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Abstract

The Aave protocol enables overcollateralized borrowing, and it relies on liquidators to pay back loans
on behalf of accounts that are overleveraged. To limit the negative externalities of lending meltdowns,
the protocol has risk parameters that define account leverage and liquidation bonuses. Here, we put
forward a methodology for optimally selecting these risk parameters. At the heart of this methodology is
Chaos Labs’ high-fidelity agent-based simulation platform, which we use to simulate on-chain debt and
liquidation behaviors. We then use the agent-based simulation platform to estimate the protocol’s value
at risk and recommend risk parameters that yield an acceptably low value at risk.
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1 Introduction

AAVE is a decentralized finance (DeFi) protocol built on top of the Ethereum blockchain that utilizes
smart contracts to facilitate financial transactions in a trustless manner. The protocol allows users to lend
and borrow cryptocurrencies.

On November 10th, 2022, Chaos Labs was engaged by the Aave community to provide Risk Management
services for it’s V3 deployments across the following networks: Ethereum, Arbitrum, Optimism, Fantom,
Polygon, and Avalanche.

The Chaos Labs’ Risk Management platform and services are centered around market risk and economic
security. The protocol faces additional risk vectors (smart contract risk, regulatory risk, etc.), as we will
elaborate on below, but these are out of scope for this assessment and Chaos engagement. Chaos Lab’s
utilizes a novel, proprietary cloud-based simulation platform to assess market risk and to produce optimized
risk parameter recommendations for the Aave community.

1.1 Paper Goals

In this paper, we provide an agent-based simulation risk framework that Chaos Labs will utilize to
determine risk parameters for the Aave protocol. We specify our methodology for finding optimal risk
parameters that juggle user experience and protocol risk, and we use Chaos Labs’ simulation platform to
estimate protocol losses. This paper is a technical deep dive into the process that we will use to recommend
Aave protocol parameters.

1.2 Aave Overview

Aave is based on the concept of money markets, which are financial markets that facilitate the borrowing
and lending of funds. In traditional money markets, borrowers and lenders interact directly through inter-
mediaries, such as banks or financial institutions. In contrast, Aave allows borrowers and lenders to interact
directly through smart contracts without intermediaries.

Aave allows users to earn interest on their digital assets by lending it to borrowers, who can use the
borrowed funds for various purposes, such as margin trading or making purchases. On the borrowing side,
AAVE allows users to borrow digital assets against collateral comprised of other digital assets. When a
borrower takes out a loan, they must pay interest on the loan to the protocol. The interest rate is determined
by the supply and demand for different assets on the AAVE platform, and it may be fixed or variable. For
the duration of the paper, we will focus on a high-level understanding of the Aave protocol, focusing on
the areas that pertain to the presented statistical framework presented, as there are ample resources for
understanding the granular level details of Aave V3.

Aave Balance Sheet. Aave maintains a balance sheet of assets and liabilities. Assets represent de-
posited collateral and collected fees, while liabilities represent loans. Liabilities are liens, giving the protocol
the right to the user’s deposited collateral. Liens in Aave are on-call, meaning they have no fixed term or
length. Borrowers can attempt redemption anytime, granted they meet protocol requirements. Liens are
closed when a borrower returns the borrowed asset in addition to any fees accrued throughout the loan
period.

All Aave loans are over-collateralized at the time of origination, with a buffer, attempting to secure the
protocol against market fluctuations and high volatility. Borrow positions on AAVE are overcollateralized
using a dynamic collateralization system, which means that the value of the collateral is regularly monitored
and adjusted based on the changing market conditions. We aim to ensure that Aave’s assets are always
more significant than its liabilities. Aave v3 provides numerous risk parameters that dictate the economic
security of the protocol. This paper will focus solely on the parameters essential for ensuring an optimized
liquidation mechanism.

1.3 Aave Liquidations Overview

The Aave liquidation mechanism enables the protocol to provide lending between assets whose relative
prices vary over time. When a borrower’s collateral assets goes down in price relative to the assets they
are borrowing, the protocol must rebalance their positions to ensure that they remain over-collateralized.
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This is done via liquidations. For these liquidations to operate smoothly, the protocol must set values for a
number of parameters, which we detail below.

1.4 Aave’s Liquidation Risk Parameters

Loan to Value (LTV). LTV is a percentage that represenets a ratio defining the maximum amount of
assets that can be borrowed with a specific asset as collateral. This ratio dictates the collateral value needed
to open a borrow position. For example, if LTV for ETH is 0.7, then for every 1 ETH worth of collateral,
borrowers can borrow 0.7 ETH worth of digital assets.

