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Abstract

Aave V3 introduces Efficiency mode (E-mode),
whereby the protocol can enable more capital-
efficient borrowing for highly correlated assets. E-
mode is currently being considered for stablecoins
pegged to the U.S. dollar, and ETH liquid staking
derivatives. We argue that E-mode asset classes must
exhibit pairwise mean-reversion properties with suit-
able mean reversion speeds to prevent the accrual of
bad debt to the protocol. This mean-reversion frame-
work can be used, for example, to complement Agent
Based Simulation engines for more accurate pricing
trajectories. We design a preliminary framework to
set E-mode liquidation thresholds (LT), such that
they are unlikely to be abused by adversarial agents
during moments of price volatility. We also propose
loan to value parameters such that retail traders -
those not actively managing their health factors - are
less exposed to potential liquidations. Finally, we
consider a utility function that the protocol can use
to choose which assets to include in a particular E-
mode class.

1 Introduction

At a high level, the Aave V3 technical specification
states that E-mode was “designed to maximize cap-
ital efficiency when collateral and loaned assets are
correlated in price, particularly when both are deriva-
tives of the same underlying asset” [2]. We find
that correlation is not an appropriate test to ensure
E-mode assets will achieve higher capital efficiency
without increasing value at risk (VaR). Counter-
intuitively, assets within similar asset classes (such
as stablecoins) can still exhibit strongly negative pair-
wise price correlations [9]. For instance, USDC and
USDT returns are negatively correlated, likely due to
the fact that when either token devalues, holders flee
to the other token for safety. Conversely, USDC and
DAI are positively correlated, likely due to the fact
that DAI reserves are materially composed of USDC
holdings. We saw both these dynamics play out dur-

ing the bank run of Silicon Valley Bank in March
2023.

The goal of E-mode is to allow higher liquida-
tion thresholds without incurring materially more
bad debt from missed or adverse liquidations. Bad
debt is whatever outstanding debt cannot be prof-
itably liquidated using deposited collateral over some
period of time. For simplicity, we can consider some
outstanding debt as bad debt if:

1. Missed Liquidation: Debt can’t can’t be
profitably liquidated within 24 hours (the ex-
act interval is not central to our argument).

2. Adverse Liquidation: All the collateral has
been liquidated, but some debt remains.

.
Intuitively, the former occurs when the price of

the loaned asset rises relative to the price of the col-
lateral asset, and doesn’t converge back to equilibrium
within the specified time frame. The latter occurs if
the liquidation threshold is too low, relative to the
current (deflated) prices of the assets.
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Figure 1: Stablecoin prices from March 2022
to March 14th, 2023.

While positions are underwater - having a health
factor below 1 - liquidators can liquidate the de-
posited lien in order to repay the outstanding loan.
Depending on the liquidation bonus and the on-chain
liquidity for the asset in question, these liquidations
can be unprofitable for the liquidator, in which case
there might be a mismatch in assets (liens) and li-
abilities (loans). This can lead to a gap in Aave’s
balance sheet, where there isn’t enough collateral to
account for outstanding loans. Notice, however, that
if loaned asset prices fall relative to collateral assets,
this gap is closed, and while loaned asset prices fall,
liquidations might become profitable.

We argue that E-mode should capture the set of
assets for which (a) there is enough on-chain liquid-
ity in all assets such that liquidations incur mini-
mal slippage, and (b) we can be fairly confident that
the exchange rate between assets converge to a con-
stant long-term mean. Since (a) can be observed
using DEX aggregators such as 1inch, and is/will
be accounted for in the risk engines of Aave’s risk
providers, we will focus on (b) throughout this pa-
per. We find that this property, known in financial
engineering as mean-reversion, is very attractive for
high efficiency mode assets. If we are fairly confident
that the exchange rate of any two assets in an E-mode
class will quickly revert to some constant long-term
mean, then we can also be confident that we are min-
imizing potential bad debt.

In this paper, we will discuss the mean reverting
properties of derivatives that are pegged to some un-
derlying asset. These include stablecoins pegged to
the U.S. dollar and liquid staking derivatives (LSDs),
representing future 1 : 1 claims on ETH. These as-
sets often exhibit mean-reversion due to guaranteed
1 : 1 redemptions by providers such as Circle. Mean-
reversion due to high market betas, such as with ETH
and BTC, is left for future work. We will test, to
some confidence, whether these assets have consis-
tently mean-reverted to an exchange rate of ≈ 1,
e.g. USDC will be traded for 1 DAI, or 1 stETH
will be exchanged for 1 cbETH. We will measure
the time to mean reversion by taking an “epsilon-
ball” approach: we create a band around the mean,
[µ − 0.001, µ + 0.001], and measure the time taken
between exiting the band, and re-entering the band.
This band is our epsilon-ball, or in this case an
epsilon-band, where epsilon is our tolerance ϵ = 0.1%.

