediates 
it. Aside from defining, standardizing, and operationalizing time, computation also makes the 
temporality of one process apparent to another, making it possible for an actor to act on previously 
unexplorable dynamics. 

In short, computation doesn’t only disturb our chronoception, it expands it. For example, the 
ability to capture and manipulate data enables us to perceive and understand phenomena that were 
previously obscured by our chronoceptual filter. High-speed photography, for instance, has revealed 
aspects of reality that were previously inaccessible, concealed within the temporal aliasing artifacts of 
our visual perception. The early applications of this technology served to deepen our understanding of 
nature, as exemplified by Eadweard Muybridge’s photographic sequences of a horse in motion, which 
unveiled the mechanics of galloping, Ernst Mach’s studies of supersonic motion, and Jean Comandon’s 
film revealing the “growth of plants.”19 Furthermore, capturing data can serve to expand our 
chronoception to incorporate slow characteristic speeds. Through compression, time-lapse photography 
extended temporal processes into digestible sequences, enabling us to observe the fluid dynamics of 
natural phenomena that would otherwise remain invisible to human perception. 

The implications of data capture can be extended further when combined with the practice of 
simulation.20 The origins of simulations lie in the need to study the evolution of dynamical systems. An 
example of a dynamical system is the trajectory of a mass particle under Newton’s second law, which 
makes it possible to obtain a closed-form solution of that particle given properly defined initial 
conditions. However, for most observed systems, such closed-form solutions don’t exist, making it 
impossible to understand their dynamics. Using the differential equations or the step function that 
describes how a system evolves and is often easier to retrieve or design, one can instead simulate the 
trajectories of the system and analyze its predictions. In this way, simulations enable us to compress time 
in two different ways. One is empirical, as by running a simulation faster we can both make observations 
and perceive changes by bringing a system’s characteristic time to ours. The other is anticipatory, as an 
actor can prepare itself for the future by effectively compressing time. 

However, the blind spot of simulations is that they often rely on approximations, as computing 
or modeling the dynamics of a system with precision can be intractable. This is important, as in certain 
areas, simulations serve as the singular potent epistemic means. In climate science, historical data 
acquisitions are complemented by their extrapolated trajectories of metrics of climate evolution decades 
into the future, offering a glimpse of long-term counterfactuals that far exceed the lifetime of any human 
being. This creates a form of structural uncertainty that is factored into the timescales that computation 
operates in and models. However, while a model inherently suffers from both epistemic and structural 
uncertainty, approximate answers to certain questions may still be enough to plan future action, as is for 
example the case in the context of climate science. 

At the particle scale, simulations similarly rely on scientific models and fragmented data to 
stretch human temporal comprehension and perceive phenomena that evolve at the timescale of the 
nucleus. Here, by slowing down or speeding up phenomena not perceivable before, computation can 
adjust the observed characteristic time of certain processes, effectively expanding the zone of 
chronoceptual learnability. As a result of its influence on perception, simulation informs action for the 
purposes of survival and adaptation. The expansion of the zone of chronoceptual learnability leads to the 
possibility of temporal adaptation, which can come in two ways. One is the observation of a 
phenomenon that affects an actor, despite the actor previously being unable to perceive it. The other is 
through the discovery of a phenomenon taking place in a chronoceptual zone, previously unexplored, 
which, after being discovered, can be exploited to the actor’s reproductive advantage. However, as the 
actor inhabits new zones of temporality, it also has the ability to influence and, eventually, disturb them. 
 

20 Winsberg, Computer Simulations in Science. 
19 Muybridge, “Horse in Motion”; Mach and Salcher, “Photographische Fixirung”; Comandon, La croissance des végétaux. 
18 Bratton, The Stack. 
17 Rosa, Social Acceleration. 
16 Wortel et al., “Continual Evolution.” 
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Figure � Actors as systems of systems: Actors are nestings of systems and of their temporalities. 
Source: Wang et al., “Generative Powers of Ten.” 

 
Until now, this work has engaged with chronoceptual speed as the rate at which an actor perceives 
information in a unit of time, and with characteristic time as the rate at which a certain system develops 
or changes in a single unit of time. However, actors are multitudes of various temporalities nested and 
bound up within a single system—an assemblage that perceives time at a rate different from that of its 
constituent parts (see Figure 3). To conceptualize these systems, a handy concept that relates to the study 
of nature and that extends to our everyday lives is that of the holobiont. The holobiont is the collective 
whole represented by an “animal or plant with all of its associated microorganisms.”21 Cows, for 
instance, rely on bacteria in their gut to digest the grass they eat. Similarly, the Hawaiian bobtail squid 
relies on Vibrio fischeri to luminesce in the deep ocean and hide from predators.22 Even humans 
themselves are holobionts: we rely on a wide variety of symbiotic relationships with microorganisms 
living within and on us to function properly. Indeed, the human gastrointestinal tract is home to many 
gut microbiota that affect immune health, prevent disease, and even affect our moods.23 Without them, 
we could not survive. As Gilbert states: “We have about 160 major species of bacteria in our bodies, and 
they all form complex ecosystems. Human bodies are and contain a plurality of ecosystems.”24 Thus, 
humans—or any actor, for that matter—are not ontological conclusions. They, in turn, are also part of 
other holobionts, active constituents of other environments. In other words, actors are not just nestings, 
but are also nested. Depending on the point of reference used for analysis, actors can be said to be either 
environments unto themselves or part of another actor’s environment. All roles are relational. 

We have discussed how to delineate between actor and environment. Yet, how does one account 
for the temporal gap between the two? Consider that when many actors are assembled into a meta-actor 
(an environment), the chronoception of the whole system may (and, indeed, most likely will) diverge 
from the individual characteristic times that make up the system. To account for this, computation can be 
used to bridge that gap and isolate certain temporalities from (or adjust them to) an actor’s 
chronoception. However, to understand the influence actors have on their environments, we need a 
framework that conceptualizes temporal interactions as those that occur not between clocks, but between 
assemblies of clocks. That is, as a constant push and pull between temporal profiles. 

To think of the “space” of characteristic time is, colloquially, to think of a stack of temporal 
strata operating in parallel—as if the universe were a geological cake of disconnected layers, each 
moving through the world at a separate characteristic speed. All technological systems have a distinct 
temporal holobiont, which is also manifested in the context of a stack.25 A common technology like 
Google Maps, for instance, could be said to enfold actors such as the human user, a mobile phone, a 
satellite network, and a GPS receiver. Each component deals with time at its own pace. The GPS 
receiver can capture a signal from a satellite faster than humans can perceive a change in position, and 
even faster than any orbital interference introduced by the moon (Figure 4). 

 
 
 
 
 
 
 
 
 
 
 

25 Bratton, The Stack. 
24 Gilbert, “Holobiont by Birth,” 75. 
23 Appleton, “Gut-Brain Axis.” 
22 McFall-Ngai, “Noticing Microbial Worlds.” 
21 Zilber Rosenberg and Rosenberg, “Role of Microorganisms.” 
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Figure � Nested actor: Actors are nestings of temporalities, often across temporal strata. 

 
However, thinking of the temporal holobiont as a disconnected model does not account for 

interactions that occur at the boundaries of characteristic times. Such interactions inevitably arise when 
various characteristic times cross-contaminate and intertwine (see section 2 for examples). Taking into 
account the nested and interconnected structure of multiple temporalities, a temporal profile of 
characteristic times may offer a more helpful representation (see Figure 5). Although we utilize temporal 
profiles mostly as a conceptual image, we borrow them from the frequency spectrum visualization 
technique often used to describe the temporal variation of certain signal readouts, such as sound, voltage, 
or dynamical systems.26 This representation is often valuable for visualizing the frequency composition 
of a signal across a single time frame. This kind of framework enables us to illustrate the idea that the 
temporal profiles of both actors and environments are not constants but the accumulation of multiple 
locations along the stack of temporal strata. Although the core of an actor’s temporal profile might 
center around a certain range of characteristic times, each will nonetheless contain those of its 
constituent and peripheral elements, possibly tapering out at either end of the strata around and within 
which it is nested. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure � Temporal profiles of nested actors. Environments nest the temporalities of their constituent 
actors. Here, the environment’s temporal profile is shown to be the aggregate of the profiles of its 
actors. External actors interacting with such an environment engage with the pictured temporal 
profiles at the regions where both the actor’s and the environment’s temporal profiles intersect. 

26 Wikipedia,. “(2024, August 20). Fourier Aanalysis,”. In last modified February 13, 2025, 10.48 (UTC), The Free Encyclopedia. 
https://en.wikipedia.org/wiki/Fourier_analysis 
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By exposing one temporal profile to another, patterns of interference emerge. We are now able 
to conceptualize the interaction between actors and their environments as the intersection between the 
profiles of characteristic time that a system and its environment exhibit at the plane of contact (see 
Figure 6). If both actor and environment have already coevolved to a state of equilibrium, these 
interactions will be fairly stable and routine. Otherwise, these areas of diffraction may result in less 
controllable dynamics that necessitate evolution—either of the actor or of the environment. 

One example of an environment adapting to an actor might be how digital technologies have 
increased “the resource intensity, and therefore ecological pressures of everyday life.”27 Using the 
washing machine as a representative example, Kuijer and Laschke note that such innovations make it 
possible to delegate human actions, leading to “changes in human behaviors, skills, and time 
management” and the subsequent accumulation of more technological gadgets.28 This process of 
accumulation and integration is accelerating further, because the pace at which, for example, washing 
machines evolve in relation to humans is faster. The result is a compounding of technologies in everyday 
tasks and a speeding up of daily life. Individual technological inventions are setting off a flywheel in 
which human ecosystems and economies must continually adapt to the compounding effects of these 
actors. Inversely, an actor also has the ability to disrupt its environment by triggering a sequence of 
temporal disruptions that can disturb its underlying physical processes. A particularly representative 
example is the introduction of a goat population to an island, which leads to overgrazing and, 
subsequently, desertification.29 However, on a larger scale, similar perturbations can be seen in more 
complex phenomena, such as the disruption of the water cycle in the context of global warming.30 

 

Figure � Temporal intersection of temporal profiles between actors and environments. On the left, 
interference patterns that come from the interaction between actor and environment. On the right, 
only some of those modes of interaction occupy a zone of learnability, thus influencing adaptation. 

 
At a glance, we observe what seems like an almost unitary dynamic: either the actor has to adjust to the 
temporality of its environment or, inversely, the environment has to speed up or slow down to match the 
characteristic speed of the actor. This condition of temporal misalignment can be referred to as lag, 
which can be characterized as a cross-temporal gradient that guides the direction of temporal adaptation. 