Liquidation Threshold (LT). The liquidiation threshold is a parameter that the protocol sets for every
asset that can be used as collateral. The LT value can be between 0 and 1; a larger value means that each
unit of the the collateral counts higher toward the account’s health (see ‘Health Score’ section below).

Health Score. Each position’s risk is monitored using a health factor. The health factor determines
the risk of a particular lending position. A higher position health factor indicates that a lending position
is relatively safe, while a lower position health factor indicates that a lending position is at risk of being
liquidated. Once a position’s health factor is lower than 1, that position is eligible for liquidation. The
AAVE protocol may automatically sell a portion of the collateral to repay the loan and protect the lender’s
interests. Health factor is calculated as:

Hf =

∑
i∈A(Collaterali in ETH) · (LTi)

Total Borrows in ETH
,

where A is the set of all Aave assets.
Liquidation Penalty (LP) The Liquidation Penalty (LP) is a fee involved in purchasing a former loan,

taken on any given on-chain collateral, which is now liquidated by the protocol. The fee goes to the protocol
as a means of buying into a former loan. The reason why loans get liquidated is they pass the Liquidation
Threshold (LT), thus no longer being in the hands of the original asset holder.

Aave Liquidation Example. Suppose an Aave user, John, has in his possession asset A and wants to
use it as collateral to borrow asset B. John goes to open a position on Aave, and at the time his position
is opened, the following is true:

1. Asset A is worth $1000 USD, has a loan to value (LTV) ratio of 80%, and liquidation threshold
(LT) of 85%, and liquidation bonus (LB) of 5%.

2. Asset B is worth $1 USD.

3. John deposits 1 A as collateral into Aave, and he borrows 500 B. This is an initial LTV of 50%,
which is acceptable, since it is below the 80% maximum LTV.

Suppose that some time after John opens his position, the USD value of A begins to drop, while the
USD value of B remains stable. Once the value of A drops enough, such that (Collateral Value) · (LT) <
(Borrow Value), i.e. once John’s account has a health less than 1, then John’s account is eligible for a
liquidation. Suppose that this is the case, and that asset A drops to a price of $560, rendering John’s
position undercollateralized. Then one of the following two scenarios may occur.

1. John’s account is liquidated. Suppose, for example, that the liquidation seizes half of John’s
collateral. Then they would be seizing 0.5 A at a value of $280, and they would be obligated
to pay back (1 − LB) times that amount of value in the borrowed asset, i.e. $266 of borrowed
asset value. Since B is valued at $1, we would have that John’s new position Aave position
is 0.5 A of collateral and 500 − 266 = 234 B of borrows. John’s account’s new health score is
$280 · 0.85/$234 = 1.017, which is greater than one, and thus no longer liquidatable. This is a
standard liquidation.

2. John’s account is not liquidated. Then the protocol may incur bad debt if asset A moves even
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lower in price, relative to asset B. That is, if there are no liquidations, then the protocol may incur
debt equal to (Borrow Value)− (Collateral Value).

1.5 Aave’s Protocol Risk Vectors

Aave Companies has created a risk scale to help the Aave community evaluate the risk of different assets.
The scale uses a grading system ranging from A+ (least risky) to D- (risky). This scale is considered when
listing new assets and their respective configurations; see table 1 for details.

Table 1: The risk matrix utilized when listing new assets. This table provides a qualitative assessment
framework that Aave community can utilize when deciding if an asset should be listed; for assets that are
listed, it can be utilized to help to qualitatively determine the risk parameters for the asset. Credit: Aave
Companies.

Smart Contract Risk. Smart contract risk refers to the technical security of the underlying code of
an asset. It is meant to reflect the maturity and resilience of a piece of code. This is hard to measure
objectively; therefore we use proxies such as: the number of days and transactions the smart contract has
been in use, community engagement, and development stats.

All assets listed on Aave should have undergone thorough audits by reputable auditors. Assets with a
high level of smart contract risk are considered extremely risky as collateral and should only be onboarded
with strict risk mitigation measures in place. 1

Counter-Party Risk. Counter-party risk pertains to the governance of a given asset and degree of
centralization. It is assessed based on factors such as: the level of decentralization of the asset’s governance,
the number of parties that control the asset’s protocol, the number of holders of the asset, and the level of
trust in the entity, project, community, or processes associated with the asset. 2

Market Risk. Market risks in the protocol are dynamic and impacted by the pool’s size and supply
and demand oscillations. Constant assessments of average daily volume, volatility, and market capitalization
aim to mitigate market risk.