We discuss some important preliminary consid-
erations for setting E-mode risk parameters in Sec-
tion 2 and our testing framework for detecting mean-
reversion and choose E-mode assets in Section 3.

We ultimately find that stablecoins such as USDC,
USDT, and DAI successfully pass our litmus tests
for mean-reversion, whereas liquid staking derivatives
don’t, likely due to insufficient historical data.

1.1 Counterparty Risks as of March
2023

This paper was written shortly before the Silicon
Valley Bank collapse and subsequent momentary de-
peg of USDC. This unfortunate event provides in-
sight into why stablecoins exhibit mean-reverting
properties relative to the U.S. dollar, and why this
mean-reversion is different than that of high mar-
ket beta mean-reversion, such as the relationship be-
tween ETH and BTC. The mean-reversion underpin-
ning stablecoins is driven by the perceived legitimacy
of the issuer of said stablecoin, this is the case with
Circle’s USDC, Tether’s USDT, etc.. They might lose
their peg if depositors lose faith in the issuer’s com-
mitment or ability to redeem tokens at a 1 : 1 ratio
within a reasonable timeframe. Notice this also ap-
plies to the ability of algorithms underpinning algo-
rithmic stablecoins of doing the same.

This claim is consistently tested by the market.
Most stablecoins saw sharp outflows as various crypto
exchanges and lenders went bankrupt throughout
2022. Tether, for example, saw over 700M USDT be-
ing redeemed within a 24 hour period following the
collapse of FTX in November of 2022 [8]. Despite
the spike in redemptions, Tether quickly regained its
dollar-peg. Other stablecoins, particularly Terra’s al-
gorithmic stablecoin UST, were not as successful.

In this paper, we attempt to formalize, and test to
a 99% confidence interval, that derivative assets such
as stablecoins or ETH LSDs have successfully main-
tained their pegs throughout 2022 and early 2023,
a particularly volatile period. Further, we test that
they regain their pegs at sufficient speeds. However,
as discussed in Section 4, we make no attempt at
quantifying the risk that historically mean-reverting
assets will lose their pegs due to exogenous events.
We cannot glean this information from statistical
data. As we have seen with the latest USDC de-peg,
these events may happen for a variety of unforeseen
reasons.

To prevent Aave from being exposed to the fat-
tail risk of these assets permanently de-pegging, we
consider two possible constraints on E-mode classes:

1. E-mode status should be reserved to assets
whose mean-reversion is guaranteed by some
counterparty (centralized, or code). Examples
of this include Circle’s USDC or Lido’s stETH.
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A more sophisticated risk framework may be
developed for other related assets, such as ETH
and BTC, but is not addressed by this paper.

2. E-mode status should be reserved to assets
whose issuing counterparties are either:

(a) Regulated and/or audited by relevant fi-
nancial auditors. This is especially rele-
vant as regulatory scrutiny with respect to
stablecoins gains traction in U.S and E.U.
courts. See the proposed U.S.’s Stablecoin
TRUST act for an example of what this
regulation might look like [11]. A few key
points to consider are:

• Disclosures of reserve assets and out-
standing liabilities. Refer to Figure 7
in the appendix for a December 2023
audit of Tether’s reserves by Binder
Dijker Otte (BDO), a globally recog-
nized accounting firm.

• Regulation on counterparty, duration,
liquidity, and market risks of the issu-
ing corporation. For example, Coin-
base and Circle are regulated under
the New York State Department of Fi-
nancial Services (NYDFS), as well as
several other state regulators [6]

(b) Decentralized entities with open-sourced
code and smart contracts. In this case, the
reserves backing up the derivative assets
are publicly known and auditable. Such is
the case, for example, with Lido’s stETH.

Figure 2: Chainlink spot prices for USDC
throughout the Silicon Valley Bank collapse.

Aave’s counterparty risk with respect to these is-
suers has always existed, with or without E-mode.

Financial audits and regulation are a step towards
mitigating this risk, and we see more issuers comply-
ing with such requirements as of 2023. A full review
of stablecoin/LSD regulation and audits is outside
the scope of this paper. In this paper we assume that
the assets in question satisfy these conditions, an as-
sumption we believe was tested for Circle’s USDC
upon the collapse of Silicon Valley Bank, see Figure
2 for USDC’s performance.

2 E-mode Risk Parameters

The liquidation threshold balances capital efficiency
and value-at-risk for Aave. We show how the liquida-
tion threshold can be gamed by an adversarial agent,
presumably a statistical arbitrage trader, and how
a similar concept can be applied to LTV to help re-
tail traders avoid liquidations in high efficiency mode.
Here we set LTV and LT as if an E-mode class in-
cludes only 2 assets. If the E-mode class contains
more than 2 assets, we would consider the lowest LT
and LTV observed for any pair in the asset class.

Furthermore, in setting a liquidation threshold ac-
cording to the highest (observed) deviation in prices,
we are implicitly minimizing the risk of adverse liqui-
dations. This will best be measured via agent based
simulations, which account for the preferences of liq-
uidators, but we provide an initial conservative esti-
mate.