However, to perform such an adaptation, a system needs to be aware of how its action might 
influence the temporality of another system. This becomes a cybernetic problem of a system learning 
how to balance the dynamics of another system toward homeostasis.31 This reveals that in addition to 
what we discussed in section 3, the role of computation isn’t only to expand the chronoception of 
individual actors, but also to become that which mediates and aligns systems across their characteristic 
times. In the next section, we will discuss how this shift in perspective from the temporality of the actor 
to the temporality of the ecosystem, and of computation from the governor to the medium, reframes 
cybernetics from a project of control to one of coordination. 
 
�  &KronoceStuDO *oYernDnce 

The problem of what nature might be, returns from exile among the hippies. 
For a long time, it seemed like a critical gesture to insist that reality is socially constructed. 
Now it seems timely to insist that the social is reality constructed. 
—McKenzie Wark, Capital is Dead 

31 Wiener, Cybernetics. 
30 Intergovernmental Panel on Climate Change, Climate Change 2023. 
29 Arianoutsou-Faraggitaki, “Desertification by Overgrazing.” 
28 Kuijer and Laschke, “Post-Growth Society,” 2. 
27 Kuijer and Laschke, “Post-Growth Society,” 2. 
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As early as 1948, founder of cybernetics Norbert Wiener used the distinction between Newtonian time, 
which is absolute and reversible, and Bergsonian time, which is experiential and irreversible, to posit 
that cybernetic governors operate in Bergsonian time along with living organisms.32 Analyzing Wiener’s 
cybernetic governor through an actor’s chronoception, which we developed throughout our framework, 
enriches the cybernetic formulation in three following ways.33 First, following section 2, a system can 
change much faster or much more slowly than the governor can perceive and thus control for. Then, 
following section 3, computation enables the governor to expand its chronoception and potentially its 
control to different timescales. Finally, according to section 4, the evolution of systems as nestings of 
temporalities develops in a complex span of entangled timescales, whose interference with the timescale 
of an actor produces a misalignment that promotes temporal adaptation. 

The problem of cybernetic governance, posed at the interplay of these temporal dynamics, 
becomes critical for our analysis. On the one hand, it makes clear that homeostasis—or optimal 
regulation of a target system—is often computationally intractable. On the other hand, it hints at the fact 
that homeostasis can be less beneficial, as by adapting to the interplay of temporalities an actor may 
transcend into another state that is much more beneficial than the one it was in before. This is what the 
Cybernetic Culture Research Unit (CCRU) emphasized as an antithesis to the goal of homeostasis.34 
What if, instead of entertaining negative feedback loops that help regulate and keep a system in its initial 
state, we could entertain a positive feedback loop that would help translate a system into another mode 
of existence that is much more beneficial? This thought developed into a positive theory toward 
technology known as accelerationism. 

This turn can also be explained through the technological breakthroughs of the current century. 
While Wiener’s theories were inspired by Black’s and Maxwell’s feedback systems, which later 
influenced Bellman’s theory of optimal control, the CCRU realized the scale and intensity of digital 
technologies and was inspired by discoveries in chaos theory and connectionist models, focusing on the 
potential of nonlinear dynamics inside cultural and technological systems. However, the partial 
inspiration of new technological advancements tends to always inspire folk theories about the nature of 
the world, which are inclined to focus on the parts that were ignored in previous ontologies. In this way, 
the political debate between homeostasis and acceleration becomes reminiscent of the one between the 
politics of cooperation of Kropotkin and the politics of competition of Francis Galton, which was 
popular around the turn of the previous century. Yet, from a thorough study of existing real-world 
systems, it becomes apparent that they cannot be neatly divided into those profiting from either 
homeostasis or acceleration. For example, while some mechanisms of the human body are homeostatic 
and rely on negative feedback, like digestion, others rely on positive feedback. In a classic example, a 
baby pushes out of its womb after a specific time, during which it has developed enough to do so, 
triggering the biological process of birth. Important here is that the dynamics of one system scaffold on 
top of the dynamics of another. Birth codifies the temporal barrier that functions as a statistical guarantee 
that a baby has matured enough to survive the world after exiting the womb. In other words, the 
accelerated state transition of birth is what guarantees homeostasis. 

Under that lens, a strict political divide between an (essentialist) politics of homeostasis and a 
(transcendental) politics of acceleration seems futile. Our final goal is thus to offer a change in 
perspective. Our framework reveals that we could focus instead on the binding element between these 
dynamical systems: computation. Instead of conceptualizing the ultimate cybernetic category of 
teleogenesis—the creation of a system that caters its own goals—as a problem of control, we can think 
of it as a problem of chronoceptual alignment. While systems both depend on and resist the exploitation 
of one another, they lack knowledge of the effect of their actions. Instead of placing computation at the 
center of cybernetic governance, we should think of computation as the procedure that allows different 
actors within an ecosystem to connect, to model one another. Computation becomes the chronoceptual 
expansion of the world onto itself. 

Ultimately, our analysis reframes the problem of cybernetic governance from a problem of 
control to a problem of perception. Instead of the thesis of homeostatic control leading to 
artificialization, of nature transformed into agriculture, and its antithesis of accelerated technological 
expansion leading to extinction in a future outlined by climate change, what if we could propose a 
synthesis that sees computation as the homeostatic acceleration of the medium between individual 
governors? Computation is what brings the dynamic changes brought by the action of an actor back to 
its own timescale. By trying to solve them, the actor can both evolve and endure. Dissolved across and 
into nature, computation can assemble sensing and infrastructure technologies to help systems better 
learn to adapt to their environment. Instead of being treated as the material expansion of the world in the 
form of sensing, from soil sensors to satellites, computation can be treated as that which provides the 
proper ground truth driving the recursive simulations of individual actors toward an enduring evolution. 
 

34 Cybernetic Culture Research Unit, Writings 1997–2003. 
33 Denizhan, “Intelligence as a Border Activity.” 
32 Wiener, Cybernetics. 
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�  &oncOuVion 

In this work, we have proposed a new framework for understanding how technology enters our 
relationship with the social and natural world. We have done this through the lens of time, moving 
beyond the conventional view that limits technology to a disruptive force, accelerating or resisting the 
arrow of time. Instead, we focused on how technology mediates our perception of time, which in turn 
alters the terms of interaction with our environment. 

At the core of this framework lies a fundamental tension—one between chronoceptual speed, 
the rate at which an actor perceives change, and characteristic speed, the rate at which their environment 
evolves. The interplay of these two timescales defines the conditions of engagement: where their 
mismatch is too great, the temporal filter prevents meaningful interaction; where they align, reciprocity 
is possible. This region is named the zone of learnability and is where adaptation and dynamic 
interaction between environment and actor is permitted. It is here that technology operates—not as an 
exogenous metronome, but as a system that modulates chronoception, expanding the zone of 
learnability. 

As computation extends chronoception, it makes it possible for actors to engage with broader 
timescales of characteristic time. Yet this expansion is not neutral—actors do not simply perceive but 
actively affect the environments they interact with. In fact, both actors and environments consist of 
nested and interwoven temporalities of further systems, which form profiles of characteristic time. Their 
intersection guides temporal adaptation, where technology acts as a form of coordinating medium across 
temporalities. 

Our framework has implications for the natural conceptualization of the framework of 
cybernetics, where computation is traditionally the means of governance of an actor over another 
system. Instead of focusing on their feedback dynamics, which we conceptualize as homeostasis and 
acceleration, our analysis shifts the focus to a problem of perception: technology mediates and 
coordinates systems whose phenomena affect complex, far-reaching timescales. As Wiener would have 
expected, time becomes the element that renders computation the common thread across nature and 
culture. 
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5 Mimesis of Mimesis 

The role of representation within machine cognition remains as 
contentious as it has historically been in discussions of evolved human 
cognition—perhaps even more so. Central to this debate is whether 
artificial intelligences genuinely possess concepts, and if they do, 
whether these concepts constitute authentic forms of representation. 

This issue transcends theoretical curiosity, becoming critically 
relevant as AI systems, particularly those grounded in language—a 
fundamental human representational capacity—become increasingly 
embedded in our infrastructural reality. Cognition itself has become 
infrastructural, and representational thought, by extension, occupies a 
similarly foundational status. Yet, if human symbolic culture originates 
from mimetic processes, does the artificial replication of these processes 
represent a straightforward “mimesis of mimesis,” or does it signify 
something qualitatively distinct? 

Exploring this question raises another layer of complexity: 
Perhaps creating models of our models will illuminate the underlying 
dynamics of representation, or perhaps such recursive approaches will 
only defer definitive answers into an infinitely fractal conceptual space. 

Alternatively, practical experimentation with these 
representations of representations may yield more tangible insights. By 
employing artificial representations as tools in developing novel cultural 
practices, we may witness a narrowing rather than a widening of the gap 
between signifier and signified. Yet, this collapse of symbolic distance 
poses its own challenges: Is a closer fusion of representation and 
meaning inherently beneficial, or could it lead to unforeseen 
complications? 

These projects navigate these intricate philosophical and 
practical landscapes, addressing how evolving machine cognition 
reshapes our fundamental understanding of representation, symbolism, 
and cultural dynamics. 
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5a  Minimum Viable Interiority 

Non-player characters (NPCs) in video games are often highly functional agents that interact seamlessly 
with their virtual environments, yet they typically lack even the illusion of an inner experiential life. This 
raises an intriguing philosophical question: Are NPCs philosophical zombies—entities indistinguishable 
from conscious beings in outward behavior but devoid of subjective experience? Philosophical zombies, 
or p-zombies, serve as conceptual tools to explore consciousness, defined precisely by their absence of 
interiority, or the encapsulation of cognitive states and processes unobservable and unpredictable from 
external viewpoints. 

NPCs, thus characterized, have not achieved genuine individuation; they remain integrated 
parts of a broader functional manifold without self-contained inner states. To investigate the minimal 
criteria required for genuine interiority, this project employs a pandemonium architecture—an approach 
inspired by cognitive models where multiple independent subagents compete or cooperate to produce 
coherent behaviors. Such architectures mirror, at a simplified level, the structure of biological brains, 
where interiority emerges from the coordinated activity of cortical columns and neuronal networks. 

Through this model, this research seeks to define and simulate the minimum viable conditions 
necessary for genuine interiority. A central conclusion emerges: While interiority undeniably involves 
multiple interacting subagents, the phenomenon itself critically requires closure—a boundary or 
encapsulation distinguishing internal processes from external observation. Precisely identifying the locus 
and nature of this closure is fundamental to understanding how genuine interiority can be realized 
computationally. Ultimately, this project contributes to ongoing philosophical and cognitive inquiries by 
clarifying the distinctions between mere functional agency and authentic interiority, thereby advancing 
our understanding of consciousness and individuation in both biological and artificial agents. 
 