Liquidity Risk. Primarily based on on-chain liquidity and trading volume, liquidity is critical for the
liquidation process. Liquidation risks are mitigated via liquidation parameters (i.e., the lower the liquidity,
the higher the liquidation incentives). This article focuses on presenting a framework for liquidation param-
eter optimizations. Supply and borrow caps are also critical for risk mitigation, but they are out of the scope
of this paper.

1For more information, please visit Aave’s formal defintion here.
2For more information, please visit Aave’s formal defintion here.
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Volatility Risk. As seen in our example above, price volatility can negatively affect collateral value.
Asset volatility is a crucial factor in determining its respective risk parameter configuration. The least
volatile currencies are stablecoins, followed by ETH and BTC. High volatility will yield low LTs and LTVs,
while low volatility will allow us to be more risk-on.

Economic Security Risk. Economic security is a new vertical with increasing relevance and importance.
We loosely define economic security as exploits or attacks that manipulate prices.

1.6 Simulations

We build simulations that interface directly with blockchain applications or emulate on-chain protocols.
These simulations utilize mathematical assumptions based on relationships between protocol parameters and
exogenous variable. A collection of these assumptions comprises a model used to understand better how the
corresponding protocol functions.

Why simulations? If the relationships that compose the model are straightforward, it may be feasible to
use closed-form mathematical methods or equations to acquire precise information; this is called an analytical
solution. However, most real-world systems’ vast complexity renders analytical models non-realistic; we turn
to simulations for these models. In a simulation, we use a computer to evaluate a model numerically to
estimate the model’s desired actual characteristics.

Simulation Challenges. Many of the most worthwhile systems of the model need to be simplified and
require simulations. Since this is the case, why aren’t simulations a more popular tool? Building high-fidelity
simulations is an arduous task. When modeling DeFi protocols, the job is even more difficult as this is an
emerging field with a short history and relatively small data sets. While the challenges vary, we can bucket
the challenges broadly into two verticals; precise modeling and scale. We will describe the system we have
architected to handle the unique scale challenges below. Simulation modeling and the statistical framework
used to produce recommendations are the paper’s focus, and we’ll leave that discussion for the next part of
the paper.

Parallel Simulations and High Level System Architecture. Chaos supports two types of simula-
tions:

1. Chaos EVM Simulations - These execute on a proprietary, python-based Chaos-constructed EVM.

2. “On-chain” Simulations - These execute on the rEVM on an optimized version of Anvil.

Chaos has developed a novel, hybrid approach that leverages the advantages of both simulation solutions
while providing accurate risk analysis and parameter recommendations.

Chaos EVM Simulation. The Chaos EVM is a python-based agent-based simulation environment. Every
simulation initializes with a data-sync phase where new or historical mainnet data is extracted and loaded.
This data includes but is not limited to the following: account portfolios and balances, agent elasticity,
protocol liquidity, and risk parameters. Chaos EVM simulations are highly performant, showing 250x latency
and CPU improvements over their on-chain (below) counterparts. Chaos EVM simulations are compelling,
allowing us to narrow our search space significantly and quickly. Once we discover an optimal risk parameter
configuration, we can backtest them with the on-chain simulations.

On-Chain Simulation. DeFi applications execute on blockchains that offer data-rich, transparent envi-
ronments. The complete visibility and transparency of DeFi applications significantly dwarf their traditional
finance counterparts, where financial applications and instruments execute in opaque, private settings.

The ability to fork blockchains gives us transparency and data readability out of the box. On-chain
simulations are initiated and orchestrated by a simulation executor that utilizes a novel agent and scenario
model to interact with a dedicated blockchain fork. Two primary components comprise on-chain simulations:
(1) an optimized, customized Anvil fork that supports our intensive high throughput requirements and
simulation length beyond what is ordinarily possible; and (2) a simulation engine that orchestrates the
different actors and models interacting with the Fork can collect data points and metrics for diagnosis.

With an rEVM environment and executor orchestrator toolkit, we can granularly control the state of
any blockchain fork. To summarize, blockchain simulations are unique and compelling for several reasons.
Forks allow us to obtain a complete snapshot of the runtime environment at a given time (block height).
On-chain agents can interface with native blockchain protocols identically to how they will be interfaced in
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Figure 1: An architecture diagram of the simulation engines utilized to search for and provide bounds on
Aave’s risk parameters.

production. Creation of tools for simulation analysis with similar interfaces to tools used in production, such
that users can explore data in familiar ways. For example, imagine a block explorer for a private blockchain
instance used to run a simulation. The advantages of on-chain simulations are clear. However, they come
with a cost. On-chain simulations must execute all EVM operations. Even in an optimized environment,
on-chain simulations are comparatively resource-heavy and increase latency by orders of magnitude.