Finally, we argue the liquidation bonus is primar-
ily a function of on-chain liquidity and we are aligned
with the community’s current consensus of keeping it
in the 1% − 2% range for stablecoins. We discuss
improvements to this methodology, and how it fits
into the context of more sophisticated risk engines,
in Section 4.
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Figure 3: DAI/USDC exchange rate from
March 2022 to March 2023 using Chainlink
Oracle prices.

2.1 Setting Liquidation Thresholds

Suppose agent A has Xa of token a, and is looking to
borrow token b in E-mode. The liquidation threshold
for tokens in the E-mode class to which a, b belong is
LT . Agent A can then borrow:

Xb · pb,eth ≤ LT ×Xa · pa,eth (1)

Where pa,eth denotes the price of token a in ETH.
We know the relative price of tokens a and b is:

pa,b =
pa,eth
pb,eth

(2)

Notice agent A[rb], presumably a statistical arbi-
trage trader, knows they can avoid the loan-to-value
limit by enclosing their borrow within a flashloan
transaction. Furthermore, agent A knows that tokens
a, b, being part of the same E-mode class, are likely to
exhibit strong mean-reverting properties. They wait
until there is a large deviation in prices between to-
kens a and b and then borrow the maximum amount
of token b they can with their Xa token a. Soon af-
ter, pa,b mean reverts and agent A’s collateral gets
liquidated. However, they never paid back their Xb

loan. Did they profit?
Combining Equations 1 and 2, agent A’s borrow-

ing power is:

Xb = LT ·Xa · (µa,b + γa,b) (3)

where γa,b is the deviation in price from the long-
term mean of pa,b, which we denote as µa,b. Once
prices have mean reverted, we can express agent A’s
profits in terms of token a and find a liquidation
threshold to prevent this trade from being profitable:

Xb · µb,a −Xa < 0

LT · µb,a(µa,b + γa,b) < 1

LT <
1

1 +
γa,b

µa,b

(4)

To account for the symmetry in borrowing a for b
or b for a, we take the smaller LT :

LT = min

(
1

1 +
γa,b

µa,b

,
1

1 +
γb,a

µb,a

)
(5)

Let tokens a, b be DAI, USDC respectively, as
in Figure 3, where µdai,usdc ≈ 1 and the maximum
deviation from March 2022 and March 2023 was

γdai,usdc ≈ 0.036. Suppose the community sets a very
high liquidation threshold LT = 0.99 for stablecoin
assets due to their perceived safety. During the col-
lapse of Silicon Valley Bank in March 2023, a trader
could have achieved a roughly 2.5% return within the
span of a few hours by depositing DAI and borrow-
ing an out-sized amount in USDC. This would leave
Aave with roughly 2.5% of whatever capital was de-
ployed as outstanding USDC debt that cannot be re-
paid with the deposited DAI. For example, $1M DAI
is deposited but $1.025M USDC can be borrowed and
never repaid. Find a snapshot of the oracle prices in
Appendix D.

We using Equation 5, and round the LT down to
the nearest 0.5% as an additional conservative mea-
sure. The maximum liquidation threshold we could
offer for an E-mode class containing just USDC and
DAI is:

LT =
1

1 + 0.036
≈ 0.9652→ 0.965 (6)

We note that is a risk-off approach, since these de-
viations are rare, and there are potentially more prof-
itable strategies these traders could execute. Con-
sider two strategies: swap USDT for USDC on
Uniswap, or deposit USDT and borrow USDC on
Aave. The profitability of either strategy during a
momentary USDC de-peg (assuming it will re-peg
shortly), depends on the liquidity on Uniswap and
the availability for USDC borrows on Aave. Assum-
ing the trader is trading the de-peg in size, there
might not be enough sell-side liquidity for USDT on
Uniswap, such that the discount the trader suffers on
Aave, 1−LT , is still more profitable. Our goal in this
section was to set an LT such that a trader could not
profit on a deviation up to γ.

Notice that by setting the LT according to the
largest deviation in prices, we are also increasing the
amount of collateral available to liquidate a position
when prices are deflated. This minimizes the risk that
liquidators will consume all the collateral as prices
rise from their local minimum.

2.2 Minimizing Liquidations from a
UX/UI Perspective

The LTV is primarily a UX tool to prevent re-
tail traders from taking too much risk, and can be
sidestepped by more sophisticated users. Those that
borrow at or below the LTV, which from borrowing
data we know accounts for many of Aave’s borrowers,
are presumably not actively managing their margin
as much as those borrowing at or near the LT. We
can set the LTV such that, based on past extreme
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deviations, these users still will not get liquidated.
We choose extreme deviations as our benchmark as
an initial conservative measure, although these devi-
ations are infrequent, and we could achieve greater
capital efficiency by basing our methodology off of
historical price volatility.