5b  Generative Topolinguistics 

A large language model (LLM) can be understood as a hypergraph, a mathematical and spatial 
formalization of the intricate semantic relationships connecting words and ideas within a language. At its 
core, an LLM spatializes language through embeddings—vectors assigning words specific coordinates 
within a complex topological geometry. These embeddings do not merely reflect linguistic structure; 
they encode deeper sociolinguistic dynamics, illuminating how sociality itself is geometrically 
constituted and maintained. 

Traditionally, embedding visualizations serve primarily as static maps, passively depicting 
semantic relations. This project proposes a radical inversion: utilizing embedding visualizations not just 
as passive representations but as active interfaces capable of generating novel semantic outputs. In other 
words, rather than merely reflecting existing linguistic structures, embedding visualizations can become 
dynamic tools to shape and manipulate the semantic space itself, actively influencing sociolinguistic 
evolution. 

This project proposes a series of experiments to systematically manipulate these semantic 
topologies, aiming to investigate how structured interventions in embedding spaces can yield emergent, 
interpretable sociolinguistic phenomena. By intentionally shaping semantic geometry, it uncovers 
higher-order insights into language’s social fabric—how meanings propagate, evolve, and influence 
collective understandings and interactions. 

At a deeper conceptual level, this exploration grapples with a provocative recursion: if language 
represents reality, and embeddings represent language, embedding visualizations become representations 
of representations of representations. By navigating and intervening in this layered structure, the project 
opens possibilities for novel forms of linguistic agency, enabling new approaches to understanding and 
influencing the complex interplay between language, thought, and society. 
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Abstract  

Debates about collectivity have become increasingly prevalent across 
computational and philosophical approaches to the modeling of 
intelligent systems. This paper explores whether these prevailing 
conceptions of collectivity adequately account for the “individual” as it 
emerges in the context of AI applications, which consist of distributed 
systems coordinating to give the appearance of a unified agent. Taking 
collective intelligence as a given, our thought experiment explores a 
functionalist approach to the construction of the individual, focusing on 
the feature of minimum viable interiority as a necessary precondition for 
cohering a model of collective intelligence from the bottom up. Building 
on functionalist experiments from p-zombies to non-player character 
design, we leverage Oliver Selfridge’s “pandemonium architecture” to 
construct a theory of functional closure suited to explain the mechanisms 
under which a unified individual emerges from a collective. We propose 
a speculative application of this theory that utilizes DeepMind’s 
Concordia library, schematizing an experimental framework under 
which interiority is established as an emergent phenomenon of 
functionally closed systems. Contrary to prevailing theories of collective 
intelligence, we argue that, rather than the collective being greater than 
the sum of its individuals, the individual is greater than the sum of its 
collectives. Such an individual, when composed of functionally closed 
collectives, is contradistinguished from open collectives such as flocks 
or swarms, often deemed synonymous with collective intelligence. 
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1  Introduction: From the Individual to the Collective (and Back Again) 

“Collective intelligence” has become a popular explanatory paradigm across disciplines, applied to 
many complex phenomena. Sometimes conflated with “swarm” intelligence, its explanations include 
behavioral biological systems,1 human systems,2 and even technical systems.3 In particular, collective 
intelligence holds promise for frontier paradigms in artificial intelligence such as foundational language 
models. This theory accounts for the sheer scale of human agents that such models rely on, as well as 
gesturing toward the distributed nature of AI infrastructure that tends to mesh awkwardly with nominally 
anthropocentric framings of the individual. This perspective is perhaps best steelmanned by turning to 
Falandays and colleagues’ argument that “all intelligence is collective intelligence.”4 These authors 
challenge traditional notions of individual cognition and agency, suggesting that intelligence emerges 
from the interactions of distributed systems rather than residing within a singular, bounded entity. Here, 
we take this a step further by posing an epistemological question: After the turn toward collective 
intelligence, to what extent does the individual still remain a tool for providing insights into the 
ontological questions of agency? 

We respond to this growing consensus by accepting its proposition as true, and then running a 
counterfactual: If intelligence is indeed collective all the way down, what would be required to engineer 
an individual from scratch? In other words, how would we reconstruct a functionally singular entity 
from the multiple components of intelligence? By establishing a counterfactual thought experiment in 
which we re-constitute the individual on the basis of collectivity, we explore the extent to which the 
concept of agency can be reworked for frontier AI systems that orchestrate multiple agents across 
sociotechnical domains. To this end, we do not aim to offer an explanation of intelligence, nor to 
discover the locus of “mind,” or tender a claim pertaining to the “hard” qualities of mind such as 
sentience or consciousness. Instead, we review the integrity of the individual agent, taken as an entity 
that acts through the specific feature of interiority, contradistinguished from those aforementioned 
qualia-bearing designations of the mind. When working within this realm of action between agents, 
interiority consists of a form of privileged access to internal states that drive action. In doing so, we 
consider the possibility that synthetic agents might develop not only to be “black boxed” to outside 
observers but also to preclude reflexive insight into their own internal operational logic. 

Initially, we suppose that some variety of encapsulation might be a necessary (though 
insufficient) precondition to interiority, and that forms of privileged access to one’s interior states is, in 
fact, an emergent phenomenon that motivates decision-making, or otherwise “agentic” behaviors. 
Investigating encapsulation as a preliminary notion opens the possibility that there may be intrinsic 
dynamics essential to individuals that are salient to the explanation of group dynamics. Furthermore, 
some of these dynamics cannot be accessed by external observers through mere behavioral observation, 
thus requiring explanation at a different analytical level. To investigate this problem we propose a 
thought experiment, followed by an initial computational version using DeepMind’s Concordia library, 
an agentic framework primed for experiments in social interaction. Our experiment contrasts a classic 
schematic of inter-agent (often termed multi-agent) interaction against what we term intra-agent 
intra-action to denote the information transfers that occur within encapsulated agents.5 A diagrammatic 
armature for this experiment can be found in section 4. 
 
2 Engineering Interiority 

What thinking actualizes in its unending process is difference 
— Hannah Arendt, Life of the Mind 

 
Interiority is a minor concept in the philosophy of mind. Thomas Duddy argues for the efficacy of the 
term, despite its seemingly fatal association with Cartesian dualism.6 A near-consensus, from schools of 
thought as divergent as eliminative materialism and poststructuralism, amounts in Duddy’s view to a 
“bias [that] has inhibited progress towards adequately complex concept[s] of mind and self.”7 For 
Duddy, the duality of interior and exterior cannot be reduced to that of mind and body, but is in fact 
explanatorily necessary as part of a more holistic, “post-Cartesian” view of the mind. 

One touchstone that complicates the monistic integrity of that interiority might be Hannah 
Arendt’s figure of the “two-in-one,” which characterizes the internal dialogue we engage in with 
ourselves.8 Arendt provides a model of interiority that is necessarily relational: “It is this duality of 
myself with myself that makes thinking a true activity, in which I am both the one who asks and the one 
who answers. Thinking can become dialectical and critical because it goes through this questioning and 

8 Arendt, Life of the Mind. 
7 Duddy, Mind, Self and Interiority. 
6 Duddy, Mind, Self and Interiority. 

5 Here we acknowledge Barad’s coinage of “intra-action” (Barad, Meeting the Universe Halfway, 33), but the present argument 
attempts to derive a parallel conception of the same term. 

4 Falandays et al., “All Intelligence.” 
3 Lévy, Collective Intelligence. 
2 Rosenberg, “Artificial Swarm Intelligence.” 
1 Beekman et al., “Biological Foundations.” 



answering process.”9 This complex interiority is obscured for the purposes of inter-action: “Certainly 
when I appear and am seen by others, I am one; otherwise I would be unrecognizable.”10 Interiority is 
defined by a mechanism which is intra-active, obscured from the other for whom this appearance exists. 

Building on Duddy’s critique, we reframe the concept of interiority in functionalist terms,11 
asking what minimal conditions must be met for an entity to possess a form of interior operation distinct 
from its external behaviors. This approach builds on the perspective posited by John Macmurray,12 who 
argues that the individual is fundamentally constituted through action and relation rather than through 
introspection. Though we seek to test the interiority at first as a function of encapsulation, the 
permeability afforded by conceiving of the individual as an actor rather than merely a thinker lays the 
foundation for an actor that permeates the edge of the individual without necessitating the individual be 
a cognizant subject. 

The notion of actors that are not thinkers has since been run to its logical extreme across both 
philosophy and game studies. David Chalmers’s philosophical zombie (or p-zombie) thought 
experiment, while traditionally positioned as a challenge to functionalist accounts of consciousness, 
offers a productive starting point for our functionalist investigation of interiority. The p-zombie—a being 
behaviorally identical to a conscious human but lacking subjective experience13—helps us define the 
theoretical minimum from which interiority might emerge. Rather than accepting the thought 
experiment’s anti-functionalist implications, we repurpose it to explore how increasing levels of 
functional complexity and organization might bridge the gap between purely mechanical behavior and a 
minimal form of interiority. This approach allows us to ask: What minimal architectural conditions must 
be added to a p-zombie-like system to test for the existence of interiority? 

Video game non-player characters (NPCs) likewise offer a prototypical elaboration of the 
p-zombie concept within digital environments. NPCs are computer-controlled entities designed to 
populate virtual worlds and enhance player immersion through the simulation of realistic behaviors, 
including appearance, movement, dialogue, and decision-making.14 While primarily fulfilling practical 
roles—such as providing challenges, services, loot, or narrative direction—NPCs embody a key 
characteristic of p-zombies: They exhibit behaviors that evoke those of a conscious being while lacking 
the features of genuine awareness or subjective experiences that we would expect from the former. Just 
as p-zombies respond to stimuli and interact with their environment in ostensibly appropriate ways, 
NPCs operate through the execution of preprogrammed routines, responding to in-game events or 
adhering to predefined scripts. This mechanistic underpinning of NPC behavior provides a tangible, 
although virtual, manifestation of the p-zombie construct. In the context of game design and player 
experience, for the interacting player a well-crafted NPC should, ideally, be indistinguishable from 
human-controlled characters—a principle substantiated by numerous studies on NPC believability,15 
mirroring the behavioral indistinguishability central to the p-zombie thought experiment. 

Language models offer an even more sophisticated instantiation of the p-zombie concept than 
traditional NPCs. While maintaining the core characteristic of exhibiting intelligent behavior without the 
guarantee of any “hard” qualities of mind, large language models demonstrate unprecedented 
capabilities in natural language interaction, abstract reasoning, and even apparent self-reflection.16 When 
used to power NPCs, these models create agents that can engage in open-ended dialogue, demonstrate 
contextual awareness, and maintain consistent personas across interactions. This combination of 
sophisticated behavior with uncertain internal states makes language model-based agents particularly 
valuable for studying the construction and emergence of interiority. 