Chaos Cloud Architecture. Estimating value at risk requires a massive scale. Our proprietary cloud
solution can parallelize thousands of executors and forks across thousands of machines with real-time data
processing to yield a statistical analysis. Putting this all together, we have the following:

1. The initial parameter exploration executes on the proprietary Chaos EVM. This significantly narrows
the search space and ultimately yields a parameter recommendation.

2. The parameter recommendation is backtested on an on-chain simulation. The results of on-chain
simulations are shared with the community for verifiability and transparency.

See figure 1 for an illustration of the simulations architecture.
Agent-Based Simulation. An agent is an autonomous “entity” that can sense its environment, in-

cluding other agents, and utilize this data in decision-making. Agents can learn and adapt their behaviors
over time.

In the context of DeFi simulations, agents emulate users and can be traders, arbitrageurs, liquidators,
borrowers, liquidity providers, and more. An agent-based simulation is a simulation where the entities
(agents) interact with other entities and adapt to their environment. In the Aave example, agents - borrowers,
liquidators, and arbitrageurs - interact with Aave and DEXes as prices change, for example.

Monte Carlo Simulations. A Monte Carlo simulation takes the uncertain variable and assigns it a
random value. The model is then run, and a result is computed. Simulations are repeated while assigning
many different values to the variable. Once the simulation is complete, the results are aggregated and
averaged to arrive at an estimate. In the case of Aave, each simulation utilizes a randomly-generated price
trajectory and we use an agent-based model to simulate the response that this invokes from borrowers and
liquidators of the protocol.

Why Agent-Based Monte Carlo Simulations? In many financial applications, such as measuring
the distribution of a static portfolio’s value at a time in the future, the price dynamics fully describe the
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portfolio’s value. In contrast, our problem is to simulate the protocol losses that the protocol would incur,
and this quantity is dependent not only on price dynamics, but also on the interactions of borrowers and
liquidators. Thus, for a given simulation, we update the actions that borrowers and liquidators would do at
that timestep. So long as our simulations are not statistically biased, we can use these simulation results
to estimate the expected value of protocol losses. We now provide a more in-depth description of our
methodology used to construct these Monte Carlo agent-based simulations, as well as the statistical testing
framework we use to determine the value at risk for particular parameter configurations.

2 Risk Parameter Testing Methodology

To test whether a set of risk parameters, we determine the protocol’s value at risk in a scenario where
they have those risk parameters.

Definition 2.1 (Value at Risk). Value at Risk (VaR) is the 99th percentile of the protocol losses that
accrue due to below-water accounts over the course of 24 hours.

We run simulations to estimate the VaR, and we only recommend parameters that will keep VaR below
some pre-specified upper bound K.

2.1 Estimating Value at Risk

To estimate the value at risk, we take the following steps.

1. Run a set of parameters, s, for 10,000 iterations of our simulation. Calculate the 99th percentile loss
across those 10,000 iterations.

2. Run another 10,000 simulations with the same parameters, and calculate the 99th percentile loss of
the 20,000 total iterations. If the difference between the 99th percentiles is less than some pre-specified
noise bound, ε, then we say that the value-at-risk is the 99th percentile over all of the simulations run.
Otherwise, we repeat this step until we hit ε convergence.

This approach can be understood as running simulations until we reach a convergence on a value for the
99th percentile of losses. We base this off of the approach taken by risk desks at top banks, whereby they
run simulations until a particular convergence bound is met. Alternatively, one could utilize a statistical
testing framework to determine the probability of passing a particular VaR, which we provide in Appendix
B.

VaR Calculation Example Suppose we are calculating VaR using 10000 simulations of bad debt
accrual over a 24 hour period for a certain parameter set s. Denote each batch of simulations as a
round. The result of each simulation is the total bad debt accrued over the specified period, and these
results are ranked in ascending order. The final VaR estimate for round i is then the 9900th result in
the ordered list, denote this Ri

We compute Ri starting at i = 0. For each subsequent round we compute Ri and check the
convergence condition |Ri−1 −Ri| < ε. If the convergence condition is passed, we return Ri as our final
VaR estimate for the parameter set s.

We now provide more depth on the methodology used to simulate protocol losses.