Suppose a user borrows DAI for USDC (instead
of agent A borrowing USDC for DAI), when DAI-
USDC exchange rates are at or near the long term
mean µDAI,USDC ≈ 1. This user borrows at the LTV
ratio, XDAI = LTV · XUSDC · µUSDC,DAI. We want
to prevent them from getting liquidated. Denote the
user’s health factor as HF , we set the LTV such that
the liquidation HF = 1, occurs only at the maximum
observed deviation γDAI,USDC:

HF =
XUSDC · pUSDC,ETH · LT

XDAI · pDAI,ETH

HF =
XUSDC · LT

LTV ·XUSDC · µUSDC,DAI
pUSDC,DAI

1 =
LT

LTV ·
(
1 +

γDAI,USDC

µDAI,USDC

)
LTV ≈ LT

1 + γDAI,USDC
(7)

LTV ≈ 0.931→ 0.93

By setting a liquidation threshold at 0.965 and a
LTV at 0.93 we prevent retail users, borrowing at or
below their LTV, from getting liquidated at even the
most extreme price deviations observed throughout
the last year. This is not to say that those borrowing
above their LTV will not get liquidated, but they are
presumably actively managing their margin and, as
we have shown, are unlikely to have an incentive to
play adversarial games with Aave. Granted, basing
our parameters off the maximum deviation, which oc-
cured during the SVB collapse, might be overly con-
servative. We find that a risk-off approach is a good
first step.

2.3 Setting a Liquidation Bonus

The liquidation bonus determines the profitability of
liquidators and offsets the potential slippage and gas
costs incurred by liquidators. As others have noted,
setting the liquidation bonus too high can prevent liq-
uidations from increasing the health factor in the first
place, whereas setting them too low can make them
unprofitable [3]. Due to the deep on-chain liquidity
of stablecoins and LSDs, it is unlikely [as of now] that
selling some portion of the aggregated supply of these
assets on Aave would incur much slippage.

In this paper, we focus on measuring the mean-
reversion of these asset pairs, and ensuring safe
LT/LTV parameters. We leave a robust analysis of
the 1% LB to future work.

3 Choosing E-mode Assets

As discussed, assets within the same E-mode class
must exhibit mean-reversion relative to each other,
with an acceptable mean-reversion speed. This mean-
reversion gives the protocol additional assurance that
(1) the relative value of liens and loans will remain
stable over time, and (2) if they diverge, they will
eventually converge within an acceptable timeframe.

Adding a new asset to an E-mode class will ei-
ther reduce its liquidation threshold LT , or leave it
unchanged. Although this is not necessarily the case
with an alternative framework for setting LT , such
as a simulation-based methodology that captures on-
chain liquidity projections and borrower behavior, we
still need to consider the trade-off of adding new as-
sets to the class.
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Figure 4: Liquid Staking Derivative
prices, for available dates.

3.1 Measuring Mean-Reversion

Mean-reverting times-series are generally character-
ized as Ornstein-Uhlenbeck (OU) stochastic differen-
tial equations:

dxt = κ (µ− xt) + σdWt (8)

where xt is an observation of our time-series at
time t, κ is the speed of mean-reversion, µ is the
long-term mean, σ is a measure of volatility, and Wt

is a Weiner process. Intuitively, κ (µ− xt) is a forc-
ing term that pushes our time-series back towards
the mean µ at a “speed” κ, whereas σdWt introduces
some i.i.d. noise term. This equation, or its deriva-
tives such as Vasicek’s model or the Cox-Ingersoll-
Ross model could be fitted to the price trajectories
for E-mode risk simulations. We discuss this as a
potential extension in Section 4.

Here, we test for whether a pair of assets would
be suitable for E-mode by checking whether their rel-
ative prices are mean-reverting, and therefore can be
modelled by an Ornstein-Uhlenbeck process. It is not
in the scope of this paper to actually produce price
projections using O-U (or its derivatives)1.

There are two widespread methods for measuring
mean-reversion in the financial engineering literature.
These are the Augmented Dickey-Fuller (ADF) test,
and the Hurst exponent [1] [7]. ADF tests for the
presence of a unit root in an auto-regressive stochas-
tic process, which in turn determines if said process is
stationary, or trend-stationary. A stationary process
must also be mean-reverting, making ADF an appro-
priate test2. The Hurst exponent is similarly used
to measure mean-reversion, where a Hurst exponent
H < 0.5 indicates mean-reversion, H ≈ 0.5 indicates
Geometric Brownian Motion (GBM) and H > 0.5
indicates a trending process [1].

We implement these in Python using the
Statsmodels and Numpy packages. Below are the re-
sults from both tests for various stablecoins: USDC,
USDT, DAI, LUSD. We are looking for mean-
reversion at a 1% confidence interval on ADF as well
as a Hurst exponent H < 0.5, based on Chainlink
oracle prices from March 2022 to March 2023. We
re-sample our data at a 45s granularity and take
a maximum lag on the Hurst exponent of 10000
steps, corresponding to a maximum lag of roughly 100

hours. Since Chainlink oracle prices arrive at irregu-
lar timesteps, we discuss our method for resampling
our observations in Appendix C.