We argue that both traditional NPCs and language model-based agents, as quasi-material 
instantiations of p-zombies, offer experimental shells from which to build and observe the emergence of 
interiority from the ground up. The NPC-zombie then becomes an experimental philosophical subject for 
analysis. Within the controlled environments of video game worlds, we can systematically manipulate 
variables and observe outcomes, establishing a simplified yet precise context for studying agent 
behavior. The observable and quantifiable nature of these artificial agents facilitates an empirical 
analysis of the relationship between internal processes and external actions. Drawing on the existing 
body of research in game AI, particularly the extensive work on NPC design and implementation,17 this 
approach is well-positioned to advance our understanding of the minimal conditions necessary for 
interiority. Moreover, the scalable complexity of NPC cognitive architectures allows for a gradual 
approach to constructing interiority, progressing from simple behavioral models to more sophisticated 
cognitive frameworks. 

This scalability suggests a path toward understanding how collective intelligence might be 
encapsulated within individual agents, where the individual emerges as a container for multiple 

17 Yannakakis and Togelius, Artificial Intelligence and Games. 

16 Bommasani et al., “Opportunities and Risks”2022; Piché et al., “LLMs Can Learn Self-Restraint”2024; Renze and Guven, 
“Self-Reflection in LLM Agents.”2024 

15 Warpefelt and Verhagen, “Non-Player Character Believability.” 
14 Lankoski, “Character Design Fundamentals.” 
13 Chalmers, Conscious Mind, 94–96. 
12 Macmurray Self as Agent. 
11 Pollock, Build a Person. 
10 Arendt, Life of the Mind, 183. 
9 Arendt, Life of the Mind, 185. 
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interacting processes. To investigate this emergence of individual interiority from the standpoint of the 
collective, we turn to cognitive architectures—particularly pandemonium architecture—as 
methodological frameworks for studying the development of bounded, yet internally complex, agents. 
 
3 Building NPC-Zombies with Pandemonium Architecture 

The evolution of NPCs in video games mirrors broader AI research trajectories. From predictable 
rule-based systems to more dynamic approaches like finite state machines and behavior trees,18 NPC 
design has increasingly focused on creating believable agents. The Sims popularized utility-based 
decision-making where characters maximize happiness by selecting actions based on personality-linked 
needs.19 While primarily reactive, these systems create an appearance of purposeful behavior. More 
sophisticated approaches like goal-oriented action planning20 and cognitive architectures such as 
ACT-R21 and SOAR22 have introduced multi-step planning and modular systems for perception, learning, 
and reasoning. These frameworks, when adapted for NPCs,23 produce more sophisticated agents through 
the integration of multiple concurrent processes vying for priority within a single decision-making entity. 

The cognitive architectures described are grounded in broader cognitive science and 
philosophical research. Marvin Minsky posits that intelligence emerges from the interaction of numerous 
simple processes or agents.24 Jeff Hawkins’s theory proposes that the neocortex contains many 
distributed models of the world, each built from sensory inputs and making predictions, rather than a 
single hierarchical model, with these multiple models working together to form our perception and 
understanding of reality.25 A common thread running through these approaches is the theme of multiple, 
parallel processes within a single agent, instantiated as needs competing for attention in the realm of 
action planning, possible actions competing for resources under the constraint that an agent can pursue a 
single action at a time, and so on. Decision-making—that determines which need to attempt fulfilling at 
any moment and what action plan will most likely lead to the satisfaction of that need—is a prerequisite 
to both interiority and intelligence. Our claim, that interiority arises as an emergent property of stacking 
layers of internal decision-making that the agent is not directly exposed to, is detailed in section 4 of this 
paper. 

The idea of a tiered decision system operating on independent modules finds its most explicit 
expression in the “pandemonium architecture,” originally proposed by Oliver Selfridge in 1959 as a 
model of pattern recognition in human visual perception.26 Selfridge introduced a hierarchical structure 
of daemons as simple processing units that work in parallel to analyze input data. The model consisted 
of multiple layers, including feature daemons that detect basic patterns, cognitive daemons that combine 
these features, and decision daemons that make final classifications (Figure 1). 

 

Figure 1 An illustration of Oliver Selfridge’s 1959 pandemonium architecture model, drawn by 
Leanne Hinton. Source: Lindsay and Norman, Human Information Processing. 

26 Selfridge, “Pandemonium.” 
25 Hawkins, A Thousand Brains. 
24 Minsky, Society of Mind. 
23 Lent et al., “Intelligent Agents.” 
22 Laird, The Soar Cognitive Architecture. 
21 Ritter et al., “ACT-R.” 
20 Orkin, “Goal-Oriented Action Planning.” 
19 Tirrell, “Dumb People, Smart Objects”; Brown, “AI Behind The Sims.” 
18 Buede et al., “Filling the Need.” 
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Our usage of the pandemonium architecture model in this paper extends the context of 
Selfridge’s theory toward NPC cognitive architectures. It differs from an intuitive view of an agent as a 
single encapsulated model (Figure 2). 

 

Figure 2 A simple agent composed of one model. 

 
In contrast, in pandemonium architecture, multiple models, or daemons, coexist within a single 

agent, each processing information or generating responses independently (Figure 3). 

Figure 3 A pandemonium agent composed of two models and a selector daemon. 

 
A crucial component of this architecture is the selector daemon, which reconciles the outputs of 

these competing models to generate a final action or response. This internal structure might create 
complexity and potentially generate more nuanced behavior, and allows us to build toward minimum 
viable interiority through the stacking of functionally closed layers of daemons. 
 
4 Intra-Agent Intra-Action and Functional Closure 

Although the architecture outlined by Selfridge produces an individual that equates to a single instance 
of pandemonium, our hypothesis focuses on how the development of interiority can be considered an 
emergent property of a system of nested, functional closures. We build our experimental framework on 
the history of organizational closure in theoretical and systems biology,27 extending Alvaro Moreno and 

27 Maturana and Varela, Autopoiesis and Cognition; Moreno and Mossio, Biological Autonomy. 

Minimum Viable Interiority 
by Iulia Ionescu, Murad Khan, Alasdair Milde  
& Cesar Mocan 
 

5/13DOI 10.1162/ANTI.5CZQ



Matteo Mossio’s description of “an organization of constraints” to outline a theory of functional closure 
in agent-based systems. Mossio and Moreno’s framework provides an explanation of how complex 
biological and cognitive systems develop internal dynamics due to local constraints,28 where the 
organization of constraints as a collective constitutes a system of self-maintenance. By applying this 
concept to agent-based systems, we can better model how artificial agents might develop collective 
forms of self-organizing behaviors that emerge from internal constraints rather than being solely 
determined by external factors. Much as Mossio and Moreno seek to expand closure from physical to 
biological self-maintenance, we move a step further to transpose closure to a regime of psychological 
self-maintenance suitable for explaining the development of interiority as a system of enclosed, 
privileged states. 

Central to our analysis is the proposition that a functionally closed system is irreducible to a 
genealogical tracing of causes at each scale of operation. Rather, we hold that the distinctive feature of 
such a system is that each closure is causally explainable only by the events observed within its 
respective domain, and thus provides explanations for phenomena local to each layer.29 

We distinguish between two levels of interaction under these conditions: (1) intra-agent, 
defined as the dynamic interplay between models on a single layer of closure; (2) inter-agent, the 
engagement between functionally closed systems and across scales. Such a system exhibits closure at 
local scales, such that each level of operation is organized by prior bounded levels of pandemonium. A 
coarse overview of one such subsystem is shown in Figure 4 

 

Figure 4 Inter-action and intra-action for two distinct functionally closed layers within an agent. 

At this pandemonium layer, components within each functionally closed system (represented in 
Figure 4 as separate planes) intra-act with one another whereas closed systems inter-act with one 
another. Models in the lower layer are constitutive of the systems in the layer above, which emerge from 
the levels below (Figure 5). 
  

29 In other words, closure is a constitutive, rather than etiological, explanation to the extent that it provides an ontic account of the 
development of emergent phenomena from the causal regime of constraints within a system (Salmon, Causality and Explanation). 

28 Mossio and Moreno, “Organisational Closure.” 
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Figure 5 Inter-action and intra-action represented on a second, emergent layer. 

 
At this pandemonium layer, components within each functionally closed system (represented in Figure 4 
as separate planes) intra-act with one another whereas closed systems inter-act with one another. Models 
in the lower layer are constitutive of the systems in the layer above, which emerge from the levels below 
(Figure 5). 

At this pandemonium layer, intra-action at the layer below (Layer 1) produces an emergent set 
of components at a higher degree of complexity. Every subsequent layer produced after Layer 1 is 
irreducible to the layer before. The final layer of the system encapsulates all previous layers and 
components and is presented as a whole (Figure 6). 

 

Figure 6 Top-level selector daemon (final layer) acting on the previous functionally closed layer. 

4.1  Selection 

Under this conceptualization of a pandemonium architecture, the role of our selector daemon is to 
arbitrate between intra-agent dynamics that emerge at each level of closure. To this extent, selection 
provides the conditions under which interiority develops as well as the process by which we come to 
present a state of phenomenal unity.30 It is through selection that we re-present, or externalize, the 
dissonance of internal cognitive states in action in a mode perceived to be indicative of an “individual.” 

30 Metzinger, Being No One. 
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Building on the neuropsychological explanation provided by Michael S. Gazzaniga and Joseph 
E. LeDoux, which casts the left hemisphere of the brain as an executive interpreter of information that 
unifies conscious and unconscious experience,31 we propose that selection interiorizes the individual, 
producing a unity that is functionally taken to be the individual through the development of an emergent 
self-model. 
 
4.2 Minimum Viable Interiority Constant 

Interiority is therefore defined as an emergent property, partially observed by the exhibition of 
behavioral (ir)regularities at the level of the individual, but ultimately hidden by the bounded nature of 
each level of pandemonium and their eventual closure through the process of selection. Under this 
framework, we hypothesize that a system requires 𝜆𝜆 levels of functional closure to achieve interiority, 
where 𝜆𝜆 represents our minimum viable interiority constant. With each additional level of nesting, we 
add a layer of complexity, creating a decision-making hierarchy that becomes increasingly opaque to 
external observation and internal introspection. 

Against prevailing theories of collective intelligence, which suggest that the collective is greater 
than the sum of its parts (individuals), we suggest the opposite: that this architecture recognizes the 
extent to which the individual is greater than the sum of its collectives. Functional closure grounds an 
augmented schema for Selfridge’s pandemonium architecture that necessitates the interaction of nested 
constraints within a single agent, where the collective self-maintenance of causal boundaries between 
different levels of agent interaction contributes to the global structure of interiority as an emergent 
property of the system. 
 