2.2 Simulating Protocol Losses

When estimating the VaR above, we abstracted a “simulation” as some stochastic function L : S → 0∪R+

that simulates the protocol losses. We now describe in greater detail how we compute L.
To compute L, we first compute a realization of price trajectories for each of the assets that can be

supplied on Aave. We then utilize these price trajectories to estimate the on-chain DEX liquidity that would
be present, given the price trajectories. Once the price and liquidity trajectories are determined, we utilize
an agent-based model, with lender-borrower agents and liquidator agents.
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2.2.1 Assumptions

1. Look-forward period. We only look forward by a single day worth of blocks.

2. Price correlations. We assume that asset prices are correlated, and we use a historical window of 30
days to find this correlation.

3. Price process. We assume that the log-prices obey a (1,1) GARCH process on short timescales (i.e.
minute-by-minute), and that they obey a normal distribution on longer timescales (i.e. hourly and
longer). We have validated these assumptions visually by analyzing (partial) autocorrelation plots.

4. Exogenous prices. Price trajectories are not affected by liquidations nor other actions taken by agents
in the simulation. With that said, the Aave protocol existed at the time that our historical price
trajectories were sampled, and so our price trajectory distributions should account for price-liquidation
feedback loops, even though we do not explicitly model this relationship.

5. Static liquidity. We assume that over the next day, decentralized exchange liquidity will remain rela-
tively constant.

6. At most one liquidation per account per block. We assume that liquidators do not execute more than
one liquidation on each account. Any liquidation that occurs on an account makes it impossible for
other accounts to liquidate.

7. Only DEX liquidity. We assume that liquidators only utilize on-chain DEX liquidity to perform
liquidations. We have seen empirical evidence that this is correct. This assumption is supported by
empirical on-chain evidence, where we see that many liquidations utilize on-chain spot liquidity to
execute their trades. Although this assumption will become less valid as on-chain lending markets
become more developed, this assumption is currently accurate, and this assumption errs on the side of
lower-risk parameter recommendations.

8. One-of-n non-collusion. We assume that there is at least one liquidator that does not collude with
other liquidators and that maximizes their profits from liquidations. Specifically, there would not be
scenarios where all liquidators decide to wait to liquidate an account’s collateral, in hopes that the
reward will be larger if they wait until the next block. Due to the accessibility and low profit margins
that are arise empirically with on-chain lending markets, we believe this assumption is fair.

9. Responsive liquidations. If an account does not have a liquidation within c blocks of its health going
below zero, then its loans should be marked as bad debt. We set c = 2 blocks in our analysis. This
assumption errs on the side of lower risk parameter recommendations.

10. Finite time-to-liquidation. An account’s collateral value will be liquidated by the protocol at a time
cprotocol blocks after an account’s loans are marked as bad debt. This is a total of c+ cprotocol blocks
after the account’s health goes below zero. This assumption comes from the idea that the protocol will
get rid of its bad debt at some point in the future 3.

11. Not statistically testing black swan events. We do not attempt to reach statistical significance on the
probability of black-swan events, since black-swan events are categorically immune to statistical testing.
Instead, we perform a separate “stressed VaR” methodology – which we will describe in greater detail
in a subsequent paper – that utilizes the Chaos EVM to model example black-swan events. Modeling
events like these is useful for qualitatively determining how bad the fallout would be for Aave in the
case of spectacular events, such as a large stablecoin depeg, or a mass exodus of on-chain liquidity.

3Note: as Ori pointed out, a mechanism for this does not exist in the protocol today, and thus this assumption isn’t
particularly fair.
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Figure 2: A histogram of BTC minutely log returns from 11/19/2022 to 11/20/2022. The red line is a
normal distribution with the same mean and standard deviation as the log returns. That is, BTC minutely
returns are lognormal.

2.2.2 Computing price trajectories

We use a discrete-time random walk stochastic processes to generate price trajectories of assets.
Geometric Brownian Motion. The canonical model for generating price trajectories is geometric

brownian motion (GBM). In a simple GBM model, the price (S) changes according to a stochastic differential
equation: dSt = St(1 + µdt + σdWt), where Wt is a Brownian motion, σ is a volatility scaling parameter,
and µ is a forcing parameter. This stochastic DE can be integrated with Itô’s formula to get that St =

S0 · e(µ−
σ2

2 )t+σWt . This analytic solution makes it possible to sample a price trajectory’s outcome without
running each timestep.

Issues with GBM. Although GBM is a popular model in finance literature, it does not hold true in
practice at short time intervals. We often see erratic price jump behavior at short timescales, along with
short bursts of high or low volatility, which are not reflected by the constant-σ GBM model. We also see
times of new information that lead to a short-term jump or drop in returns, which is also not reflected in
the constant-σ GBM model. To correct for these, we forego the GBM modeling and instead utilize variable
volatility price trajectories.