For liquid staking derivatives, we additionally
check that prices must mean-revert relative to ETH,
since the underlying asset, WETH, will be included
in the E-mode class.

ADF p-Value Hurst Mean-Reverts
Pair

USDC-DAI -24.660 0.000 0.052 True
USDC-USDT -10.442 0.000 0.23 True
USDC-LUSD -4.224 0.001 0.3 True
DAI-USDT -11.403 0.000 0.214 True
DAI-LUSD -4.392 0.000 0.3 True
USDT-LUSD -3.797 0.003 0.284 True

Table 1: Mean reversion results for Stable-
coins using Augmented Dickey-Fuller and the
Hurst Exponent. The ADF t-score has a 1%
critical score of −3.41. Notice that all stables
pass the ADF test at a 1% confidence interval,
although all LUSD pairs barely pass the ADF
test which is reflected in higher Hurst expo-
nents.

ADF p-Value Hurst Mean-Reverts
Pair

stETH-cbETH -2.352 0.156 0.411 False
stETH-rETH -2.699 0.074 0.205 False
cbETH-rETH -2.182 0.213 0.227 False
stETH-ETH -2.424 0.135 0.46 False
cbETH-ETH -2.040 0.269 0.368 False
rETH-ETH -0.253 0.932 0.364 False

Table 2: Mean reversion results for liquid
staking derivatives using Augmented Dickey-
Fuller and the Hurst Exponent. The ADF t-
score has a 1% critical score of −3.41. That
is, there is insufficient evidence of mean-
reversion, even for stETH-ETH.

3.2 Time to Mean-Reversion

Intuitively, mean-reversion is only an attractive prop-
erty for high efficiency mode assets if the mean-
reversion occurs quickly enough. Otherwise, Aave
can be left with a hole in its balance sheet for ex-
tended periods of time. By measuring the time to
mean reversion, we can provide some statistical rigor
for why certain tokens do not meet the standards re-
quired for E-mode. We can formalize this as follows:
for any price deviation γa,b from the mean, we mea-
sure the time taken for the price to fall back within a
certain tolerance ϵ of the mean µa,b within some pe-
riod τ . We measure this time τ for all deviations

1This can be achieved using Maximum Likelihood Estimations, and will likely require the inclusion of a “jump” term to
capture the sudden spikes in prices. This jump term is sometimes modelled as a compound Poisson process

2A strictly stationary process exhibits both a constant long-term mean, and no drift with respect to time. It follows that
each step ∆yt is proportional to the preceding observation yt−1, and tends back towards the mean µ.
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in our data. For this paper we have chosen that
the 90th percentile deviation must converge within
τ = 24 hours to a tolerance of 0.1%.

Avg (hrs) 90th (hrs) Max (hrs) Verdict
Pair

USDC-DAI 1.056 2.013 18.925 True
USDC-USDT 56.135 158.488 216.062 False
USDC-LUSD 87.870 87.475 2291.250 False
DAI-USDT 4.228 8.764 115.450 True
DAI-LUSD 61.468 49.188 2309.800 False
USDT-LUSD 84.029 84.932 2191.225 False

Table 3: Time to mean-reversion for stable-
coins. We measure how long it takes for each
pair to revert back to the epsilon-band around
its mean, where ϵ = 0.1%.

We find that only USDC/DAI and DAI/USDT
mean-revert within 24 hours at the 90th percentile
(as well as on average). Notice that since LSDs don’t
mean-revert according to our results in Table 2, it
does not make sense to test for their mean-reversion
speeds.

Figure 5: DAI/USDC exchange rate during
the March 2023 de-peg. Notice how prices re-
vert to the mean within the matter of hours.

3.3 Defining a Utility Function

We have narrowed our search for E-mode assets to
two criteria (not considering deep on-chain liquidity,
which is assumed): (1) their relative price with any
other asset in the class must be mean-reverting, and
(2) they must mean-revert with appropriate speed.
Now, we consider a set of eligible assets S, and formu-
late a utility function to choose which assets should

remain in the set, and which can be removed for im-
proved capital efficiency.

Each asset added to the E-mode class would ob-
serve an increase in capital efficiency relative to it-
self, meaning its liquidation threshold and loan-to-
value will increase. However, adding this new as-
set might reduce the increase in capital efficiency for
other assets in the E-mode class. Consider the set
of stablecoins in an E-mode class, S. Let LTS be
the best liquidation threshold we achieve with this
set S, and LT (s) be the “normal-mode” liquidation
threshold of asset s ∈ S. A proxy for the appetite
to borrow any asset in s ∈ S is the current collateral
supply of that asset. Therefore, the percentage im-
provement in capital efficiency for each asset s ∈ S is
∆SLT (s) = LTS−LT (s), whereas the gross improve-
ment to the protocol is ∆SLT (s) · Collateral(s)3.
Since it is beneficial to include high-demand assets in
E-mode, even if they might lower the overall LTS , we
consider the gross improvement in capital efficiency
as our utility function.