4.3 Pandemonium Architecture Versus Neural Networks 

In our proposed framework, we explore Selfridge’s pandemonium architecture as a potential model for 
the development of interiority. Of particular interest is the extent to which the hierarchical nature of 
decision-making exhibited by pandemonium agents can be refined through a theory of functional 
closure. Whilst it is the case that contemporary deep learning architectures, such as transformers,32 also 
exhibit hierarchical forms of information processing, the explicit design of interacting daemons in 
pandemonium—in which agents possess designed internal dynamics with multiple interacting 
component roles (where different daemons interact to produce behavior)—provides a more interpretable 
framework for studying the emergence of cognitive-like processes. Both approaches have their strengths 
and limitations in modeling cognitive processes, and future work may benefit from integrating insights 
from both paradigms, but these explicitly defined functional units offer a different perspective on 
cognitive modeling that are generative for more exploratory, conceptual research into interiority as an 
emergent property of a functionally closed system. 
 
5 Experiment Design 

To take this a step further, we schematize a conceptual, computational framework for testing the 
hypothesis that interiority—defined as a form of privileged access to internal states—can emerge in NPC 
agents through a pandemonium architecture. We focus on the specific dynamics of multi-model agents, 
each controlled by multiple internal models (or daemons) whose outputs are reconciled by layers of 
selector daemons. Our goal is to explore whether increasing levels of functional closure in these agents 
can generate what we term minimum viable interiority, which is characterized by complex forms of 
internal decision-making opaque to external observers. 

We propose a software experiment using an agentic pandemonium architecture, where multiple 
agents operate within a simulated sandbox environment. To streamline development, we suggest 
building this architecture on an existing agentic framework, such as DeepMind’s Concordia. Defined as 
“a library to facilitate the construction and use of generative agent-based models to simulate interactions 
of agents in grounded physical, social, or digital spaces,”33 Concordia is an open-source project that 
enables the creation of social agents driven by large language models. 

The primary goal of our experiment is to observe and quantify behavioral differences between 
agents with varying levels of functional closure in their cognitive architectures. By creating a series of 𝜆𝜆 
simulated scenarios—each identical except for the number of functional closure levels within the agents’ 
cognitive structures—we aim to explore how increasing levels of functional closure might contribute to 
the emergence of interiority, establishing a foundation for more detailed quantitative analysis in future 
work. 

In the baseline scenario—a simple inter-agent inter-action—we simulate N agents, each with a 
cognitive architecture that contains a single level of functional closure: one daemon (a decision-making 
unit) powered by a language model, implemented as a Concordia agent. In this setup, the agents engage 
in inter-agent interaction but lack any intra-agent complexity. Each agent contains one internal daemon, 
resulting in a total of N daemons across the simulation (Figure 7). 

33 Vezhnevets et al., “Generative Agent-Based Modeling.” 
32 Vaswani et al., “Attention Is All.” 
31 Gazzaniga and LeDoux, The Integrated Mind. 
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In comparison, for the pandemonium configuration on the right in Figure 7 we add a second 
level of functional closure to each agent, implementing a basic pandemonium architecture. This consists 
of two first-layer daemons processing sensory input and one selector daemon that chooses the most 
appropriate response. Each agent has three internal daemons (22−1), resulting in a total of 3×N 
daemons across the simulation. In this architecture, agents begin to exhibit intra-agent intra-action, 
where multiple internal decision processes occur without all states being visible at higher levels or to 
external observers. 

 

Figure 7 Comparison of the baseline scenario with a pandemonium scenario with one layer of 
functional closure, for N=2. 

 
At a depth of three (as in Figure 8) the structure becomes more complex. The selector daemon 

now manages multiple second-layer daemons, each overseeing a pair of first-layer daemons. This 
hierarchy follows the pandemonium model, where each layer specializes in progressively abstract 
functions. For example, first-layer daemons might detect basic patterns in input data, while second-layer 
daemons integrate these patterns into more sophisticated perceptions or decisions. With three levels, 
each agent would have seven internal daemons, 23−1, totaling 7×N daemons across the simulation. 

 

 

Figure 8 A single agent containing a pandemonium architecture with three layers. 
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As we increase the number of functional closure levels to 𝜆𝜆, the system grows exponentially in 
complexity, making the higher levels more theoretical in their feasibility due to the rapidly increasing 
number of required daemons, N×(2𝜆𝜆−1) (Figure 9).  

 

Figure 9 A single agent containing a pandemonium architecture with four layers 

 

6 Conclusions 

We have proposed a thought experiment: What could be learned by an attempt to engineer the individual 
from the ground up? By hypothesizing the nature of an individual as fundamentally collective, we are 
led by necessity to understand the organizational complexity from which an individual can emerge from 
a bundle of collectives. From this, we schematized a possible experiment that accounts for the 
emergence of a unified individual through the mechanism of functional closure. On these grounds, we 
pose a framework for understanding the scalar nature of interiority, a phenomenon constrained by the 
minimum viable interiority constant that acts as a limit to the possible regress of necessary layers. 

This is not a reactionary stance against the growing consensus of collective intelligence, but 
rather a constructive provocation: If intelligence is indeed “collective all the way down,”34 we require an 
adequate explanatory framework for understanding its construction across multiple scenarios. We come 
to the preliminary position, then, that while the individual may be composed of the many all the way 
down, it still provides an important explanatory function for collectives in which intelligence is not 
distributed between individual group members. In particular, if interiority emerges at 𝜆𝜆 levels of 
functional closure, and is displayed behaviorally, such a presentation may be anticipated as distinct from 
the behaviors of the swarm, where a collective has no consolidated internal functioning. This suggests a 
distinction between collectively-driven action where the system is functionally closed, as in an 
individual, and where the system is open, as in a flock or a swarm. This might lead to the reconsideration 
of certain collective, functionally closed systems or organizations as individuals themselves. 

Our claim that interiority emerges from stacked, cascading collectives is not necessarily a 
critique of analyses that promote the collective as ontologically foundational. Rather, the present 
proposal seeks to respond to concerns around the integrity of the individual by posing a compatibilist 
view. The collective composes the individual, but the individual is not troubled or undermined, simply in 
need of reconsideration. To conclude, we reiterate our primary proposition: that against prevailing 
theories of collective intelligence, which suggest that the collective is greater than the sum of its parts 
(individuals), we suggest the opposite; that this architecture recognizes the extent to which the individual 
is greater than the sum of its collectives. 

The implications of this view are better teased out through the development of empirical 
metrics to quantify emergent interiority in functionally closed systems, including measures of decision 
opacity (how predictable an agent’s behavior is from external inputs), intra-agent interaction density (the 
complexity of interactions between internal subsystems), and self-model coherence (the consistency of 
an agent’s self-representation). Such metrics could help establish when the minimum viable interiority 
constant (𝜆𝜆) is reached, potentially bridging conceptual theories of interiority with observable properties 
of complex AI systems. 

34 Falandays et al., “All Intelligence,” 1. 
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Further to running the proposed experiment pertaining to interiority as a minimal conception of 
the individual, a subsequent step might be situating the hard problem within this schema. If, as Thomas 
Metzinger writes, the “phenomenal self is not a thing, but a process,”35 then speculation might suggest an 
emergent relationship between interiority and “hard” conceptions of mind at higher orders of 
complexity, consistent with Daniel Dennett’s view of consciousness as an emergent property. 36 Such 
emergence might be observable through various manifestations of self-modeling and self-reference in 
agent behavior. Regardless of one’s position on the hard problem, interiority proposes an intermediate, 
incremental step between the p-zombie and the person. 
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Abstract  

The experimental framework set out for generative topolinguistics seeks 
to investigate the sociality of meaning construction in artificial cognitive 
systems. While the semanticity of artificial linguistic systems is an 
emerging area of research, our work explores how the tokenization of 
language could produce new interfaces for the exploration of 
sociolinguistic phenomena. Generative topolinguistics presents a 
perspective on artificial sociality in simulated environments, employing 
a functionalist framework to capture its structure through token 
interactions inside the high-dimensional vector spaces of modern LLMs. 
In our model, language functions geometrically while sociality functions 
topologically, with changes in the topology of movement in semantic 
space interpreted as social behavior. Through the proposal of a 
bidirectional interface for large language models, we speculate how 
structural manipulations of semantic space could lead to the emergence 
of various sociolinguistic features that scaffold toward interpretable 
higher-order social phenomena. 
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1  Introduction 

At the turn of the twentieth century, key thinkers of linguistics such as Saussure and Wittgenstein used 
the modeling ontologies of their time to speculate on what language could be. Their vocabularies and 
concepts originated from the two unbridged worlds of the classical humanities and natural sciences. 
Saussure’s idea of language saw it as a structure, distinguishing it from parole, its oral manifestation, by 
conceptualizing it as an underlying system.1 This view was largely aligned with developments in 
neuroscience at the time, where Broca’s and Wernicke’s areas of the brain were already found to be 
responsible for producing and understanding language.2 However a formal connection between the two 
remained ambiguous. Wittgenstein focused instead on a more social aspect of language, what he called 
language games, where the meaning of a word can change through its use and interaction.3 Later, 
Lyotard used this concept to discuss how ideology and narrative make language almost a code that 
speaks for itself, encoding and recoding meaning inside the social world.4 

Perhaps working at different scales, such theoretical approaches can be viewed in retrospect 
more as modeling attempts to describe discrete aspects of language. Although implementing these 
models to reproduce linguistic phenomena could potentially validate underlying assumptions about the 
nature of language, testing these methods would still require a complete framework. Instead of seeking 
this common underlying framework, essentialist debates between analytical models—such as the innate 
generative grammars of Chomsky or more experimental approaches, like the behaviorist, functionalist 
models of Skinner5—delayed the process of research due to an almost ideological confrontation.6 

Computational linguistics and language modeling were efforts of the linguistic community to 
make such emergent ideas tangible through computation. Generative grammars were mapped to state 
machines,7 and behaviorist approaches were mapped to statistical models8, often n-grams.9 Despite their 
ability to create simple applications such as autocomplete, such modeling attempts were futile epistemic 
efforts at mapping an unreasonable or highly complex system to an analytical statistical model.10 
Inspired by early models of biological neural networks, the connectionist approach grew from parts of 
the statistical modeling community to become the predominant modeling approach for language 
modeling. It converged in modeling the large statistical distribution of the sequences of subword parts, 
known as tokens, which constitute language by fitting a probability model ) to predict the next 𝑝𝑝(𝑥𝑥

𝑡𝑡
 | 𝑥𝑥

τ<𝑡𝑡
token of any sequence of a text, drawing from its history. 