For a clear evidence of the non-normality of this data, see the distribution of price trajectories in figure 2.
We see that the distribution of returns contains outliers that are many standard deviation events. To model
returns as following a GBM process, we would either need to entirely ignore long-tail events by using the real
σ, or we would need to make these long-tail events possible by increasing the σ, which would overestimate
the volatility of returns in the majority of cases. Clearly, a GBM with constant σ is not the right model for
returns behavior, and this is of particular importance due to the fact that long-tail returns have a major
impact on the health of Aave accounts.

Not only is the returns distribution fat-tailed, but it is also autoregressive. Figure 3 shows a plot of the
minutely log returns for a period of over 1 month, during which there were a number of high-volatility events.
In some of these periods, the median across 100 minutes elevates as well. This demonstrates that a minute
with a large absolute return is likely to be close in proximity to other high absolute return minutes. If we

9



Figure 3: BTC log returns vs. time (blue) and BTC median of absolute log returns (red), from 11/14/2022
to 12/22/2022. The top and bottom 0.05% of values are removed, for ease of viewing.

assume that the mean return is approximately zero, then the returns are simply the residuals of a timeseries
process with mean 0, and the variance of these residuals demonstrate autoregressive tendencies.

Modelling Volatility with GARCH.We can extend our GBMmodel to track a more realistic volatility
by modeling the autoregressive tendency of the variance of returns. By looking at historical data, we are able
to see that a GARCH(1,1) model of the volatilities is the most fitting. From here, we can fit a GARCH model
to historical data to find the baseline volatility (ω), the ARCH parameter (α), and the GARCH parameter
(β). We then compute the following (assuming that the drift, µ, is equal to zero):

St = St−1 (1 + εt) , (1)

εt = σt · z, and (2)

σt =
√

ω + αε2t−1 + βσ2
t−1. (3)

The zt term here is a white noise term with mean of 0, and it is commonly set to zt N (0, 1). This
new process is quite similar to the GBM model, except it is discrete, it assumes zero drift, and it has a
time-varying volatility parameter σ. With this process, we are able to generate price paths for assets in the
same way that we could for the GBM model.

Correlated GARCH. Although our GARCH model improves upon the GBM model, we do not yet
capture the fact that returns are correlated. For GBM models, this is typically performed by requiring
the white noise term for any two assets, i and j, their Wiener process terms, dW i

t and dW j
t , must satisfy

E[dW i
t · dW j

t ] = ρi,j , where ρi,j is the Pearson correlation coefficient of the log returns. Instead of using
the independent returns white noise distribution zit ∼ N (0, 1), we sample all of the white noises from a
multivariate normal distribution with mean 0 and covariance matrix Σ = [ρi,j ]:
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Figure 4: Left: returns generated by our multivariate white noise distribution for BTC and ETH. Right:
historical returns returns for BTC and ETH. Each use the same line of best fit, which was generated via
historical data, is plotted on each.

zt ∼ N (0, [ρi,j ]). (4)

In the case where assets’ returns have no linear correlation, our formulation is identical to the white
noise distribution for independent returns. In practice, many cryptoassets are correlated. See figure 4 for a
comparison of the multivariate normal distribution that we sample for ETH and BTC returns, as compared
to the returns that have arisen historically. See also figure 5 for an example of a single day’s change in asset
prices.

2.2.3 Estimating on-chain liquidity

Calculating the profitability of a liquidation over a randomly generated price trajectory requires estimat-
ing the slippage on selling the liquidated collateral. One could attempt to use an analytical model, based
on historical swaps. However utilizing assumption (4), and the capability of the Chaos platform to interact
with on-chain liquidity pools, we wish to rely on agents’ operation as well as the AMMs design to achieve a
better estimation of the on-chain liquidity over the course of the simulation, which would allow calculating
slippage more accurately. Liquidator agents will close the trade in the liquidity pools over the liquidation
path as they would in a real-world scenario, arbitrageurs will rebalance the pools back to market price, and
liquidity providers will pull liquidity at times of high volatility.

Ideally, we could initialize each pool with the current on-chain liquidity, and simply simulate the agents.
However, since optimal arbitrage is computationally intensive, we use DEX aggregators, as well as historical
liquidations data to pre-map the possible liquidation routes for each pair of Aave listed assets. That allows
us to avoid the routing problem, and limit the number of pools we have to manage. We then initialize each
pool with its time-weighted average of last 14 daily on-chain liquidity snapshots. Once the route to liquidate
a pair of assets is known and pools are initialized, liquidator agents will execute swaps across the pools using
the relevant AMM swap functions.