U(S) =
∑
s∈S

(LTS − LT (s)) · collateral(s) (9)

We can define the collateral for some asset A for
account i by looking at i’s supply of A, denoted as
xA,i, and their borrowing of other assets j ∈ assets,
denoted as bj,i [4]. We define:

cA,i =
xA,i

∑
j∈assets bj,ipj∑

j∈assets

LTj · xj,ipj
(10)

Looping through all accounts I, we can glean the
overall amount of asset A being used as collateral:

cA =
∑
i∈I

cA,i (11)

Denote the universal set of eligible E-mode assets
in a particular asset class, such as stablecoins, as Γ.
Our process for choosing E-mode assets based on the
proposed utility function is as follows:

1. Consider the power set P(Γ) excluding the
empty and unit sets.

2. For each set S ∈ P(Γ), ensure all pairs νa,b ∈(
S
2

)
satisfy our mean reversion criteria.

3. Compute the liquidation thresholds for each
pair νa,b as per Equation 5. The liquidation
threshold for the set, LTS , is the smallest LT
of all pairs in S.

3We could additionally multiply each asset’s contribution by its reserve factor and current borrow interest rate to measure
the expected increase in reserves accrual.
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4. Compute the utility generated from LTS and
the collateral data for assets in S.

5. Return the set with the highest utility.

Notice an increase in utility shouldn’t come just
from assets being used as collateral, as they can also
be borrowed in E-mode. Including an asset in E-
mode creates a significant improvement in UX be-
cause users can directly borrow that asset using other
E-mode assets as collateral. We are not quantifying
this in our utility function. However, notice that as-
sets borrowed in E-mode can then be swapped into
the asset that is not in E-mode, achieving a similar
increase in capital efficiency - gas and slippage aside.
Furthermore, our selection algorithm allows for assets
s ∈ S′ to have a lower LT inside the E-mode class
than in normal mode. This is convenient for those
wishing to borrow this asset, with a higher capital ef-
ficiency on their collateral. We do not see why assets
in E-mode must enact a higher LT and LTV than out-
side of E-mode, as specified in the Aave V3 technical
specification [2].

3.3.1 Drawbacks

Notice that we might be including new assets in effi-
ciency that cannot currently be used as collateral on
Ethereum mainnet, such as LUSD, which will lead to
high increases in utility since we set current LT to
0. For USDT, we are using the Avalanche isolation
mode liquidation threshold.

Furthermore, we are currently using the supply of
assets (as of March 10th, 2023) instead of their col-
laterals, since the collateral value is not readily avail-
able. We leave gathering collateral data for assets for
future work. Whether using supply or collateral, this
is not a perfect proxy for the actual increase in capital
efficiency, since listing assets in E-mode might lead to
different impacts in the relative usage of each asset.
For example, listing cbETH in E-mode might lead to
more relative usage than listing rETH in E-mode, in
which case we are understimating the utility of listing
cbETH in E-mode.

3.4 Results

Some tokens do not pass our mean reversion tests.
A good example LUSD, which does not consistently
maintain its peg over time and takes too long to
mean-revert, as show in Figure 6.

Figure 6: USDC-LUSD exchange rate.

We don’t find that any liquid staking derivatives
exhibit sufficient mean-reverting properties amongst
each other, or relative to ETH. This is likely due to
the short history of Chainlink prices on many of these
tokens. As price histories increase and token prices
stabilize, these LSDs are more likely to pass statis-
tical significance tests such as Dickey-Fuller. On the
other hand, we find that all stablecoin pairs pass the
ADF test for mean-reversion, and have sufficiently
low Hurst exponents. However, only USDC-DAI and
DAI-USDT mean-revert sufficiently fast to pass our
24 hour test.

We run our utility function algorithm on the
two mean-reverting sets, USDC-DAI and DAI-
USDT. Furthermore, we consider potentially includ-
ing USDC-USDT in our algorithm since it failed our
mean-reversion speed test by only a few hours. We
obtain the following results:

LT LTV U
Pair

USDC, DAI 0.965 0.93 $14,677,250
DAI, USDT 0.87 0.76 $7,550,500
USDC, USDT 0.88 0.775 $2,540,200
USDC, USDT, DAI 0.87 0.76 $8,808,500

Table 4: Results from searching the universe
of stablecoins with our utility function.

We conclude that USDC and DAI are the best
assets to include in E-mode, with LT = 0.965 and
LTV = 0.93. Both USDC and DAI observe very
high deviations with respect to USDT, requiring us
to set lower LT,LTV . We argue this tradeoff is not
worthwhile. We acknowledge that including USDT
could have unquantified benefits in term of conve-
nience for the community, and consider further risks,
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such as potential de-peg events, in the following sec-
tion. Further, we acknowledge that using the max-
imum deviation for setting LT,LTV might also be
overly conservative, instead we could use some num-
ber of standard deviations, or the 90th percentile de-
viation as we did in Section 3.2.