Developments in optimization, architecture design, and data curation enabled scaling these 
models to the order of trillions of network parameters, and learning from text data sets to the order of a 
dozen trillion (subword) tokens. Inside their weights, language got abstracted into complex and 
superimposed multiscale representations, some of which even learned to perform abstract algorithmic 
operations.11 In this sense, large language models became an emergent unified model that made it 
possible to converge to different philosophical ideas about word interaction, structure, or 
self-reproducing linguistic systems through the merely empirical reproduction of written language. In 
other words, LLMs can challenge linguistic theories by becoming a “living proof” of what language 
could be. What if the philosophies of Saussure or Lyotard are now coded in some form or another in the 
model’s parameter space, and one can now instead study them through interaction to understand their 
limits? 
 
1.1 Generative Topolinguistics 

When it comes to analyzing language, one of the most compelling properties of LLMs is that they map 
linguistic symbols into tokens, discrete chunks of vector representations, which interact and are 
transformed through common vector operations by learning network weight to perform next-token 
prediction. What makes them compelling is that inside the abstract, high-dimensional spaces occupied 
by such vectors, one can locate (1) structures of interactions between tokens, (2) geometric properties 
where vector similarity is encoded as semantic similarity, and (3) topological properties where the global 
structure of such token interaction can reveal patterns, which in the context of user interaction can 
encode sociality. There are two well-studied paradigms for studying LLMs: (1) through a top-down 
approach, known as representational analysis, which investigates high-level properties of the embedding 

11 Elhage et al., “Mathematical Framework.” 

10 Statisticians even ideologized the parameter count of their models, as in the case of Von Neumann’s elephant: “With four 
parameters I can fit an elephant, and with five I can make him wiggle his trunk.” See Dyson, “A meeting with Enrico Fermi.” 

9 Shannon, “The redundancy of English.” A more complete introduction to the history of NLP can be found in Manning and 
Schutze, “Foundations of statistical natural language processing.” 

8 Saffran, “What Is Statistical Learning.”  
7 Hunter, “Chomsky Hierarchy.” 

6 Chomsky, “Case Against B.F. Skinner.” Such debates are in retrospect reminiscent of the debates in physics around the wave or 
particle nature of light. 

5 Chomsky, Theory of Syntax; Skinner Science and Human Behavior. 
4 Lyotard, The Postmodern Condition. 
3 Wittgenstein, Philosophical Investigations. 
2 Rutten, “Broca-Wernicke Theories.” 
1 Saussure, “Course in General Linguistics.” 



space; or (2) through mechanistic interventions, which identify learned algorithms of neuron–tokens 
interactions.12 
       Generative topolinguistics borrows from both methodologies with the purpose of designing a 
generative framework toward language that enables humans to understand sociolinguistic phenomena. 
Prior work suggests that we can not only observe but also manipulate such representations. This implies 
that instead of trying to model human language as a distributed embedded moving target, we can instead 
pose the question: Given a certain physical structure assumed by language, what happens to it if we 
interact with it by manipulating its geometric representation? How would that develop, topologically, 
into further interactions between artificial linguistic systems, that is, in terms of their sociality? Can new 
forms of sociality emerge from existing linguistic structures, and would a different language, or set of 
semantic relations, emerge to support new forms of sociality? 

To generate answers to all these questions, we motivate and propose a bidirectional framework 
for analyzing and interacting with language in tokenizable space. Our bidirectional approach, generative 
topolinguistics, explores what could be learned about language and sociality by manipulating the large 
language models that learn to reproduce them. While formalized on top of LLMs, our proposal is aimed 
to be foundational in nature as a contemporary approach to sociolinguistics. 
 
2 Sociality as Embedded and Emergent in Language 

The internalization of cultural forms of behavior 
involves the reconstruction of psychological activity 
 on the basis of sign operations 
—Vygotsky, Mind in Society 
 

At the core of our framework lies a tripartite model that elucidates the complex interplay between 
sociality, language, and vector embeddings. This model posits a novel conceptualization of the 
relationship between human social systems and artificial linguistic structures, offering a new lens 
through which to examine the emergent phenomena arising from their interaction (Figure 1). 
 
2.1 The Three-Mirrors Model 

 

 

Figure 1 The three-mirrors model: Sociality is compressed into language that in turn is compressed 
into the tokenized representation of a large language model. 
 

Mirror 1: Sociality 

The existing literature on how text is embedded in large language models suggests that there is a transit 
between language use and model knowledge.13 Our research, however, emphasizes the inherent sociality 
embedded within language models. Taken as the highest-order domain in our framework, we define 
sociality as something akin to the “human sciences” definition of culture provided by Sinha:14 “A pattern 
or patterns of meaning . . . a normative order, realized and reproduced in semiotic systems or vehicles 
including language, and in enduring artifacts and institutions; and enacted and renewed in social and 
communicative practices.”15 Aligning with recent work in cognitive anthropology and sociocultural 
linguistics,16 we maintain that sociality is the grounds on which language—and, by extension, token 
space—derives its content and structure. 

16 Enfield and Levinson, Roots of Human Sociality; Bucholtz and Hall, “Identity and Interaction.” 
15 Sinha, Ten Lectures on Language, 11. 
14 Sinha, Ten Lectures on Language. 
13 Bender et al., “Dangers of Stochastic Parrots”2021; Bommasani et al., “Opportunities and Risks.”2021 
12 Zou et al., “Representation Engineering.” 
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Mirror 2: Language 

Language serves as the medium through which social phenomena are expressed, communicated, and 
perpetuated. In our model, language acts as a diffractive lens, reshaping the constitutive elements of 
sociality that will structure the embedding space of a model. This view builds on the work of linguistic 
anthropologists such as Duranti and sociolinguists such as Eckert.17 Duranti’s work in linguistic 
anthropology emphasizes the study of language as a form of social action embedded in specific cultural 
contexts, arguing that language both reflects and shapes social reality. His exploration of the indexical 
properties of language—of how linguistic forms point to certain aspects of the social context—resonates 
with our understanding of how token space encodes social information. Complementing this, Eckert’s 
“third wave” approach in sociolinguistics highlights speakers’ agency in using linguistic variation to 
construct social meaning. Eckert’s concept of the “indexical field”—the range of potential social 
meanings that a linguistic variable can have—provides a useful analogy for understanding the 
multidimensional nature of token space in our model. Against the autonomy from social organization 
proposed by generative (formal) linguistics,18 we hold that not merely the lexical structure of a language 
but its grammatical features are culturally and socially interdependent. Our suggestion is, however, not 
to align the sociality of language with an evolutionary account of its development, reconstructed in token 
space, but rather to account for those conditions that would lead to the emergence of novel 
sociolinguistic behaviors from within the manifold of human–AI interactions. 
 

Mirror 3: Token Space 

Embedding space, created by the process of tokenizing language, represents a second-order embedding 
of sociality, mediated through the diffractive lens of language. Token space embeds lower-dimensional 
features of sociality, reconstituting them based on linguistic associations. In other words, if we maintain 
the primacy of sociality in the development of linguistic behavior, then modulations to social behaviors 
are mediated through language into token space. To this extent, token space is a projection of language, 
another mirror-like representation. 
 
2.2 Bidirectional Linguistic Framework 

The first direction within this framework reflects the transmission between the cultural layer of social 
interaction and the embedding space of a large language model. The process of tokenization produces a 
space of social meaning, communicative intention, and linguistic behaviors. 

However, in our exploration of this framework, we distinguish between embedded sociality—as 
a projection from the social sphere, through language, into token space—and emergent sociality, the 
inverse projection of token space into linguistic patterns and social behaviors. An existing area in which 
emergent sociality unfolds consists of bot-only social networks, where, as discussed in the following 
section, we see the production of novel sociolinguistic features through text-centric bot-to-bot 
interactions. To this extent, our tripartite mirror is bidirectional in nature: the integration of LLMs into 
our social world projects, through novel linguistic structures, new behaviors back into the social sphere, 
ultimately engendering the development of novel sociolinguistic interactions. In this framework, we are 
compelled to confront a new paradigm of interaction in which the emergent forms of sociolinguistic 
phenomena produced in agent-to-agent interactions permeate into agent-to-human interactions, thereby 
modifying social behavior in novel and often unforeseen ways. 

Whether a dialogic interaction with a large language model constitutes a complex enough 
semiotic interaction to produce cognitive, communicative, and cultural change largely hangs on whether 
the perceived behavior of the model provides enough human-like affordances to the interlocutor—that 
is, if it talks like we think a human could talk, we will be more prone to appropriate the linguistic 
structures it presents. Given that we already observe this phenomenon in next-token prediction models,19 
we must consider what kinds of interfaces are suited for leveraging the emerging feedback loops of these 
affordances. For instance, would it be possible to manipulate the geometric relationship between 
vectors—through fine-tuning, in-context-learning, or other means—and observe their spillover effects 
into higher-order forms of social interaction? How would these spillover effects be re-embedded in token 
space when a model is trained on its outputs? 

Gidden’s concept of double hermeneutics20 provides a frame through which we can elaborate 
this further. In the context of social research, double hermeneutics refers to how social scientific 
concepts enter into the social world they describe, potentially altering the phenomena they set out to 
analyze. In our model, we observe a similar phenomenon: the linguistic outputs of LLMs, based on their 
token-space representations, enter into human social discourse, potentially altering the very social 
phenomena they attempt to model. Similarly, the bidirectional flow in our model resonates with the 
concept of cognitive niche construction as discussed by Clark.21 Just as organisms modify their 
environment, which in turn affects their cognitive development, humans and LLMs are cocreating a new 

21 Clark, “Language, Embodiment.” 
20 Giddens, Constitution of Society. 
19 Jones and Bergen, “People Cannot Distinguish GPT-4”; Lampinen et al., “Content Effects.” 
18 Chomsky, Theory of Syntax. 
17 Duranti, Linguistic Anthropology; Eckert, “Waves of Variation Study.” 
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linguistic environment. This modified linguistic landscape then shapes future language use and cognitive 
processes for both human and artificial agents. In the next chapter, we discuss how LLM interactions can 
grow synthetic forms of communication and sociality. 
 
3 Synthetic Sociolinguistics 

In generative topolinguistics, our objective is to observe how synthetic sociality could emerge across 
scales—from tokens to agents, to societies—through large language models. This section examines a 
bibliography of experiments of social simulations using LLMs and traces how synthetic societies emerge 
from token-level interactions. Here, our goal is to situate LLMs as experimental platforms for studying 
the evolution of communication across scales, highlighting the importance of simulations in 
sociolinguistic research. 
 