2.2.4 Borrower agents

We initialize borrowers’ portfolios based on historical on-chain data. When examining new risk param-
eters, such as increasing an asset’s liquidation threshold by 5%, we adjust borrower agents to their original
health, by increasing their borrows against that asset by 5%. For a reduction of the asset’s liquidation
threshold, we would simply withdraw 5% of the collateral asset. Borrower agents in our model are passive,
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Figure 5: Examples of correlated GARCH-generated price paths for a single day.

once adjusted to the examined parameter configuration, they will not be adjusted throughout the course of
the simulation. Borrowers’ portfolios can only change due to a liquidation event.

We are examining only significant borrowers who are at risk - their health factor is less than 2, and
eliminate those with portfolio value under $1000.

2.2.5 Liquidator agents

Liquidator agents are simulated as rational agents that interact with exclusively on-chain liquidity sources.
At the beginning of each block, each liquidator agent examines each below-1-health account, finds the most
profitable liquidation on that account, and executes that liquidation by selling the collateral on-chain and
paying back the loan with the proceeds of the on-chain sale. The liquidator will only conduct the liquidation
if it is profitable to execute via on-chain liquidity sources 4.

For the liquidator agents, we compute the optimal liquidations via a single-peak search over the space of
liquidation sizes. The proportion of liquidated collateral is in (0, 0.5], and we can search this space on each
borrowed asset to find the optimal proportion of collateral that is liquidated. For m collateral assets and n
borrowed assets, our algorithm takes O(m · n) time to find the collateral and borrowed assets, along with
the optimal proportion of liquidated collateral asset.

We assume that only one liquidation happens on an account in each block. This simplifies and speeds up
the simulation, since it allows us to ignore intra-block competitive liquidator behaviors. Furthermore, this
assumption leads to a systematic overestimate in our simulation’s estimates of protocol losses, which leads
to more conservative parameter estimates.

4The assumption that only on-chain liquidity sources are used leads to a systematic underestimate of the amount of liqui-
dations that would occur in real life, and thus leads our simulations to overestimate the true value at risk. However, we have
verified with on-chain data that this assumption is quite accurate for historical liquidations, and any error introduced by this
assumption will only lead to more conservative risk parameter recommendations.
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Figure 6: Top borrowers on the Aave protocol. Each bar represents a borrower. For each borrower, the
quantity above the red line is the supplied amount for each asset; the quantity below the red line is the
borrowed amount for each asset.

2.2.6 Protocol losses

Calculating an appropriate metric to represent protocol losses is as much of an art as it is a science. There
does not exist a failsafe mechanism that caps the downside that the protocol may face on an underwater
position that is not liquidatable. It requires a governance vote to clear out bad debt from the protocol, and
there is no guarantee that these governance votes reach an actionable conclusion in a finite period of time.
Thus, there is no protocol-enforced upper bound on the losses that may be incurred by a bad position, other
than marking that position’s collateral to zero.

With that said, we model this uncertainty of flushing out bad debt by using a time delay parameter k.
When a position goes underwater and is not liquidated for 2 consecutive blocks, we say that the protocol
recognizes the position as bad debt. We say that the protocol has a delay of k blocks following the time
they recognize the position as bad debt, at which point they liquidate the position at market using on-chain
liquidity. Specifically, the protocol sells all of the position’s collateral, pays it all toward the loan, and then
pays the additional loan that is not covered by the sold collateral. This amount – the paid back loan value
minus the sold collateral value – is the protocol’s loss on the position.

To find the protocol’s total loss in a period, we sum up the loss that it incurs from each of its positions
in the period. The great majority of positions will not dip below 1 health, and thus will not lead to a loss
for the protocol.

3 Results

We have run a simulation to measure the Value at Risk of Aave v3 deployment on Avalanche using the
setup described in this paper. We have generated 3 Million price trajectories using the GARCH model,
Lend-Borrow position and liquidity snapshots that were taken from January 3, 2023.
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Figure 7: The methodology we use to compute protocol losses.

Figure 8: The tail of bad debt across 3 million samples. For this experiment, we saw that the p99 was
$77323. Figure shows the distribution of the top 1% of bad debt.
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A Risk Parameter Search

In section 2, we discuss our methodology for determining if a risk parameter s ∈ S leads to a lower VaR
than our upper bound K. Although this is important, it is trivial to find risk parameters that solve this,
e.g. by setting the liquidation threshold to 0. Clearly we would not want to set the liquidation threshold so
low, because that would render the protocol extremely capital inefficient. We must balance the protocol’s
objectives of a high liquidation threshold and low liquidation bonus with the VaR constraint that pushes for
a low liquidation threshold and high liquidation bonus. Naturally, we can represent this as a mathematical
program:

max U(s)

s.t. VaR(s) ≤ K

s.t. s ∈ S,

where U(s) is the amount that the protocol values parameter configuration s, and VaR(s) is the value at
risk under parameter configuration s. We use definition 2.1 for value at risk, and we define here the utility
function U .