4 Discussion

Our proposed methodology formalizes the intuition
behind E-mode using rigorous statistical tests. How-
ever, it does not consider other relevant factors such
as liquidity or counterparty risk, and is overly conser-
vative by taking the maximum deviation γ of a pair of
assets, instead of perhaps its volatility σ in setting liq-
uidation thresholds and loan-to-value. This becomes
especially conservative given the extreme deviations
observed due to the Silicon Valley Bank collapse in
March 2023, refer to Figure 8.

However, as has been the case with most Aave
listings, we find it suitable to start with a risk-off
approach before more sophisticated approaches can
be built and tested. We find that the Ornstein-
Uhlenbeck model discussed in Section 3 is a candi-
date for improving the diffusion processes baked into
existing risk engines. Enforcing mean-reversion prop-
erties in exchange rates might produce more accu-
rate price trajectories than pure GARCH models for
mean-reverting pairs, as has been shown in some of
the algorithmic trading literature [12]. Below we con-
sider a few potential concerns and improvements.

4.1 Fat Tail Events

Fat tail events, sometimes referred to as black swan
events, are highly improbable events that carry with
them significant risks. For Aave, this risk refers to the
risk of a catastrophic asset devaluation event, such as
a UST-like de-peg for one of Aave’s collateral assets.
This risk is a function of a token’s market cap, liq-
uidity, centralization, or fear regarding the issuing
party’s reserves (e.g. Tether). These have not been
accounted for in our methodology. We have contained
our research to the highest market-cap stablecoins
and LSDs to mitigate potential counterparty risk, as
described in Section 1.1.

We argue the debt ceiling in Aave’s isolation mode
is the better line of defense against fat tail risks. Plac-
ing USDT both in high efficiency mode and isola-
tion mode, for example, allows users to benefit from
the increased capital efficiency of borrowing/lending
a mean-reverting pair, while mitigating the fat tail
risk of a potential USDT de-peg. For this reason,
we leave managing fat tail risks to further work on

Aave’s isolation mode. Other avenues for fat tail risk
management are potential examinations of collateral
assets and their associated counterparty risks, includ-
ing reviews of reserve audits and/or regulatory com-
pliance.

4.2 Future Work

Setting the minimum speed of mean reversion is a
relevant lever for E-mode. Demanding E-mode assets
mean revert at faster rates would reduce the proba-
bility that Aave is left holding bad debt for longer,
but also reduces the potential assets we would in-
clude in an E-mode class. We have chosen a period
of 24 hours arbitrarily, and are open to more sophis-
ticated ways of setting this parameter. Furthermore,
we have considered the pairwise exchange rates of
assets and their pairwise mean-reversion. However,
these E-mode classes could include > 2 assets. A
better approach could consider portfolios that include
more than just two pairs, sampled from some appro-
priate distribution.

As previously mentioned, integrating E-mode into
the agent based simulations of Aave’s risk providers
will likely yield more appropriate parameters than
what has been proposed in Section 2. Liquidation
thresholds are set such that they minimize the pro-
tocol’s value at risk, given each asset’s historical on-
chain liquidity and asset price volatility. We find that
taking stressed VaR measurements from agent based
simulations, as previously discussed in [5], would be
a more sophisticated approach.

4.2.1 E-mode as an Ornstein-Uhlenbeck Pro-
cess

The Cox–Ingersoll–Ross (CIR) model is an extension
of the Ornstein-Uhlenbeck process and belongs to a
subset of jump diffusion processes. Since diffusion
processes like GARCH or jump diffusion are what
Chaos Labs is currently building to model risk pa-
rameters for Aave, we find this to be an attractive
potential extension to the simulations when it comes
to E-mode.

We can use statistical methods to estimate the
parameters for these models, such as mean-reversion
speed κ or instantaneous volatility σ, and project
mean-reverting pair prices. Common methods found
in the literature for making these estimates include
ordinary least squares regression [10] or maximum
likelihood estimators [10] with various probability
densities. This could potentially lead to extensions to
other mean-reverting pairs, such as WBTC/WETH,
which would have µ ̸= 1 and might exhibit regime
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shifts over time (i.e. the mean isn’t always constant).