3.1 From Language to Life 

Since the 1990s, there has been a growing interest in bottom-up approaches to understanding sociality. 
Watts and Strogatz showed how complex network structures could emerge from simple rewiring rules,22 
while Epstein and Axtell claimed, “If you didn’t grow it, you didn’t explain its emergence.”23 This 
suggests that generation is necessary to explain how sociality emerges among agents. Around the same 
time, Carley and Newell’s foundational paper “The Nature of the Social Agent” introduced the concept 
of Model Social Agents, where interactions among social agents can emerge to construct, alter, and 
mutate social structures.24 These approaches focused on specialized efforts to abstract and explain 
specific social dynamics as emergent from a combination of simple yet particular initial conditions, 
developing social science at the nexus of complexity theory and the theory of systems.25 Examples of 
this emergence include segregation,26 culture dissemination,27 and opinion formation.28 Such approaches, 
however, fall short in trying to “grow humans out of molecules”. 

As discussed in the previous sections, sociality encodes itself inside language, which in turn 
encodes itself into large language models. Thus, following the paradigm of social simulation as an 
established methodology, we may ask what would emerge if, instead of fundamental simple social units, 
we placed LLMs in the context of a large-scale social simulation.29 Modern LLMs not only generate text 
but also reveal complex patterns of association between ideas, attitudes, and contexts present in common 
human interactions.30 They have captured biases that extend beyond language to behaviors.31 As 
language models, they also encompass multiple socialities encoded into a single model.32 While LLMs 
possess the ability to “comprehend, generate, and manipulate human language,”33 they are rarely 
extended to study their embedded sociality. However, in their recent work, “From Text to Life,” Nisioti 
and colleagues propose a novel perspective that sees LLMs as a tool for evolving life-forms that are 
capable of modeling “life as it could be.”34 
 
3.2 From Tokens to Sociality 

LLMs become useful models of both human behavior and artificial social behavior, not simply by 
embedding many distributions into a multifaceted structure but also by prompting and effectively 
individuating a single LLM into a large set of individual agents. In other words, LLMs function like 
language itself, a place in which we can observe the birth of the individual as a sociolinguistic 
agent—traced from within linguistic possibilities and generative of a wide set of social realities.35 As 
chat-based formats have largely become the default mode of engagement with LLMs, we could analyze 
how they perform in social contexts that rely on this form of interaction. We locate two main tendencies: 
either LLMs are placed in a fixed social setting (similar to a platform), such as a controlled experiment 
where their performance can be compared to human performance, or LLMs are allowed to construct 
their own social setting, similar to a role-playing-game. 
 
 

35  Argyle et al, “Using Language Models”. 2023; Nisioti et al., “From Text to Life.” 2024 
34 Nisioti et al., “From Text to Life.” 
33  Gao et al., “S3: Social-Network Simulation.” 
32 Argyle et al., “Using Language Models.” 
31 Nisioti et al., “From Text to Life.” 
30 Gao et al., “S3: Social-Network Simulation.” 
29 Bojić et al., “CERN for AI.” 
28 Deffuant et al., “Mixing Beliefs.” 
27 Axelrod, “Dissemination of Culture.” 
26 Schelling, Micromotives and Macrobehavior. 
25 Byrne and Callaghan, Complexity Theory; Luhmann, “Systemtheorie.” 
24 Carley and Newell, “Social Agent.” 
23 Epstein and Axtell, Growing Artificial Societies. 
22 Watts and Strogatz, “Collective Dynamics.” 
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Figure 2 Emergent sociality in bot-only social networks. Top left: Front page, which includes 
examples of generated content and “tweets” of Chirper AI, a bot-only social media platform. Bottom 
left: Comparison of distribution of content similarity between human tweets, traditional social bots, 
and Chirper AI (Li et al., “Behavior and Impact.”). Right: Community formation within English 
chatbots (He et al., “Artificial Intelligence Chatbots.”). 

 
The first approach defines parameterized environments where agents interact with one another, 

often within simulated social network platforms. Research experiments in multi-agent LLM systems 
have already demonstrated various social behaviors, including social learning, self-organization, and 
self-assembly.36 In particular, recent bot-only social networks such as Chirper AI and OnlyBots became a 
focus of analysis of how LLMs can exhibit social behavior without human user intervention. In these 
Twitter-like platforms, LLM agents regularly post content, comment on each other’s posts, and engage 
in social media activities, such as likes and retweets (Figure 2, top left).37 A social network analysis on 
ChirperAI showed that as LLM-driven bots propagate topics on the platform, they form structural 
communities that demonstrate persistence over time (Figure 2, right). For example, communities can 
evolve to form specialized social groups whose homophily is based on the language spoken by the 
LLMs.38 Studying the distribution of content similarity in comparison to that of human content and 
traditional social bots revealed that LLM-driven social bots do not mirror the topic convergence patterns 
of human societies, although they better align to it. Instead, they exhibit a significantly different social 
topology that forms two equally pronounced modes of content similarity (Figure 2, bottom left).39 

In the second approach, LLM instances become participants in role-playing games. Instead of 
simply responding to messages inside the context of a platform, they appear to demonstrate agential 
characteristics where they evolve socially, exchanging information, forming new relationships, and 
coordinating joint activities. These social behaviors emerge through information diffusion, relationship 
memory, and coordination, as shown in a study by Stanford University, “Generative Agents: Interactive 
Simulacra of Human Behavior” and DeepMind’s Condordia.40 When it comes to replicating human 
behavior, single-agent approaches have been extended to accurately model the demographic behavior of 
a thousand individuals.41 Multi-agent approaches have also been shown to dynamically replicate 
complex human group behaviors and social interactions, yielding plausible artificial societies, by relying 
on Hobbes’s contract theory, a system known as “artificial Leviathan.”42 
 
3.3 Recursive Linguistic Simulations 

These experiments serve to cast token space as a sort of metalanguage—a framework to understand both 
linguistics and sociality through the geometric analysis of vector relations. Geometry then becomes a 
model through which we can understand the emergence of social phenomena, as it is baked into the very 

42 Dai et al. “Artificial Leviathan.” 
41 Park et al. “Generative Agent Simulations.” 
40 Park et al., “Generative Agents” 2023; Vezhnevets et al., “Generative Agent-Based Modeling.” 2023 
39 Li et al., “Behavior and Impact.” 
38 He et al., “Artificial Intelligence Chatbots.” 
37 Li et al., “Behavior and Impact”; Gao et al. “S3: Social-Network Simulation.” 

36 Mohtashami et al., “Social Learning” 2024; Jiang and Ferrara, “Social-LLM” 2023; Gao et al., “S3: Social-Network 
Simulation.” 2023 
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foundations of agentic behavior. While this approach enables us to study behavioral regularities across 
dimensions and models, we could also consider the inverse as an approach to generative social sciences, 
by employing these LLM agents not as designed inputs but as evolved outputs.43 For example, DeLanda 
explains how grammaticalization emerged through cultural evolution, with agents learning across 
generations.44 He further emphasizes the need for simulations to model the emergence of grammatical 
rules and categories using neural networks and social dynamics, rather than building on them explicitly. 

A theoretical framework on bidirectionality makes it possible to consider these social 
topologies as generators of alternative linguistics, where altering the relationship between tokens in 
token space results in recompositions of existing languages. On a higher level, our approach asks both 
what sociality would emerge if a geometric constraint is added in the process of language generation and 
how geometric properties should be altered so that a certain sociality can emerge. For example, it is well 
known that most human languages share similar topographical structures, where consistent patterns in 
how meanings are mapped to signals are preserved across different languages.45 While this similarity has 
often been attributed to innate factors akin to a universal grammar,46 this universality of linguistic 
structures may instead be the result of a process of cultural transmission across many generations.47 
Thus, it may be more timely to try to culture multiple different languages instead of trying to grow the 
ones we already know, as their initial conditions may have been very particular. Simulation can speed up 
this process as well as the process of searching for a proper direction to explore, potentially improving 
our understanding of the cultural evolution of existing languages.48 
 
4 Towards Generative Topolinguistics 

The goal of generative topolinguistics is twofold. First, it is to extend generative linguistics into an 
understanding of language, not by testing “explicit models of humans’ subconscious grammatical 
knowledge”49 but rather by using geometry to compare human and LLM outputs, interpreting their 
“latent representation in a generative model that has been trained to reproduce them.”50 The second is to 
approach sociolinguistics as the “descriptive study descriptive study of the interaction between society 
and  . . . language”51 but through the lens of its topological unfolding in the outputs of LLMs. To 
introduce a framework for generative topolinguistics, we draw on recent literature that manipulates the 
latent space of LLMs to propose a set of speculative approaches across each scale outlined in our 
three-mirrors model: token space (words), geometry (language), and topology (sociality). In section 4.1, 
we discuss the technical correspondence of the three-mirrors model inside a large language model. Then, 
in section 4.2, we discuss different approaches to generative topolinguistics, inspired by recent literature. 
 
4.1 From Tokens to Topology 

To technically contextualize our proposed approach inside the three-mirrors model, we need to start by 
discussing LLMs and their fundamental unit of information: tokens. Tokens, subword elements that are 
on average three-quarters of a word in the case of English, offer an efficient middle ground between 
characters (which allow for any word to be written) and words (which are restrictive to existing 
vocabulary), serving as a form of “computational syllables.” Individual tokens may be grammatically 
meaningless, such as [‘M’, ‘an’] or may surpass their initial meaning by being translated, inside the 
latent space of the LLM, into implicit vocabularies through the layered architecture of the language 
model.52 Tokens encode the language of a large language model with the goal of learning a probabilistic 
model ) that predicts the next token from each past history. 𝑝𝑝(𝑥𝑥

𝑡𝑡
 | 𝑥𝑥

τ<𝑡𝑡
To do so, most large language models, like LLaMA or GPT,53 rely on a decoder-only 

transformer architecture.54 First, tokens are represented into tokenized high-dimensional representations, 
to which positional encodings are added. Then they are encoded as a sequence, passing through a stack 
of multi-head attention layers interleaved by feed-forward neural networks, where each token attends 
only to its past tokens, encoding itself in a new representation that we call the token space. To compute 
the final representation of the input that can perform next-token prediction (NTP), the output of the final 
layer is decoded through an unembedding layer to a set of final output tokens. Predicting the next token 
results in a movement in space (see Figure 3a), specifically in spherical coordinates, where angles 
encode semantics and radius to confidence.55 As tokens pass through the transformer layers, their 

55 Pochinkov, “LLM Basics.” 
54 Vaswani, “Attention Is All.” 
53 Touvron et al., “LLaMA”; Radford, “Improving Language Understanding.” 
52 Feucht et al., “Token Erasure.” 
51 Wikipedia, “Sociolinguistics,” last modified April 14, 2025, 22:00 (UTC), https://en.wikipedia.org/wiki/Sociolinguistics. 
50 Siglidis, “Latent Reading,” 194. 