Definition A.1 (Protocol Utility Function). The protocol utility function, U : S → R, is given by

U(s) =
E[protocol profit | s]

VaR(s)
,

where VaR(s) = p99[losses | s] = the 99th percentile largest amount of losses for the protocol. This value
is strictly positive.

This utility function is inspired by the Sharpe ratio, which is a metric used in finance to report a portfolio’s
risk-adjusted returns. Here, our utility function aims to grow expected returns while keeping p99 losses as
small as possible. Unlike the Sharpe ratio, which uses the standard deviation of returns, we use the p99 of
protocol losses. Our reasoning is that the distribution of protocol losses is not known to us except through
our simulations, and the p99 of protocol losses is a more risk-sensitive value for fat-tailed distributions than
standard deviation.

Given the utility function U , we can now utilize numerical optimization techniques to optimize our risk
parameter configuration s. In particular, since the parameter space S is only two-dimensional, we utilize a
simple grid search on parameters in S, compute VaR, and move on to other parameters with higher utility
if the current parameters’ VaR is less than K. We repeat this process to create a small list of parameters,
and we then pass these parameters to the on-chain simulation test.

Our current parameter search optimization is far from perfect, but it is sufficiently fast for us to pass
risk parameters into the on-chain simulation engine to check for statistical significance. There are a number
of ways that we may improve the parameter search process in the future: further speeding up the surrogate
function calculation, introducing Bayesian optimization techniques to reduce the number of VaR calculations,
representing VaR as a component of the utility function rather than as a constraint, and utilizing previous
simulations to warm-start our parameter search.
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B Binomial Statistical Test of Protocol Losses

Here we provide a statistical testing framework that can be used to achieve a confidence level on the
probability of losses exceeding a bound. In particular, we aim to make a statistical test of the statement of
the form

Pr(protocol incurs losses greater than K) ≤ p∗,

for some pre-specified bound loss K and bound probability p∗. Furthermore, let α be the significance level
for our statistical test, and let p = Pr(protocol incurs losses greater than K). We define our null hypothesis
as follows, H0 : p ≥ p∗. The aim of our statistical test is to utilize simulations of protocol losses to reject
the null hypothesis with α significance level. Since each time we generate protocol losses is independent and
identically distributed (IID), we can perform our statistical test as a binomial experiment.

Binomial Experiment Testing Algorithm.

1. We run our simulation n times to generate a vector of protocol losses, l ∈ (R∪0). We count the number
of instances where the loss is greater than K; call this value m.

2. Suppose, to the contrary, that the null hypothesis is true, and that p ≥ p∗. Then the probability that
we observe m or fewer instances where the protocol losses are less than or equal to K is given by the
binomial distribution CDF, F , with probability p:

F (m;n, p) =

m∑
k=0

(
n

k

)
· (p)k · (1− p)

n−k
.

3. For two binomial probabilities, p1 and p2, we know that the binomial CDF F (m;n, p1) is pointwise
less than the binomial CDF F (m;n, p2) if p1 > p2. We do not provide a proof for this statement here.
Thus, we know that since p ≥ p∗, then either (a) p > p∗ and F (m;n, p) < F (m;n, p∗), or (b) p = p∗

and F (m;n, p) = F (m;n, p∗). Thus, we know that F (m;n, p) ≤ F (m;n, p∗) pointwise.

4. Therefore, we know that the probability that we observe m of fewer instances where the protocol losses
are less than or equal to K must be less than or equal to F (m;n, p∗). We can calculate this value as

F (m;n, p∗) =

m∑
k=0

(
n

k

)
· (p∗)k · (1− p∗)

n−k
.

5. Let q = F (m;n, p∗). This is an upper bound on the probability that we observe m or fewer instances
where the protocol losses are less than or equal to K. Thus, if q < α, then we can reject the null
hypothesis with α significance level. Otherwise, we fail to reject the null hypothesis.

Example Suppose we want to show with a 0.05 significance level (95% confidence level) that the
Pr(losses greater than $300,000) is less than 0.1%. Then we run 100, 000 simulations, and we observe that
losses are greater than $300, 000 in m = 80 of the simulations. We calculate

q =

80∑
k=0

(
100, 000

k

)
· (.001)k · (0.999)100,000−k = 0.0226,

which is less than our significance level of 0.05. Thus, we reject the null hypothesis with 95% confidence.
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