4.2.2 Adding Jumps

We modelled our process as a simple mean-reverting
series in equation 8. This doesn’t capture the sud-
den rare spikes in prices which we usually term as
de-pegs. Adding a jump term to our OU process is
one option to capture these jumps in simulations:

dxt = κ (µ− xt) + σdWt + dJt (12)

Where J is sometimes modelled as a compound
Poisson process.
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A E-Mode Class Algorithm

Algorithm 1: E-Mode Class Optimization

1: Γ← {Universe of eligible assets}
2: S∗ ← {} ▷ Current best set
3: U∗ ← 0 ▷ Current best utility
4: Q← {} ▷ Set of ineligible pairs
5: for S ∈ P(Γ) do
6: LTS ← 1
7: LTVS ← 1
8: success ← true
9: for νsi,sj ∈

(
S
2

)
do

10: ▷ Tuple νsi,sj is a pair in S.
11: if νsi,sj ∈ Q then
12: ▷ We know νsi,sj fails our criteria.
13: success ← false
14: break
15: end if
16: 1(νsi,sj ) ▷ Mean-Reversion results
17: if 1(νsi,sj ) = true then
18: LT ← LT from eq 5
19: LTV ← LTV from eq 7
20: LTS ← min(LTS , LT )
21: LTVS ← min(LTVS , LTV )
22: else
23: Q← Q ∪ {νsi,sj}
24: success ← false
25: break
26: end if
27: end for
28: U ←

∑
s∈S (LTS − LT (s)) · Collateral(s)

29: if success = true and U > U∗ then
30: U∗ ← U
31: S∗ ← S
32: end if
33: end for
34: return S∗

Since the power set of stablecoins or LSDs is small, and the algorithm is relatively computationally
inexpensive, optimizing it is left for future work.
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B Tether Holdings Limited Reserves Audit

Figure 7: Reserve assets of Tether Holdings
Ltd. by Binder Dijker Otte (BDO), on De-
cember 2022.
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C Regularizing Chainlink Oracle Prices

Chainlink oracle prices arrive at irregular times. Their intervals are defined as heartbeats. For example,
every 24 hours there is a heartbeat for the USDC-USD oracles, at which point oracles must update their
prices on chain. This heartbeat is 1 hour for DAI-USD. To get our USDC-DAI exchange rate, we forward
fill USDC-USD prices at the same interval as DAI-USD. However, oracles are also required to update their
prices whenever prices deviate above some predefined threshold, 0.25% for USDC and DAI. During period
of volatility, oracles update very frequently.

When conducting statistical tests such as Dickey-Fuller, or when measuring speed of mean reversion using
OLS, we are assuming regular time intervals. We resample our data at a 45 second granularity, and use
this regularized timeseries for our statistical testing. 45 seconds was chosen as it retains information on the
moments of peak volatility without being too computationally demanding.
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D USDC-DAI Momentary De-Peg Data

DAI USDC USDC-DAI Deviations
datetime
2023-03-11 05:09:23 0.9287 0.9099 0.9798 0.0197
2023-03-11 05:12:11 0.9316 0.9099 0.9767 0.0228
2023-03-11 05:28:47 0.9340 0.9095 0.9737 0.0257
2023-03-11 05:32:47 0.9374 0.9095 0.9702 0.0293
2023-03-11 05:34:47 0.9314 0.9095 0.9764 0.0230
2023-03-11 05:36:23 0.9353 0.9095 0.9724 0.0271
2023-03-11 05:44:59 0.9397 0.9095 0.9679 0.0316
2023-03-11 05:45:47 0.9372 0.9095 0.9704 0.0291
2023-03-11 05:57:23 0.9398 0.9068 0.9649 0.0346
2023-03-11 05:57:47 0.9358 0.9068 0.9691 0.0304
2023-03-11 05:59:47 0.9324 0.9068 0.9726 0.0269
2023-03-11 06:01:47 0.9352 0.9084 0.9714 0.0281
2023-03-11 06:02:47 0.9306 0.9084 0.9761 0.0233
2023-03-11 06:03:23 0.9352 0.9084 0.9714 0.0281
2023-03-11 06:06:23 0.9324 0.9084 0.9742 0.0252
2023-03-11 06:08:23 0.9297 0.9060 0.9745 0.0250
2023-03-11 06:09:23 0.9326 0.9060 0.9714 0.0280
2023-03-11 06:10:23 0.9277 0.9060 0.9766 0.0229
2023-03-11 06:11:47 0.9306 0.9102 0.9780 0.0215
2023-03-11 06:13:23 0.9276 0.9102 0.9812 0.0183
2023-03-11 06:14:47 0.9338 0.9081 0.9724 0.0270
2023-03-11 06:15:23 0.9313 0.9081 0.9750 0.0245
2023-03-11 06:16:47 0.9343 0.9081 0.9720 0.0275
2023-03-11 06:17:23 0.9304 0.9081 0.9760 0.0235
2023-03-11 06:17:47 0.9279 0.9081 0.9787 0.0208
2023-03-11 06:18:47 0.9233 0.9081 0.9835 0.0159
2023-03-11 06:19:23 0.9300 0.9081 0.9765 0.0230
2023-03-11 06:21:23 0.9343 0.9081 0.9719 0.0276
2023-03-11 06:29:47 0.9254 0.9071 0.9803 0.0192
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E Stablecoin Exchange Rates

Notice the prices during the SVB collapse on March 2023:

Figure 8: Stablecoin exchange rates throughout March 2022 to March 2023.
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