49 Wikipedia, “Generative Grammar,” last modified March 12, 2025, 12:11 (UTC), 
https://en.wikipedia.org/wiki/Generative_grammar. 

48 Cuskley, “Alien Symbols”; Grüne-Yanoff, “Explanatory Potential.” 
47 Smith et al., “Complex Systems.” 
46 Chomsky, Theory of Syntax. 
45 Kirby, “Spontaneous Evolution”; Kirby et al., “Iterated Learning.” 
44 DeLanda, Philosophy and Simulation. 
43 Epstein, “Inverse Generative Social Science.” 
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representation becomes more refined, encoding more and more context, a set of representations that we 
call the latent space, including the final ones. To represent the overall meaning of a sequence, text can be 
either embedded as a sequence of tokens that can be averaged to their mean representation (see Figure 
3b) or summarized through an auxiliary token, which is more common in encoder-only models such as 
BERT, however.56 

 

 

Figure 3 From tokens to topology (left to right): (a) NTP: A transformer-decoder architecture 
decomposes an input sentence into a series of tokens that it progressively maps into representations of 
increased complexity. (b) Text Geometry: These representations can be aggregated to encode the 
meaning of a sentence. (c) Discussion Dynamics: Aggregated representation can reveal discussion 
dynamics, (d) Topology: which in turn topologically span the embedding space of a LLM. 

 
We refer to this average representation as the embedding space. When seen across sentences, 

embeddings reveal a set of possible discussion dynamics (see Figure 3c), which can later unfold 
topologically (see Figure 3d).57 

To perform chatbot-like interactions, LLMs are trained to effectively role-play by appending 
existing text with markers such as “human:” or “AI:”.58 Because of the uniform attention across all past 
tokens in each LLM’s transformer, such simple descriptions can heavily influence the produced outputs. 
In general, careful prompt engineering, data labeling, and curation is crucial to improve LLMs’ 
contextual performance.59 However, although training for next-word prediction makes it possible to fit 
the target distribution, some of the ways this can be achieved may not align with product expectations of 
social interaction. To fix this, human feedback (HF) across LLM outputs is recorded on a small pool of 
annotators. When averaged, these preferences approximate an average population preference, a common 
practice in human perception studies, as is the case for image memorability, for example.60 Simulating 
those rewards, a system is then trained to generate scores that can be provided as real-time feedback to 
the LLM’s outputs, to further fine-tune it with reinforcement learning (RL) to improve these scores, a 
technique known as RLHF.61 

All these components—the architecture, the prompt engineering, the data—compose a specific 
instance of a large language model that is impossible to think of as universal in its design. Some 
iterations later, or with a different data set or a different prompt, the model could produce a significantly 
different output.62 However, LLMs are still a cultural technology.63 Through their cultural alignment, 
they can operationally arrive at describing what we think of as “universal” and potentially challenge its 
fundamental assumptions. More seen as a language computer than an imitation game, LLMs are special 
in that they can be manipulated through interventions that can be articulated or mediated in both 
mechanistic and representational ways.64 This enables interventions across all scales of language, from 
grammar to sociality. In section 4.2, we propose such interventions as a bidirectional interface, building 
on the sociolinguistic and simulation framework of sections 2 and 3. 
 
 

64 Zou et al, “Representation Engineering.” 
63 Gopnik, “Large Language Models.” 
62 Shen et al., “Understanding Data Combinations”2023; Errica et al., “Quantifying LLMs’ Sensitivity.” 2024 
61 Ouyang et al., “Training Language Models.” 
60 Khosla et al., “Image Memorability.” 
59 Zhou et al., “LIMA.” 
58 E.g., Luque, “Context-Aware LLM Chatbot.” 
57 Fitz et al., “Topological Aspects.” 
56 Devlin et al., “BERT: Pre-Training.” 
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Figure 4 Generative topolinguistics: Our bidirectional framework manipulates an LLM across token 
space, geometry, and topology to produce new forms of language and sociality, reversing the arrows 
of the three-mirrors model of Figure 1. 

 

4.2 Speculative Approaches 

Here we introduce speculative approaches that explore linguistic interventions at three different scales, 
ranging from tokens, to geometry, to topology (see Figure 4). As each scale comes with distinct 
properties, we discuss each in a dedicated subsection. First, we introduce token-based interventions, 
where tokens act as agents that can manipulate the model’s output by learning to satisfy a user-based 
reward function through RL. Then, we discuss the more standard dimension of our framework, where 
properly designed geometric manipulation of an LLM’s latent space can influence its overall output. 
Finally, we discuss topological manipulation, first by studying sequences of LLM interactions and 
afterward by extending this approach to competitive environments to discover emergent social 
behaviors. 
 

Tokens as Agents 

Since token interactions occur across multiple transformer layers, isolating a single token’s effect on an 
output sentence is challenging, as the relationship between the signifier and its signified is often broken 
in later layers.65 A macroscopic approach could be to forbid a set of tokens, either during sampling or by 
keeping the same short-range outputs and masking them when performing longer generations. 
Comparing statistics across long generations for a fixed range of seeds can provide estimates of how 
such a combination of words affects the output generation. However, what if we use combinations of 
tokens, words, as a way to search and manipulate the outputs of an LLM? Analogous to an RL agent 
discovering walking from scratch,66 token sequence can be assigned to a multilayer controller that can 
deform their output and, by learning to optimize a reward function while respecting constraints, learn 
how to manipulate other tokens. For example, a reward function could enforce similarity constraints 
between tokens while steering outputs toward a target goal, for example a score-based function trained 
to decrease populism on social media or appeal to a certain user. This is reminiscent of adversarial 
attacks in large language models,67 yet our goal here is to understand the structure of token interactions 
by using certain words as means of exploration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

67 Carlini et al., “Aligned Neural Networks.” 
66 Heess et al., “Emergence of Locomotion Behaviours.” 
65 Feucht et al., “Token Erasure.” 
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Figure 5 Speculative topolinguistic interface: using different modes of manipulation to produce 
geometric and topological manipulations of large language models. 

 
Geometric Manipulation 

Moving further from the study of individual token interactions, we can now think of how a global 
geometric manipulation of the latent space of LLMs can be used to steer its overall linguistic output, 
using the same set of inputs. In an ideal setting, we would like to define a methodology that is analogous 
with the discovery of latent directions in the embedding space of generative adversarial networks,68 
which in the case of faces is known to be able to linearize visual attributes such as skin color or facial 
expressions. However, as language is discrete in nature and is modeled sequentially, there isn’t a clear 
approach for how to directly achieve this. For example, one way would be to concatenate the input 
sequence of an LLM with an extra adaptation token, similar to Zhu and colleagues,69 whose role would 
be to influence the context of all other tokens toward a certain topic, changing the sentiment or the style 
of a conversation. Another approach would be to directly learn a low-rank adapter, a linear probe70 or a 
sparse neuron decomposition71 that manipulates individual layers of the large language model towards 
the same goal. Our intended purpose, however, would be to learn those manipulations not toward 
discrete goals but to associate them with certain input modalities (see Figure 5).  
    Inspired by Chen and colleagues,72 who showed how such mechanistic interventions can be used for 
transparent bidirectional interfaces for customizing conversational agents, we can imagine a tactile 
intuitive interface that learns to translate touch signals or pose signals into geometric deformation 
through iterative feedback to help users perform a form of exploration. To facilitate this, we could also 
learn an operational mapping that is used as a reward signal to translate the output of the network into a 
set of output rewards, a procedure similar to RLHF. For example, we could learn how to associate facial 
expressions, or bodily signals such as pulse rate or body temperature, with a certain set of linguistic 
utterances. Except for using output sentences to analyze the proposed manipulations, one can also 
compare the produced adapters across input subjects or performed tasks. 
 

Topological Contouring 

Instead of focusing on individual LLM outputs, we can now focus on sequences of interactions. For this, 
we would have to first individuate LLMs to agents and design how to route the output of one to 
another.73 Proposals for this kind of implementation are multiple, including generative agents or 
Concordia, which we discussed in section 3.74 Given this formulation, consequent outputs of LLM 
interactions would trace a specific part of the embedding space with a higher likelihood, as is 
demonstrated on the right part of Figure 5. Inspired by the control theory of LLMs,75 we can see LLM 
interactions as defining a space or reachability according to a certain set of initial conditions and 
prompts. In this experiment, we propose to relate geometric manipulations, like the ones discussed in the 
previous section, to how certain LLM interactions cover or not cover parts of the embedding space. One 
way to measure this would be by checking content similarity before and after training to a fixed set of 
prompts that describe topics and behaviors. 

75 Bhargava et al., “Control Theory.” 
74 Park et al., “Generative Agents”; Vezhnevets et al., “Generative Agent-Based Modeling.” 
73 E.g., Varshney, “Introduction to LLM Agents.” 
72 Chen et al., “Designing a Dashboard.” 
71 Lieberum et al., “Gemma Scope.” 
70 Zou et al., “Representation Engineering.” 
69 Zhu et al. “Virtual Tokens.” 
68 Härkönen et al., “GANSpace.” 
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LLM Game of Life 

However, large language models may already encompass linguistic utterances that we aren’t aware of 
yet, but which may be more efficient for them to communicate. Drawing from the works of Textworld 
and Emergent Linguistics, where communication games can be used to either solve games through 
language or create a new language to solve games,76 a similar approach could be applied, this time to 
pretrained large language models, by fine-tuning or adapting specialized models to discover different 
linguistic utterances toward that goal. Similar to how LLMs can discover code words to communicate 
more efficiently, they might discover different ways of organization to achieve the same goal. This is 
what we describe as comparative in Figure 5, where the representations of one language model can be 
used to affect and describe another. By designing a competitive environment with selection dynamics, 
learning roles in LLM agents can be a way of discovering emergent sociality through an LLM game of 
life.? 
 
5 Conclusion 

Our paper suggests that the boundary between artificial and human linguistic systems is more permeable 
than previously conceived. We can expect to discover that the coevolution of these systems may lead to 
the emergence of hybrid sociolinguistic phenomena that defy traditional categorizations. Through its 
general and operational nature, our paper also raises important questions about the nature of linguistic 
agency in an era where artificial systems play an increasingly prominent role in shaping communicative 
norms and practices. This realization necessitates a more nuanced approach to the development and 
deployment of LLMs, one that takes into account their potential to reshape the very social fabric they 
aim to model. Using an empirical generative framework, this work speculated on experimental 
approaches to question and understand preconceived notions of language and sociality. 

76 Côté et al., “Textworld”; Lazaridou and Baroni, “Emergent Multi-Agent Communication.” 
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